Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes

Context:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.Objective:To determine whether similar processes occur in human...

Full description

Saved in:
Bibliographic Details
Published inThe journal of clinical endocrinology and metabolism Vol. 101; no. 3; pp. 1044 - 1054
Main Authors Cinti, Francesca, Bouchi, Ryotaro, Kim-Muller, Ja Young, Ohmura, Yoshiaki, Sandoval, P. R., Masini, Matilde, Marselli, Lorella, Suleiman, Mara, Ratner, Lloyd E., Marchetti, Piero, Accili, Domenico
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.03.2016
Copyright by The Endocrine Society
Endocrine Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.Objective:To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors.Design:We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3.Results:By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects.Conclusions:The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-“like” cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction.
AbstractList CONTEXT:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types. OBJECTIVE:To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors. DESIGN:We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3. RESULTS:By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects. CONCLUSIONS:The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-“like” cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction.
Context:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.Objective:To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors.Design:We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3.Results:By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects.Conclusions:The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-“like” cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction.
Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.CONTEXTDiabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors.OBJECTIVETo determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors.We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3.DESIGNWe scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3.By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects.RESULTSBy these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects.The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-"like" cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction.CONCLUSIONSThe data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-"like" cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction.
Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types. To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors. We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3. By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects. The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-"like" cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction.
Author Cinti, Francesca
Suleiman, Mara
Ratner, Lloyd E.
Ohmura, Yoshiaki
Marselli, Lorella
Accili, Domenico
Sandoval, P. R.
Masini, Matilde
Marchetti, Piero
Kim-Muller, Ja Young
Bouchi, Ryotaro
AuthorAffiliation Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
AuthorAffiliation_xml – name: Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
Author_xml – sequence: 1
  givenname: Francesca
  surname: Cinti
  fullname: Cinti, Francesca
  organization: 1Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) New York, New York 10032
– sequence: 2
  givenname: Ryotaro
  surname: Bouchi
  fullname: Bouchi, Ryotaro
  organization: 1Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) New York, New York 10032
– sequence: 3
  givenname: Ja Young
  surname: Kim-Muller
  fullname: Kim-Muller, Ja Young
  organization: 1Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) New York, New York 10032
– sequence: 4
  givenname: Yoshiaki
  surname: Ohmura
  fullname: Ohmura, Yoshiaki
  organization: 2Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032
– sequence: 5
  givenname: P. R.
  surname: Sandoval
  fullname: Sandoval, P. R.
  organization: 2Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032
– sequence: 6
  givenname: Matilde
  surname: Masini
  fullname: Masini, Matilde
  organization: 4Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
– sequence: 7
  givenname: Lorella
  surname: Marselli
  fullname: Marselli, Lorella
  organization: 4Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
– sequence: 8
  givenname: Mara
  surname: Suleiman
  fullname: Suleiman, Mara
  organization: 4Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
– sequence: 9
  givenname: Lloyd E.
  surname: Ratner
  fullname: Ratner, Lloyd E.
  organization: 2Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032
– sequence: 10
  givenname: Piero
  surname: Marchetti
  fullname: Marchetti, Piero
  organization: 4Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
– sequence: 11
  givenname: Domenico
  surname: Accili
  fullname: Accili, Domenico
  email: da230@columbia.edu
  organization: 1Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) New York, New York 10032
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26713822$$D View this record in MEDLINE/PubMed
BookMark eNp1kk9LHDEYxkOx1FV767kM9NAeOpq_k8xFkNXWguBlD95CJvOmm-1ssk1mFL9WP0g_U7OulVYwEELI73l43vfNAdoLMQBC7wg-JpTgk5U9ppiImqoGv0Iz0nJRS9LKPTTDmJK6lfRmHx3kvMKYcC7YG7RPG0mYonSGTi9ufQ_BQhVd9ftXPYdhqM6h985BgjB6M_oYKh-qy2ltQrW430BFq3NvOhghH6HXzgwZ3j6eh2jx5WIxv6yvrr9-m59d1ZaLko21BFQH0omm6x11PcEUrBW9k4w6TMBYgW1nmepxhy2XzgID4QRrbOsYO0SnO9vN1K2htyVYMoPeJL826V5H4_X_L8Ev9fd4q7nCjChaDD49GqT4c4I86rXPttRqAsQpayIlVlK1bIt-eIau4pRCqU4z0nAmJRO4UO__TfQU5W9nC_B5B9gUc07gnhCC9XZwemX1dnB6O7iC02e49eND70s9fnhJxHeiuziMkPKPYbqDpJdghnGpcVm8kaouggKXW102E0X2cSeL0-alVA_fif0BKBK21Q
CitedBy_id crossref_primary_10_1016_j_isci_2018_02_003
crossref_primary_10_1016_j_semcdb_2020_01_003
crossref_primary_10_1016_j_molmet_2018_02_002
crossref_primary_10_1080_14656566_2021_1974401
crossref_primary_10_3390_biom12030373
crossref_primary_10_1186_s10020_018_0044_3
crossref_primary_10_2337_dc16_0619
crossref_primary_10_1371_journal_pone_0260526
crossref_primary_10_3390_ijms22179504
crossref_primary_10_1172_JCI94330
crossref_primary_10_1007_s00428_024_03842_4
crossref_primary_10_7748_ns_2022_e11949
crossref_primary_10_1093_jmcb_mjac046
crossref_primary_10_1016_j_xcrm_2020_100125
crossref_primary_10_1016_j_isci_2024_110656
crossref_primary_10_1038_s41467_017_00461_3
crossref_primary_10_1016_j_bcp_2020_114009
crossref_primary_10_1016_j_it_2022_12_004
crossref_primary_10_1080_17446651_2016_1239525
crossref_primary_10_3389_fphar_2021_775563
crossref_primary_10_3390_cells11060924
crossref_primary_10_3389_fendo_2022_1086667
crossref_primary_10_3390_ijms22020803
crossref_primary_10_1007_s00592_023_02221_w
crossref_primary_10_1016_S2213_8587_20_30022_X
crossref_primary_10_1038_s41574_018_0132_z
crossref_primary_10_1007_s00125_018_4639_6
crossref_primary_10_1172_jci_insight_132594
crossref_primary_10_3390_ijms26031094
crossref_primary_10_1016_j_nbt_2020_05_002
crossref_primary_10_1016_j_acthis_2022_151940
crossref_primary_10_1016_j_molmet_2019_12_008
crossref_primary_10_1097_XCE_0000000000000201
crossref_primary_10_1038_s41467_025_57241_7
crossref_primary_10_1016_j_cmet_2019_11_018
crossref_primary_10_3389_fnins_2020_00682
crossref_primary_10_3389_fendo_2024_1427723
crossref_primary_10_1016_j_gene_2023_147251
crossref_primary_10_3390_ijms23010324
crossref_primary_10_1007_s11033_024_09681_5
crossref_primary_10_1016_j_bbrc_2019_12_063
crossref_primary_10_1016_j_biopha_2024_116292
crossref_primary_10_1002_cjp2_140
crossref_primary_10_1210_er_2017_00167
crossref_primary_10_2337_dbi21_0012
crossref_primary_10_1016_j_molmet_2023_101754
crossref_primary_10_1155_2017_8503754
crossref_primary_10_1002_jcp_30129
crossref_primary_10_1016_j_jmb_2019_09_016
crossref_primary_10_2337_db16_1213
crossref_primary_10_1002_2211_5463_12735
crossref_primary_10_1016_j_mce_2019_110524
crossref_primary_10_1016_j_jgg_2022_03_002
crossref_primary_10_3389_fimmu_2021_690379
crossref_primary_10_1038_s41467_018_07130_z
crossref_primary_10_1038_s41598_020_76600_6
crossref_primary_10_1042_CS20230164
crossref_primary_10_12677_HJBM_2023_132030
crossref_primary_10_1210_clinem_dgz224
crossref_primary_10_1101_gr_212720_116
crossref_primary_10_1038_s41467_023_36315_4
crossref_primary_10_1016_j_cmet_2022_10_001
crossref_primary_10_1007_s11892_019_1194_6
crossref_primary_10_1007_s00125_017_4500_3
crossref_primary_10_1111_dom_12732
crossref_primary_10_1371_journal_pone_0191104
crossref_primary_10_1016_j_semcdb_2019_12_002
crossref_primary_10_1055_a_2122_5701
crossref_primary_10_1210_endrev_bnab010
crossref_primary_10_1038_s41467_023_41860_z
crossref_primary_10_4093_dmj_2021_0377
crossref_primary_10_1111_dom_12731
crossref_primary_10_1111_dom_12730
crossref_primary_10_1016_j_lfs_2025_123384
crossref_primary_10_1128_mcb_00541_21
crossref_primary_10_2337_db19_0685
crossref_primary_10_1016_j_cmet_2023_05_007
crossref_primary_10_1007_s00125_023_05882_y
crossref_primary_10_1210_endocr_bqab031
crossref_primary_10_1016_j_celrep_2023_112615
crossref_primary_10_1038_s41419_021_03761_1
crossref_primary_10_1093_hmg_ddx342
crossref_primary_10_1007_s00125_019_4911_4
crossref_primary_10_1007_s11695_019_03979_1
crossref_primary_10_1038_s41598_023_27985_7
crossref_primary_10_3390_cells10051236
crossref_primary_10_1038_s41419_020_2365_8
crossref_primary_10_31857_S030117982302008X
crossref_primary_10_1007_s11427_022_2372_y
crossref_primary_10_1172_JCI157086
crossref_primary_10_2337_db21_0211
crossref_primary_10_3389_fendo_2024_1412411
crossref_primary_10_1002_fsn3_1397
crossref_primary_10_1177_20587392211014416
crossref_primary_10_1210_js_2017_00409
crossref_primary_10_1038_s41598_018_28019_3
crossref_primary_10_1038_ncomms13496
crossref_primary_10_1038_s41598_022_16174_7
crossref_primary_10_3389_fendo_2022_854094
crossref_primary_10_3390_nu13051593
crossref_primary_10_1016_j_tig_2017_01_010
crossref_primary_10_3390_cells12050698
crossref_primary_10_1038_s42003_020_01201_y
crossref_primary_10_3389_fendo_2022_1061688
crossref_primary_10_3389_fendo_2021_671946
crossref_primary_10_1007_s00335_021_09869_1
crossref_primary_10_3390_ijms22084239
crossref_primary_10_1111_dom_12722
crossref_primary_10_1111_dom_12723
crossref_primary_10_1111_dom_12726
crossref_primary_10_1016_j_ijbiomac_2024_138760
crossref_primary_10_3390_biom11050637
crossref_primary_10_1038_s41598_021_97235_1
crossref_primary_10_1111_dom_12727
crossref_primary_10_3390_biomedicines10030571
crossref_primary_10_1530_JOE_16_0588
crossref_primary_10_1007_s11892_019_1196_4
crossref_primary_10_3390_ijms25094720
crossref_primary_10_3390_nu16070995
crossref_primary_10_1016_j_molmet_2023_101811
crossref_primary_10_3389_fgene_2017_00021
crossref_primary_10_1016_j_jcjd_2016_08_001
crossref_primary_10_1016_j_molmet_2022_101659
crossref_primary_10_1111_dom_15805
crossref_primary_10_3390_nu15092217
crossref_primary_10_2337_db16_1277
crossref_primary_10_3389_fimmu_2020_01582
crossref_primary_10_1016_j_molmet_2021_101256
crossref_primary_10_2337_dc20_0864
crossref_primary_10_3389_fendo_2023_1031610
crossref_primary_10_1016_j_stem_2019_07_007
crossref_primary_10_1111_ajt_14521
crossref_primary_10_1038_s41598_017_15417_2
crossref_primary_10_3390_metabo11050288
crossref_primary_10_1016_j_plrev_2017_12_004
crossref_primary_10_1007_s00424_024_03062_4
crossref_primary_10_1042_CS20230586
crossref_primary_10_1186_s13287_024_03974_z
crossref_primary_10_1007_s00125_023_06020_4
crossref_primary_10_1016_j_jcyt_2021_01_005
crossref_primary_10_1172_JCI166490
crossref_primary_10_2337_dbi18_0068
crossref_primary_10_4252_wjsc_v13_i1_64
crossref_primary_10_1210_en_2017_00263
crossref_primary_10_1007_s11892_019_1176_8
crossref_primary_10_1126_scitranslmed_adg3456
crossref_primary_10_3390_biomedicines10020203
crossref_primary_10_1016_j_ijbiomac_2019_08_018
crossref_primary_10_1172_jci_insight_143791
crossref_primary_10_3389_fendo_2017_00009
crossref_primary_10_3389_fgene_2017_00035
crossref_primary_10_3389_fendo_2021_722250
crossref_primary_10_1007_s11892_018_1085_2
crossref_primary_10_1016_j_peptides_2022_170772
crossref_primary_10_2174_1573399818666220519143414
crossref_primary_10_1152_ajpendo_00649_2020
crossref_primary_10_1016_j_gene_2023_147191
crossref_primary_10_1210_jc_2018_00968
crossref_primary_10_3390_biomedicines12030473
crossref_primary_10_1172_JCI179335
crossref_primary_10_1172_jci_insight_97732
crossref_primary_10_1530_JOE_18_0177
crossref_primary_10_3390_biom12040535
crossref_primary_10_3390_foods13111763
crossref_primary_10_3390_ijms20215417
crossref_primary_10_1530_JOE_17_0516
crossref_primary_10_3390_nu14214681
crossref_primary_10_3390_cimb45080392
crossref_primary_10_18632_aging_202593
crossref_primary_10_3390_ijms22073306
crossref_primary_10_1016_j_phymed_2024_156151
crossref_primary_10_1016_j_molmet_2021_101330
crossref_primary_10_1111_tid_13185
crossref_primary_10_1016_j_tips_2020_11_011
crossref_primary_10_1016_j_molmet_2020_101057
crossref_primary_10_1002_edm2_223
crossref_primary_10_1172_jci_insight_128351
crossref_primary_10_1186_s13148_020_00906_5
crossref_primary_10_3390_ncrna4040041
crossref_primary_10_1016_j_tem_2024_11_006
crossref_primary_10_1016_j_molmet_2021_101329
crossref_primary_10_1038_s41574_018_0097_y
crossref_primary_10_2337_dbi18_0025
crossref_primary_10_1021_acs_jmedchem_9b01379
crossref_primary_10_1038_s42255_021_00415_6
crossref_primary_10_1038_s41598_019_43452_8
crossref_primary_10_1016_j_cmet_2018_04_013
crossref_primary_10_1038_s41392_024_01951_9
crossref_primary_10_1093_jmcb_mjz004
crossref_primary_10_1096_fj_201802059RRR
crossref_primary_10_2337_db23_0148
crossref_primary_10_1038_s41401_021_00740_2
crossref_primary_10_1038_s41467_024_46829_0
crossref_primary_10_1016_j_jare_2023_10_008
crossref_primary_10_3389_fendo_2021_633625
crossref_primary_10_1152_ajpendo_00137_2018
crossref_primary_10_1038_s44318_024_00332_w
crossref_primary_10_3390_biomedicines9020226
crossref_primary_10_1038_s41467_022_34095_x
crossref_primary_10_3390_cimb46070453
crossref_primary_10_1248_bpb_b17_01007
crossref_primary_10_1111_joim_13214
crossref_primary_10_1155_2020_4097469
crossref_primary_10_1080_19382014_2024_2344622
crossref_primary_10_2337_db20_0776
crossref_primary_10_3389_fendo_2022_976465
crossref_primary_10_3724_zdxbyxb_2022_0647
crossref_primary_10_4239_wjd_v14_i3_147
crossref_primary_10_1038_s12276_023_01043_8
crossref_primary_10_3389_fendo_2020_614123
crossref_primary_10_3389_fendo_2022_853863
crossref_primary_10_3390_nu12123846
crossref_primary_10_1111_jne_12450
crossref_primary_10_1016_j_metabol_2024_155813
crossref_primary_10_1016_j_molmet_2021_101414
crossref_primary_10_1038_s41420_023_01506_x
crossref_primary_10_1016_j_molmet_2017_04_012
crossref_primary_10_3748_wjg_v30_i40_4339
crossref_primary_10_1016_j_jnutbio_2017_07_015
crossref_primary_10_1152_ajpendo_00022_2016
crossref_primary_10_1016_j_jmb_2020_01_004
crossref_primary_10_1016_j_molmet_2021_101409
crossref_primary_10_1210_js_2017_00081
crossref_primary_10_3390_metabo11080510
crossref_primary_10_1210_clinem_dgae538
crossref_primary_10_1097_TXD_0000000000001367
crossref_primary_10_1111_jdi_14307
crossref_primary_10_1016_j_tem_2023_02_001
crossref_primary_10_3389_fendo_2022_842603
crossref_primary_10_1016_j_jdiacomp_2017_01_028
crossref_primary_10_1016_j_cmet_2017_11_004
crossref_primary_10_1038_s41366_020_00711_3
crossref_primary_10_1101_gad_351728_124
crossref_primary_10_1089_ars_2024_0799
crossref_primary_10_3390_ijms23094478
crossref_primary_10_3389_fcell_2021_629212
crossref_primary_10_1016_j_atherosclerosis_2024_118623
crossref_primary_10_3390_ijms22042151
crossref_primary_10_1016_j_semcdb_2020_04_005
crossref_primary_10_1038_s41419_021_04067_y
crossref_primary_10_14336_AD_2018_1221
crossref_primary_10_1016_j_jnutbio_2020_108495
crossref_primary_10_1038_s41574_021_00556_4
crossref_primary_10_1038_s42255_022_00618_5
crossref_primary_10_1038_s41574_020_0355_7
crossref_primary_10_3389_fcell_2017_00055
crossref_primary_10_1007_s00423_023_02821_8
crossref_primary_10_1016_j_molmet_2018_06_003
crossref_primary_10_2337_dc19_0371
crossref_primary_10_3390_cells10123585
crossref_primary_10_1016_j_cmet_2021_05_015
crossref_primary_10_1136_bmj_n1449
crossref_primary_10_1007_s00125_022_05814_2
crossref_primary_10_1172_JCI142240
crossref_primary_10_1038_s41574_021_00611_0
crossref_primary_10_1210_clinem_dgae624
crossref_primary_10_3390_biomedicines12081687
crossref_primary_10_1007_s00125_018_4772_2
crossref_primary_10_1172_JCI142365
crossref_primary_10_1016_j_fshw_2021_02_004
crossref_primary_10_7554_eLife_44532
crossref_primary_10_3390_jcm6120113
crossref_primary_10_3390_cancers15020492
crossref_primary_10_1021_acs_jproteome_1c00463
crossref_primary_10_1111_dom_13380
crossref_primary_10_1016_j_cmet_2020_03_002
crossref_primary_10_1002_fsn3_1966
crossref_primary_10_1155_2021_9938658
crossref_primary_10_3389_fendo_2018_00791
crossref_primary_10_1038_s41573_021_00262_w
crossref_primary_10_1016_j_isci_2019_07_040
crossref_primary_10_1111_jdi_13532
crossref_primary_10_1186_s12902_021_00708_7
crossref_primary_10_1007_s11428_022_00945_x
crossref_primary_10_1080_17460751_2024_2343538
crossref_primary_10_1007_s00441_019_03061_3
crossref_primary_10_1016_j_celrep_2020_108466
crossref_primary_10_1007_s11655_024_3915_1
crossref_primary_10_1038_s42255_023_00876_x
crossref_primary_10_1210_endocr_bqae094
crossref_primary_10_1007_s40200_024_01496_2
crossref_primary_10_1016_j_molmet_2019_06_003
crossref_primary_10_1089_ars_2018_7656
crossref_primary_10_1111_dom_15300
crossref_primary_10_1126_scitranslmed_aaw9996
crossref_primary_10_1016_j_cmet_2018_12_005
crossref_primary_10_1016_j_ebiom_2018_03_026
crossref_primary_10_1042_BCJ20230167
crossref_primary_10_1080_17446651_2017_1294484
crossref_primary_10_1016_j_tem_2024_03_006
crossref_primary_10_1155_2017_5149362
crossref_primary_10_1152_physrev_00008_2021
crossref_primary_10_1172_JCI88017
crossref_primary_10_1172_JCI88016
crossref_primary_10_1172_JCI88015
crossref_primary_10_1096_fj_201800150RR
crossref_primary_10_1111_jdi_13679
crossref_primary_10_3390_ijms19103136
crossref_primary_10_1111_dom_13379
crossref_primary_10_1002_stem_3059
crossref_primary_10_1155_2022_1172795
crossref_primary_10_1016_j_celrep_2021_109490
crossref_primary_10_3390_biomedicines12122790
crossref_primary_10_2174_0109298665257646231020054036
crossref_primary_10_2337_db21_0992
crossref_primary_10_3390_antiox12071449
crossref_primary_10_1016_j_molmet_2017_06_019
crossref_primary_10_1186_s13578_021_00658_6
crossref_primary_10_1016_j_jep_2023_117374
crossref_primary_10_1111_apha_14037
crossref_primary_10_1016_j_cmet_2017_08_007
crossref_primary_10_1016_j_isci_2022_104125
crossref_primary_10_3390_ijms23105522
crossref_primary_10_3390_biology10060534
crossref_primary_10_3389_fendo_2023_1298101
crossref_primary_10_3389_fendo_2023_1250023
crossref_primary_10_1016_S1957_2557_21_00180_2
crossref_primary_10_3390_antiox10040526
crossref_primary_10_3390_metabo11040218
crossref_primary_10_1016_j_crphar_2024_100184
crossref_primary_10_14341_omet12778
crossref_primary_10_1172_JCI129188
crossref_primary_10_1038_s41580_020_00317_7
crossref_primary_10_1038_s42255_020_0171_3
crossref_primary_10_1172_jci_insight_99576
crossref_primary_10_1016_j_jnim_2018_05_001
crossref_primary_10_1073_pnas_1713736114
crossref_primary_10_1038_ncomms12631
crossref_primary_10_1038_s42003_019_0351_4
crossref_primary_10_1210_endocr_bqaa011
crossref_primary_10_1007_s13340_022_00600_2
crossref_primary_10_3389_fphar_2020_585487
crossref_primary_10_3389_fendo_2024_1524001
crossref_primary_10_1016_j_bbadis_2017_01_007
crossref_primary_10_1016_j_jep_2019_112043
crossref_primary_10_1016_j_molmet_2024_101879
crossref_primary_10_1016_j_diabres_2025_112029
crossref_primary_10_1038_s41598_021_03567_3
crossref_primary_10_1055_a_2077_5177
crossref_primary_10_1007_s00125_024_06286_2
crossref_primary_10_1016_j_metabol_2020_154414
crossref_primary_10_1172_JCI153876
crossref_primary_10_2337_db16_0641
crossref_primary_10_1016_j_cmet_2017_05_014
crossref_primary_10_1172_JCI134874
crossref_primary_10_2337_db19_0349
crossref_primary_10_3390_cells10112841
crossref_primary_10_3389_fcell_2024_1424278
crossref_primary_10_1038_s42255_021_00420_9
crossref_primary_10_1111_ajt_15154
crossref_primary_10_3390_biomedicines9010086
crossref_primary_10_1210_clinem_dgac535
crossref_primary_10_1016_j_jep_2023_117481
crossref_primary_10_3390_ijms19041170
crossref_primary_10_1038_s41467_021_23196_8
crossref_primary_10_1152_ajpendo_00101_2022
crossref_primary_10_2337_db18_0305
crossref_primary_10_1007_s00125_025_06392_9
crossref_primary_10_1016_j_molmet_2020_02_001
crossref_primary_10_1097_CM9_0000000000003034
crossref_primary_10_1177_11795514241295620
crossref_primary_10_1111_jdi_12782
crossref_primary_10_1016_j_ando_2016_11_002
crossref_primary_10_3390_ijms221910427
crossref_primary_10_1016_j_cmet_2018_07_003
crossref_primary_10_1073_pnas_1904311116
crossref_primary_10_1038_s41467_021_25514_6
crossref_primary_10_1002_dmrr_3384
crossref_primary_10_1038_s41575_021_00551_0
crossref_primary_10_3389_fphar_2022_841981
crossref_primary_10_1371_journal_pone_0204595
crossref_primary_10_1038_s41467_023_44384_8
crossref_primary_10_2337_db19_0281
crossref_primary_10_3390_cells13151244
crossref_primary_10_1515_mr_2024_0039
crossref_primary_10_3390_biomedicines9091189
crossref_primary_10_1038_s41467_019_12880_5
crossref_primary_10_14814_phy2_14573
crossref_primary_10_1016_j_freeradbiomed_2021_05_029
crossref_primary_10_3390_ijms221910311
crossref_primary_10_1172_JCI173495
crossref_primary_10_1111_jdi_12841
crossref_primary_10_1016_j_cell_2017_12_025
crossref_primary_10_3390_life15010125
crossref_primary_10_1016_j_celrep_2018_06_039
crossref_primary_10_1007_s00125_022_05669_7
crossref_primary_10_1016_j_jgg_2021_11_006
crossref_primary_10_1016_j_molmet_2019_09_010
crossref_primary_10_1097_MPA_0000000000002385
crossref_primary_10_1177_1721727X231154152
crossref_primary_10_1371_journal_pone_0182932
crossref_primary_10_1126_science_adf2034
crossref_primary_10_1038_s41598_017_12335_1
crossref_primary_10_1113_EP092009
crossref_primary_10_3389_fphar_2024_1364881
crossref_primary_10_2337_dbi22_0030
crossref_primary_10_1016_j_jbc_2025_108187
crossref_primary_10_1172_jci_insight_157694
crossref_primary_10_1016_j_diabet_2017_07_006
crossref_primary_10_1016_S2213_8587_19_30076_2
crossref_primary_10_3389_fendo_2022_1006376
crossref_primary_10_1371_journal_pone_0213299
crossref_primary_10_1038_s42003_024_06475_0
crossref_primary_10_1016_j_bbadis_2022_166356
crossref_primary_10_1101_cshperspect_a040741
crossref_primary_10_2337_db18_0856
crossref_primary_10_1038_s41420_022_01142_x
crossref_primary_10_3389_fphys_2020_570276
crossref_primary_10_3390_biomedicines8120582
crossref_primary_10_3390_biomedicines10040770
ContentType Journal Article
Copyright Copyright © 2016 by the Endocrine Society 2016
Copyright © 2016 by The Endocrine Society
Copyright © 2016 by the Endocrine Society
Copyright_xml – notice: Copyright © 2016 by the Endocrine Society 2016
– notice: Copyright © 2016 by The Endocrine Society
– notice: Copyright © 2016 by the Endocrine Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TM
H94
K9.
7X8
5PM
DOI 10.1210/jc.2015-2860
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList

AIDS and Cancer Research Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1945-7197
EndPage 1054
ExternalDocumentID PMC4803182
26713822
10_1210_jc_2015_2860
00004678-201603000-00035
10.1210/jc.2015-2860
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK063608
– fundername: NIDDK NIH HHS
  grantid: R01 DK064819
– fundername: NIDDK NIH HHS
  grantid: P30 DK026687
– fundername: NIDDK NIH HHS
  grantid: DK63608
– fundername: NIDDK NIH HHS
  grantid: DK64819
– fundername: NHLBI NIH HHS
  grantid: P01 HL087123
GroupedDBID ---
-~X
.55
.XZ
08P
0R~
18M
1TH
29K
2WC
34G
354
39C
4.4
48X
53G
5GY
5RS
5YH
8F7
AABZA
AACZT
AAIMJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
ABBLC
ABDFA
ABEJV
ABGNP
ABJNI
ABLJU
ABMNT
ABNHQ
ABOCM
ABPMR
ABPPZ
ABPQP
ABPTD
ABQNK
ABVGC
ABWST
ABXVV
ACGFO
ACGFS
ACPRK
ACUTJ
ACYHN
ADBBV
ADGKP
ADGZP
ADHKW
ADQBN
ADRTK
ADVEK
AELWJ
AEMDU
AENEX
AENZO
AETBJ
AEWNT
AFCHL
AFFZL
AFGWE
AFOFC
AFRAH
AFXAL
AGINJ
AGKRT
AGQXC
AGUTN
AHMBA
AHMMS
AJEEA
ALMA_UNASSIGNED_HOLDINGS
APIBT
ARIXL
ASPBG
ATGXG
AVWKF
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BSWAC
BTRTY
C45
CDBKE
CS3
D-I
DAKXR
DIK
E3Z
EBS
EJD
EMOBN
ENERS
F5P
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
HZ~
H~9
KBUDW
KOP
KQ8
KSI
KSN
L7B
M5~
MHKGH
MJL
N9A
NLBLG
NOMLY
NOYVH
NVLIB
O9-
OAUYM
OBH
OCB
ODMLO
OFXIZ
OGEVE
OHH
OJZSN
OK1
OPAEJ
OVD
OVIDX
P2P
P6G
REU
ROX
ROZ
TEORI
TJX
TLC
TR2
TWZ
VVN
W8F
WOQ
X7M
YBU
YFH
YHG
YOC
YSK
ZY1
~02
~H1
.GJ
3O-
7X7
88E
8FI
8FJ
AAJQQ
AAKAS
AAPGJ
AAQQT
AAUQX
AAWDT
AAYJJ
ABDPE
ABUWG
ABXZS
ACFRR
ACVCV
ACZBC
ADMTO
ADNBA
ADZCM
AEMQT
AEOTA
AERZD
AFFNX
AFFQV
AFKRA
AFYAG
AGMDO
AGORE
AHGBF
AI.
AJBYB
AJDVS
ALXQX
APJGH
AQDSO
AQKUS
AVNTJ
BENPR
BPHCQ
BVXVI
CCPQU
EIHJH
FEDTE
FYUFA
HMCUK
HVGLF
IAO
IHR
INH
ITC
J5H
M1P
MBLQV
N4W
NU-
OBFPC
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
TMA
UKHRP
VH1
WHG
X52
ZGI
ZXP
AAYXX
CITATION
3V.
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7QP
7T5
7TM
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c4515-391e8be7f56bdf2fd102ecc5df732f01eac50cbc38d0b0c47fce3e5f536c9f33
ISSN 0021-972X
1945-7197
IngestDate Thu Aug 21 13:46:57 EDT 2025
Fri Jul 11 09:53:40 EDT 2025
Mon Jun 30 12:41:00 EDT 2025
Wed Feb 19 02:27:42 EST 2025
Tue Jul 01 01:10:39 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Fri May 16 04:12:22 EDT 2025
Fri Feb 07 10:35:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4515-391e8be7f56bdf2fd102ecc5df732f01eac50cbc38d0b0c47fce3e5f536c9f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26713822
PQID 3164377350
PQPubID 2046206
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4803182
proquest_miscellaneous_1770878932
proquest_journals_3164377350
pubmed_primary_26713822
crossref_primary_10_1210_jc_2015_2860
crossref_citationtrail_10_1210_jc_2015_2860
wolterskluwer_health_00004678-201603000-00035
oup_primary_10_1210_jc_2015-2860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-March
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-March
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: Washington, DC
PublicationTitle The journal of clinical endocrinology and metabolism
PublicationTitleAlternate J Clin Endocrinol Metab
PublicationYear 2016
Publisher Oxford University Press
Copyright by The Endocrine Society
Endocrine Society
Publisher_xml – name: Oxford University Press
– name: Copyright by The Endocrine Society
– name: Endocrine Society
SSID ssj0014453
Score 2.6409192
Snippet Context:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to...
CONTEXT:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to...
Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a...
SourceID pubmedcentral
proquest
pubmed
crossref
wolterskluwer
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1044
SubjectTerms Aldehyde dehydrogenase
Aldehydes
Beta cells
Cell Dedifferentiation
Dehydrogenases
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - pathology
Forkhead Box Protein O1
Forkhead Transcription Factors - analysis
Glucagon
Glucagon - metabolism
Glucagon-Secreting Cells - physiology
Homeodomain Proteins - analysis
Humans
Immunohistochemistry
Insulin - metabolism
Insulin Secretion
Insulin-Secreting Cells - chemistry
Insulin-Secreting Cells - pathology
Insulin-Secreting Cells - physiology
Microscopy, Electron
Organ donors
Original
Pancreas
Progenitor cells
Somatostatin
Somatostatin - metabolism
Somatostatin-Secreting Cells - physiology
Transcription factors
Title Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004678-201603000-00035
https://www.ncbi.nlm.nih.gov/pubmed/26713822
https://www.proquest.com/docview/3164377350
https://www.proquest.com/docview/1770878932
https://pubmed.ncbi.nlm.nih.gov/PMC4803182
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBehgzEYY_-XrSseLE_Fw7YkK34ZrGlL15Gxhwz6ZiJLJukaO9QOY_tMe9oH2WfanST_CW1h64sJtrCcu9Pp7nT3O0LeMsQsp4hTmcBqYlRSXHPSl0ms-Rx1peneMP0cn3xlp2f8bDD41cta2tTyXfbz2rqS23AV7gFfsUr2PzjbvhRuwG_gL1yBw3D9Jx43LUHR4htNjkYHkT_BWNyhbvqe1JbyGNWw4fqZDbm6RJiqb5uixPSAJNqaSV2oEnRL0aE1rXQNsnPRoA_iEcaysHkBplGHrroEoIMS260YTv4o6_ll2Z36r_zppqlEPJ3vG8XTBn0Xq41pgQS3q8US7Nx-fCKMuwQtGzRz36ibNNS-Nsb0EGHaqcNeZBVwwrgvQpuz22po975l34Nf25a5Fj3S7d1gLLJr9wVwbHFfQMzKkPvR2PYw6InIemVkJIoFgjJG3e7Y5ix-mU7YGFUgbPh3InBKsF_G4cdP7ZkVYw7z1P0rV2aBNVL9iRF-2s2yZQtt1Vf23Jyr2br3v5eYSVF9M4UUPXNo9pA8cH6M98EK5SMy0MVjcnfqMjWekPeNbHpl7v35beTSuyKX3rLwjFx6KJde5DVy-ZTMjo9mkxPf9erwMwYmsU-TUI-lFjmPpcqjXIHhCtqBq1zQKA9C2N95kMmMjlUgg4yJPNNU85zTOEtySp-RnaIs9AviKQmUEVLLeK5YogOpVILnxSpXLJIBHZL9hmhp5nDssZ3KRYr-LFA7Pc9SpHaK1B6SUTt6bfFbbhjnAf1vGuLbIbsNc1K3GquUhnjyLSiHx2_ax6Ci8dxtXuhyU6WhEMFYgGMQDclzy8t2okYUhkRscbkdgPDv20-K5cLAwDtpHBJ_Sx5SW0CdGu8fTFE_Mq3kHYIE5S9vPdMrcq9b4Ltkp77c6Ndgktdyz6yEvysr3jo
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+%CE%B2-Cell+Dedifferentiation+in+Human+Type+2+Diabetes&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Cinti%2C+Francesca&rft.au=Bouchi%2C+Ryotaro&rft.au=Kim-Muller%2C+Ja+Young&rft.au=Ohmura%2C+Yoshiaki&rft.date=2016-03-01&rft.pub=Endocrine+Society&rft.issn=0021-972X&rft.eissn=1945-7197&rft.volume=101&rft.issue=3&rft.spage=1044&rft.epage=1054&rft_id=info:doi/10.1210%2Fjc.2015-2860&rft_id=info%3Apmid%2F26713822&rft.externalDocID=PMC4803182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon