Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes
Context:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.Objective:To determine whether similar processes occur in human...
Saved in:
Published in | The journal of clinical endocrinology and metabolism Vol. 101; no. 3; pp. 1044 - 1054 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.03.2016
Copyright by The Endocrine Society Endocrine Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.Objective:To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors.Design:We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3.Results:By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects.Conclusions:The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-“like” cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction. |
---|---|
AbstractList | CONTEXT:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.
OBJECTIVE:To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors.
DESIGN:We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3.
RESULTS:By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects.
CONCLUSIONS:The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-“like” cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction. Context:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.Objective:To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors.Design:We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3.Results:By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects.Conclusions:The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-“like” cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction. Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.CONTEXTDiabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types.To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors.OBJECTIVETo determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors.We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3.DESIGNWe scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3.By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects.RESULTSBy these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects.The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-"like" cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction.CONCLUSIONSThe data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-"like" cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction. Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types. To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors. We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3. By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects. The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-"like" cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction. |
Author | Cinti, Francesca Suleiman, Mara Ratner, Lloyd E. Ohmura, Yoshiaki Marselli, Lorella Accili, Domenico Sandoval, P. R. Masini, Matilde Marchetti, Piero Kim-Muller, Ja Young Bouchi, Ryotaro |
AuthorAffiliation | Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy |
AuthorAffiliation_xml | – name: Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy |
Author_xml | – sequence: 1 givenname: Francesca surname: Cinti fullname: Cinti, Francesca organization: 1Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) New York, New York 10032 – sequence: 2 givenname: Ryotaro surname: Bouchi fullname: Bouchi, Ryotaro organization: 1Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) New York, New York 10032 – sequence: 3 givenname: Ja Young surname: Kim-Muller fullname: Kim-Muller, Ja Young organization: 1Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) New York, New York 10032 – sequence: 4 givenname: Yoshiaki surname: Ohmura fullname: Ohmura, Yoshiaki organization: 2Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032 – sequence: 5 givenname: P. R. surname: Sandoval fullname: Sandoval, P. R. organization: 2Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032 – sequence: 6 givenname: Matilde surname: Masini fullname: Masini, Matilde organization: 4Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy – sequence: 7 givenname: Lorella surname: Marselli fullname: Marselli, Lorella organization: 4Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy – sequence: 8 givenname: Mara surname: Suleiman fullname: Suleiman, Mara organization: 4Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy – sequence: 9 givenname: Lloyd E. surname: Ratner fullname: Ratner, Lloyd E. organization: 2Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032 – sequence: 10 givenname: Piero surname: Marchetti fullname: Marchetti, Piero organization: 4Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy – sequence: 11 givenname: Domenico surname: Accili fullname: Accili, Domenico email: da230@columbia.edu organization: 1Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) New York, New York 10032 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26713822$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk9LHDEYxkOx1FV767kM9NAeOpq_k8xFkNXWguBlD95CJvOmm-1ssk1mFL9WP0g_U7OulVYwEELI73l43vfNAdoLMQBC7wg-JpTgk5U9ppiImqoGv0Iz0nJRS9LKPTTDmJK6lfRmHx3kvMKYcC7YG7RPG0mYonSGTi9ufQ_BQhVd9ftXPYdhqM6h985BgjB6M_oYKh-qy2ltQrW430BFq3NvOhghH6HXzgwZ3j6eh2jx5WIxv6yvrr9-m59d1ZaLko21BFQH0omm6x11PcEUrBW9k4w6TMBYgW1nmepxhy2XzgID4QRrbOsYO0SnO9vN1K2htyVYMoPeJL826V5H4_X_L8Ev9fd4q7nCjChaDD49GqT4c4I86rXPttRqAsQpayIlVlK1bIt-eIau4pRCqU4z0nAmJRO4UO__TfQU5W9nC_B5B9gUc07gnhCC9XZwemX1dnB6O7iC02e49eND70s9fnhJxHeiuziMkPKPYbqDpJdghnGpcVm8kaouggKXW102E0X2cSeL0-alVA_fif0BKBK21Q |
CitedBy_id | crossref_primary_10_1016_j_isci_2018_02_003 crossref_primary_10_1016_j_semcdb_2020_01_003 crossref_primary_10_1016_j_molmet_2018_02_002 crossref_primary_10_1080_14656566_2021_1974401 crossref_primary_10_3390_biom12030373 crossref_primary_10_1186_s10020_018_0044_3 crossref_primary_10_2337_dc16_0619 crossref_primary_10_1371_journal_pone_0260526 crossref_primary_10_3390_ijms22179504 crossref_primary_10_1172_JCI94330 crossref_primary_10_1007_s00428_024_03842_4 crossref_primary_10_7748_ns_2022_e11949 crossref_primary_10_1093_jmcb_mjac046 crossref_primary_10_1016_j_xcrm_2020_100125 crossref_primary_10_1016_j_isci_2024_110656 crossref_primary_10_1038_s41467_017_00461_3 crossref_primary_10_1016_j_bcp_2020_114009 crossref_primary_10_1016_j_it_2022_12_004 crossref_primary_10_1080_17446651_2016_1239525 crossref_primary_10_3389_fphar_2021_775563 crossref_primary_10_3390_cells11060924 crossref_primary_10_3389_fendo_2022_1086667 crossref_primary_10_3390_ijms22020803 crossref_primary_10_1007_s00592_023_02221_w crossref_primary_10_1016_S2213_8587_20_30022_X crossref_primary_10_1038_s41574_018_0132_z crossref_primary_10_1007_s00125_018_4639_6 crossref_primary_10_1172_jci_insight_132594 crossref_primary_10_3390_ijms26031094 crossref_primary_10_1016_j_nbt_2020_05_002 crossref_primary_10_1016_j_acthis_2022_151940 crossref_primary_10_1016_j_molmet_2019_12_008 crossref_primary_10_1097_XCE_0000000000000201 crossref_primary_10_1038_s41467_025_57241_7 crossref_primary_10_1016_j_cmet_2019_11_018 crossref_primary_10_3389_fnins_2020_00682 crossref_primary_10_3389_fendo_2024_1427723 crossref_primary_10_1016_j_gene_2023_147251 crossref_primary_10_3390_ijms23010324 crossref_primary_10_1007_s11033_024_09681_5 crossref_primary_10_1016_j_bbrc_2019_12_063 crossref_primary_10_1016_j_biopha_2024_116292 crossref_primary_10_1002_cjp2_140 crossref_primary_10_1210_er_2017_00167 crossref_primary_10_2337_dbi21_0012 crossref_primary_10_1016_j_molmet_2023_101754 crossref_primary_10_1155_2017_8503754 crossref_primary_10_1002_jcp_30129 crossref_primary_10_1016_j_jmb_2019_09_016 crossref_primary_10_2337_db16_1213 crossref_primary_10_1002_2211_5463_12735 crossref_primary_10_1016_j_mce_2019_110524 crossref_primary_10_1016_j_jgg_2022_03_002 crossref_primary_10_3389_fimmu_2021_690379 crossref_primary_10_1038_s41467_018_07130_z crossref_primary_10_1038_s41598_020_76600_6 crossref_primary_10_1042_CS20230164 crossref_primary_10_12677_HJBM_2023_132030 crossref_primary_10_1210_clinem_dgz224 crossref_primary_10_1101_gr_212720_116 crossref_primary_10_1038_s41467_023_36315_4 crossref_primary_10_1016_j_cmet_2022_10_001 crossref_primary_10_1007_s11892_019_1194_6 crossref_primary_10_1007_s00125_017_4500_3 crossref_primary_10_1111_dom_12732 crossref_primary_10_1371_journal_pone_0191104 crossref_primary_10_1016_j_semcdb_2019_12_002 crossref_primary_10_1055_a_2122_5701 crossref_primary_10_1210_endrev_bnab010 crossref_primary_10_1038_s41467_023_41860_z crossref_primary_10_4093_dmj_2021_0377 crossref_primary_10_1111_dom_12731 crossref_primary_10_1111_dom_12730 crossref_primary_10_1016_j_lfs_2025_123384 crossref_primary_10_1128_mcb_00541_21 crossref_primary_10_2337_db19_0685 crossref_primary_10_1016_j_cmet_2023_05_007 crossref_primary_10_1007_s00125_023_05882_y crossref_primary_10_1210_endocr_bqab031 crossref_primary_10_1016_j_celrep_2023_112615 crossref_primary_10_1038_s41419_021_03761_1 crossref_primary_10_1093_hmg_ddx342 crossref_primary_10_1007_s00125_019_4911_4 crossref_primary_10_1007_s11695_019_03979_1 crossref_primary_10_1038_s41598_023_27985_7 crossref_primary_10_3390_cells10051236 crossref_primary_10_1038_s41419_020_2365_8 crossref_primary_10_31857_S030117982302008X crossref_primary_10_1007_s11427_022_2372_y crossref_primary_10_1172_JCI157086 crossref_primary_10_2337_db21_0211 crossref_primary_10_3389_fendo_2024_1412411 crossref_primary_10_1002_fsn3_1397 crossref_primary_10_1177_20587392211014416 crossref_primary_10_1210_js_2017_00409 crossref_primary_10_1038_s41598_018_28019_3 crossref_primary_10_1038_ncomms13496 crossref_primary_10_1038_s41598_022_16174_7 crossref_primary_10_3389_fendo_2022_854094 crossref_primary_10_3390_nu13051593 crossref_primary_10_1016_j_tig_2017_01_010 crossref_primary_10_3390_cells12050698 crossref_primary_10_1038_s42003_020_01201_y crossref_primary_10_3389_fendo_2022_1061688 crossref_primary_10_3389_fendo_2021_671946 crossref_primary_10_1007_s00335_021_09869_1 crossref_primary_10_3390_ijms22084239 crossref_primary_10_1111_dom_12722 crossref_primary_10_1111_dom_12723 crossref_primary_10_1111_dom_12726 crossref_primary_10_1016_j_ijbiomac_2024_138760 crossref_primary_10_3390_biom11050637 crossref_primary_10_1038_s41598_021_97235_1 crossref_primary_10_1111_dom_12727 crossref_primary_10_3390_biomedicines10030571 crossref_primary_10_1530_JOE_16_0588 crossref_primary_10_1007_s11892_019_1196_4 crossref_primary_10_3390_ijms25094720 crossref_primary_10_3390_nu16070995 crossref_primary_10_1016_j_molmet_2023_101811 crossref_primary_10_3389_fgene_2017_00021 crossref_primary_10_1016_j_jcjd_2016_08_001 crossref_primary_10_1016_j_molmet_2022_101659 crossref_primary_10_1111_dom_15805 crossref_primary_10_3390_nu15092217 crossref_primary_10_2337_db16_1277 crossref_primary_10_3389_fimmu_2020_01582 crossref_primary_10_1016_j_molmet_2021_101256 crossref_primary_10_2337_dc20_0864 crossref_primary_10_3389_fendo_2023_1031610 crossref_primary_10_1016_j_stem_2019_07_007 crossref_primary_10_1111_ajt_14521 crossref_primary_10_1038_s41598_017_15417_2 crossref_primary_10_3390_metabo11050288 crossref_primary_10_1016_j_plrev_2017_12_004 crossref_primary_10_1007_s00424_024_03062_4 crossref_primary_10_1042_CS20230586 crossref_primary_10_1186_s13287_024_03974_z crossref_primary_10_1007_s00125_023_06020_4 crossref_primary_10_1016_j_jcyt_2021_01_005 crossref_primary_10_1172_JCI166490 crossref_primary_10_2337_dbi18_0068 crossref_primary_10_4252_wjsc_v13_i1_64 crossref_primary_10_1210_en_2017_00263 crossref_primary_10_1007_s11892_019_1176_8 crossref_primary_10_1126_scitranslmed_adg3456 crossref_primary_10_3390_biomedicines10020203 crossref_primary_10_1016_j_ijbiomac_2019_08_018 crossref_primary_10_1172_jci_insight_143791 crossref_primary_10_3389_fendo_2017_00009 crossref_primary_10_3389_fgene_2017_00035 crossref_primary_10_3389_fendo_2021_722250 crossref_primary_10_1007_s11892_018_1085_2 crossref_primary_10_1016_j_peptides_2022_170772 crossref_primary_10_2174_1573399818666220519143414 crossref_primary_10_1152_ajpendo_00649_2020 crossref_primary_10_1016_j_gene_2023_147191 crossref_primary_10_1210_jc_2018_00968 crossref_primary_10_3390_biomedicines12030473 crossref_primary_10_1172_JCI179335 crossref_primary_10_1172_jci_insight_97732 crossref_primary_10_1530_JOE_18_0177 crossref_primary_10_3390_biom12040535 crossref_primary_10_3390_foods13111763 crossref_primary_10_3390_ijms20215417 crossref_primary_10_1530_JOE_17_0516 crossref_primary_10_3390_nu14214681 crossref_primary_10_3390_cimb45080392 crossref_primary_10_18632_aging_202593 crossref_primary_10_3390_ijms22073306 crossref_primary_10_1016_j_phymed_2024_156151 crossref_primary_10_1016_j_molmet_2021_101330 crossref_primary_10_1111_tid_13185 crossref_primary_10_1016_j_tips_2020_11_011 crossref_primary_10_1016_j_molmet_2020_101057 crossref_primary_10_1002_edm2_223 crossref_primary_10_1172_jci_insight_128351 crossref_primary_10_1186_s13148_020_00906_5 crossref_primary_10_3390_ncrna4040041 crossref_primary_10_1016_j_tem_2024_11_006 crossref_primary_10_1016_j_molmet_2021_101329 crossref_primary_10_1038_s41574_018_0097_y crossref_primary_10_2337_dbi18_0025 crossref_primary_10_1021_acs_jmedchem_9b01379 crossref_primary_10_1038_s42255_021_00415_6 crossref_primary_10_1038_s41598_019_43452_8 crossref_primary_10_1016_j_cmet_2018_04_013 crossref_primary_10_1038_s41392_024_01951_9 crossref_primary_10_1093_jmcb_mjz004 crossref_primary_10_1096_fj_201802059RRR crossref_primary_10_2337_db23_0148 crossref_primary_10_1038_s41401_021_00740_2 crossref_primary_10_1038_s41467_024_46829_0 crossref_primary_10_1016_j_jare_2023_10_008 crossref_primary_10_3389_fendo_2021_633625 crossref_primary_10_1152_ajpendo_00137_2018 crossref_primary_10_1038_s44318_024_00332_w crossref_primary_10_3390_biomedicines9020226 crossref_primary_10_1038_s41467_022_34095_x crossref_primary_10_3390_cimb46070453 crossref_primary_10_1248_bpb_b17_01007 crossref_primary_10_1111_joim_13214 crossref_primary_10_1155_2020_4097469 crossref_primary_10_1080_19382014_2024_2344622 crossref_primary_10_2337_db20_0776 crossref_primary_10_3389_fendo_2022_976465 crossref_primary_10_3724_zdxbyxb_2022_0647 crossref_primary_10_4239_wjd_v14_i3_147 crossref_primary_10_1038_s12276_023_01043_8 crossref_primary_10_3389_fendo_2020_614123 crossref_primary_10_3389_fendo_2022_853863 crossref_primary_10_3390_nu12123846 crossref_primary_10_1111_jne_12450 crossref_primary_10_1016_j_metabol_2024_155813 crossref_primary_10_1016_j_molmet_2021_101414 crossref_primary_10_1038_s41420_023_01506_x crossref_primary_10_1016_j_molmet_2017_04_012 crossref_primary_10_3748_wjg_v30_i40_4339 crossref_primary_10_1016_j_jnutbio_2017_07_015 crossref_primary_10_1152_ajpendo_00022_2016 crossref_primary_10_1016_j_jmb_2020_01_004 crossref_primary_10_1016_j_molmet_2021_101409 crossref_primary_10_1210_js_2017_00081 crossref_primary_10_3390_metabo11080510 crossref_primary_10_1210_clinem_dgae538 crossref_primary_10_1097_TXD_0000000000001367 crossref_primary_10_1111_jdi_14307 crossref_primary_10_1016_j_tem_2023_02_001 crossref_primary_10_3389_fendo_2022_842603 crossref_primary_10_1016_j_jdiacomp_2017_01_028 crossref_primary_10_1016_j_cmet_2017_11_004 crossref_primary_10_1038_s41366_020_00711_3 crossref_primary_10_1101_gad_351728_124 crossref_primary_10_1089_ars_2024_0799 crossref_primary_10_3390_ijms23094478 crossref_primary_10_3389_fcell_2021_629212 crossref_primary_10_1016_j_atherosclerosis_2024_118623 crossref_primary_10_3390_ijms22042151 crossref_primary_10_1016_j_semcdb_2020_04_005 crossref_primary_10_1038_s41419_021_04067_y crossref_primary_10_14336_AD_2018_1221 crossref_primary_10_1016_j_jnutbio_2020_108495 crossref_primary_10_1038_s41574_021_00556_4 crossref_primary_10_1038_s42255_022_00618_5 crossref_primary_10_1038_s41574_020_0355_7 crossref_primary_10_3389_fcell_2017_00055 crossref_primary_10_1007_s00423_023_02821_8 crossref_primary_10_1016_j_molmet_2018_06_003 crossref_primary_10_2337_dc19_0371 crossref_primary_10_3390_cells10123585 crossref_primary_10_1016_j_cmet_2021_05_015 crossref_primary_10_1136_bmj_n1449 crossref_primary_10_1007_s00125_022_05814_2 crossref_primary_10_1172_JCI142240 crossref_primary_10_1038_s41574_021_00611_0 crossref_primary_10_1210_clinem_dgae624 crossref_primary_10_3390_biomedicines12081687 crossref_primary_10_1007_s00125_018_4772_2 crossref_primary_10_1172_JCI142365 crossref_primary_10_1016_j_fshw_2021_02_004 crossref_primary_10_7554_eLife_44532 crossref_primary_10_3390_jcm6120113 crossref_primary_10_3390_cancers15020492 crossref_primary_10_1021_acs_jproteome_1c00463 crossref_primary_10_1111_dom_13380 crossref_primary_10_1016_j_cmet_2020_03_002 crossref_primary_10_1002_fsn3_1966 crossref_primary_10_1155_2021_9938658 crossref_primary_10_3389_fendo_2018_00791 crossref_primary_10_1038_s41573_021_00262_w crossref_primary_10_1016_j_isci_2019_07_040 crossref_primary_10_1111_jdi_13532 crossref_primary_10_1186_s12902_021_00708_7 crossref_primary_10_1007_s11428_022_00945_x crossref_primary_10_1080_17460751_2024_2343538 crossref_primary_10_1007_s00441_019_03061_3 crossref_primary_10_1016_j_celrep_2020_108466 crossref_primary_10_1007_s11655_024_3915_1 crossref_primary_10_1038_s42255_023_00876_x crossref_primary_10_1210_endocr_bqae094 crossref_primary_10_1007_s40200_024_01496_2 crossref_primary_10_1016_j_molmet_2019_06_003 crossref_primary_10_1089_ars_2018_7656 crossref_primary_10_1111_dom_15300 crossref_primary_10_1126_scitranslmed_aaw9996 crossref_primary_10_1016_j_cmet_2018_12_005 crossref_primary_10_1016_j_ebiom_2018_03_026 crossref_primary_10_1042_BCJ20230167 crossref_primary_10_1080_17446651_2017_1294484 crossref_primary_10_1016_j_tem_2024_03_006 crossref_primary_10_1155_2017_5149362 crossref_primary_10_1152_physrev_00008_2021 crossref_primary_10_1172_JCI88017 crossref_primary_10_1172_JCI88016 crossref_primary_10_1172_JCI88015 crossref_primary_10_1096_fj_201800150RR crossref_primary_10_1111_jdi_13679 crossref_primary_10_3390_ijms19103136 crossref_primary_10_1111_dom_13379 crossref_primary_10_1002_stem_3059 crossref_primary_10_1155_2022_1172795 crossref_primary_10_1016_j_celrep_2021_109490 crossref_primary_10_3390_biomedicines12122790 crossref_primary_10_2174_0109298665257646231020054036 crossref_primary_10_2337_db21_0992 crossref_primary_10_3390_antiox12071449 crossref_primary_10_1016_j_molmet_2017_06_019 crossref_primary_10_1186_s13578_021_00658_6 crossref_primary_10_1016_j_jep_2023_117374 crossref_primary_10_1111_apha_14037 crossref_primary_10_1016_j_cmet_2017_08_007 crossref_primary_10_1016_j_isci_2022_104125 crossref_primary_10_3390_ijms23105522 crossref_primary_10_3390_biology10060534 crossref_primary_10_3389_fendo_2023_1298101 crossref_primary_10_3389_fendo_2023_1250023 crossref_primary_10_1016_S1957_2557_21_00180_2 crossref_primary_10_3390_antiox10040526 crossref_primary_10_3390_metabo11040218 crossref_primary_10_1016_j_crphar_2024_100184 crossref_primary_10_14341_omet12778 crossref_primary_10_1172_JCI129188 crossref_primary_10_1038_s41580_020_00317_7 crossref_primary_10_1038_s42255_020_0171_3 crossref_primary_10_1172_jci_insight_99576 crossref_primary_10_1016_j_jnim_2018_05_001 crossref_primary_10_1073_pnas_1713736114 crossref_primary_10_1038_ncomms12631 crossref_primary_10_1038_s42003_019_0351_4 crossref_primary_10_1210_endocr_bqaa011 crossref_primary_10_1007_s13340_022_00600_2 crossref_primary_10_3389_fphar_2020_585487 crossref_primary_10_3389_fendo_2024_1524001 crossref_primary_10_1016_j_bbadis_2017_01_007 crossref_primary_10_1016_j_jep_2019_112043 crossref_primary_10_1016_j_molmet_2024_101879 crossref_primary_10_1016_j_diabres_2025_112029 crossref_primary_10_1038_s41598_021_03567_3 crossref_primary_10_1055_a_2077_5177 crossref_primary_10_1007_s00125_024_06286_2 crossref_primary_10_1016_j_metabol_2020_154414 crossref_primary_10_1172_JCI153876 crossref_primary_10_2337_db16_0641 crossref_primary_10_1016_j_cmet_2017_05_014 crossref_primary_10_1172_JCI134874 crossref_primary_10_2337_db19_0349 crossref_primary_10_3390_cells10112841 crossref_primary_10_3389_fcell_2024_1424278 crossref_primary_10_1038_s42255_021_00420_9 crossref_primary_10_1111_ajt_15154 crossref_primary_10_3390_biomedicines9010086 crossref_primary_10_1210_clinem_dgac535 crossref_primary_10_1016_j_jep_2023_117481 crossref_primary_10_3390_ijms19041170 crossref_primary_10_1038_s41467_021_23196_8 crossref_primary_10_1152_ajpendo_00101_2022 crossref_primary_10_2337_db18_0305 crossref_primary_10_1007_s00125_025_06392_9 crossref_primary_10_1016_j_molmet_2020_02_001 crossref_primary_10_1097_CM9_0000000000003034 crossref_primary_10_1177_11795514241295620 crossref_primary_10_1111_jdi_12782 crossref_primary_10_1016_j_ando_2016_11_002 crossref_primary_10_3390_ijms221910427 crossref_primary_10_1016_j_cmet_2018_07_003 crossref_primary_10_1073_pnas_1904311116 crossref_primary_10_1038_s41467_021_25514_6 crossref_primary_10_1002_dmrr_3384 crossref_primary_10_1038_s41575_021_00551_0 crossref_primary_10_3389_fphar_2022_841981 crossref_primary_10_1371_journal_pone_0204595 crossref_primary_10_1038_s41467_023_44384_8 crossref_primary_10_2337_db19_0281 crossref_primary_10_3390_cells13151244 crossref_primary_10_1515_mr_2024_0039 crossref_primary_10_3390_biomedicines9091189 crossref_primary_10_1038_s41467_019_12880_5 crossref_primary_10_14814_phy2_14573 crossref_primary_10_1016_j_freeradbiomed_2021_05_029 crossref_primary_10_3390_ijms221910311 crossref_primary_10_1172_JCI173495 crossref_primary_10_1111_jdi_12841 crossref_primary_10_1016_j_cell_2017_12_025 crossref_primary_10_3390_life15010125 crossref_primary_10_1016_j_celrep_2018_06_039 crossref_primary_10_1007_s00125_022_05669_7 crossref_primary_10_1016_j_jgg_2021_11_006 crossref_primary_10_1016_j_molmet_2019_09_010 crossref_primary_10_1097_MPA_0000000000002385 crossref_primary_10_1177_1721727X231154152 crossref_primary_10_1371_journal_pone_0182932 crossref_primary_10_1126_science_adf2034 crossref_primary_10_1038_s41598_017_12335_1 crossref_primary_10_1113_EP092009 crossref_primary_10_3389_fphar_2024_1364881 crossref_primary_10_2337_dbi22_0030 crossref_primary_10_1016_j_jbc_2025_108187 crossref_primary_10_1172_jci_insight_157694 crossref_primary_10_1016_j_diabet_2017_07_006 crossref_primary_10_1016_S2213_8587_19_30076_2 crossref_primary_10_3389_fendo_2022_1006376 crossref_primary_10_1371_journal_pone_0213299 crossref_primary_10_1038_s42003_024_06475_0 crossref_primary_10_1016_j_bbadis_2022_166356 crossref_primary_10_1101_cshperspect_a040741 crossref_primary_10_2337_db18_0856 crossref_primary_10_1038_s41420_022_01142_x crossref_primary_10_3389_fphys_2020_570276 crossref_primary_10_3390_biomedicines8120582 crossref_primary_10_3390_biomedicines10040770 |
ContentType | Journal Article |
Copyright | Copyright © 2016 by the Endocrine Society 2016 Copyright © 2016 by The Endocrine Society Copyright © 2016 by the Endocrine Society |
Copyright_xml | – notice: Copyright © 2016 by the Endocrine Society 2016 – notice: Copyright © 2016 by The Endocrine Society – notice: Copyright © 2016 by the Endocrine Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T5 7TM H94 K9. 7X8 5PM |
DOI | 10.1210/jc.2015-2860 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1945-7197 |
EndPage | 1054 |
ExternalDocumentID | PMC4803182 26713822 10_1210_jc_2015_2860 00004678-201603000-00035 10.1210/jc.2015-2860 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK063608 – fundername: NIDDK NIH HHS grantid: R01 DK064819 – fundername: NIDDK NIH HHS grantid: P30 DK026687 – fundername: NIDDK NIH HHS grantid: DK63608 – fundername: NIDDK NIH HHS grantid: DK64819 – fundername: NHLBI NIH HHS grantid: P01 HL087123 |
GroupedDBID | --- -~X .55 .XZ 08P 0R~ 18M 1TH 29K 2WC 34G 354 39C 4.4 48X 53G 5GY 5RS 5YH 8F7 AABZA AACZT AAIMJ AAPQZ AAPXW AARHZ AAUAY AAVAP AAWTL ABBLC ABDFA ABEJV ABGNP ABJNI ABLJU ABMNT ABNHQ ABOCM ABPMR ABPPZ ABPQP ABPTD ABQNK ABVGC ABWST ABXVV ACGFO ACGFS ACPRK ACUTJ ACYHN ADBBV ADGKP ADGZP ADHKW ADQBN ADRTK ADVEK AELWJ AEMDU AENEX AENZO AETBJ AEWNT AFCHL AFFZL AFGWE AFOFC AFRAH AFXAL AGINJ AGKRT AGQXC AGUTN AHMBA AHMMS AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT ARIXL ASPBG ATGXG AVWKF AZFZN BAWUL BAYMD BCRHZ BEYMZ BSWAC BTRTY C45 CDBKE CS3 D-I DAKXR DIK E3Z EBS EJD EMOBN ENERS F5P FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 HZ~ H~9 KBUDW KOP KQ8 KSI KSN L7B M5~ MHKGH MJL N9A NLBLG NOMLY NOYVH NVLIB O9- OAUYM OBH OCB ODMLO OFXIZ OGEVE OHH OJZSN OK1 OPAEJ OVD OVIDX P2P P6G REU ROX ROZ TEORI TJX TLC TR2 TWZ VVN W8F WOQ X7M YBU YFH YHG YOC YSK ZY1 ~02 ~H1 .GJ 3O- 7X7 88E 8FI 8FJ AAJQQ AAKAS AAPGJ AAQQT AAUQX AAWDT AAYJJ ABDPE ABUWG ABXZS ACFRR ACVCV ACZBC ADMTO ADNBA ADZCM AEMQT AEOTA AERZD AFFNX AFFQV AFKRA AFYAG AGMDO AGORE AHGBF AI. AJBYB AJDVS ALXQX APJGH AQDSO AQKUS AVNTJ BENPR BPHCQ BVXVI CCPQU EIHJH FEDTE FYUFA HMCUK HVGLF IAO IHR INH ITC J5H M1P MBLQV N4W NU- OBFPC PHGZM PHGZT PQQKQ PROAC PSQYO TMA UKHRP VH1 WHG X52 ZGI ZXP AAYXX CITATION 3V. CGR CUY CVF ECM EIF NPM VXZ 7QP 7T5 7TM H94 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4515-391e8be7f56bdf2fd102ecc5df732f01eac50cbc38d0b0c47fce3e5f536c9f33 |
ISSN | 0021-972X 1945-7197 |
IngestDate | Thu Aug 21 13:46:57 EDT 2025 Fri Jul 11 09:53:40 EDT 2025 Mon Jun 30 12:41:00 EDT 2025 Wed Feb 19 02:27:42 EST 2025 Tue Jul 01 01:10:39 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Fri May 16 04:12:22 EDT 2025 Fri Feb 07 10:35:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4515-391e8be7f56bdf2fd102ecc5df732f01eac50cbc38d0b0c47fce3e5f536c9f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26713822 |
PQID | 3164377350 |
PQPubID | 2046206 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4803182 proquest_miscellaneous_1770878932 proquest_journals_3164377350 pubmed_primary_26713822 crossref_primary_10_1210_jc_2015_2860 crossref_citationtrail_10_1210_jc_2015_2860 wolterskluwer_health_00004678-201603000-00035 oup_primary_10_1210_jc_2015-2860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-March |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-March |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: Washington, DC |
PublicationTitle | The journal of clinical endocrinology and metabolism |
PublicationTitleAlternate | J Clin Endocrinol Metab |
PublicationYear | 2016 |
Publisher | Oxford University Press Copyright by The Endocrine Society Endocrine Society |
Publisher_xml | – name: Oxford University Press – name: Copyright by The Endocrine Society – name: Endocrine Society |
SSID | ssj0014453 |
Score | 2.6409192 |
Snippet | Context:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to... CONTEXT:Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to... Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a... |
SourceID | pubmedcentral proquest pubmed crossref wolterskluwer oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1044 |
SubjectTerms | Aldehyde dehydrogenase Aldehydes Beta cells Cell Dedifferentiation Dehydrogenases Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - pathology Forkhead Box Protein O1 Forkhead Transcription Factors - analysis Glucagon Glucagon - metabolism Glucagon-Secreting Cells - physiology Homeodomain Proteins - analysis Humans Immunohistochemistry Insulin - metabolism Insulin Secretion Insulin-Secreting Cells - chemistry Insulin-Secreting Cells - pathology Insulin-Secreting Cells - physiology Microscopy, Electron Organ donors Original Pancreas Progenitor cells Somatostatin Somatostatin - metabolism Somatostatin-Secreting Cells - physiology Transcription factors |
Title | Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004678-201603000-00035 https://www.ncbi.nlm.nih.gov/pubmed/26713822 https://www.proquest.com/docview/3164377350 https://www.proquest.com/docview/1770878932 https://pubmed.ncbi.nlm.nih.gov/PMC4803182 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBehgzEYY_-XrSseLE_Fw7YkK34ZrGlL15Gxhwz6ZiJLJukaO9QOY_tMe9oH2WfanST_CW1h64sJtrCcu9Pp7nT3O0LeMsQsp4hTmcBqYlRSXHPSl0ms-Rx1peneMP0cn3xlp2f8bDD41cta2tTyXfbz2rqS23AV7gFfsUr2PzjbvhRuwG_gL1yBw3D9Jx43LUHR4htNjkYHkT_BWNyhbvqe1JbyGNWw4fqZDbm6RJiqb5uixPSAJNqaSV2oEnRL0aE1rXQNsnPRoA_iEcaysHkBplGHrroEoIMS260YTv4o6_ll2Z36r_zppqlEPJ3vG8XTBn0Xq41pgQS3q8US7Nx-fCKMuwQtGzRz36ibNNS-Nsb0EGHaqcNeZBVwwrgvQpuz22po975l34Nf25a5Fj3S7d1gLLJr9wVwbHFfQMzKkPvR2PYw6InIemVkJIoFgjJG3e7Y5ix-mU7YGFUgbPh3InBKsF_G4cdP7ZkVYw7z1P0rV2aBNVL9iRF-2s2yZQtt1Vf23Jyr2br3v5eYSVF9M4UUPXNo9pA8cH6M98EK5SMy0MVjcnfqMjWekPeNbHpl7v35beTSuyKX3rLwjFx6KJde5DVy-ZTMjo9mkxPf9erwMwYmsU-TUI-lFjmPpcqjXIHhCtqBq1zQKA9C2N95kMmMjlUgg4yJPNNU85zTOEtySp-RnaIs9AviKQmUEVLLeK5YogOpVILnxSpXLJIBHZL9hmhp5nDssZ3KRYr-LFA7Pc9SpHaK1B6SUTt6bfFbbhjnAf1vGuLbIbsNc1K3GquUhnjyLSiHx2_ax6Ci8dxtXuhyU6WhEMFYgGMQDclzy8t2okYUhkRscbkdgPDv20-K5cLAwDtpHBJ_Sx5SW0CdGu8fTFE_Mq3kHYIE5S9vPdMrcq9b4Ltkp77c6Ndgktdyz6yEvysr3jo |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+%CE%B2-Cell+Dedifferentiation+in+Human+Type+2+Diabetes&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Cinti%2C+Francesca&rft.au=Bouchi%2C+Ryotaro&rft.au=Kim-Muller%2C+Ja+Young&rft.au=Ohmura%2C+Yoshiaki&rft.date=2016-03-01&rft.pub=Endocrine+Society&rft.issn=0021-972X&rft.eissn=1945-7197&rft.volume=101&rft.issue=3&rft.spage=1044&rft.epage=1054&rft_id=info:doi/10.1210%2Fjc.2015-2860&rft_id=info%3Apmid%2F26713822&rft.externalDocID=PMC4803182 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon |