Locally restricted glucose availability in the embryonic hypocotyl determines seed germination under abscisic acid treatment

• Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc)...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 231; no. 5; pp. 1832 - 1844
Main Authors Xue, Xueyi, Yu, Ya-Chi, Wu, Yue, Xue, Huiling, Chen, Li-Qing
Format Journal Article
LanguageEnglish
Published Lancaster Wiley 01.09.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA-mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. • We used a genetically engineered F€orster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14C-Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA-inhibited seed germination. • Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss-of-function ABA-inducible sucrosephosphate synthase (SPS) genes accumulated more Glc, leading to ABA-insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. • This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.
AbstractList Summary Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA‐mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14C‐Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA‐inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss‐of‐function ABA‐inducible sucrose‐phosphate synthase (SPS) genes accumulated more Glc, leading to ABA‐insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.
Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA‐mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14 C‐Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA‐inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss‐of‐function ABA‐inducible sucrose‐phosphate synthase ( SPS ) genes accumulated more Glc, leading to ABA‐insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin ( EXP ) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.
• Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA-mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. • We used a genetically engineered F€orster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14C-Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA-inhibited seed germination. • Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss-of-function ABA-inducible sucrosephosphate synthase (SPS) genes accumulated more Glc, leading to ABA-insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. • This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.
Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA‐mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, ¹⁴C‐Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA‐inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss‐of‐function ABA‐inducible sucrose‐phosphate synthase (SPS) genes accumulated more Glc, leading to ABA‐insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.
Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA‐mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds.We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14C‐Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA‐inhibited seed germination.Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss‐of‐function ABA‐inducible sucrose‐phosphate synthase (SPS) genes accumulated more Glc, leading to ABA‐insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA.This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.
Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA-mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14 C-Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA-inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss-of-function ABA-inducible sucrose-phosphate synthase (SPS) genes accumulated more Glc, leading to ABA-insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA-mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14 C-Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA-inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss-of-function ABA-inducible sucrose-phosphate synthase (SPS) genes accumulated more Glc, leading to ABA-insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.
Author Chen, Li-Qing
Yu, Ya-Chi
Xue, Xueyi
Xue, Huiling
Wu, Yue
Author_xml – sequence: 1
  givenname: Xueyi
  surname: Xue
  fullname: Xue, Xueyi
– sequence: 2
  givenname: Ya-Chi
  surname: Yu
  fullname: Yu, Ya-Chi
– sequence: 3
  givenname: Yue
  surname: Wu
  fullname: Wu, Yue
– sequence: 4
  givenname: Huiling
  surname: Xue
  fullname: Xue, Huiling
– sequence: 5
  givenname: Li-Qing
  surname: Chen
  fullname: Chen, Li-Qing
BookMark eNqFkU1rFTEUhkOp4G114Q8oBLrRxbT5nJksS1ErXNSFgrshkznTm0smuU0yyoA_3vTe2kWpmM0h8DwH3vOeoGMfPCD0hpILWt6l320uaCMpP0IrKmpVtZQ3x2hFCGurWtQ_XqKTlLaEECVrtkK_18Fo5xYcIeVoTYYB37rZhARY_9TW6d46mxdsPc4bwDD1cQneGrxZdsGEvDg8QIY4WQ8JJ7j39z-dbfB49gNErPtkbCqSNnbAOYLOE_j8Cr0YtUvw-mGeou8f3n-7vqnWXz5-ur5aV0aUJJUUoCXhpmEj141moFoFA1Vs7Puat_XYcqUH00jWCAOEgRg56Ut4zujARslP0dvD3l0Md3MJ2k02GXBOewhz6ljNayEEF-r_qOSMCSWlKOj5E3Qb5uhLkELJRrW0ZW2hLg-UiSGlCGNnbN7fJsdy3o6S7r64rhTX7Ysrxrsnxi7aScflWfZh-y_rYPk32H3-evPXODsY25RDfDRYQyRhjPA_nk21MQ
CitedBy_id crossref_primary_10_1016_j_cj_2023_10_010
crossref_primary_10_2503_hortj_QH_R003
crossref_primary_10_3389_fpls_2024_1417632
crossref_primary_10_1093_jxb_erab445
crossref_primary_10_1071_FP23013
crossref_primary_10_3390_microorganisms10010075
crossref_primary_10_1126_sciadv_abo0902
crossref_primary_10_3390_ijms231911123
crossref_primary_10_3390_ijms221910892
crossref_primary_10_3390_plants12142700
crossref_primary_10_1111_nph_19362
crossref_primary_10_3390_plants12233963
crossref_primary_10_1007_s10265_023_01471_7
crossref_primary_10_1016_j_plgene_2025_100495
crossref_primary_10_1146_annurev_arplant_070621_093907
crossref_primary_10_3389_fgene_2023_1111318
crossref_primary_10_3389_fpls_2021_772285
Cites_doi 10.1016/S1360-1385(03)00011-6
10.1104/pp.110.162040
10.1016/j.plantsci.2015.06.009
10.1093/jxb/erl096
10.1074/jbc.270.26.15789
10.1146/annurev.arplant.50.1.391
10.1146/annurev-arplant-042817-040104
10.1016/j.molcel.2017.12.002
10.1016/S1369-5266(02)00306-0
10.1111/j.1365-313X.2011.04780.x
10.1016/j.cell.2016.08.029
10.7554/eLife.01741
10.1101/gr.4237406
10.1105/tpc.104.022616
10.1073/pnas.250473797
10.1016/j.devcel.2020.10.012
10.1111/j.1365-313X.2006.02881.x
10.1016/j.pbi.2005.09.013
10.1038/s41596-019-0128-8
10.1038/nature09606
10.1073/pnas.1012896107
10.1126/science.1080585
10.1046/j.1365-313X.1994.6010067.x
10.1007/BF00393650
10.1126/science.1087790
10.1093/nar/gkn923
10.1104/pp.122.4.1179
10.1104/pp.70.1.227
10.1038/nature01984
10.1146/annurev-arplant-042809-112122
10.1146/annurev-biochem-060614-033904
10.1016/j.molp.2017.10.004
10.1038/ncomms9113
10.1073/pnas.1404616111
10.1105/tpc.12.7.1117
10.1038/nbt.3519
10.1073/pnas.1100958108
10.1016/j.pbi.2004.03.004
10.1038/nmeth.2019
10.1093/jxb/eru282
10.1046/j.1365-313X.2001.01168.x
10.1105/tpc.12.7.1103
10.1199/tab.0160
10.1105/tpc.9.12.2197
10.1016/j.cub.2020.07.012
10.1104/pp.104.038711
10.1016/S0021-9258(17)32008-2
10.1007/s004250050180
10.1016/S0176-1617(11)81219-8
10.1038/nmeth.4324
10.1126/science.1213351
10.1104/pp.113.223511
10.1111/j.1365-313X.2000.00935.x
10.1074/jbc.M111.300749
10.1105/tpc.114.134585
10.1038/s41477-017-0021-9
10.1016/S0021-9258(18)38447-3
10.1104/pp.16.01099
10.3389/fgene.2014.00218
10.1073/pnas.092141899
10.1016/j.plaphy.2008.12.005
10.1093/jxb/erp203
10.1146/annurev-arplant-042110-103918
10.1199/tab.0113
10.1007/BF00386993
10.1105/tpc.9.7.1055
10.1105/tpc.106.044073
10.1046/j.1365-313X.2002.01376.x
10.1105/tpc.106.047290
10.7554/eLife.26770
10.1111/j.1365-3040.2007.01727.x
10.1016/j.cub.2020.09.016
10.1093/mp/sss001
10.3389/fpls.2018.00234
10.1016/j.molp.2018.10.009
10.3390/plants8020034
ContentType Journal Article
Copyright 2021 The Authors © 2021 New Phytologist Foundation
2021 The Authors. © 2021 New Phytologist Foundation
Copyright © 2021 New Phytologist Trust
2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Copyright_xml – notice: 2021 The Authors © 2021 New Phytologist Foundation
– notice: 2021 The Authors. © 2021 New Phytologist Foundation
– notice: Copyright © 2021 New Phytologist Trust
– notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
DBID AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.17513
DatabaseName CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef

AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1844
ExternalDocumentID 10_1111_nph_17513
NPH17513
27050220
Genre article
GrantInformation_xml – fundername: University of Illinois
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
JBS
JLS
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AAISJ
AASGY
AASVR
ABBHK
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUPB
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
CBGCD
COF
CUYZI
DEVKO
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
IPSME
JAAYA
JBMMH
JEB
JENOY
JHFFW
JKQEH
JLXEF
JPM
JSODD
LPU
LW6
MVM
NEJ
RCA
SA0
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4513-54ea503c72f3a7a2e989ed192fbb6386f839adc75274ce02e4f30b469321d2f53
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:26:40 EDT 2025
Fri Jul 11 03:47:24 EDT 2025
Fri Jul 25 10:35:45 EDT 2025
Tue Jul 01 02:28:38 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Wed Jan 22 16:28:40 EST 2025
Thu Jul 03 21:34:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4513-54ea503c72f3a7a2e989ed192fbb6386f839adc75274ce02e4f30b469321d2f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7918-5762
0000-0001-8616-5815
0000-0002-6937-0179
0000-0002-0964-5388
PQID 2557981828
PQPubID 2026848
PageCount 13
ParticipantIDs proquest_miscellaneous_2636444349
proquest_miscellaneous_2532249554
proquest_journals_2557981828
crossref_citationtrail_10_1111_nph_17513
crossref_primary_10_1111_nph_17513
wiley_primary_10_1111_nph_17513_NPH17513
jstor_primary_27050220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Lancaster
PublicationPlace_xml – name: Lancaster
PublicationTitle The New phytologist
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 6
2009; 47
1983; 157
2012; 287
2017; 3
2010; 107
2010; 468
2019; 12
2004; 7
2011; 62
2002; 99
2019; 14
2015b; 27
2013; 163
2008; 6
2020; 55
2008; 31
1997; 9
2012; 10
2016; 34
2010; 61
2014; 65
2018; 9
2014; 5
2014; 3
1994; 269
2004; 135
2000; 12
2003; 8
2000; 97
2010; 154
2000; 122
1999; 50
2012; 69
2012; 335
1972; 104
2019; 8
2015; 6
1982; 70
2002; 31
2006; 57
2015a; 84
2000; 24
2009; 60
2006; 16
2002; 5
2016; 167
2006; 18
2017; 173
2001; 28
2014; 111
1991; 137
1995; 270
2018; 69
1997; 203
2011; 108
2003; 425
2020; 30
2017; 14
2004; 16
2005; 8
2006; 48
2015; 238
2003; 301
2018; 11
2003; 300
2012; 5
1953; 200
2009; 37
2016; 172
1994; 6
2012; 9
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Huang YC (e_1_2_8_29_1) 2016; 172
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Jang JC (e_1_2_8_31_1) 1997; 9
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 16
  start-page: 414
  year: 2006
  end-page: 427
  article-title: Establishing glucose‐ and ABA‐regulated transcription networks in by microarray analysis and promoter classification using a Relevance Vector Machine
  publication-title: Genome Research
– volume: 61
  start-page: 651
  year: 2010
  end-page: 679
  article-title: Abscisic acid: emergence of a core signaling network
  publication-title: Annual Review of Plant Biology
– volume: 69
  start-page: 497
  year: 2018
  end-page: 524
  article-title: Genetically encoded biosensors in plants: pathways to discovery
  publication-title: Annual Review of Plant Biology
– volume: 84
  start-page: 865
  year: 2015a
  end-page: 894
  article-title: Transport of sugars
  publication-title: Annual Review of Biochemistry
– volume: 468
  start-page: 527
  year: 2010
  end-page: 532
  article-title: Sugar transporters for intercellular exchange and nutrition of pathogens
  publication-title: Nature
– volume: 173
  start-page: 907
  year: 2017
  end-page: 917
  article-title: The transcription factor ATHB5 affects GA‐mediated plasticity in hypocotyl cell growth during seed germination
  publication-title: Plant Physiology
– volume: 111
  start-page: 8685
  year: 2014
  end-page: 8690
  article-title: Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 8
  start-page: 110
  year: 2003
  end-page: 116
  article-title: Sugar and hormone connections
  publication-title: Trends in Plant Science
– volume: 287
  start-page: 2836
  year: 2012
  end-page: 2842
  article-title: Rapamycin and glucose‐target of rapamycin (TOR) protein signaling in plants
  publication-title: Journal of Biological Chemistry
– volume: 5
  start-page: 1029
  year: 2012
  end-page: 1041
  article-title: sucrose transporter SUT4 interacts with cytochrome –2 to regulate seed germination in response to sucrose and glucose
  publication-title: Molecular Plant
– volume: 16
  start-page: 2128
  year: 2004
  end-page: 2150
  article-title: Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis
  publication-title: Plant Cell
– volume: 269
  start-page: 20417
  year: 1994
  end-page: 20424
  article-title: Steady‐state and presteady‐state kinetics of the H+/hexose cotransporter (STP1) from expressed in oocytes
  publication-title: Journal of Biological Chemistry
– volume: 30
  start-page: 4815
  year: 2020
  end-page: 4825
  article-title: BONZAI proteins control global osmotic stress responses in plants
  publication-title: Current Biology
– volume: 107
  start-page: 19108
  year: 2010
  end-page: 19113
  article-title: A seed coat bedding assay shows that RGL2‐dependent release of abscisic acid by the endosperm controls embryo growth in dormant seeds
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  article-title: Fiji: an open‐source platform for biological‐image analysis
  publication-title: Nature Methods
– volume: 12
  start-page: 1103
  year: 2000
  end-page: 1115
  article-title: Interactions between abscisic acid and ethylene signaling cascades
  publication-title: Plant Cell
– volume: 5
  start-page: 218
  year: 2014
  article-title: Interplay between sugar and hormone signaling pathways modulate floral signal transduction
  publication-title: Frontiers in Genetics
– volume: 48
  start-page: 354
  year: 2006
  end-page: 366
  article-title: Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism
  publication-title: The Plant Journal
– volume: 425
  start-page: 521
  year: 2003
  end-page: 525
  article-title: Differential regulation of EIN3 stability by glucose and ethylene signalling in plants
  publication-title: Nature
– volume: 28
  start-page: 443
  year: 2001
  end-page: 453
  article-title: Distinct cell‐specific expression patterns of early and late gibberellin biosynthetic genes during seed germination
  publication-title: The Plant Journal
– volume: 9
  start-page: 2197
  year: 1997
  end-page: 2208
  article-title: Sugar repression of a gibberellin‐dependent signaling pathway in barley embryos
  publication-title: Plant Cell
– volume: 172
  start-page: 1182
  year: 2016
  end-page: 1199
  article-title: The heat stress factor HSFA6b connects ABA signaling and ABA‐mediated heat responses
  publication-title: Plant Physiology
– volume: 27
  start-page: 607
  year: 2015b
  end-page: 619
  article-title: A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo
  publication-title: Plant Cell
– volume: 62
  start-page: 127
  year: 2011
  end-page: 155
  article-title: Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling
  publication-title: Annual Review of Plant Biology
– volume: 10
  year: 2012
  article-title: Starch metabolism in Arabidopsis
  publication-title: The Arabidopsis Book
– volume: 9
  start-page: 1055
  year: 1997
  end-page: 1066
  article-title: Seed germination and dormancy
  publication-title: Plant Cell
– volume: 55
  start-page: 529
  year: 2020
  end-page: 543
  article-title: Thriving under stress: how plants balance growth and the stress response
  publication-title: Developmental Cell
– volume: 301
  start-page: 1728
  year: 2003
  end-page: 1731
  article-title: A seven‐transmembrane RGS protein that modulates plant cell proliferation
  publication-title: Science
– volume: 3
  start-page: 803
  year: 2017
  end-page: 813
  article-title: In vivo gibberellin gradients visualized in rapidly elongating tissues
  publication-title: Nature Plants
– volume: 30
  start-page: 3703
  year: 2020
  end-page: 3712
  article-title: A molecular signal integration network underpinning seed germination
  publication-title: Current Biology
– volume: 50
  start-page: 391
  year: 1999
  end-page: 417
  article-title: Enzymes and other agents that enhance cell wall extensibility
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 335
  start-page: 207
  year: 2012
  end-page: 211
  article-title: Sucrose efflux mediated by SWEET proteins as a key step for phloem transport
  publication-title: Science
– volume: 69
  start-page: 100
  year: 2018
  end-page: 112.e6
  article-title: Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response
  publication-title: Molecular Cell
– volume: 108
  start-page: 9709
  year: 2011
  end-page: 9714
  article-title: Genome‐wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 12
  start-page: 1117
  year: 2000
  end-page: 1126
  article-title: Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis
  publication-title: Plant Cell
– volume: 57
  start-page: 3359
  year: 2006
  end-page: 3367
  article-title: Phytohormone signalling pathways interact with sugars during seed germination and seedling development
  publication-title: Journal of Experimental Botany
– volume: 6
  start-page: 67
  year: 1994
  end-page: 77
  article-title: SUC1 and SUC2: two sucrose transporters from ; expression and characterization in baker's yeast and identification of the histidine‐tagged protein
  publication-title: The Plant Journal
– volume: 31
  start-page: 639
  year: 2002
  end-page: 647
  article-title: Germination and storage reserve mobilization are regulated independently in
  publication-title: The Plant Journal
– volume: 31
  start-page: 11
  year: 2008
  end-page: 38
  article-title: The effect of drought and heat stress on reproductive processes in cereals
  publication-title: Plant, Cell & Environment
– volume: 8
  start-page: 593
  year: 2005
  end-page: 599
  article-title: Cell‐to‐cell communication via plasmodesmata during embryogenesis
  publication-title: Current Opinion in Plant Biology
– volume: 97
  start-page: 13979
  year: 2000
  end-page: 13984
  article-title: Genetic evidence for the role of phloem‐specific plasma membrane sucrose transporters
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 7
  start-page: 277
  year: 2004
  end-page: 284
  article-title: Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside
  publication-title: Current Opinion in Plant Biology
– volume: 203
  start-page: 182
  year: 1997
  end-page: 187
  article-title: Abscisic acid inhibits germination of mature seeds by limiting the availability of energy and nutrients
  publication-title: Planta
– volume: 14
  start-page: 687
  year: 2017
  end-page: 690
  article-title: Differential analysis of RNA‐seq incorporating quantification uncertainty
  publication-title: Nature Methods
– volume: 8
  start-page: 34
  year: 2019
  article-title: Impact of climate change on crops adaptation and strategies to tackle its outcome: a Review
  publication-title: Plants (Basel)
– volume: 135
  start-page: 959
  year: 2004
  end-page: 968
  article-title: Interaction between wall deposition and cell elongation in dark‐grown hypocotyl cells in
  publication-title: Plant Physiology
– volume: 238
  start-page: 135
  year: 2015
  end-page: 147
  article-title: Characterization of multiple knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis
  publication-title: Plant Science
– volume: 70
  start-page: 227
  year: 1982
  end-page: 231
  article-title: Isolation and quantitation of β‐ ‐glucopyranosyl abscisate from leaves of and spinach
  publication-title: Plant Physiology
– volume: 270
  start-page: 15789
  year: 1995
  end-page: 15797
  article-title: Biochemical and molecular characterization of a barley seed β‐glucosidase
  publication-title: Journal of Biological Chemistry
– volume: 11
  start-page: 75
  year: 2018
  end-page: 94
  article-title: Carbon supply and the regulation of cell wall synthesis
  publication-title: Molecular Plant
– volume: 60
  start-page: 3587
  year: 2009
  end-page: 3594
  article-title: Germination of seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl
  publication-title: Journal of Experimental Botany
– volume: 99
  start-page: 6422
  year: 2002
  end-page: 6427
  article-title: Expression and disruption of the (target of rapamycin) gene
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 37
  start-page: 1
  year: 2009
  end-page: 13
  article-title: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
  publication-title: Nucleic Acids Research
– volume: 65
  start-page: 5217
  year: 2014
  end-page: 5229
  article-title: Loss of the two major leaf isoforms of sucrose‐phosphate synthase in limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis
  publication-title: Journal of Experimental Botany
– volume: 200
  start-page: 145
  year: 1953
  end-page: 154
  article-title: Hexokinase in higher plants
  publication-title: Journal of Biological Chemistry
– volume: 18
  start-page: 3476
  year: 2006
  end-page: 3490
  article-title: Molecular identification and physiological characterization of a novel monosaccharide transporter from involved in vacuolar sugar transport
  publication-title: Plant Cell
– volume: 24
  start-page: 849
  year: 2000
  end-page: 857
  article-title: Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of seeds and seedlings to sugars
  publication-title: The Plant Journal
– volume: 6
  year: 2017
  article-title: ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology
  publication-title: eLife
– volume: 9
  start-page: 5
  year: 1997
  end-page: 19
  article-title: Hexokinase as a sugar sensor in higher plants
  publication-title: Plant Cell
– volume: 163
  start-page: 205
  year: 2013
  end-page: 215
  article-title: Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination
  publication-title: Plant Physiology
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 34
  start-page: 525
  year: 2016
  end-page: 527
  article-title: Near‐optimal probabilistic RNA‐seq quantification
  publication-title: Nature Biotechnology
– volume: 6
  start-page: 8113
  year: 2015
  article-title: Abscisic acid transporters cooperate to control seed germination
  publication-title: Nature Communications
– volume: 122
  start-page: 1179
  year: 2000
  end-page: 1186
  article-title: Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars
  publication-title: Plant Physiology
– volume: 137
  start-page: 669
  year: 1991
  end-page: 673
  article-title: Photoperceptive site in phytochrome‐mediated lettuce ( L. cv. Grand Rapids) seed germination
  publication-title: Journal of Plant Physiology
– volume: 104
  start-page: 167
  year: 1972
  end-page: 177
  article-title: Localization and activity of various peptidases in germinating barley
  publication-title: Planta
– volume: 14
  start-page: 703
  year: 2019
  end-page: 721
  article-title: Protocol update for large‐scale genome and gene function analysis with the PANTHER classification system (v.14.0)
  publication-title: Nature Protocols
– volume: 5
  start-page: 536
  year: 2002
  end-page: 542
  article-title: Biosynthesis and properties of the plant cell wall
  publication-title: Current Opinion in Plant Biology
– volume: 12
  start-page: 71
  year: 2019
  end-page: 85
  article-title: A regulatory module controlling GA‐mediated endosperm cell expansion is critical for seed germination in
  publication-title: Molecular Plant
– volume: 47
  start-page: 485
  year: 2009
  end-page: 490
  article-title: Storage oil hydrolysis during early seedling growth
  publication-title: Plant Physiology and Biochemistry
– volume: 18
  start-page: 2314
  year: 2006
  end-page: 2325
  article-title: Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of RNA‐silencing mutants
  publication-title: Plant Cell
– volume: 157
  start-page: 158
  year: 1983
  end-page: 165
  article-title: Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of (L.) Heynh
  publication-title: Planta
– volume: 3
  year: 2014
  article-title: Abscisic acid dynamics in roots detected with genetically encoded FRET sensors
  publication-title: eLife
– volume: 300
  start-page: 332
  year: 2003
  end-page: 336
  article-title: Role of the glucose sensor HXK1 in nutrient, light, and hormonal signaling
  publication-title: Science
– volume: 6
  year: 2008
  article-title: Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling
  publication-title: Arabidopsis Book
– volume: 69
  start-page: 181
  year: 2012
  end-page: 192
  article-title: FRET‐based genetically encoded sensors allow high‐resolution live cell imaging of Ca dynamics
  publication-title: The Plant Journal
– volume: 154
  start-page: 665
  year: 2010
  end-page: 677
  article-title: Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis
  publication-title: Plant Physiology
– volume: 9
  start-page: 234
  year: 2018
  article-title: Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species
  publication-title: Frontiers in Plant Science
– ident: e_1_2_8_39_1
  doi: 10.1016/S1360-1385(03)00011-6
– ident: e_1_2_8_70_1
  doi: 10.1104/pp.110.162040
– ident: e_1_2_8_2_1
  doi: 10.1016/j.plantsci.2015.06.009
– ident: e_1_2_8_76_1
  doi: 10.1093/jxb/erl096
– ident: e_1_2_8_37_1
  doi: 10.1074/jbc.270.26.15789
– ident: e_1_2_8_19_1
  doi: 10.1146/annurev.arplant.50.1.391
– ident: e_1_2_8_68_1
  doi: 10.1146/annurev-arplant-042817-040104
– ident: e_1_2_8_69_1
  doi: 10.1016/j.molcel.2017.12.002
– ident: e_1_2_8_54_1
  doi: 10.1016/S1369-5266(02)00306-0
– ident: e_1_2_8_36_1
  doi: 10.1111/j.1365-313X.2011.04780.x
– ident: e_1_2_8_79_1
  doi: 10.1016/j.cell.2016.08.029
– ident: e_1_2_8_32_1
  doi: 10.7554/eLife.01741
– ident: e_1_2_8_40_1
  doi: 10.1101/gr.4237406
– ident: e_1_2_8_49_1
  doi: 10.1105/tpc.104.022616
– ident: e_1_2_8_27_1
  doi: 10.1073/pnas.250473797
– ident: e_1_2_8_77_1
  doi: 10.1016/j.devcel.2020.10.012
– ident: e_1_2_8_61_1
  doi: 10.1111/j.1365-313X.2006.02881.x
– ident: e_1_2_8_35_1
  doi: 10.1016/j.pbi.2005.09.013
– ident: e_1_2_8_44_1
  doi: 10.1038/s41596-019-0128-8
– ident: e_1_2_8_16_1
  doi: 10.1038/nature09606
– ident: e_1_2_8_38_1
  doi: 10.1073/pnas.1012896107
– ident: e_1_2_8_46_1
  doi: 10.1126/science.1080585
– ident: e_1_2_8_58_1
  doi: 10.1046/j.1365-313X.1994.6010067.x
– ident: e_1_2_8_34_1
  doi: 10.1007/BF00393650
– ident: e_1_2_8_13_1
  doi: 10.1126/science.1087790
– ident: e_1_2_8_28_1
  doi: 10.1093/nar/gkn923
– ident: e_1_2_8_24_1
  doi: 10.1104/pp.122.4.1179
– ident: e_1_2_8_11_1
  doi: 10.1104/pp.70.1.227
– ident: e_1_2_8_75_1
  doi: 10.1038/nature01984
– ident: e_1_2_8_20_1
  doi: 10.1146/annurev-arplant-042809-112122
– ident: e_1_2_8_15_1
  doi: 10.1146/annurev-biochem-060614-033904
– ident: e_1_2_8_66_1
  doi: 10.1016/j.molp.2017.10.004
– ident: e_1_2_8_33_1
  doi: 10.1038/ncomms9113
– ident: e_1_2_8_6_1
  doi: 10.1073/pnas.1404616111
– ident: e_1_2_8_26_1
  doi: 10.1105/tpc.12.7.1117
– ident: e_1_2_8_12_1
  doi: 10.1038/nbt.3519
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.1100958108
– ident: e_1_2_8_60_1
  doi: 10.1016/j.pbi.2004.03.004
– ident: e_1_2_8_59_1
  doi: 10.1038/nmeth.2019
– volume: 9
  start-page: 5
  year: 1997
  ident: e_1_2_8_31_1
  article-title: Hexokinase as a sugar sensor in higher plants
  publication-title: Plant Cell
– ident: e_1_2_8_67_1
  doi: 10.1093/jxb/eru282
– ident: e_1_2_8_74_1
  doi: 10.1046/j.1365-313X.2001.01168.x
– ident: e_1_2_8_8_1
  doi: 10.1105/tpc.12.7.1103
– volume: 172
  start-page: 1182
  year: 2016
  ident: e_1_2_8_29_1
  article-title: The heat stress factor HSFA6b connects ABA signaling and ABA‐mediated heat responses
  publication-title: Plant Physiology
– ident: e_1_2_8_65_1
  doi: 10.1199/tab.0160
– ident: e_1_2_8_47_1
  doi: 10.1105/tpc.9.12.2197
– ident: e_1_2_8_73_1
  doi: 10.1016/j.cub.2020.07.012
– ident: e_1_2_8_53_1
  doi: 10.1104/pp.104.038711
– ident: e_1_2_8_10_1
  doi: 10.1016/S0021-9258(17)32008-2
– ident: e_1_2_8_25_1
  doi: 10.1007/s004250050180
– ident: e_1_2_8_30_1
  doi: 10.1016/S0176-1617(11)81219-8
– ident: e_1_2_8_48_1
  doi: 10.1038/nmeth.4324
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1213351
– ident: e_1_2_8_22_1
  doi: 10.1104/pp.113.223511
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1365-313X.2000.00935.x
– ident: e_1_2_8_72_1
  doi: 10.1074/jbc.M111.300749
– ident: e_1_2_8_17_1
  doi: 10.1105/tpc.114.134585
– ident: e_1_2_8_55_1
  doi: 10.1038/s41477-017-0021-9
– ident: e_1_2_8_56_1
  doi: 10.1016/S0021-9258(18)38447-3
– ident: e_1_2_8_64_1
  doi: 10.1104/pp.16.01099
– ident: e_1_2_8_42_1
  doi: 10.3389/fgene.2014.00218
– ident: e_1_2_8_43_1
  doi: 10.1073/pnas.092141899
– ident: e_1_2_8_51_1
  doi: 10.1016/j.plaphy.2008.12.005
– ident: e_1_2_8_63_1
  doi: 10.1093/jxb/erp203
– ident: e_1_2_8_4_1
  doi: 10.1146/annurev-arplant-042110-103918
– ident: e_1_2_8_7_1
  doi: 10.1199/tab.0113
– ident: e_1_2_8_45_1
  doi: 10.1007/BF00386993
– ident: e_1_2_8_9_1
  doi: 10.1105/tpc.9.7.1055
– ident: e_1_2_8_23_1
  doi: 10.1105/tpc.106.044073
– ident: e_1_2_8_50_1
  doi: 10.1046/j.1365-313X.2002.01376.x
– ident: e_1_2_8_71_1
  doi: 10.1105/tpc.106.047290
– ident: e_1_2_8_21_1
  doi: 10.7554/eLife.26770
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1365-3040.2007.01727.x
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cub.2020.09.016
– ident: e_1_2_8_41_1
  doi: 10.1093/mp/sss001
– ident: e_1_2_8_78_1
  doi: 10.3389/fpls.2018.00234
– ident: e_1_2_8_57_1
  doi: 10.1016/j.molp.2018.10.009
– ident: e_1_2_8_52_1
  doi: 10.3390/plants8020034
SSID ssj0009562
Score 2.4623017
Snippet • Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through...
Summary Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through...
Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1832
SubjectTerms Abiotic factors
Abiotic stress
Abscisic acid
abscisic acid (ABA)
acid treatment
Arabidopsis
Availability
Distribution
Drought
Embryos
Energy transfer
expansin
Fluorescence resonance energy transfer
Förster resonance energy transfer (FRET) sensor
Genes
Genetic engineering
Germination
Glucose
hypocotyl
hypocotyls
loss-of-function mutation
Metabolism
Mutants
Phosphates
Plant growth
Saccharides
salt stress
Seed germination
Seeds
Spatial distribution
Stresses
Sucrose
sucrose-phosphate synthase
Sugar
sugar allocation
sugar transporter
Temporal distribution
Transcription
transcriptome
Transcriptomes
Uptake
Title Locally restricted glucose availability in the embryonic hypocotyl determines seed germination under abscisic acid treatment
URI https://www.jstor.org/stable/27050220
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17513
https://www.proquest.com/docview/2557981828
https://www.proquest.com/docview/2532249554
https://www.proquest.com/docview/2636444349
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9K8cEXtWrxtJVVfPAlR9zdbC74VMVyiBYRC_cghP2kR8_kuI9Cin98ZzYfXEVFfAtkArObnZ3fJL_9DcArYXmQ2slkYrFclTZ1iSl8SFJrrTJBK1fQ2eHPZ2p6Lj_OstkevO3PwrT6EMMHN4qMuF9TgGuz3gnyankxxtwXO9YSV4sA0Ve-I7ireK_ArKSadapCxOIZnryVi1o64i2guQtXY745vQ_fe09bmsnleLsxY3v9i4jjfw7lAdzrcCg7aRfOAez56iHceVcjVmwewc9PlOIWDaPOHbhTIixlHbmd6Ss9X7Tq3g2bVwwRJPM_zKohkV120SxrW2-aBXMd0cav2drT8y3thhYCo5NrK4buUYMfy7SdOzZQ3h_D-emHb--nSdenIbESnU4y6XWWCpvzIHSuuS8mhXcIHYMxGN4qIAjTzuYZVsDWp9zLIFKDdbngbxwPmTiE_aqu_BNgKhgfQoaZNdeycFhv4YYjUidtLoM3fASv-zdW2k7EnHppLMq-mMG5LONcjuDlYLpslTt-Z3QYX_tgwfM0o8PHIzjq10HZRfW6xPIrLxDh8MkIXgy3MR7pJ4uufL0lG_QYq85M_sVGCYShUsgCxxMXxp89LM--TOPF0383fQZ3OVFvIhXuCPY3q60_Ruy0Mc9jkNwAk3MX1w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WVdCL78VZV23Fg5cM2U6nMwEvKi6jzg4iuzAXCf1kB8dkmMdCxB9vVefBrKiIt0Aq0J1UdX3V-forgBeJ4V4oK6KRwXJVmNhGOnc-io0xUnslbU5nh0-ncnwuPszS2R686s7CNPoQ_YYbRUZYrynAaUN6J8rL5cUQkx-1rL1GHb1DQfWZ70juSt5pMEshZ62uEPF4-kevZKOGkHgFau4C1pBxTm7Dl26sDdHk63C70UPz_RcZx_-dzB241UJR9rrxnbuw58p7cP1NhXCxvg8_JpTlFjWj5h24WCIyZS2_nalLNV80At81m5cMQSRz3_SqJp1ddlEvK1Nt6gWzLdfGrdna0fMN84Z8gdHhtRVTuGzN0VGYMnPLetb7Azg_eXf2dhy1rRoiI3DQUSqcSuPEZNwnKlPc5aPcWUSPXmuMcOkRhylrshSLYONi7oRPYo2lecKPLfdpcgD7ZVW6h8Ck1877FJNrpkRuseTCNSeJrTCZ8E7zAbzsPllhWh1zaqexKLp6Bt9lEd7lAJ73pstGvON3Rgfhu_cWPItTOn88gKPOEYo2sNcFVmBZjiCHjwbwrL-NIUn_WVTpqi3Z4Iix8EzFX2xkgkhUJCLH-QTP-PMIi-mncbg4_HfTp3BjfHY6KSbvpx8fwU1OTJzAjDuC_c1q6x4jlNroJyFifgL0Xxvy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WVcSL78VZV23Fg5cMsbvTmeBJXYdR12ERF-YghH6yg7PJMA8h4o-3Ki9mRUW8BVIN_ajq-ir5-muAZ8LyILWT0chiuSpt7CKT-RDF1lplglYuo7PDH6dqcibfz5LZHrzszsI0-hD9BzeKjHq_pgBfurAT5MXyfIi5j26svSJVPCKXPv7EdxR3Fe8kmJVUs1ZWiGg8fdNLyajhI15Cmrt4tU4445vwpetqwzP5OtxuzNB-_0XF8T_HcgtutECUvWo85zbs-eIOXH1dIlis7sKPE8pxi4rR1R24VSIuZS27nelver5o5L0rNi8YQkjmL8yqIpVddl4tS1tuqgVzLdPGr9naU_uGd0OewOjo2opp3LTm6CZM27ljPef9HpyN335-M4naixoiK7HTUSK9TmJhUx6ETjX32SjzDrFjMAbjWwVEYdrZNMES2PqYexlEbLAwF_yF4yERB7BflIW_D0wF40NIMLWmWmYOCy7ccUTspE1l8IYP4Hm3YrltVczpMo1F3lUzOJd5PZcDeNqbLhvpjt8ZHdTL3lvwNE7o9PEAjjo_yNuwXudYf6UZQhw-GsCT_jUGJP1l0YUvt2SDPcayM5F_sVECcagUMsPx1I7x5x7m09NJ_XD476aP4drp8Tg_eTf98ACuc6Lh1LS4I9jfrLb-IeKojXlUx8tPsQUaqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locally+restricted+glucose+availability+in+the+embryonic+hypocotyl+determines+seed+germination+under+abscisic+acid+treatment&rft.jtitle=The+New+phytologist&rft.au=Xue%2C+Xueyi&rft.au=Yu%2C+Ya%E2%80%90Chi&rft.au=Wu%2C+Yue&rft.au=Xue%2C+Huiling&rft.date=2021-09-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=231&rft.issue=5&rft.spage=1832&rft.epage=1844&rft_id=info:doi/10.1111%2Fnph.17513&rft.externalDBID=10.1111%252Fnph.17513&rft.externalDocID=NPH17513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon