Locally restricted glucose availability in the embryonic hypocotyl determines seed germination under abscisic acid treatment
• Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc)...
Saved in:
Published in | The New phytologist Vol. 231; no. 5; pp. 1832 - 1844 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lancaster
Wiley
01.09.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA-mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds.
• We used a genetically engineered F€orster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14C-Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA-inhibited seed germination.
• Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss-of-function ABA-inducible sucrosephosphate synthase (SPS) genes accumulated more Glc, leading to ABA-insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA.
• This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress. |
---|---|
AbstractList | Summary
Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA‐mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds.
We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14C‐Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA‐inhibited seed germination.
Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss‐of‐function ABA‐inducible sucrose‐phosphate synthase (SPS) genes accumulated more Glc, leading to ABA‐insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA.
This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress. Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA‐mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14 C‐Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA‐inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss‐of‐function ABA‐inducible sucrose‐phosphate synthase ( SPS ) genes accumulated more Glc, leading to ABA‐insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin ( EXP ) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress. • Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA-mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. • We used a genetically engineered F€orster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14C-Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA-inhibited seed germination. • Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss-of-function ABA-inducible sucrosephosphate synthase (SPS) genes accumulated more Glc, leading to ABA-insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. • This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress. Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA‐mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, ¹⁴C‐Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA‐inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss‐of‐function ABA‐inducible sucrose‐phosphate synthase (SPS) genes accumulated more Glc, leading to ABA‐insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress. Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA‐mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds.We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14C‐Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA‐inhibited seed germination.Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss‐of‐function ABA‐inducible sucrose‐phosphate synthase (SPS) genes accumulated more Glc, leading to ABA‐insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA.This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress. Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA-mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14 C-Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA-inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss-of-function ABA-inducible sucrose-phosphate synthase (SPS) genes accumulated more Glc, leading to ABA-insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA-mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14 C-Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA-inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss-of-function ABA-inducible sucrose-phosphate synthase (SPS) genes accumulated more Glc, leading to ABA-insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress. |
Author | Chen, Li-Qing Yu, Ya-Chi Xue, Xueyi Xue, Huiling Wu, Yue |
Author_xml | – sequence: 1 givenname: Xueyi surname: Xue fullname: Xue, Xueyi – sequence: 2 givenname: Ya-Chi surname: Yu fullname: Yu, Ya-Chi – sequence: 3 givenname: Yue surname: Wu fullname: Wu, Yue – sequence: 4 givenname: Huiling surname: Xue fullname: Xue, Huiling – sequence: 5 givenname: Li-Qing surname: Chen fullname: Chen, Li-Qing |
BookMark | eNqFkU1rFTEUhkOp4G114Q8oBLrRxbT5nJksS1ErXNSFgrshkznTm0smuU0yyoA_3vTe2kWpmM0h8DwH3vOeoGMfPCD0hpILWt6l320uaCMpP0IrKmpVtZQ3x2hFCGurWtQ_XqKTlLaEECVrtkK_18Fo5xYcIeVoTYYB37rZhARY_9TW6d46mxdsPc4bwDD1cQneGrxZdsGEvDg8QIY4WQ8JJ7j39z-dbfB49gNErPtkbCqSNnbAOYLOE_j8Cr0YtUvw-mGeou8f3n-7vqnWXz5-ur5aV0aUJJUUoCXhpmEj141moFoFA1Vs7Puat_XYcqUH00jWCAOEgRg56Ut4zujARslP0dvD3l0Md3MJ2k02GXBOewhz6ljNayEEF-r_qOSMCSWlKOj5E3Qb5uhLkELJRrW0ZW2hLg-UiSGlCGNnbN7fJsdy3o6S7r64rhTX7Ysrxrsnxi7aScflWfZh-y_rYPk32H3-evPXODsY25RDfDRYQyRhjPA_nk21MQ |
CitedBy_id | crossref_primary_10_1016_j_cj_2023_10_010 crossref_primary_10_2503_hortj_QH_R003 crossref_primary_10_3389_fpls_2024_1417632 crossref_primary_10_1093_jxb_erab445 crossref_primary_10_1071_FP23013 crossref_primary_10_3390_microorganisms10010075 crossref_primary_10_1126_sciadv_abo0902 crossref_primary_10_3390_ijms231911123 crossref_primary_10_3390_ijms221910892 crossref_primary_10_3390_plants12142700 crossref_primary_10_1111_nph_19362 crossref_primary_10_3390_plants12233963 crossref_primary_10_1007_s10265_023_01471_7 crossref_primary_10_1016_j_plgene_2025_100495 crossref_primary_10_1146_annurev_arplant_070621_093907 crossref_primary_10_3389_fgene_2023_1111318 crossref_primary_10_3389_fpls_2021_772285 |
Cites_doi | 10.1016/S1360-1385(03)00011-6 10.1104/pp.110.162040 10.1016/j.plantsci.2015.06.009 10.1093/jxb/erl096 10.1074/jbc.270.26.15789 10.1146/annurev.arplant.50.1.391 10.1146/annurev-arplant-042817-040104 10.1016/j.molcel.2017.12.002 10.1016/S1369-5266(02)00306-0 10.1111/j.1365-313X.2011.04780.x 10.1016/j.cell.2016.08.029 10.7554/eLife.01741 10.1101/gr.4237406 10.1105/tpc.104.022616 10.1073/pnas.250473797 10.1016/j.devcel.2020.10.012 10.1111/j.1365-313X.2006.02881.x 10.1016/j.pbi.2005.09.013 10.1038/s41596-019-0128-8 10.1038/nature09606 10.1073/pnas.1012896107 10.1126/science.1080585 10.1046/j.1365-313X.1994.6010067.x 10.1007/BF00393650 10.1126/science.1087790 10.1093/nar/gkn923 10.1104/pp.122.4.1179 10.1104/pp.70.1.227 10.1038/nature01984 10.1146/annurev-arplant-042809-112122 10.1146/annurev-biochem-060614-033904 10.1016/j.molp.2017.10.004 10.1038/ncomms9113 10.1073/pnas.1404616111 10.1105/tpc.12.7.1117 10.1038/nbt.3519 10.1073/pnas.1100958108 10.1016/j.pbi.2004.03.004 10.1038/nmeth.2019 10.1093/jxb/eru282 10.1046/j.1365-313X.2001.01168.x 10.1105/tpc.12.7.1103 10.1199/tab.0160 10.1105/tpc.9.12.2197 10.1016/j.cub.2020.07.012 10.1104/pp.104.038711 10.1016/S0021-9258(17)32008-2 10.1007/s004250050180 10.1016/S0176-1617(11)81219-8 10.1038/nmeth.4324 10.1126/science.1213351 10.1104/pp.113.223511 10.1111/j.1365-313X.2000.00935.x 10.1074/jbc.M111.300749 10.1105/tpc.114.134585 10.1038/s41477-017-0021-9 10.1016/S0021-9258(18)38447-3 10.1104/pp.16.01099 10.3389/fgene.2014.00218 10.1073/pnas.092141899 10.1016/j.plaphy.2008.12.005 10.1093/jxb/erp203 10.1146/annurev-arplant-042110-103918 10.1199/tab.0113 10.1007/BF00386993 10.1105/tpc.9.7.1055 10.1105/tpc.106.044073 10.1046/j.1365-313X.2002.01376.x 10.1105/tpc.106.047290 10.7554/eLife.26770 10.1111/j.1365-3040.2007.01727.x 10.1016/j.cub.2020.09.016 10.1093/mp/sss001 10.3389/fpls.2018.00234 10.1016/j.molp.2018.10.009 10.3390/plants8020034 |
ContentType | Journal Article |
Copyright | 2021 The Authors © 2021 New Phytologist Foundation 2021 The Authors. © 2021 New Phytologist Foundation Copyright © 2021 New Phytologist Trust 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. |
Copyright_xml | – notice: 2021 The Authors © 2021 New Phytologist Foundation – notice: 2021 The Authors. © 2021 New Phytologist Foundation – notice: Copyright © 2021 New Phytologist Trust – notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. |
DBID | AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.17513 |
DatabaseName | CrossRef Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1844 |
ExternalDocumentID | 10_1111_nph_17513 NPH17513 27050220 |
Genre | article |
GrantInformation_xml | – fundername: University of Illinois |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M JBS JLS JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AAISJ AASGY AASVR ABBHK ABEFU ABEML ABXSQ ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUPB AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG CBGCD COF CUYZI DEVKO DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ IPSME JAAYA JBMMH JEB JENOY JHFFW JKQEH JLXEF JPM JSODD LPU LW6 MVM NEJ RCA SA0 WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4513-54ea503c72f3a7a2e989ed192fbb6386f839adc75274ce02e4f30b469321d2f53 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:26:40 EDT 2025 Fri Jul 11 03:47:24 EDT 2025 Fri Jul 25 10:35:45 EDT 2025 Tue Jul 01 02:28:38 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Wed Jan 22 16:28:40 EST 2025 Thu Jul 03 21:34:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4513-54ea503c72f3a7a2e989ed192fbb6386f839adc75274ce02e4f30b469321d2f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7918-5762 0000-0001-8616-5815 0000-0002-6937-0179 0000-0002-0964-5388 |
PQID | 2557981828 |
PQPubID | 2026848 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2636444349 proquest_miscellaneous_2532249554 proquest_journals_2557981828 crossref_citationtrail_10_1111_nph_17513 crossref_primary_10_1111_nph_17513 wiley_primary_10_1111_nph_17513_NPH17513 jstor_primary_27050220 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | Lancaster |
PublicationPlace_xml | – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 6 2009; 47 1983; 157 2012; 287 2017; 3 2010; 107 2010; 468 2019; 12 2004; 7 2011; 62 2002; 99 2019; 14 2015b; 27 2013; 163 2008; 6 2020; 55 2008; 31 1997; 9 2012; 10 2016; 34 2010; 61 2014; 65 2018; 9 2014; 5 2014; 3 1994; 269 2004; 135 2000; 12 2003; 8 2000; 97 2010; 154 2000; 122 1999; 50 2012; 69 2012; 335 1972; 104 2019; 8 2015; 6 1982; 70 2002; 31 2006; 57 2015a; 84 2000; 24 2009; 60 2006; 16 2002; 5 2016; 167 2006; 18 2017; 173 2001; 28 2014; 111 1991; 137 1995; 270 2018; 69 1997; 203 2011; 108 2003; 425 2020; 30 2017; 14 2004; 16 2005; 8 2006; 48 2015; 238 2003; 301 2018; 11 2003; 300 2012; 5 1953; 200 2009; 37 2016; 172 1994; 6 2012; 9 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Huang YC (e_1_2_8_29_1) 2016; 172 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 Jang JC (e_1_2_8_31_1) 1997; 9 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 16 start-page: 414 year: 2006 end-page: 427 article-title: Establishing glucose‐ and ABA‐regulated transcription networks in by microarray analysis and promoter classification using a Relevance Vector Machine publication-title: Genome Research – volume: 61 start-page: 651 year: 2010 end-page: 679 article-title: Abscisic acid: emergence of a core signaling network publication-title: Annual Review of Plant Biology – volume: 69 start-page: 497 year: 2018 end-page: 524 article-title: Genetically encoded biosensors in plants: pathways to discovery publication-title: Annual Review of Plant Biology – volume: 84 start-page: 865 year: 2015a end-page: 894 article-title: Transport of sugars publication-title: Annual Review of Biochemistry – volume: 468 start-page: 527 year: 2010 end-page: 532 article-title: Sugar transporters for intercellular exchange and nutrition of pathogens publication-title: Nature – volume: 173 start-page: 907 year: 2017 end-page: 917 article-title: The transcription factor ATHB5 affects GA‐mediated plasticity in hypocotyl cell growth during seed germination publication-title: Plant Physiology – volume: 111 start-page: 8685 year: 2014 end-page: 8690 article-title: Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo publication-title: Proceedings of the National Academy of Sciences, USA – volume: 8 start-page: 110 year: 2003 end-page: 116 article-title: Sugar and hormone connections publication-title: Trends in Plant Science – volume: 287 start-page: 2836 year: 2012 end-page: 2842 article-title: Rapamycin and glucose‐target of rapamycin (TOR) protein signaling in plants publication-title: Journal of Biological Chemistry – volume: 5 start-page: 1029 year: 2012 end-page: 1041 article-title: sucrose transporter SUT4 interacts with cytochrome –2 to regulate seed germination in response to sucrose and glucose publication-title: Molecular Plant – volume: 16 start-page: 2128 year: 2004 end-page: 2150 article-title: Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis publication-title: Plant Cell – volume: 269 start-page: 20417 year: 1994 end-page: 20424 article-title: Steady‐state and presteady‐state kinetics of the H+/hexose cotransporter (STP1) from expressed in oocytes publication-title: Journal of Biological Chemistry – volume: 30 start-page: 4815 year: 2020 end-page: 4825 article-title: BONZAI proteins control global osmotic stress responses in plants publication-title: Current Biology – volume: 107 start-page: 19108 year: 2010 end-page: 19113 article-title: A seed coat bedding assay shows that RGL2‐dependent release of abscisic acid by the endosperm controls embryo growth in dormant seeds publication-title: Proceedings of the National Academy of Sciences, USA – volume: 9 start-page: 676 year: 2012 end-page: 682 article-title: Fiji: an open‐source platform for biological‐image analysis publication-title: Nature Methods – volume: 12 start-page: 1103 year: 2000 end-page: 1115 article-title: Interactions between abscisic acid and ethylene signaling cascades publication-title: Plant Cell – volume: 5 start-page: 218 year: 2014 article-title: Interplay between sugar and hormone signaling pathways modulate floral signal transduction publication-title: Frontiers in Genetics – volume: 48 start-page: 354 year: 2006 end-page: 366 article-title: Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism publication-title: The Plant Journal – volume: 425 start-page: 521 year: 2003 end-page: 525 article-title: Differential regulation of EIN3 stability by glucose and ethylene signalling in plants publication-title: Nature – volume: 28 start-page: 443 year: 2001 end-page: 453 article-title: Distinct cell‐specific expression patterns of early and late gibberellin biosynthetic genes during seed germination publication-title: The Plant Journal – volume: 9 start-page: 2197 year: 1997 end-page: 2208 article-title: Sugar repression of a gibberellin‐dependent signaling pathway in barley embryos publication-title: Plant Cell – volume: 172 start-page: 1182 year: 2016 end-page: 1199 article-title: The heat stress factor HSFA6b connects ABA signaling and ABA‐mediated heat responses publication-title: Plant Physiology – volume: 27 start-page: 607 year: 2015b end-page: 619 article-title: A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo publication-title: Plant Cell – volume: 62 start-page: 127 year: 2011 end-page: 155 article-title: Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling publication-title: Annual Review of Plant Biology – volume: 10 year: 2012 article-title: Starch metabolism in Arabidopsis publication-title: The Arabidopsis Book – volume: 9 start-page: 1055 year: 1997 end-page: 1066 article-title: Seed germination and dormancy publication-title: Plant Cell – volume: 55 start-page: 529 year: 2020 end-page: 543 article-title: Thriving under stress: how plants balance growth and the stress response publication-title: Developmental Cell – volume: 301 start-page: 1728 year: 2003 end-page: 1731 article-title: A seven‐transmembrane RGS protein that modulates plant cell proliferation publication-title: Science – volume: 3 start-page: 803 year: 2017 end-page: 813 article-title: In vivo gibberellin gradients visualized in rapidly elongating tissues publication-title: Nature Plants – volume: 30 start-page: 3703 year: 2020 end-page: 3712 article-title: A molecular signal integration network underpinning seed germination publication-title: Current Biology – volume: 50 start-page: 391 year: 1999 end-page: 417 article-title: Enzymes and other agents that enhance cell wall extensibility publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 335 start-page: 207 year: 2012 end-page: 211 article-title: Sucrose efflux mediated by SWEET proteins as a key step for phloem transport publication-title: Science – volume: 69 start-page: 100 year: 2018 end-page: 112.e6 article-title: Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response publication-title: Molecular Cell – volume: 108 start-page: 9709 year: 2011 end-page: 9714 article-title: Genome‐wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions publication-title: Proceedings of the National Academy of Sciences, USA – volume: 12 start-page: 1117 year: 2000 end-page: 1126 article-title: Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis publication-title: Plant Cell – volume: 57 start-page: 3359 year: 2006 end-page: 3367 article-title: Phytohormone signalling pathways interact with sugars during seed germination and seedling development publication-title: Journal of Experimental Botany – volume: 6 start-page: 67 year: 1994 end-page: 77 article-title: SUC1 and SUC2: two sucrose transporters from ; expression and characterization in baker's yeast and identification of the histidine‐tagged protein publication-title: The Plant Journal – volume: 31 start-page: 639 year: 2002 end-page: 647 article-title: Germination and storage reserve mobilization are regulated independently in publication-title: The Plant Journal – volume: 31 start-page: 11 year: 2008 end-page: 38 article-title: The effect of drought and heat stress on reproductive processes in cereals publication-title: Plant, Cell & Environment – volume: 8 start-page: 593 year: 2005 end-page: 599 article-title: Cell‐to‐cell communication via plasmodesmata during embryogenesis publication-title: Current Opinion in Plant Biology – volume: 97 start-page: 13979 year: 2000 end-page: 13984 article-title: Genetic evidence for the role of phloem‐specific plasma membrane sucrose transporters publication-title: Proceedings of the National Academy of Sciences, USA – volume: 7 start-page: 277 year: 2004 end-page: 284 article-title: Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside publication-title: Current Opinion in Plant Biology – volume: 203 start-page: 182 year: 1997 end-page: 187 article-title: Abscisic acid inhibits germination of mature seeds by limiting the availability of energy and nutrients publication-title: Planta – volume: 14 start-page: 687 year: 2017 end-page: 690 article-title: Differential analysis of RNA‐seq incorporating quantification uncertainty publication-title: Nature Methods – volume: 8 start-page: 34 year: 2019 article-title: Impact of climate change on crops adaptation and strategies to tackle its outcome: a Review publication-title: Plants (Basel) – volume: 135 start-page: 959 year: 2004 end-page: 968 article-title: Interaction between wall deposition and cell elongation in dark‐grown hypocotyl cells in publication-title: Plant Physiology – volume: 238 start-page: 135 year: 2015 end-page: 147 article-title: Characterization of multiple knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis publication-title: Plant Science – volume: 70 start-page: 227 year: 1982 end-page: 231 article-title: Isolation and quantitation of β‐ ‐glucopyranosyl abscisate from leaves of and spinach publication-title: Plant Physiology – volume: 270 start-page: 15789 year: 1995 end-page: 15797 article-title: Biochemical and molecular characterization of a barley seed β‐glucosidase publication-title: Journal of Biological Chemistry – volume: 11 start-page: 75 year: 2018 end-page: 94 article-title: Carbon supply and the regulation of cell wall synthesis publication-title: Molecular Plant – volume: 60 start-page: 3587 year: 2009 end-page: 3594 article-title: Germination of seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl publication-title: Journal of Experimental Botany – volume: 99 start-page: 6422 year: 2002 end-page: 6427 article-title: Expression and disruption of the (target of rapamycin) gene publication-title: Proceedings of the National Academy of Sciences, USA – volume: 37 start-page: 1 year: 2009 end-page: 13 article-title: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists publication-title: Nucleic Acids Research – volume: 65 start-page: 5217 year: 2014 end-page: 5229 article-title: Loss of the two major leaf isoforms of sucrose‐phosphate synthase in limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis publication-title: Journal of Experimental Botany – volume: 200 start-page: 145 year: 1953 end-page: 154 article-title: Hexokinase in higher plants publication-title: Journal of Biological Chemistry – volume: 18 start-page: 3476 year: 2006 end-page: 3490 article-title: Molecular identification and physiological characterization of a novel monosaccharide transporter from involved in vacuolar sugar transport publication-title: Plant Cell – volume: 24 start-page: 849 year: 2000 end-page: 857 article-title: Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of seeds and seedlings to sugars publication-title: The Plant Journal – volume: 6 year: 2017 article-title: ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology publication-title: eLife – volume: 9 start-page: 5 year: 1997 end-page: 19 article-title: Hexokinase as a sugar sensor in higher plants publication-title: Plant Cell – volume: 163 start-page: 205 year: 2013 end-page: 215 article-title: Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination publication-title: Plant Physiology – volume: 167 start-page: 313 year: 2016 end-page: 324 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 34 start-page: 525 year: 2016 end-page: 527 article-title: Near‐optimal probabilistic RNA‐seq quantification publication-title: Nature Biotechnology – volume: 6 start-page: 8113 year: 2015 article-title: Abscisic acid transporters cooperate to control seed germination publication-title: Nature Communications – volume: 122 start-page: 1179 year: 2000 end-page: 1186 article-title: Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars publication-title: Plant Physiology – volume: 137 start-page: 669 year: 1991 end-page: 673 article-title: Photoperceptive site in phytochrome‐mediated lettuce ( L. cv. Grand Rapids) seed germination publication-title: Journal of Plant Physiology – volume: 104 start-page: 167 year: 1972 end-page: 177 article-title: Localization and activity of various peptidases in germinating barley publication-title: Planta – volume: 14 start-page: 703 year: 2019 end-page: 721 article-title: Protocol update for large‐scale genome and gene function analysis with the PANTHER classification system (v.14.0) publication-title: Nature Protocols – volume: 5 start-page: 536 year: 2002 end-page: 542 article-title: Biosynthesis and properties of the plant cell wall publication-title: Current Opinion in Plant Biology – volume: 12 start-page: 71 year: 2019 end-page: 85 article-title: A regulatory module controlling GA‐mediated endosperm cell expansion is critical for seed germination in publication-title: Molecular Plant – volume: 47 start-page: 485 year: 2009 end-page: 490 article-title: Storage oil hydrolysis during early seedling growth publication-title: Plant Physiology and Biochemistry – volume: 18 start-page: 2314 year: 2006 end-page: 2325 article-title: Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of RNA‐silencing mutants publication-title: Plant Cell – volume: 157 start-page: 158 year: 1983 end-page: 165 article-title: Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of (L.) Heynh publication-title: Planta – volume: 3 year: 2014 article-title: Abscisic acid dynamics in roots detected with genetically encoded FRET sensors publication-title: eLife – volume: 300 start-page: 332 year: 2003 end-page: 336 article-title: Role of the glucose sensor HXK1 in nutrient, light, and hormonal signaling publication-title: Science – volume: 6 year: 2008 article-title: Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling publication-title: Arabidopsis Book – volume: 69 start-page: 181 year: 2012 end-page: 192 article-title: FRET‐based genetically encoded sensors allow high‐resolution live cell imaging of Ca dynamics publication-title: The Plant Journal – volume: 154 start-page: 665 year: 2010 end-page: 677 article-title: Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis publication-title: Plant Physiology – volume: 9 start-page: 234 year: 2018 article-title: Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species publication-title: Frontiers in Plant Science – ident: e_1_2_8_39_1 doi: 10.1016/S1360-1385(03)00011-6 – ident: e_1_2_8_70_1 doi: 10.1104/pp.110.162040 – ident: e_1_2_8_2_1 doi: 10.1016/j.plantsci.2015.06.009 – ident: e_1_2_8_76_1 doi: 10.1093/jxb/erl096 – ident: e_1_2_8_37_1 doi: 10.1074/jbc.270.26.15789 – ident: e_1_2_8_19_1 doi: 10.1146/annurev.arplant.50.1.391 – ident: e_1_2_8_68_1 doi: 10.1146/annurev-arplant-042817-040104 – ident: e_1_2_8_69_1 doi: 10.1016/j.molcel.2017.12.002 – ident: e_1_2_8_54_1 doi: 10.1016/S1369-5266(02)00306-0 – ident: e_1_2_8_36_1 doi: 10.1111/j.1365-313X.2011.04780.x – ident: e_1_2_8_79_1 doi: 10.1016/j.cell.2016.08.029 – ident: e_1_2_8_32_1 doi: 10.7554/eLife.01741 – ident: e_1_2_8_40_1 doi: 10.1101/gr.4237406 – ident: e_1_2_8_49_1 doi: 10.1105/tpc.104.022616 – ident: e_1_2_8_27_1 doi: 10.1073/pnas.250473797 – ident: e_1_2_8_77_1 doi: 10.1016/j.devcel.2020.10.012 – ident: e_1_2_8_61_1 doi: 10.1111/j.1365-313X.2006.02881.x – ident: e_1_2_8_35_1 doi: 10.1016/j.pbi.2005.09.013 – ident: e_1_2_8_44_1 doi: 10.1038/s41596-019-0128-8 – ident: e_1_2_8_16_1 doi: 10.1038/nature09606 – ident: e_1_2_8_38_1 doi: 10.1073/pnas.1012896107 – ident: e_1_2_8_46_1 doi: 10.1126/science.1080585 – ident: e_1_2_8_58_1 doi: 10.1046/j.1365-313X.1994.6010067.x – ident: e_1_2_8_34_1 doi: 10.1007/BF00393650 – ident: e_1_2_8_13_1 doi: 10.1126/science.1087790 – ident: e_1_2_8_28_1 doi: 10.1093/nar/gkn923 – ident: e_1_2_8_24_1 doi: 10.1104/pp.122.4.1179 – ident: e_1_2_8_11_1 doi: 10.1104/pp.70.1.227 – ident: e_1_2_8_75_1 doi: 10.1038/nature01984 – ident: e_1_2_8_20_1 doi: 10.1146/annurev-arplant-042809-112122 – ident: e_1_2_8_15_1 doi: 10.1146/annurev-biochem-060614-033904 – ident: e_1_2_8_66_1 doi: 10.1016/j.molp.2017.10.004 – ident: e_1_2_8_33_1 doi: 10.1038/ncomms9113 – ident: e_1_2_8_6_1 doi: 10.1073/pnas.1404616111 – ident: e_1_2_8_26_1 doi: 10.1105/tpc.12.7.1117 – ident: e_1_2_8_12_1 doi: 10.1038/nbt.3519 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.1100958108 – ident: e_1_2_8_60_1 doi: 10.1016/j.pbi.2004.03.004 – ident: e_1_2_8_59_1 doi: 10.1038/nmeth.2019 – volume: 9 start-page: 5 year: 1997 ident: e_1_2_8_31_1 article-title: Hexokinase as a sugar sensor in higher plants publication-title: Plant Cell – ident: e_1_2_8_67_1 doi: 10.1093/jxb/eru282 – ident: e_1_2_8_74_1 doi: 10.1046/j.1365-313X.2001.01168.x – ident: e_1_2_8_8_1 doi: 10.1105/tpc.12.7.1103 – volume: 172 start-page: 1182 year: 2016 ident: e_1_2_8_29_1 article-title: The heat stress factor HSFA6b connects ABA signaling and ABA‐mediated heat responses publication-title: Plant Physiology – ident: e_1_2_8_65_1 doi: 10.1199/tab.0160 – ident: e_1_2_8_47_1 doi: 10.1105/tpc.9.12.2197 – ident: e_1_2_8_73_1 doi: 10.1016/j.cub.2020.07.012 – ident: e_1_2_8_53_1 doi: 10.1104/pp.104.038711 – ident: e_1_2_8_10_1 doi: 10.1016/S0021-9258(17)32008-2 – ident: e_1_2_8_25_1 doi: 10.1007/s004250050180 – ident: e_1_2_8_30_1 doi: 10.1016/S0176-1617(11)81219-8 – ident: e_1_2_8_48_1 doi: 10.1038/nmeth.4324 – ident: e_1_2_8_18_1 doi: 10.1126/science.1213351 – ident: e_1_2_8_22_1 doi: 10.1104/pp.113.223511 – ident: e_1_2_8_62_1 doi: 10.1111/j.1365-313X.2000.00935.x – ident: e_1_2_8_72_1 doi: 10.1074/jbc.M111.300749 – ident: e_1_2_8_17_1 doi: 10.1105/tpc.114.134585 – ident: e_1_2_8_55_1 doi: 10.1038/s41477-017-0021-9 – ident: e_1_2_8_56_1 doi: 10.1016/S0021-9258(18)38447-3 – ident: e_1_2_8_64_1 doi: 10.1104/pp.16.01099 – ident: e_1_2_8_42_1 doi: 10.3389/fgene.2014.00218 – ident: e_1_2_8_43_1 doi: 10.1073/pnas.092141899 – ident: e_1_2_8_51_1 doi: 10.1016/j.plaphy.2008.12.005 – ident: e_1_2_8_63_1 doi: 10.1093/jxb/erp203 – ident: e_1_2_8_4_1 doi: 10.1146/annurev-arplant-042110-103918 – ident: e_1_2_8_7_1 doi: 10.1199/tab.0113 – ident: e_1_2_8_45_1 doi: 10.1007/BF00386993 – ident: e_1_2_8_9_1 doi: 10.1105/tpc.9.7.1055 – ident: e_1_2_8_23_1 doi: 10.1105/tpc.106.044073 – ident: e_1_2_8_50_1 doi: 10.1046/j.1365-313X.2002.01376.x – ident: e_1_2_8_71_1 doi: 10.1105/tpc.106.047290 – ident: e_1_2_8_21_1 doi: 10.7554/eLife.26770 – ident: e_1_2_8_3_1 doi: 10.1111/j.1365-3040.2007.01727.x – ident: e_1_2_8_14_1 doi: 10.1016/j.cub.2020.09.016 – ident: e_1_2_8_41_1 doi: 10.1093/mp/sss001 – ident: e_1_2_8_78_1 doi: 10.3389/fpls.2018.00234 – ident: e_1_2_8_57_1 doi: 10.1016/j.molp.2018.10.009 – ident: e_1_2_8_52_1 doi: 10.3390/plants8020034 |
SSID | ssj0009562 |
Score | 2.4623017 |
Snippet | • Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through... Summary Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through... Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1832 |
SubjectTerms | Abiotic factors Abiotic stress Abscisic acid abscisic acid (ABA) acid treatment Arabidopsis Availability Distribution Drought Embryos Energy transfer expansin Fluorescence resonance energy transfer Förster resonance energy transfer (FRET) sensor Genes Genetic engineering Germination Glucose hypocotyl hypocotyls loss-of-function mutation Metabolism Mutants Phosphates Plant growth Saccharides salt stress Seed germination Seeds Spatial distribution Stresses Sucrose sucrose-phosphate synthase Sugar sugar allocation sugar transporter Temporal distribution Transcription transcriptome Transcriptomes Uptake |
Title | Locally restricted glucose availability in the embryonic hypocotyl determines seed germination under abscisic acid treatment |
URI | https://www.jstor.org/stable/27050220 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17513 https://www.proquest.com/docview/2557981828 https://www.proquest.com/docview/2532249554 https://www.proquest.com/docview/2636444349 |
Volume | 231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9K8cEXtWrxtJVVfPAlR9zdbC74VMVyiBYRC_cghP2kR8_kuI9Cin98ZzYfXEVFfAtkArObnZ3fJL_9DcArYXmQ2slkYrFclTZ1iSl8SFJrrTJBK1fQ2eHPZ2p6Lj_OstkevO3PwrT6EMMHN4qMuF9TgGuz3gnyankxxtwXO9YSV4sA0Ve-I7ireK_ArKSadapCxOIZnryVi1o64i2guQtXY745vQ_fe09bmsnleLsxY3v9i4jjfw7lAdzrcCg7aRfOAez56iHceVcjVmwewc9PlOIWDaPOHbhTIixlHbmd6Ss9X7Tq3g2bVwwRJPM_zKohkV120SxrW2-aBXMd0cav2drT8y3thhYCo5NrK4buUYMfy7SdOzZQ3h_D-emHb--nSdenIbESnU4y6XWWCpvzIHSuuS8mhXcIHYMxGN4qIAjTzuYZVsDWp9zLIFKDdbngbxwPmTiE_aqu_BNgKhgfQoaZNdeycFhv4YYjUidtLoM3fASv-zdW2k7EnHppLMq-mMG5LONcjuDlYLpslTt-Z3QYX_tgwfM0o8PHIzjq10HZRfW6xPIrLxDh8MkIXgy3MR7pJ4uufL0lG_QYq85M_sVGCYShUsgCxxMXxp89LM--TOPF0383fQZ3OVFvIhXuCPY3q60_Ruy0Mc9jkNwAk3MX1w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WVdCL78VZV23Fg5cM2U6nMwEvKi6jzg4iuzAXCf1kB8dkmMdCxB9vVefBrKiIt0Aq0J1UdX3V-forgBeJ4V4oK6KRwXJVmNhGOnc-io0xUnslbU5nh0-ncnwuPszS2R686s7CNPoQ_YYbRUZYrynAaUN6J8rL5cUQkx-1rL1GHb1DQfWZ70juSt5pMEshZ62uEPF4-kevZKOGkHgFau4C1pBxTm7Dl26sDdHk63C70UPz_RcZx_-dzB241UJR9rrxnbuw58p7cP1NhXCxvg8_JpTlFjWj5h24WCIyZS2_nalLNV80At81m5cMQSRz3_SqJp1ddlEvK1Nt6gWzLdfGrdna0fMN84Z8gdHhtRVTuGzN0VGYMnPLetb7Azg_eXf2dhy1rRoiI3DQUSqcSuPEZNwnKlPc5aPcWUSPXmuMcOkRhylrshSLYONi7oRPYo2lecKPLfdpcgD7ZVW6h8Ck1877FJNrpkRuseTCNSeJrTCZ8E7zAbzsPllhWh1zaqexKLp6Bt9lEd7lAJ73pstGvON3Rgfhu_cWPItTOn88gKPOEYo2sNcFVmBZjiCHjwbwrL-NIUn_WVTpqi3Z4Iix8EzFX2xkgkhUJCLH-QTP-PMIi-mncbg4_HfTp3BjfHY6KSbvpx8fwU1OTJzAjDuC_c1q6x4jlNroJyFifgL0Xxvy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WVcSL78VZV23Fg5cMsbvTmeBJXYdR12ERF-YghH6yg7PJMA8h4o-3Ki9mRUW8BVIN_ajq-ir5-muAZ8LyILWT0chiuSpt7CKT-RDF1lplglYuo7PDH6dqcibfz5LZHrzszsI0-hD9BzeKjHq_pgBfurAT5MXyfIi5j26svSJVPCKXPv7EdxR3Fe8kmJVUs1ZWiGg8fdNLyajhI15Cmrt4tU4445vwpetqwzP5OtxuzNB-_0XF8T_HcgtutECUvWo85zbs-eIOXH1dIlis7sKPE8pxi4rR1R24VSIuZS27nelver5o5L0rNi8YQkjmL8yqIpVddl4tS1tuqgVzLdPGr9naU_uGd0OewOjo2opp3LTm6CZM27ljPef9HpyN335-M4naixoiK7HTUSK9TmJhUx6ETjX32SjzDrFjMAbjWwVEYdrZNMES2PqYexlEbLAwF_yF4yERB7BflIW_D0wF40NIMLWmWmYOCy7ccUTspE1l8IYP4Hm3YrltVczpMo1F3lUzOJd5PZcDeNqbLhvpjt8ZHdTL3lvwNE7o9PEAjjo_yNuwXudYf6UZQhw-GsCT_jUGJP1l0YUvt2SDPcayM5F_sVECcagUMsPx1I7x5x7m09NJ_XD476aP4drp8Tg_eTf98ACuc6Lh1LS4I9jfrLb-IeKojXlUx8tPsQUaqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locally+restricted+glucose+availability+in+the+embryonic+hypocotyl+determines+seed+germination+under+abscisic+acid+treatment&rft.jtitle=The+New+phytologist&rft.au=Xue%2C+Xueyi&rft.au=Yu%2C+Ya%E2%80%90Chi&rft.au=Wu%2C+Yue&rft.au=Xue%2C+Huiling&rft.date=2021-09-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=231&rft.issue=5&rft.spage=1832&rft.epage=1844&rft_id=info:doi/10.1111%2Fnph.17513&rft.externalDBID=10.1111%252Fnph.17513&rft.externalDocID=NPH17513 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |