Drought-related tree mortality: addressing the gaps in understanding and prediction

Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that drought-related tree mortality is more widespread than previously thought; the predicted increase in the frequency of climate extremes this century; and...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 207; no. 1; pp. 28 - 33
Main Authors Meir, Patrick, Mencuccini, Maurizio, Dewar, Roderick C.
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.07.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0028-646X
1469-8137
1469-8137
DOI10.1111/nph.13382

Cover

Abstract Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that drought-related tree mortality is more widespread than previously thought; the predicted increase in the frequency of climate extremes this century; and the recognition that current vegetation models do not predict drought-related tree mortality and forest dieback well despite the large potential effects of these processes on species composition and biogeochemical cycling. To date, the emphasis has been on understanding the causal mechanisms of drought-related tree mortality, and on mechanistic models of plant function and vegetation dynamics, but a consensus on those mechanisms has yet to emerge. In order to generate new hypotheses and to help advance the modelling of vegetation dynamics in the face of incomplete mechanistic understanding, we suggest that general patterns should be distilled from the diverse and as-yet inconclusive results of existing studies, and more use should be made of optimisation and probabilistic modelling approaches that have been successfully applied elsewhere in plant ecology. The outcome should inform new empirical studies of tree mortality, help improve its prediction and reduce model complexity.
AbstractList 28 I. [I.] 28 II. [II.] 29 III. [III.] 30 IV. [IV.] 31 [Acknowledg] 31 References 31 Summary Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that drought-related tree mortality is more widespread than previously thought; the predicted increase in the frequency of climate extremes this century; and the recognition that current vegetation models do not predict drought-related tree mortality and forest dieback well despite the large potential effects of these processes on species composition and biogeochemical cycling. To date, the emphasis has been on understanding the causal mechanisms of drought-related tree mortality, and on mechanistic models of plant function and vegetation dynamics, but a consensus on those mechanisms has yet to emerge. In order to generate new hypotheses and to help advance the modelling of vegetation dynamics in the face of incomplete mechanistic understanding, we suggest that general patterns should be distilled from the diverse and as-yet inconclusive results of existing studies, and more use should be made of optimisation and probabilistic modelling approaches that have been successfully applied elsewhere in plant ecology. The outcome should inform new empirical studies of tree mortality, help improve its prediction and reduce model complexity.
28 I. 28 II. 29 III. 30 IV. 31 31 References 31 SUMMARY: Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that drought‐related tree mortality is more widespread than previously thought; the predicted increase in the frequency of climate extremes this century; and the recognition that current vegetation models do not predict drought‐related tree mortality and forest dieback well despite the large potential effects of these processes on species composition and biogeochemical cycling. To date, the emphasis has been on understanding the causal mechanisms of drought‐related tree mortality, and on mechanistic models of plant function and vegetation dynamics, but a consensus on those mechanisms has yet to emerge. In order to generate new hypotheses and to help advance the modelling of vegetation dynamics in the face of incomplete mechanistic understanding, we suggest that general patterns should be distilled from the diverse and as‐yet inconclusive results of existing studies, and more use should be made of optimisation and probabilistic modelling approaches that have been successfully applied elsewhere in plant ecology. The outcome should inform new empirical studies of tree mortality, help improve its prediction and reduce model complexity.
Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that drought-related tree mortality is more widespread than previously thought; the predicted increase in the frequency of climate extremes this century; and the recognition that current vegetation models do not predict drought-related tree mortality and forest dieback well despite the large potential effects of these processes on species composition and biogeochemical cycling. To date, the emphasis has been on understanding the causal mechanisms of drought-related tree mortality, and on mechanistic models of plant function and vegetation dynamics, but a consensus on those mechanisms has yet to emerge. In order to generate new hypotheses and to help advance the modelling of vegetation dynamics in the face of incomplete mechanistic understanding, we suggest that general patterns should be distilled from the diverse and as-yet inconclusive results of existing studies, and more use should be made of optimisation and probabilistic modelling approaches that have been successfully applied elsewhere in plant ecology. The outcome should inform new empirical studies of tree mortality, help improve its prediction and reduce model complexity.Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that drought-related tree mortality is more widespread than previously thought; the predicted increase in the frequency of climate extremes this century; and the recognition that current vegetation models do not predict drought-related tree mortality and forest dieback well despite the large potential effects of these processes on species composition and biogeochemical cycling. To date, the emphasis has been on understanding the causal mechanisms of drought-related tree mortality, and on mechanistic models of plant function and vegetation dynamics, but a consensus on those mechanisms has yet to emerge. In order to generate new hypotheses and to help advance the modelling of vegetation dynamics in the face of incomplete mechanistic understanding, we suggest that general patterns should be distilled from the diverse and as-yet inconclusive results of existing studies, and more use should be made of optimisation and probabilistic modelling approaches that have been successfully applied elsewhere in plant ecology. The outcome should inform new empirical studies of tree mortality, help improve its prediction and reduce model complexity.
28 I. 28 II. 29 III. 30 IV. 31 31 References 31 Summary Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that drought‐related tree mortality is more widespread than previously thought; the predicted increase in the frequency of climate extremes this century; and the recognition that current vegetation models do not predict drought‐related tree mortality and forest dieback well despite the large potential effects of these processes on species composition and biogeochemical cycling. To date, the emphasis has been on understanding the causal mechanisms of drought‐related tree mortality, and on mechanistic models of plant function and vegetation dynamics, but a consensus on those mechanisms has yet to emerge. In order to generate new hypotheses and to help advance the modelling of vegetation dynamics in the face of incomplete mechanistic understanding, we suggest that general patterns should be distilled from the diverse and as‐yet inconclusive results of existing studies, and more use should be made of optimisation and probabilistic modelling approaches that have been successfully applied elsewhere in plant ecology. The outcome should inform new empirical studies of tree mortality, help improve its prediction and reduce model complexity.
Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that drought‐related tree mortality is more widespread than previously thought; the predicted increase in the frequency of climate extremes this century; and the recognition that current vegetation models do not predict drought‐related tree mortality and forest dieback well despite the large potential effects of these processes on species composition and biogeochemical cycling. To date, the emphasis has been on understanding the causal mechanisms of drought‐related tree mortality, and on mechanistic models of plant function and vegetation dynamics, but a consensus on those mechanisms has yet to emerge. In order to generate new hypotheses and to help advance the modelling of vegetation dynamics in the face of incomplete mechanistic understanding, we suggest that general patterns should be distilled from the diverse and as‐yet inconclusive results of existing studies, and more use should be made of optimisation and probabilistic modelling approaches that have been successfully applied elsewhere in plant ecology. The outcome should inform new empirical studies of tree mortality, help improve its prediction and reduce model complexity. Contents Summary 28 I. Introduction 28 II. Gaps in our mechanistic understanding of drought‐related tree mortality 29 III. Modelling mortality in the face of incomplete mechanistic understanding 30 IV. Conclusion 31 Acknowledgements 31 References 31
Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that drought-related tree mortality is more widespread than previously thought; the predicted increase in the frequency of climate extremes this century; and the recognition that current vegetation models do not predict drought-related tree mortality and forest dieback well despite the large potential effects of these processes on species composition and biogeochemical cycling. To date, the emphasis has been on understanding the causal mechanisms of drought-related tree mortality, and on mechanistic models of plant function and vegetation dynamics, but a consensus on those mechanisms has yet to emerge. In order to generate new hypotheses and to help advance the modelling of vegetation dynamics in the face of incomplete mechanistic understanding, we suggest that general patterns should be distilled from the diverse and as-yet inconclusive results of existing studies, and more use should be made of optimisation and probabilistic modelling approaches that have been successfully applied elsewhere in plant ecology. The outcome should inform new empirical studies of tree mortality, help improve its prediction and reduce model complexity.
Author Patrick Meir
Maurizio Mencuccini
Roderick C. Dewar
Author_xml – sequence: 1
  givenname: Patrick
  surname: Meir
  fullname: Meir, Patrick
  organization: The University of Edinburgh
– sequence: 2
  givenname: Maurizio
  surname: Mencuccini
  fullname: Mencuccini, Maurizio
  organization: ICREA at CREAF
– sequence: 3
  givenname: Roderick C.
  surname: Dewar
  fullname: Dewar, Roderick C.
  organization: The Australian National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25816852$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFEEQxRuJmE304BeQAS8KTtL_p8ebRE2EoIIK3prenprdXma7x-4ewn57e7O7OQQT61IF9XsPqt4JOvLBA0IvCT4jpc79uDwjjCn6BM0Il22tCGuO0AxjqmrJ5e9jdJLSCmPcCkmfoWMqFJFK0Bn68TGGabHMdYTBZOiqHAGqdYjZDC5v3lem6yKk5PyiykuoFmZMlfPV5DuIKRvfbTelVWOEztnsgn-OnvZmSPBi30_Rr8-ffl5c1dffLr9cfLiuLReE1hIzxlpDlTUGJBPCNrzHwrJOzq1pLZW454zTxlJWJqkwzK2whHdE2r4l7BS92fmOMfyZIGW9dsnCMBgPYUqaNFwyKjBX_0el4pwRinlBX99DV2GKvhyiqSAMNw1m6jGqeDHecnnr9WpPTfM1dHqMbm3iRh_-X4DzHWBjSClCr63LZvvEHI0bNMF6m7AuCevbhIvi7T3FwfRf7N79xg2weRjUX79fHRTvdopVyiHeKTzcjMtNDkNYuHIqxY0mmir2F0JXws8
CitedBy_id crossref_primary_10_1111_nph_17464
crossref_primary_10_1002_ecs2_3419
crossref_primary_10_1016_j_scitotenv_2019_05_378
crossref_primary_10_1002_eap_1668
crossref_primary_10_1002_eap_2514
crossref_primary_10_1002_ajb2_1356
crossref_primary_10_1016_j_agrformet_2016_08_019
crossref_primary_10_1111_gcb_13035
crossref_primary_10_24072_pcjournal_60
crossref_primary_10_1111_nph_15154
crossref_primary_10_5194_gmd_15_5593_2022
crossref_primary_10_1111_gcb_13389
crossref_primary_10_1111_1365_2745_12925
crossref_primary_10_1016_j_jclepro_2024_142697
crossref_primary_10_1093_treephys_tpv072
crossref_primary_10_1111_1365_2745_13450
crossref_primary_10_1016_j_scitotenv_2018_07_123
crossref_primary_10_3390_f14091759
crossref_primary_10_1098_rstb_2017_0311
crossref_primary_10_1659_MRD_JOURNAL_D_16_00097_1
crossref_primary_10_1016_j_rse_2020_111853
crossref_primary_10_1016_j_scitotenv_2022_158802
crossref_primary_10_1111_nph_15263
crossref_primary_10_1002_wat2_1125
crossref_primary_10_1111_gcb_13851
crossref_primary_10_1111_gcb_13731
crossref_primary_10_1016_j_forpol_2020_102189
crossref_primary_10_1016_j_foreco_2020_118097
crossref_primary_10_5194_bg_13_3665_2016
crossref_primary_10_1111_nph_15381
crossref_primary_10_5194_bg_16_4463_2019
crossref_primary_10_1016_j_ufug_2018_09_010
crossref_primary_10_1111_nph_13927
crossref_primary_10_1016_j_foreco_2022_120128
crossref_primary_10_5194_gmd_8_1097_2015
crossref_primary_10_3389_fpls_2022_835921
crossref_primary_10_1111_gcb_13177
crossref_primary_10_3389_fpls_2016_01069
crossref_primary_10_1088_1748_9326_aae934
crossref_primary_10_1111_nph_14283
crossref_primary_10_1002_fee_1445
crossref_primary_10_1111_gcb_15869
crossref_primary_10_1111_nph_19852
crossref_primary_10_1371_journal_pone_0198489
crossref_primary_10_1111_nph_13876
crossref_primary_10_5194_gmd_11_5203_2018
crossref_primary_10_1111_1365_2435_13689
crossref_primary_10_3390_f10121143
crossref_primary_10_1111_nph_13461
crossref_primary_10_3389_fpls_2019_00342
crossref_primary_10_1002_ece3_7021
crossref_primary_10_3390_rs12142332
crossref_primary_10_1111_pce_13937
crossref_primary_10_1093_treephys_tpz062
crossref_primary_10_1175_JAMC_D_16_0408_1
crossref_primary_10_1016_j_jhydrol_2018_10_071
crossref_primary_10_1093_treephys_tpw078
crossref_primary_10_1007_s00468_019_01923_5
crossref_primary_10_1029_2022JG007332
crossref_primary_10_1038_s41586_022_04737_7
crossref_primary_10_1111_pce_14197
crossref_primary_10_3389_fpls_2021_715127
crossref_primary_10_1111_ele_12748
crossref_primary_10_1093_aobpla_plx069
crossref_primary_10_1111_gcb_14442
crossref_primary_10_1038_nature15539
crossref_primary_10_5194_gmd_15_7809_2022
crossref_primary_10_1016_j_envexpbot_2024_105905
crossref_primary_10_1111_nph_17134
crossref_primary_10_3389_fpls_2015_00547
crossref_primary_10_1111_gcb_13863
crossref_primary_10_1111_nph_17895
crossref_primary_10_1177_0309133317751843
crossref_primary_10_1111_pce_13942
crossref_primary_10_3390_f16010084
crossref_primary_10_1002_ece3_70158
crossref_primary_10_1002_eco_1811
crossref_primary_10_1073_pnas_1421010112
crossref_primary_10_1111_gcb_16179
crossref_primary_10_1111_gcb_17423
crossref_primary_10_3390_f9120754
crossref_primary_10_3389_fpls_2021_790684
crossref_primary_10_1111_2041_210X_13094
crossref_primary_10_1007_s00468_017_1605_8
crossref_primary_10_3389_feart_2018_00228
crossref_primary_10_1002_2014GB005028
crossref_primary_10_3389_fpls_2021_635022
crossref_primary_10_1093_treephys_tpab047
crossref_primary_10_1093_treephys_tpab168
crossref_primary_10_3390_f15030402
crossref_primary_10_1093_treephys_tpae032
crossref_primary_10_1111_een_13429
crossref_primary_10_1002_2016GL072388
crossref_primary_10_1016_j_dendro_2022_125934
crossref_primary_10_1016_j_foreco_2016_06_024
crossref_primary_10_1093_jpe_rtaa069
crossref_primary_10_1111_gcb_13366
crossref_primary_10_1007_s00468_021_02200_0
crossref_primary_10_1111_nph_19138
crossref_primary_10_1038_nclimate2698
crossref_primary_10_1016_j_agrformet_2023_109329
crossref_primary_10_1890_ES15_00203_1
crossref_primary_10_1002_ece3_8943
crossref_primary_10_1016_j_foreco_2022_120317
crossref_primary_10_1016_j_scitotenv_2023_166304
crossref_primary_10_1111_1365_2745_13033
crossref_primary_10_1016_j_baae_2020_04_003
crossref_primary_10_1111_gcb_17567
crossref_primary_10_1002_ecs2_3313
Cites_doi 10.1111/gcb.12146
10.1111/j.1469-8137.2012.04180.x
10.5962/bhl.title.160223
10.1007/s12080‐015‐0259‐7
10.1088/1748-9326/8/1/015032
10.1007/s00468-005-0014-6
10.1073/pnas.0505734102
10.1002/ece3.664
10.1111/j.1469-8137.2009.03167.x
10.1016/j.jtbi.2009.03.039
10.1111/j.1469-8137.2010.03390.x
10.1111/nph.12465
10.1093/treephys/tpu029
10.1104/pp.108.129783
10.1111/j.1469-8137.2008.02436.x
10.1111/j.1365-2486.2010.02357.x
10.1002/2013JG002592
10.1093/treephys/tpr138
10.1016/j.jtbi.2007.12.007
10.1038/nclimate2281
10.1093/treephys/tpu014
10.1046/j.1365-3040.1998.00287.x
10.1007/s10021-010-9368-8
10.1016/j.jhydrol.2012.02.019
10.1002/2014WR015375
10.1016/j.tree.2011.06.003
10.1111/j.1469-8137.2010.03340.x
10.14214/sf.528
10.1146/annurev-arplant-050213-040054
10.1111/j.1469-8137.2010.03350.x
10.1126/science.1164033
10.1093/jxb/49.Special_Issue.419
10.1073/pnas.1010070108
10.1038/nature12350
10.1890/13-0379.1
10.1016/j.tplants.2012.09.006
10.1002/ece3.1008
10.1038/nclimate2329
10.1111/nph.12450
10.1093/jxb/ert467
10.1371/journal.pone.0080286
10.1111/j.1469-8137.2010.03309.x
10.1111/nph.12390
10.1038/nature12540
10.1073/pnas.0901438106
10.1093/acprof:oso/9780198567066.003.0007
10.1111/nph.12895
10.5194/gmd-7-1251-2014
10.1098/rstb.2009.0293
10.1525/bio.2009.59.2.6
10.1038/nature11688
10.1093/treephys/tps044
10.1111/j.1365-3040.2011.02428.x
10.1111/nph.12614
10.1016/j.foreco.2009.09.001
10.1111/nph.12288
ContentType Journal Article
Copyright 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Copyright © 2015 New Phytologist Trust
Copyright_xml – notice: 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
– notice: Copyright © 2015 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.13382
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
MEDLINE - Academic

CrossRef
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 33
ExternalDocumentID 3697000871
25816852
10_1111_nph_13382
NPH13382
newphytologist.207.1.28
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
RIG
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
AGHNM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4512-603339a28caae6355c74f05c3d6bca9c260f43427c230f4680ebc5c14d16cf913
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Sep 05 17:23:28 EDT 2025
Thu Sep 04 20:36:31 EDT 2025
Fri Jul 25 11:56:58 EDT 2025
Fri Jul 25 10:31:25 EDT 2025
Thu Apr 03 07:06:42 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Tue Jul 01 03:09:21 EDT 2025
Wed Jan 22 17:05:25 EST 2025
Sun Aug 24 12:10:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords modelling vegetation dynamics
tree mortality
drought
drought physiology
tropical forests
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4512-603339a28caae6355c74f05c3d6bca9c260f43427c230f4680ebc5c14d16cf913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 25816852
PQID 1683494604
PQPubID 2026848
PageCount 6
ParticipantIDs proquest_miscellaneous_1746325048
proquest_miscellaneous_1684431204
proquest_journals_2513077038
proquest_journals_1683494604
pubmed_primary_25816852
crossref_citationtrail_10_1111_nph_13382
crossref_primary_10_1111_nph_13382
wiley_primary_10_1111_nph_13382_NPH13382
jstor_primary_newphytologist_207_1_28
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150701
July 2015
2015-07-00
2015-Jul
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 7
  year: 2015
  text: 20150701
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2015
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 1998; 49
2014; 119
2002; 36
2013; 3
2010; 13
2013; 500
2010; 365
2013; 502
2010; 187
2013; 200
2010; 186
2005
2012; 17
2011; 17
2012; 35
2013; 8
1998; 21
2012; 32
2014; 65
2009; 259
2013; 19
2012; 491
2012; 195
2014; 204
2014a; 4
2014b; 34
2011; 108
2006; 20
2014; 4
1909
2012; 432
2010; 259
2005; 102
2013; 94
2015
2011; 26
2014
2008; 178
2014; 7
2014; 50
2008; 251
2014; 34
2009; 323
2009; 59
2009; 149
2009; 106
2014; 201
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Settele R (e_1_2_6_51_1) 2014
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 119
  start-page: 965
  year: 2014
  end-page: 981
  article-title: An ecohydrological perspective on drought‐induced forest mortality
  publication-title: Journal of Geophysical Research. Biogeosciences
– year: 2015
  article-title: Combining mechanism and drift in community ecology: a novel statistical mechanics approach
  publication-title: Theoretical Ecology.
– volume: 32
  start-page: 648
  year: 2012
  end-page: 666
  article-title: Modeling carbon allocation in trees: a search for principles
  publication-title: Tree Physiology
– volume: 17
  start-page: 693
  year: 2012
  end-page: 700
  article-title: Linking definitions, mechanisms, and modeling of drought‐induced tree death
  publication-title: Trends in Plant Science
– volume: 432
  start-page: 75
  year: 2012
  end-page: 83
  article-title: Bayesian analysis of canopy transpiration models: a test of posterior parameter means against measurements
  publication-title: Journal of Hydrology
– volume: 4
  start-page: 1088
  year: 2014a
  end-page: 1101
  article-title: Exposure of trees to drought‐induced die‐off is defined by a common climatic threshold across different vegetation types
  publication-title: Ecology and Evolution
– volume: 502
  start-page: 183
  year: 2013
  end-page: 187
  article-title: The projected timing of climate departure from recent variability
  publication-title: Nature
– volume: 187
  start-page: 666
  year: 2010
  end-page: 681
  article-title: Assessing uncertainties in a second‐generation dynamic vegetation model caused by ecological scale limitations
  publication-title: New Phytologist
– volume: 19
  start-page: 1526
  year: 2013
  end-page: 1537
  article-title: Drought characteristics' role in widespread aspen forest mortality across Colorado, USA
  publication-title: Global Change Biology
– volume: 259
  start-page: 325
  year: 2009
  end-page: 337
  article-title: Linking phloem function to structure: analysis with a coupled xylem–phloem transport model
  publication-title: Journal of Theoretical Biology
– volume: 13
  start-page: 978
  year: 2010
  end-page: 991
  article-title: Drought‐induced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co‐occurring oak species
  publication-title: Ecosystems
– volume: 32
  start-page: 520
  year: 2012
  end-page: 534
  article-title: Why does leaf nitrogen decline within tree canopies less rapidly than light? An explanation from optimization subject to a lower bound on leaf mass per area
  publication-title: Tree Physiology
– volume: 200
  start-page: 298
  year: 2013
  end-page: 300
  article-title: Our limited ability to predict vegetation dynamics under water stress
  publication-title: New Phytologist
– volume: 204
  start-page: 127
  year: 2014
  end-page: 139
  article-title: Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region
  publication-title: New Phytologist
– volume: 178
  start-page: 719
  year: 2008
  end-page: 739
  article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?
  publication-title: New Phytologist
– volume: 102
  start-page: 15 144
  year: 2005
  end-page: 15 148
  article-title: Regional vegetation die‐off in response to global‐change‐type drought
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 35
  start-page: 61
  year: 2012
  end-page: 71
  article-title: Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric?
  publication-title: Plant, Cell & Environment
– volume: 26
  start-page: 523
  year: 2011
  end-page: 532
  article-title: The interdependence of mechanisms underlying climate‐driven vegetation mortality
  publication-title: Trends in Ecology & Evolution
– volume: 108
  start-page: 1474
  year: 2011
  end-page: 1478
  article-title: Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change‐type drought
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 259
  start-page: 660
  year: 2010
  end-page: 684
  article-title: A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests
  publication-title: Forest Ecology and Management
– volume: 187
  start-page: 553
  year: 2010
  end-page: 557
  article-title: Amazonian rain forests and drought: response and vulnerability
  publication-title: New Phytologist
– volume: 187
  start-page: 579
  year: 2010
  end-page: 591
  article-title: Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest
  publication-title: New Phytologist
– volume: 49
  start-page: 419
  year: 1998
  end-page: 432
  article-title: Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours
  publication-title: Journal of Experimental Botany
– volume: 200
  start-page: 322
  year: 2013
  end-page: 329
  article-title: Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought
  publication-title: New Phytologist
– volume: 251
  start-page: 389
  year: 2008
  end-page: 403
  article-title: Statistical mechanics unifies different ecological patterns
  publication-title: Journal of Theoretical Biology
– volume: 200
  start-page: 350
  year: 2013
  end-page: 364
  article-title: Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought
  publication-title: New Phytologist
– volume: 8
  start-page: 015032
  year: 2013
  article-title: A novel probabilistic risk analysis to determine the vulnerability of ecosystems to extreme climatic events
  publication-title: Environmental Research Letters
– volume: 17
  start-page: 2084
  year: 2011
  end-page: 2094
  article-title: Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest
  publication-title: Global Change Biology
– volume: 149
  start-page: 575
  year: 2009
  end-page: 584
  article-title: Hydraulic failure defines the recovery and point of death in water‐stressed conifers
  publication-title: Plant Physiology
– volume: 8
  start-page: e80286
  year: 2013
  article-title: An integrated model of environmental effects on growth, carbohydrate balance, and mortality of forests in the Southern Rocky Mountains
  publication-title: PLoS One
– volume: 186
  start-page: 274
  year: 2010
  end-page: 281
  article-title: Physiological mechanisms of drought‐induced tree mortality are far from being resolved
  publication-title: New Phytologist
– volume: 195
  start-page: 285
  year: 2012
  end-page: 289
  article-title: A re‐evaluation of carbon storage in trees lends greater support for carbon limitation to growth
  publication-title: New Phytologist
– volume: 59
  start-page: 127
  year: 2009
  end-page: 139
  article-title: Optimal function explains forest responses to global shange
  publication-title: BioScience
– volume: 7
  start-page: 1251
  year: 2014
  end-page: 1269
  article-title: Analysing Amazonian forest productivity using a new individual and trait‐based model (TFS v. 1)
  publication-title: Geoscientific Model Development
– volume: 200
  start-page: 304
  year: 2013
  end-page: 321
  article-title: Evaluating theories of drought‐induced vegetation mortality using a multimodel–experiment framework
  publication-title: New Phytologist
– start-page: 71
  year: 2005
  end-page: 80
– volume: 50
  start-page: 5379
  year: 2014
  end-page: 5394
  article-title: Optimal plant water‐use strategies under stochastic rainfall
  publication-title: Water Resources Research
– volume: 500
  start-page: 287
  year: 2013
  end-page: 295
  article-title: Climate extremes and the carbon cycle
  publication-title: Nature
– volume: 65
  start-page: 1751
  year: 2014
  end-page: 1759
  article-title: Phloem transport and drought
  publication-title: Journal of Experimental Botany
– volume: 106
  start-page: 7063
  year: 2009
  end-page: 7066
  article-title: Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global‐change‐type drought
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 65
  start-page: 667
  year: 2014
  end-page: 687
  article-title: Nonstructural carbon in woody plants
  publication-title: Annual Review of Plant Biology
– volume: 94
  start-page: 2138
  year: 2013
  end-page: 2144
  article-title: Statistical patterns in tropical tree cover explained by the different water demand of individual trees and grasses
  publication-title: Ecology
– volume: 4
  start-page: 666
  year: 2014
  end-page: 667
  article-title: Plump trees win under drought
  publication-title: Nature Climate Change
– volume: 21
  start-page: 347
  year: 1998
  end-page: 359
  article-title: Limitation of plant water use by rhizosphere and xylem conductance: results from a model
  publication-title: Plant, Cell & Environment
– volume: 34
  start-page: 439
  year: 2014
  end-page: 442
  article-title: Temporal scales for the coordination of tree carbon and water economies during droughts
  publication-title: Tree Physiology
– volume: 323
  start-page: 1344
  year: 2009
  end-page: 1347
  article-title: Drought sensitivity of the Amazon Rainforest
  publication-title: Science
– volume: 34
  start-page: 443
  year: 2014b
  end-page: 458
  article-title: Co‐ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies
  publication-title: Tree Physiology
– year: 1909
– volume: 36
  start-page: 605
  year: 2002
  end-page: 614
  article-title: Challenges and opportunities of the optimality approach in plant ecology
  publication-title: Silva Fennica
– volume: 20
  start-page: 67
  year: 2006
  end-page: 78
  article-title: Modeling xylem and phloem water flows in trees according to cohesion theory and Munch hypothesis
  publication-title: Trees‐Structure and Function
– volume: 201
  start-page: 1086
  year: 2014
  end-page: 1095
  article-title: Moving beyond photosynthesis: from carbon source to sink‐driven vegetation modeling
  publication-title: New Phytologist
– start-page: 271
  year: 2014
  end-page: 359
– volume: 3
  start-page: 2711
  year: 2013
  end-page: 2729
  article-title: Global change‐type drought‐induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health
  publication-title: Ecology and Evolution
– volume: 365
  start-page: 1429
  year: 2010
  end-page: 1435
  article-title: Maximum entropy production and plant optimization theories
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 4
  start-page: 710
  year: 2014
  end-page: 714
  article-title: Drought survival of tropical tree seedlings enhanced by non‐structural carbohydrate levels
  publication-title: Nature Climate Change
– volume: 491
  start-page: 752
  year: 2012
  end-page: 755
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
– volume: 187
  start-page: 647
  year: 2010
  end-page: 665
  article-title: Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change
  publication-title: New Phytologist
– ident: e_1_2_6_4_1
  doi: 10.1111/gcb.12146
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1469-8137.2012.04180.x
– ident: e_1_2_6_56_1
  doi: 10.5962/bhl.title.160223
– ident: e_1_2_6_8_1
  doi: 10.1007/s12080‐015‐0259‐7
– ident: e_1_2_6_44_1
  doi: 10.1088/1748-9326/8/1/015032
– ident: e_1_2_6_27_1
  doi: 10.1007/s00468-005-0014-6
– ident: e_1_2_6_9_1
  doi: 10.1073/pnas.0505734102
– ident: e_1_2_6_19_1
  doi: 10.1002/ece3.664
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1469-8137.2009.03167.x
– ident: e_1_2_6_26_1
  doi: 10.1016/j.jtbi.2009.03.039
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1469-8137.2010.03390.x
– ident: e_1_2_6_34_1
  doi: 10.1111/nph.12465
– ident: e_1_2_6_37_1
  doi: 10.1093/treephys/tpu029
– ident: e_1_2_6_10_1
  doi: 10.1104/pp.108.129783
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1469-8137.2008.02436.x
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1365-2486.2010.02357.x
– ident: e_1_2_6_45_1
  doi: 10.1002/2013JG002592
– ident: e_1_2_6_22_1
  doi: 10.1093/treephys/tpr138
– ident: e_1_2_6_16_1
  doi: 10.1016/j.jtbi.2007.12.007
– ident: e_1_2_6_43_1
  doi: 10.1038/nclimate2281
– ident: e_1_2_6_40_1
  doi: 10.1093/treephys/tpu014
– ident: e_1_2_6_53_1
  doi: 10.1046/j.1365-3040.1998.00287.x
– ident: e_1_2_6_25_1
  doi: 10.1007/s10021-010-9368-8
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jhydrol.2012.02.019
– ident: e_1_2_6_31_1
  doi: 10.1002/2014WR015375
– ident: e_1_2_6_33_1
  doi: 10.1016/j.tree.2011.06.003
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1469-8137.2010.03340.x
– ident: e_1_2_6_30_1
  doi: 10.14214/sf.528
– ident: e_1_2_6_18_1
  doi: 10.1146/annurev-arplant-050213-040054
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1469-8137.2010.03350.x
– ident: e_1_2_6_46_1
  doi: 10.1126/science.1164033
– ident: e_1_2_6_55_1
  doi: 10.1093/jxb/49.Special_Issue.419
– ident: e_1_2_6_11_1
  doi: 10.1073/pnas.1010070108
– ident: e_1_2_6_48_1
  doi: 10.1038/nature12350
– ident: e_1_2_6_7_1
  doi: 10.1890/13-0379.1
– ident: e_1_2_6_5_1
  doi: 10.1016/j.tplants.2012.09.006
– ident: e_1_2_6_39_1
  doi: 10.1002/ece3.1008
– ident: e_1_2_6_49_1
  doi: 10.1038/nclimate2329
– ident: e_1_2_6_58_1
  doi: 10.1111/nph.12450
– ident: e_1_2_6_52_1
  doi: 10.1093/jxb/ert467
– ident: e_1_2_6_54_1
  doi: 10.1371/journal.pone.0080286
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1469-8137.2010.03309.x
– start-page: 271
  volume-title: IPCC 5, climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change
  year: 2014
  ident: e_1_2_6_51_1
– ident: e_1_2_6_47_1
  doi: 10.1111/nph.12390
– ident: e_1_2_6_41_1
  doi: 10.1038/nature12540
– ident: e_1_2_6_2_1
  doi: 10.1073/pnas.0901438106
– ident: e_1_2_6_35_1
  doi: 10.1093/acprof:oso/9780198567066.003.0007
– ident: e_1_2_6_6_1
  doi: 10.1111/nph.12895
– ident: e_1_2_6_23_1
  doi: 10.5194/gmd-7-1251-2014
– ident: e_1_2_6_14_1
  doi: 10.1098/rstb.2009.0293
– ident: e_1_2_6_15_1
  doi: 10.1525/bio.2009.59.2.6
– ident: e_1_2_6_12_1
  doi: 10.1038/nature11688
– ident: e_1_2_6_17_1
  doi: 10.1093/treephys/tps044
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1365-3040.2011.02428.x
– ident: e_1_2_6_20_1
  doi: 10.1111/nph.12614
– ident: e_1_2_6_3_1
  doi: 10.1016/j.foreco.2009.09.001
– ident: e_1_2_6_42_1
  doi: 10.1111/nph.12288
SSID ssj0009562
Score 2.4933028
SecondaryResourceType review_article
Snippet Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that...
28 I. 28 II. 29 III. 30 IV. 31 31 References 31 Summary Increased tree mortality during and after drought has become a research focus in recent years. This...
28 I. [I.] 28 II. [II.] 29 III. [III.] 30 IV. [IV.] 31 [Acknowledg] 31 References 31 Summary Increased tree mortality during and after drought has become a...
28 I. 28 II. 29 III. 30 IV. 31 31 References 31 SUMMARY: Increased tree mortality during and after drought has become a research focus in recent years. This...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28
SubjectTerms Biogeochemical cycles
Biogeochemistry
Biomechanical Phenomena
climate
Climate models
Community composition
Dieback
Drought
drought physiology
Droughts
Dynamics
forests
mechanistic models
Model testing
Modelling
modelling vegetation dynamics
Models, Biological
Mortality
Optimization
Plant ecology
prediction
probabilistic models
Species composition
species diversity
Tansley insight
tree mortality
Trees
Trees - physiology
tropical forests
Vegetation
Title Drought-related tree mortality: addressing the gaps in understanding and prediction
URI https://www.jstor.org/stable/newphytologist.207.1.28
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13382
https://www.ncbi.nlm.nih.gov/pubmed/25816852
https://www.proquest.com/docview/1683494604
https://www.proquest.com/docview/2513077038
https://www.proquest.com/docview/1684431204
https://www.proquest.com/docview/1746325048
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh5NBLm6SvPFFLC7l4sR6W7eaUJ0uhoZQu7KEg9LDTksS7ZHcPySk_Ib-xvyQz8oNN2EDpyQaPZcuaGX1jjb4h5BOLYwcTdRn5HMJVabiLjE-yCKBDmZdSgQfE_x3fzlR_IL8Ok-ES2W_3wtT8EN0PN7SM4K_RwI2dzBl5Nf7dwwAL_S8TCnnzj3_wOcJdxVsGZiXVsGEVwiye7s5Hc1GdjrgIaD7GrWHiOX1FfrWvXOebXPRmU9tzt0_YHP-zT6vkZQNI6UGtQWtkqajWycrhCEDjzWsyOA5lfKZ_7-7DrpfCU1zGplcBtQOC_0LBdYVc2uqcApik52Y8oX8qOpvfNUPhQMfXuCiEivCGDE5Pfh71o6YSQ-QkIIJIxUKI3PDMGVMgRHGpLOPECa-sM7mDoKiUQvIUxh3OVBYX1iWOSc-UK3Mm3pLlalQV7wllACkBEzkfey9TwQwgMlVYmVvPrFXZBtlrx0S7hqYcq2Vc6jZcgY-kw0faIB870XHNzbFI6HMY2E4CohVQ4FAcGAxJ8zjVTHN47nY78Lox44lmKkP6HhXLhZcBG4KLBJ8Jd3_oLoN94qKLqYrRLDQhAaRxbOJZmVQqgVxy0M67Wue61-UJVkZJoB97QXOe76k--94PJ5v_LrpFXgACTOr8422yPL2eFTuAsqZ2N5jTA1NTIsA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQVIIL0JZ_WtwKJC5ZxY7jJKiXthRtW1ghxEp7QZZjJ4CA7Ap2D_TUR-AZeZLOOD9a0CKhnjZSJt44nhl_Y4-_IWSb-b6BiTr3bALhqtDceNqGsQfQIU9yIcED4nrHUUe2u-JXL-xNkS_1WZiSH6JZcEPLcP4aDRwXpMesvBhctDDCAgc8IwBoYOi1f8LHKHclrzmYpZC9ilcI83iaR5_MRmVC4iSo-RS5uqnnYIGc1S9dZpxctUbDtGX-PONz_N9eLZL5CpPSr6USvSVTWfGOvPnWB9x4_550910ln-Hj3wd38CWzFHey6Y0D7gDi9yh4L5dOW5xTwJP0XA_u6GVBR-MHZyj80MEt7guhLiyR7sGP0-9tryrG4BkBoMCTfhAEieax0TpDlGIikfuhCaxMjU4MxEW5CASPYOjhSsZ-lprQMGGZNHnCgmUyXfSLbJVQBqgSYJGxvrUiCpgGUCazVCSpZWkq4zWyWw-KMhVTORbMuFZ1xAIfSbmPtEY-N6KDkp5jktCOG9lGAgIW0GFXHxhsSXE_Ukxx-N_NeuRVZcl3iskYGXykLybeBngIXhLcJjz9qbkNJor7LrrI-iPXhACcxrGJF2UiIQOkk4N2Vkqla16Xh1gcJYR-7DrVebmnqnPcdhfrrxfdIrPt06NDdfiz83uDzAEgDMt05E0yPbwdZR8AdA3Tj862_gFwCCbf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqUiEuhfJoC6UYBFIvWcWO4yT0BLSr5bWqECvtAcly7KQgIBu1uwc48RP4jfySfnYe2qKthDglUiZOHM-Mv4nH3xDylIWhwURdBjZDuCo0N4G2cRoAOpRZKSQ8oPvf8X4sRxPxZhpP18hhtxem4Yfof7g5y_D-2hl4bcslI6_qzwMXYMH_XhMSSMIhog98iXFX8o6CWQo5bWmFXBpPf-ulyajJR1yFNC8DVz_zDG-ST907NwknXweLeT4wP_-ic_zPTt0imy0ipS8aFdoia0V1m2y8nAE1_rhDJke-js_8z6_ffttLYalbx6bfPWwHhH9O4bt8Mm11SoEm6amuz-mXii6Wt81QHGh95laFnCbcJZPh8cdXo6AtxRAYAUgQyDCKokzz1GhdOIxiElGGsYmszI3ODKKiUkSCJxh4nMk0LHITGyYsk6bMWHSPrFezqtghlAFTAhQZG1orkohpQDJZ5CLLLctzme6Sg25MlGl5yl25jG-qi1fwkZT_SLvkSS9aN-Qcq4Se-YHtJRCuQIN9dWBYkuJhopjieO5eN_CqteNzxWTq-HtkKFZeBjiEj4TTxN2P-8swULfqoqtitvBNCKA07pq4UiYRMnJkcmhnu9G5_nV57EqjxOjHgdecq3uqxicjf3L_30UfkesnR0P17vX47QNyA2gwbnKR98j6_GxRPATimuf73rIuAOGIJY4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drought-related+tree+mortality%3A+addressing+the+gaps+in+understanding+and+prediction&rft.jtitle=The+New+phytologist&rft.au=Patrick+Meir&rft.au=Maurizio+Mencuccini&rft.au=Roderick+C.+Dewar&rft.date=2015-07-01&rft.pub=New+Phytologist+Trust&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=207&rft.issue=1&rft.spage=28&rft.epage=33&rft_id=info:doi/10.1111%2Fnph.13382&rft.externalDocID=newphytologist.207.1.28
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon