Bayesian bent-cable growth mixture tobit models for longitudinal data with skewness and detection limit: application to AIDS studies
This paper presents a new Bayesian methodology for identifying a transition period for the development of drug resistance to antiretroviral drug or therapy in HIV/AIDS studies or other related fields. Estimation of such a transition period requires an availability of longitudinal data where growth t...
Saved in:
Published in | Statistics in medicine Vol. 35; no. 28; pp. 5302 - 5314 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
10.12.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.7061 |
Cover
Loading…
Abstract | This paper presents a new Bayesian methodology for identifying a transition period for the development of drug resistance to antiretroviral drug or therapy in HIV/AIDS studies or other related fields. Estimation of such a transition period requires an availability of longitudinal data where growth trajectories of a response variable tend to exhibit a gradual change from a declining trend to an increasing trend rather than an abrupt change. We assess this clinically important feature of the longitudinal HIV/AIDS data using the bent‐cable framework within a growth mixture Tobit model. To account for heterogeneity of drug resistance among subjects, the parameters of the bent‐cable growth mixture Tobit model are also allowed to differ by subgroups (subpopulations) of patients classified into latent classes on the basis of trajectories of observed viral load data with skewness and left‐censoring. The proposed methods are illustrated using real data from an AIDS clinical study. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
AbstractList | This paper presents a new Bayesian methodology for identifying a transition period for the development of drug resistance to antiretroviral drug or therapy in HIV/AIDS studies or other related fields. Estimation of such a transition period requires an availability of longitudinal data where growth trajectories of a response variable tend to exhibit a gradual change from a declining trend to an increasing trend rather than an abrupt change. We assess this clinically important feature of the longitudinal HIV/AIDS data using the bent-cable framework within a growth mixture Tobit model. To account for heterogeneity of drug resistance among subjects, the parameters of the bent-cable growth mixture Tobit model are also allowed to differ by subgroups (subpopulations) of patients classified into latent classes on the basis of trajectories of observed viral load data with skewness and left-censoring. The proposed methods are illustrated using real data from an AIDS clinical study. Copyright © 2016 John Wiley & Sons, Ltd. This paper presents a new Bayesian methodology for identifying a transition period for the development of drug resistance to antiretroviral drug or therapy in HIV/AIDS studies or other related fields. Estimation of such a transition period requires an availability of longitudinal data where growth trajectories of a response variable tend to exhibit a gradual change from a declining trend to an increasing trend rather than an abrupt change. We assess this clinically important feature of the longitudinal HIV/AIDS data using the bent-cable framework within a growth mixture Tobit model. To account for heterogeneity of drug resistance among subjects, the parameters of the bent-cable growth mixture Tobit model are also allowed to differ by subgroups (subpopulations) of patients classified into latent classes on the basis of trajectories of observed viral load data with skewness and left-censoring. The proposed methods are illustrated using real data from an AIDS clinical study. This paper presents a new Bayesian methodology for identifying a transition period for the development of drug resistance to antiretroviral drug or therapy in HIV/AIDS studies or other related fields. Estimation of such a transition period requires an availability of longitudinal data where growth trajectories of a response variable tend to exhibit a gradual change from a declining trend to an increasing trend rather than an abrupt change. We assess this clinically important feature of the longitudinal HIV/AIDS data using the bent-cable framework within a growth mixture Tobit model. To account for heterogeneity of drug resistance among subjects, the parameters of the bent-cable growth mixture Tobit model are also allowed to differ by subgroups (subpopulations) of patients classified into latent classes on the basis of trajectories of observed viral load data with skewness and left-censoring. The proposed methods are illustrated using real data from an AIDS clinical study. Copyright © 2016 John Wiley & Sons, Ltd.This paper presents a new Bayesian methodology for identifying a transition period for the development of drug resistance to antiretroviral drug or therapy in HIV/AIDS studies or other related fields. Estimation of such a transition period requires an availability of longitudinal data where growth trajectories of a response variable tend to exhibit a gradual change from a declining trend to an increasing trend rather than an abrupt change. We assess this clinically important feature of the longitudinal HIV/AIDS data using the bent-cable framework within a growth mixture Tobit model. To account for heterogeneity of drug resistance among subjects, the parameters of the bent-cable growth mixture Tobit model are also allowed to differ by subgroups (subpopulations) of patients classified into latent classes on the basis of trajectories of observed viral load data with skewness and left-censoring. The proposed methods are illustrated using real data from an AIDS clinical study. Copyright © 2016 John Wiley & Sons, Ltd. |
Author | Dagne, Getachew A. |
Author_xml | – sequence: 1 givenname: Getachew A. surname: Dagne fullname: Dagne, Getachew A. email: gdagne@health.usf.edu, Correspondence to: Getachew Dagne, Department of Epidemiology & Biostatistics, College of Public Health, MDC 56, University of South Florida, Tampa, FL33612, U.S.A., gdagne@health.usf.edu organization: Department of Epidemiology & Biostatistics, College of Public Health, MDC 56, University of South Florida, FL, 33612, Tampa, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27503829$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0V1rFDEUBuAgFbutgr9AAt54MzXfyXpXu7ou1A-oUu9CZuZMTZtJ1kmG7d77w51ta0VB8OrA4eE9cN4DtBdTBISeUnJECWEvs--PNFH0AZpRMtcVYdLsoRlhWldKU7mPDnK-JIRSyfQjtM-0JNyw-Qz9eO22kL2LuIZYqsbVAfDFkDblG-79dRkHwCXVvuA-tRAy7tKAQ4oXvoytjy7g1hWHN37y-Qo2EXLGLra4hQJN8Sni4HtfXmG3XgffuJtVSfh4tTjDeRcC-TF62LmQ4cndPERf3r75fPKuOv24XJ0cn1aNkJRWDaHgDHGNEQCUcUGcEkTKhutOSiEY1EIaMHUnHNFOmblmgneOGC2ZdIofohe3ueshfR8hF9v73EAILkIas6VGM8MFZfP_oFxpppUSE33-F71M4zC95kaZuZGK7m4_u1Nj3UNr14Pv3bC1v6r4fbEZUs4DdPeEErtr2U4t213LE61u6cYH2P7T2bPV-z-9zwWu770brqzSXEt7_mFpv54ztVjyhf3EfwIcQ7ZR |
CODEN | SMEDDA |
Cites_doi | 10.1111/j.1467-985X.2007.00514.x 10.1016/j.jmva.2004.10.002 10.1111/1467-9868.00194 10.4324/9780203879962 10.1038/373123a0 10.1080/01621459.1996.10476679 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R 10.1002/sim.6445 10.1016/S0167-9473(02)00148-2 10.1002/0471721182 10.1002/9780470434567 10.1128/JVI.02413-06 10.7326/0003-4819-133-1-200007040-00004 10.4135/9781412986311.n19 10.2307/1907382 10.1086/515591 10.2307/1912776 10.2307/3316064 10.1080/09332480.2009.10722965 10.1002/icd.483 10.1002/sim.6388 10.1016/j.ijfoodmicro.2007.02.001 10.2307/2533329 10.1111/j.1751-9004.2007.00054.x 10.1080/01621459.1981.10477752 10.1002/sim.5799 10.1201/9780203492000 10.1198/016214505000001177 10.1023/A:1008929526011 |
ContentType | Journal Article |
Copyright | Copyright © 2016 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. Dec 10, 2016 |
Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. Dec 10, 2016 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 7U9 H94 |
DOI | 10.1002/sim.7061 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AIDS and Cancer Research Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 5314 |
ExternalDocumentID | 4248801181 27503829 10_1002_sim_7061 SIM7061 ark_67375_WNG_XW26DG3D_P |
Genre | article Journal Article Feature |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 7U9 H94 |
ID | FETCH-LOGICAL-c4511-c01ea80ac84ee12340a64055c37f55442eb458e8bf4a07a6897243fa087525a63 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 03:58:46 EDT 2025 Fri Jul 11 05:16:39 EDT 2025 Sun Jul 13 04:54:09 EDT 2025 Mon Jul 21 06:01:44 EDT 2025 Tue Jul 01 03:28:10 EDT 2025 Wed Jan 22 16:24:19 EST 2025 Wed Oct 30 09:54:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | change-points mixture distribution skew distribution Bayesian inference mixed-effects models |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2016 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4511-c01ea80ac84ee12340a64055c37f55442eb458e8bf4a07a6897243fa087525a63 |
Notes | ArticleID:SIM7061 Supporting info item ark:/67375/WNG-XW26DG3D-P istex:4C7823726911DD056710F781CE78CC6FF1FB0F50 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27503829 |
PQID | 1838985616 |
PQPubID | 48361 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1872834129 proquest_miscellaneous_1836727664 proquest_journals_1838985616 pubmed_primary_27503829 crossref_primary_10_1002_sim_7061 wiley_primary_10_1002_sim_7061_SIM7061 istex_primary_ark_67375_WNG_XW26DG3D_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 December 2016 |
PublicationDateYYYYMMDD | 2016-12-10 |
PublicationDate_xml | – month: 12 year: 2016 text: 10 December 2016 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Paterson DL, Swindells S, Mohr J, Brester M, Vergis EN, Squier C, Wagener MM, Singh N. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Annals of Internal Medicine 2000; 133:21-30. Ray N, Harrison JE, Blackburn LA, Martin JN, Deeks SG, Doms RW. Clinical resistance to enfuvirtide does not affect susceptibility of human immunodeficiency virus type 1 to other classes of entry inhibitors. Journal of Virology 2007; 81:3240-3250. Duncan TE, Duncan SC, Strycker LA. An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, 2nd Ed.Routledge: New York, 2013. Khan SA, Chiu G, Dubin JA. Atmospheric concentration of chloroflurocarbons: Addressing the global concern with the longitudinal bent-cable model. Chance 2009; 22:8-17. Hall CB, Ying J, Kuo L, Lipton RB. Bayesian and profile likelihood change point methods for modeling cognitive function over time. Computational Statistics & Data Analysis 2003; 42:91-109. Hoeksma JB, Kelderman H. On growth curves and mixture models. Infant and Child Development 2006; 15:627-634. Azzalini A, Capitanio A.. Statistical applications of the multivariate skew normal distributions. Journal of Royal Statistical Society, Series B 1999; 61:579-602. Zhao L, Feng D, Neelon B, Buyse M. Evaluation of treatment efficacy using a Bayesian mixture piecewise linear model of longitudinal biomarkers. Statistics in Medicine 2015; 34(10):1733-1746. Muthén B, Asparouhov T. Growth mixture modeling with non-normal distributions. Statistics in Medicine 2014; 34(6):1041-1058. Lorimer MF, Kiermeier A. Analysing microbiologicaldata: Tobit or not Tobit?International Journal of Food Microbilogy 2007; 116:313-318. Lederman MM, Connick E, Landay A, Kuritzkes DR, Spritzler J, Clair SM, Kotzin BL, Fox L, Chiozzi MH, Leonard JM, Rousseau F, Wade M, Roe JD, Martinez A, Kessler H. Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS Clinical Trials Group Protocol 315. Journal of Infectious Diseases 1998; 178:70-79. Tobin J. Estimation of relationships for limited dependent variables. Econometrica 1958; 26:24-36. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - a Bayesian modelling framework: concepts, structure, an extensibility. Statistics and Computing 2000; 10:325-337. Ntzoufras I. Bayesian Modeling using WinBUGS. John Wiley: New Jersey, 2009. Hedeker D, Gibbons RD. Longitudinal Data Analysis. Wiley: New York, 2006. Sahu SK, Dey DK, Branco MD. A new class of multivariate skew distributions with applications to Bayesian regression models. The Canadian Journal of Statistics 2003; 31:129-150. Gelman A, John B, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Chaoman and Hall/CRC: New York, 2004. Garre FG, Zwinderman AH, Geskus RB, Sijpkens YWJ. A Joint latent class C changepoint model to improve the prediction of time to graft failure. Journal of the Royal Statistical Society. Series A (Statistics in Society) 2008; 171:299-308. Slate EH, Turnbull BW. (2000). Statistical models for longitudinal biomarkers of disease onset. Statistics in Medicine 2000; 19(4):617-37. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373:123-126. Kiuchi AS, Hartigan JA, Holford TR, Rubinstein P, Stevens CE. Change points in the series of T4 counts prior to aids. Biometrics 1995; 51:236-248. Tishler A, Zang I. A new maximum likelihood algorithm for piecewise regression. Journal of the American Statistical Association 1981; 76:980-987. Arellano-Valle RB, Genton MG. On fundamental skew distributions. Journal of Multivariate Analysis 2005; 96:93-116. Dagne GA, Huang Y. Bayesian semiparametric mixture Tobit models with left-censoring, skewness and covariate measurement error. Statistics in Medicine 2013; 32:3881-3898. Chiua G, Lockharta R, Routledgea R. Bent-cable regression theory and applications. Journal of the American Statistical Association 2006; 101:542-553. Verbeke G, Lesaffre E. A linear mixed-effects model with heterogeneity in random-effects population. Journal of the American Statistical Association 1996; 91:736-743. McLachlan GJ, Peel D. Finite Mixture Models. Wiley: New York, 2000. Thisted RA. Elements of Statistical Computing, Numerical Computation. Chapman and Hall: New York, 1988. Jung T, Wickrama KAS. An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass 2008; 2:302-317. Pauler DK, Laird NM. A mixture model for longitudinal data with application to assessment of noncompliance. Journal of the Royal Statistical Society: Series A 2000; 56:464-472. Genton MG. Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality. Chapman & Hall / CRC: Boca Raton, FL, 2004. Arabmazar A, Schmidt P. An Investigation of the robustness of the Tobit estimator to non-Normality. Econometrica 1982; 50:1055-1064. 2015; 34 2009; 22 1995; 51 1982; 50 2006; 15 2009 2006 2004 2000; 133 1996; 91 1999; 61 1995; 373 2008; 2 1998; 178 2003; 31 2000; 19 2007; 116 2000 2013; 32 2000; 56 1958; 26 2000; 10 2005; 96 2007; 81 2013 1981; 76 2006; 101 2003; 42 2014; 34 2008; 171 1988 Verbeke G (e_1_2_6_22_1) 1996; 91 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_30_1 Khan SA (e_1_2_6_13_1) 2009; 22 Gelman A (e_1_2_6_33_1) 2004 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 Pauler DK (e_1_2_6_14_1) 2000; 56 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Thisted RA (e_1_2_6_31_1) 1988 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Lederman MM, Connick E, Landay A, Kuritzkes DR, Spritzler J, Clair SM, Kotzin BL, Fox L, Chiozzi MH, Leonard JM, Rousseau F, Wade M, Roe JD, Martinez A, Kessler H. Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS Clinical Trials Group Protocol 315. Journal of Infectious Diseases 1998; 178:70-79. – reference: Ray N, Harrison JE, Blackburn LA, Martin JN, Deeks SG, Doms RW. Clinical resistance to enfuvirtide does not affect susceptibility of human immunodeficiency virus type 1 to other classes of entry inhibitors. Journal of Virology 2007; 81:3240-3250. – reference: Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - a Bayesian modelling framework: concepts, structure, an extensibility. Statistics and Computing 2000; 10:325-337. – reference: Hedeker D, Gibbons RD. Longitudinal Data Analysis. Wiley: New York, 2006. – reference: Chiua G, Lockharta R, Routledgea R. Bent-cable regression theory and applications. Journal of the American Statistical Association 2006; 101:542-553. – reference: Lorimer MF, Kiermeier A. Analysing microbiologicaldata: Tobit or not Tobit?International Journal of Food Microbilogy 2007; 116:313-318. – reference: Kiuchi AS, Hartigan JA, Holford TR, Rubinstein P, Stevens CE. Change points in the series of T4 counts prior to aids. Biometrics 1995; 51:236-248. – reference: Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373:123-126. – reference: Muthén B, Asparouhov T. Growth mixture modeling with non-normal distributions. Statistics in Medicine 2014; 34(6):1041-1058. – reference: Tishler A, Zang I. A new maximum likelihood algorithm for piecewise regression. Journal of the American Statistical Association 1981; 76:980-987. – reference: Gelman A, John B, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Chaoman and Hall/CRC: New York, 2004. – reference: Khan SA, Chiu G, Dubin JA. Atmospheric concentration of chloroflurocarbons: Addressing the global concern with the longitudinal bent-cable model. Chance 2009; 22:8-17. – reference: Dagne GA, Huang Y. Bayesian semiparametric mixture Tobit models with left-censoring, skewness and covariate measurement error. Statistics in Medicine 2013; 32:3881-3898. – reference: Zhao L, Feng D, Neelon B, Buyse M. Evaluation of treatment efficacy using a Bayesian mixture piecewise linear model of longitudinal biomarkers. Statistics in Medicine 2015; 34(10):1733-1746. – reference: Arabmazar A, Schmidt P. An Investigation of the robustness of the Tobit estimator to non-Normality. Econometrica 1982; 50:1055-1064. – reference: Ntzoufras I. Bayesian Modeling using WinBUGS. John Wiley: New Jersey, 2009. – reference: Jung T, Wickrama KAS. An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass 2008; 2:302-317. – reference: Arellano-Valle RB, Genton MG. On fundamental skew distributions. Journal of Multivariate Analysis 2005; 96:93-116. – reference: Hoeksma JB, Kelderman H. On growth curves and mixture models. Infant and Child Development 2006; 15:627-634. – reference: Garre FG, Zwinderman AH, Geskus RB, Sijpkens YWJ. A Joint latent class C changepoint model to improve the prediction of time to graft failure. Journal of the Royal Statistical Society. Series A (Statistics in Society) 2008; 171:299-308. – reference: Genton MG. Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality. Chapman & Hall / CRC: Boca Raton, FL, 2004. – reference: Duncan TE, Duncan SC, Strycker LA. An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, 2nd Ed.Routledge: New York, 2013. – reference: Verbeke G, Lesaffre E. A linear mixed-effects model with heterogeneity in random-effects population. Journal of the American Statistical Association 1996; 91:736-743. – reference: Slate EH, Turnbull BW. (2000). Statistical models for longitudinal biomarkers of disease onset. Statistics in Medicine 2000; 19(4):617-37. – reference: Pauler DK, Laird NM. A mixture model for longitudinal data with application to assessment of noncompliance. Journal of the Royal Statistical Society: Series A 2000; 56:464-472. – reference: Tobin J. Estimation of relationships for limited dependent variables. Econometrica 1958; 26:24-36. – reference: Azzalini A, Capitanio A.. Statistical applications of the multivariate skew normal distributions. Journal of Royal Statistical Society, Series B 1999; 61:579-602. – reference: McLachlan GJ, Peel D. Finite Mixture Models. Wiley: New York, 2000. – reference: Sahu SK, Dey DK, Branco MD. A new class of multivariate skew distributions with applications to Bayesian regression models. The Canadian Journal of Statistics 2003; 31:129-150. – reference: Hall CB, Ying J, Kuo L, Lipton RB. Bayesian and profile likelihood change point methods for modeling cognitive function over time. Computational Statistics & Data Analysis 2003; 42:91-109. – reference: Thisted RA. Elements of Statistical Computing, Numerical Computation. Chapman and Hall: New York, 1988. – reference: Paterson DL, Swindells S, Mohr J, Brester M, Vergis EN, Squier C, Wagener MM, Singh N. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Annals of Internal Medicine 2000; 133:21-30. – year: 2009 – volume: 50 start-page: 1055 year: 1982 end-page: 1064 article-title: An Investigation of the robustness of the Tobit estimator to non‐Normality publication-title: Econometrica – volume: 76 start-page: 980 year: 1981 end-page: 987 article-title: A new maximum likelihood algorithm for piecewise regression publication-title: Journal of the American Statistical Association – volume: 34 start-page: 1733 issue: 10 year: 2015 end-page: 1746 article-title: Evaluation of treatment efficacy using a Bayesian mixture piecewise linear model of longitudinal biomarkers publication-title: Statistics in Medicine – volume: 56 start-page: 464 year: 2000 end-page: 472 article-title: A mixture model for longitudinal data with application to assessment of noncompliance publication-title: Journal of the Royal Statistical Society: Series A – volume: 96 start-page: 93 year: 2005 end-page: 116 article-title: On fundamental skew distributions publication-title: Journal of Multivariate Analysis – year: 2000 – volume: 101 start-page: 542 year: 2006 end-page: 553 article-title: Bent‐cable regression theory and applications publication-title: Journal of the American Statistical Association – volume: 178 start-page: 70 year: 1998 end-page: 79 article-title: Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS Clinical Trials Group Protocol 315 publication-title: Journal of Infectious Diseases – volume: 31 start-page: 129 year: 2003 end-page: 150 article-title: A new class of multivariate skew distributions with applications to Bayesian regression models publication-title: The Canadian Journal of Statistics – volume: 32 start-page: 3881 year: 2013 end-page: 3898 article-title: Bayesian semiparametric mixture Tobit models with left‐censoring, skewness and covariate measurement error publication-title: Statistics in Medicine – volume: 373 start-page: 123 year: 1995 end-page: 126 article-title: Rapid turnover of plasma virions and CD4 lymphocytes in HIV‐1 infection publication-title: Nature – start-page: 345 year: 2004 end-page: 368 – volume: 116 start-page: 313 year: 2007 end-page: 318 article-title: Analysing microbiologicaldata: Tobit or not Tobit? publication-title: International Journal of Food Microbilogy – volume: 15 start-page: 627 year: 2006 end-page: 634 article-title: On growth curves and mixture models publication-title: Infant and Child Development – volume: 61 start-page: 579 year: 1999 end-page: 602 article-title: Statistical applications of the multivariate skew normal distributions publication-title: Journal of Royal Statistical Society, Series B – volume: 171 start-page: 299 year: 2008 end-page: 308 article-title: A Joint latent class C changepoint model to improve the prediction of time to graft failure publication-title: Journal of the Royal Statistical Society. Series A (Statistics in Society) – volume: 42 start-page: 91 year: 2003 end-page: 109 article-title: Bayesian and profile likelihood change point methods for modeling cognitive function over time publication-title: Computational Statistics & Data Analysis – volume: 34 start-page: 1041 issue: 6 year: 2014 end-page: 1058 article-title: Growth mixture modeling with non‐normal distributions publication-title: Statistics in Medicine – volume: 2 start-page: 302 year: 2008 end-page: 317 article-title: An introduction to latent class growth analysis and growth mixture modeling publication-title: Social and Personality Psychology Compass – volume: 26 start-page: 24 year: 1958 end-page: 36 article-title: Estimation of relationships for limited dependent variables publication-title: Econometrica – year: 1988 – year: 2006 – volume: 51 start-page: 236 year: 1995 end-page: 248 article-title: Change points in the series of T4 counts prior to aids publication-title: Biometrics – year: 2004 – volume: 10 start-page: 325 year: 2000 end-page: 337 article-title: WinBUGS – a Bayesian modelling framework: concepts, structure, an extensibility publication-title: Statistics and Computing – volume: 133 start-page: 21 year: 2000 end-page: 30 article-title: Adherence to protease inhibitor therapy and outcomes in patients with HIV infection publication-title: Annals of Internal Medicine – volume: 81 start-page: 3240 year: 2007 end-page: 3250 article-title: Clinical resistance to enfuvirtide does not affect susceptibility of human immunodeficiency virus type 1 to other classes of entry inhibitors publication-title: Journal of Virology – volume: 91 start-page: 736 year: 1996 end-page: 743 article-title: A linear mixed‐effects model with heterogeneity in random‐effects population publication-title: Journal of the American Statistical Association – volume: 22 start-page: 8 year: 2009 end-page: 17 article-title: Atmospheric concentration of chloroflurocarbons: Addressing the global concern with the longitudinal bent‐cable model publication-title: Chance – volume: 19 start-page: 617 issue: 4 year: 2000 end-page: 37 article-title: (2000). Statistical models for longitudinal biomarkers of disease onset publication-title: Statistics in Medicine – year: 2013 – ident: e_1_2_6_26_1 doi: 10.1111/j.1467-985X.2007.00514.x – ident: e_1_2_6_28_1 doi: 10.1016/j.jmva.2004.10.002 – volume: 56 start-page: 464 year: 2000 ident: e_1_2_6_14_1 article-title: A mixture model for longitudinal data with application to assessment of noncompliance publication-title: Journal of the Royal Statistical Society: Series A – ident: e_1_2_6_27_1 doi: 10.1111/1467-9868.00194 – ident: e_1_2_6_4_1 doi: 10.4324/9780203879962 – ident: e_1_2_6_5_1 doi: 10.1038/373123a0 – volume: 91 start-page: 736 year: 1996 ident: e_1_2_6_22_1 article-title: A linear mixed‐effects model with heterogeneity in random‐effects population publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1996.10476679 – ident: e_1_2_6_10_1 doi: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R – ident: e_1_2_6_12_1 doi: 10.1002/sim.6445 – ident: e_1_2_6_11_1 doi: 10.1016/S0167-9473(02)00148-2 – ident: e_1_2_6_2_1 doi: 10.1002/0471721182 – volume-title: Elements of Statistical Computing, Numerical Computation year: 1988 ident: e_1_2_6_31_1 – ident: e_1_2_6_34_1 doi: 10.1002/9780470434567 – ident: e_1_2_6_18_1 doi: 10.1128/JVI.02413-06 – ident: e_1_2_6_6_1 doi: 10.7326/0003-4819-133-1-200007040-00004 – ident: e_1_2_6_25_1 doi: 10.4135/9781412986311.n19 – ident: e_1_2_6_19_1 doi: 10.2307/1907382 – ident: e_1_2_6_30_1 doi: 10.1086/515591 – ident: e_1_2_6_20_1 doi: 10.2307/1912776 – ident: e_1_2_6_23_1 doi: 10.2307/3316064 – volume: 22 start-page: 8 year: 2009 ident: e_1_2_6_13_1 article-title: Atmospheric concentration of chloroflurocarbons: Addressing the global concern with the longitudinal bent‐cable model publication-title: Chance doi: 10.1080/09332480.2009.10722965 – ident: e_1_2_6_16_1 doi: 10.1002/icd.483 – ident: e_1_2_6_17_1 doi: 10.1002/sim.6388 – ident: e_1_2_6_21_1 doi: 10.1016/j.ijfoodmicro.2007.02.001 – volume-title: Bayesian Data Analysis year: 2004 ident: e_1_2_6_33_1 – ident: e_1_2_6_9_1 doi: 10.2307/2533329 – ident: e_1_2_6_15_1 doi: 10.1111/j.1751-9004.2007.00054.x – ident: e_1_2_6_3_1 – ident: e_1_2_6_7_1 doi: 10.1080/01621459.1981.10477752 – ident: e_1_2_6_29_1 doi: 10.1002/sim.5799 – ident: e_1_2_6_24_1 doi: 10.1201/9780203492000 – ident: e_1_2_6_8_1 doi: 10.1198/016214505000001177 – ident: e_1_2_6_32_1 doi: 10.1023/A:1008929526011 |
SSID | ssj0011527 |
Score | 2.2008572 |
Snippet | This paper presents a new Bayesian methodology for identifying a transition period for the development of drug resistance to antiretroviral drug or therapy in... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5302 |
SubjectTerms | Acquired immune deficiency syndrome Acquired Immunodeficiency Syndrome - virology AIDS Antiretroviral drugs Bayes Theorem Bayesian analysis Bayesian inference change-points Drug resistance HIV Infections Humans Lentivirus Limit of Detection Longitudinal Studies Medical statistics mixed-effects models mixture distribution Models, Statistical Retroviridae skew distribution Viral Load |
Title | Bayesian bent-cable growth mixture tobit models for longitudinal data with skewness and detection limit: application to AIDS studies |
URI | https://api.istex.fr/ark:/67375/WNG-XW26DG3D-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7061 https://www.ncbi.nlm.nih.gov/pubmed/27503829 https://www.proquest.com/docview/1838985616 https://www.proquest.com/docview/1836727664 https://www.proquest.com/docview/1872834129 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQK6FKiJYFykJBRkK9ZZuH42S5lS59IG2FKFVX4mCNEwdW22ZRkxWFEyfO_Y39JczYSaAIEOKUg53Er_F89sx8w9izIM4QF_iRF0IkPAECvGGhhQd5JrRG_exrih0eH8r9Y_FqEk8ar0qKhXH8EN2FG0mG3a9JwEFXWz9IQ6vp2SDx7cmHXLUID73pmKOCNlsrWShlEsQt76wfbrUvXtNEyzSoF7-DmddRq1U7u6vsXdtg520yGyxqPci-_MLl-H89WmO3GzTKt93yucNumLLHbo4be3uP3XK3etwFK_XYCmFTR-18l317AZ8NxWByjZrr6utlRmFY_D0e7OsP_Gx6QcYJjhvGtOY24U7FESHz0zmlSFrklI6Lk4Mqp7tgXs3MJ9p2OZQ5z01tXcRKfkoBWM_5T3Z2_CLfPhgd8cq5QN5jx7sv3-7se01aBy8jMjQv8wMDqQ9ZKoxBxSl8kAgb4yxKCgQ3IjRaxKlJdSHAT0CmwyQUUQHEvR_GIKP7bKmcl-YB40MRISLLIYxMIAwUAFpLafIcUlT-QdJnT9spVh8de4dyPM2hwtFWNNp9tmnnvqsA5zPydktidXK4pyYnoRztRSP1us822sWhGkGvFO6I6TBFECrxX10xiijZXaA084WtQ_ZuKcXf6iQI9ASirz5bdwuvaxBR8EcplWza5fPHrqijgzE9H_5rxUdsBQGgTcQU-BtsqT5fmMcIsmr9xIrTdxmvJKM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VrQSVEI_wChRYJNSbUz_WawdOhdAm0ESItmoOSKtZew1RWgfVjiicOHHmN_JLmLHjQBEgxMmHXdv7mp1vd2a-AXjkhQnhAjdwfAykI1Gi082MdDBNpDGkn13DscPDkeofyhfjcLwCT5pYmJofYnnhxpJR7dcs4HwhvfWDNbSYnHQil48-a5zQm9MX9F4vuaO8Jl8r2yhV5IUN86zrbzVvntNFazysZ78Dmudxa6V4dq7Am6bJtb_JtDMvTSf59Aub43_26SpcXgBSsV2voGuwYvMWXBguTO4tuFRf7Ik6XqkF6wxPa3bn6_DlKX60HIYpDCmvb5-_JhyJJd7S2b58J04mZ2yfELRnTEpR5dwpBIFkcTzjLEnzlDNyCfZRFXwdLIqp_cA7r8A8FaktKy-xXBxzDNZj8ZOpnb4otge9fVHUXpA34HDn-cGzvrPI7OAkzIfmJK5nMXYxiaW1pDuli4qQY5gEUUb4RvrWyDC2sckkuhGquBv5MsiQ6ff9EFVwE1bzWW5vg-jKgEBZin5gPWkxQzRGKZumGJP-96I2PGzmWL-vCTx0TdXsaxptzaPdhs1q8pcV8HTKDm9RqI9Gu3p85KvebtDTr9qw0awOvZD1QtOmGHdjwqGK_rUsJill0wvmdjav6rDJWyn5tzoRYT1JAKwNt-qVt2wQs_AHMZdsVuvnj13R-4MhP-_8a8UHcLF_MNzTe4PRy7uwTniwysvkuRuwWp7O7T3CXKW5X8nWdz1FKL0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQK1WVEI_ltVDASKi3bPNwnCy3wrLtAruqKFVX4mCNEwdW22arJisKJ06c-Y39JZ2Jk0ARIMQpBzuJX-P57Jn5hrGnXpggLnADx4dAOAIEOP1MCwfSRGiN-tnVFDs8nsjdA_FqGk5rr0qKhbH8EO2FG0lGtV-TgJ-k2dYP0tBidtyLXDr5rAqJskKA6G1LHeU16VrJRCkjL2yIZ11_q3nzkipapVE9-x3OvAxbK70zvM7eNy227ibz3rLUveTLL2SO_9elG-xaDUf5tl0_N9kVk3fY2rg2uHfYVXutx220UoetEzi13M632Lfn8NlQECbXqLrOv35PKA6Lf8CTffmRH8_OyDrBcceYlbzKuFNwhMj8aEE5kpYp5ePi5KHK6TKYF3PzifZdDnnKU1NWPmI5P6IIrGf8J0M7fpFvjwb7vLA-kLfZwfDluxe7Tp3XwUmIDc1JXM9A7EISC2NQcwoXJOLGMAmiDNGN8I0WYWxinQlwI5BxP_JFkAGR7_shyOAOW8kXubnHeF8ECMlS8APjCQMZgNZSmjSFGLW_F3XZk2aK1Yml71CWqNlXONqKRrvLNqu5byvA6Zzc3aJQHU521PTQl4OdYKD2umyjWRyqlvRC4ZYY92NEoRL_1RajjJLhBXKzWFZ1yOAtpfhbnQiRnkD41WV37cJrG0Qc_EFMJZvV8vljV9T-aEzP-_9a8TFb2xsM1ZvR5PUDto5gsErK5LkbbKU8XZqHCLhK_aiSrAvKsCd1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+bent-cable+growth+mixture+tobit+models+for+longitudinal+data+with+skewness+and+detection+limit%3A+application+to+AIDS+studies&rft.jtitle=Statistics+in+medicine&rft.au=Dagne%2C+Getachew+A&rft.date=2016-12-10&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=35&rft.issue=28&rft.spage=5302&rft.epage=5302&rft_id=info:doi/10.1002%2Fsim.7061&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |