Solution‐Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges
In the last few years, organometal halide perovskites (OHPs) have emerged as a promising candidate for photovoltaic (PV) applications. A certified efficiency as high as 23.7% has been achieved, which is comparable with most of the well‐established PV technologies. Their good solubility due to the io...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 47 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the last few years, organometal halide perovskites (OHPs) have emerged as a promising candidate for photovoltaic (PV) applications. A certified efficiency as high as 23.7% has been achieved, which is comparable with most of the well‐established PV technologies. Their good solubility due to the ionic nature enables versatile low‐temperature solution processes, including blade coating, slot‐die coating, etc., most of which are scalable and compatible with roll‐to‐roll large‐scale manufacturing processes. The low cost, high efficiency, and facile processable features make perovskite solar cells (PSCs) a very competitive PV technology. Despite the great progress, long‐term durability concerns, toxicity issues of both materials and manufacturing process, and lack of robust high‐throughput production technology for fabricating efficient large‐area modules are major obstacles toward commercialization. In this review, the recent progress of commercially available process of PSCs is surveyed, the underlying determinants for upscaling high‐quality PSCs from hydrodynamic characteristics and crystallization thermodynamic mechanism are identified, the influence of external stress factors on stability of PSCs and intrinsic instability mechanism in OHPs themselves is revealed, and the environmental impact and sustainable development of PSC technology are analyzed. Strategies and opportunities for large‐scale production of PSCs are suggested to promote the development of PSCs toward commercialization.
Perovskite solar cells (PSCs) have emerged as a promising candidate for photovoltaic applications. This review summarizes the recent progress and discusses the obstacles for PSCs toward industrial production, including upscaling of high‐quality perovskites for efficient PSC modules, stability issue of PSCs, Pb substitution, and greener manufacturing process, which can promote the development of PSCs toward commercialization. |
---|---|
AbstractList | In the last few years, organometal halide perovskites (OHPs) have emerged as a promising candidate for photovoltaic (PV) applications. A certified efficiency as high as 23.7% has been achieved, which is comparable with most of the well‐established PV technologies. Their good solubility due to the ionic nature enables versatile low‐temperature solution processes, including blade coating, slot‐die coating, etc., most of which are scalable and compatible with roll‐to‐roll large‐scale manufacturing processes. The low cost, high efficiency, and facile processable features make perovskite solar cells (PSCs) a very competitive PV technology. Despite the great progress, long‐term durability concerns, toxicity issues of both materials and manufacturing process, and lack of robust high‐throughput production technology for fabricating efficient large‐area modules are major obstacles toward commercialization. In this review, the recent progress of commercially available process of PSCs is surveyed, the underlying determinants for upscaling high‐quality PSCs from hydrodynamic characteristics and crystallization thermodynamic mechanism are identified, the influence of external stress factors on stability of PSCs and intrinsic instability mechanism in OHPs themselves is revealed, and the environmental impact and sustainable development of PSC technology are analyzed. Strategies and opportunities for large‐scale production of PSCs are suggested to promote the development of PSCs toward commercialization.
Perovskite solar cells (PSCs) have emerged as a promising candidate for photovoltaic applications. This review summarizes the recent progress and discusses the obstacles for PSCs toward industrial production, including upscaling of high‐quality perovskites for efficient PSC modules, stability issue of PSCs, Pb substitution, and greener manufacturing process, which can promote the development of PSCs toward commercialization. In the last few years, organometal halide perovskites (OHPs) have emerged as a promising candidate for photovoltaic (PV) applications. A certified efficiency as high as 23.7% has been achieved, which is comparable with most of the well‐established PV technologies. Their good solubility due to the ionic nature enables versatile low‐temperature solution processes, including blade coating, slot‐die coating, etc., most of which are scalable and compatible with roll‐to‐roll large‐scale manufacturing processes. The low cost, high efficiency, and facile processable features make perovskite solar cells (PSCs) a very competitive PV technology. Despite the great progress, long‐term durability concerns, toxicity issues of both materials and manufacturing process, and lack of robust high‐throughput production technology for fabricating efficient large‐area modules are major obstacles toward commercialization. In this review, the recent progress of commercially available process of PSCs is surveyed, the underlying determinants for upscaling high‐quality PSCs from hydrodynamic characteristics and crystallization thermodynamic mechanism are identified, the influence of external stress factors on stability of PSCs and intrinsic instability mechanism in OHPs themselves is revealed, and the environmental impact and sustainable development of PSC technology are analyzed. Strategies and opportunities for large‐scale production of PSCs are suggested to promote the development of PSCs toward commercialization. |
Author | Zheng, Xiaojia Wang, Peng Zhang, Wen‐Hua Ma, Qingshan Wu, Yihui Cai, Bing |
Author_xml | – sequence: 1 givenname: Peng surname: Wang fullname: Wang, Peng organization: China Academy of Engineering Physics – sequence: 2 givenname: Yihui surname: Wu fullname: Wu, Yihui organization: China Academy of Engineering Physics – sequence: 3 givenname: Bing surname: Cai fullname: Cai, Bing organization: China Academy of Engineering Physics – sequence: 4 givenname: Qingshan surname: Ma fullname: Ma, Qingshan organization: China Academy of Engineering Physics – sequence: 5 givenname: Xiaojia orcidid: 0000-0002-3963-4073 surname: Zheng fullname: Zheng, Xiaojia email: xiaojia@caep.cn organization: China Academy of Engineering Physics – sequence: 6 givenname: Wen‐Hua orcidid: 0000-0002-6676-6231 surname: Zhang fullname: Zhang, Wen‐Hua email: whzhang@caep.cn organization: China Academy of Engineering Physics |
BookMark | eNqFkM9KAzEQxoMo2Favnhc8b032T7LrraxWhYoFFbyF2W1SU7Obmmwt9eQj-Iw-iamVCoJ4moH5ft_MfF2025hGIHREcJ9gHJ3ARNb9CJMMM0rJDuoQSmgY4yjb3fbkYR91nZthTBiLkw7it0YvWmWaj7f3sTWVcA5KLYKxsObFPalWBF4BNiiE1i5ozRLsJChMXQtbKdDqFdb0aeDhqfV0AI2fP4LWopkKd4D2JGgnDr9rD90Pz--Ky3B0c3FVDEZhlaSEhHFUpkwATcqYSSL9oTJljCSMsqgsU4FpTliZVwnILE_jGChNJwlmGchUSoC4h443vnNrnhfCtXxmFrbxK3kUk9SbJRh7VbJRVdY4Z4XklWq_HmgtKM0J5uso-TpKvo3SY_1f2NyqGuzqbyDfAEulxeofNR-cDa9_2E_qs4rQ |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_3c00824 crossref_primary_10_1021_acs_chemmater_3c02694 crossref_primary_10_1016_j_nanoen_2022_108154 crossref_primary_10_1002_aenm_201902253 crossref_primary_10_1007_s11771_020_4353_7 crossref_primary_10_1021_acsenergylett_0c00781 crossref_primary_10_1021_acs_jpcc_1c07795 crossref_primary_10_35848_1882_0786_acb893 crossref_primary_10_1016_j_jhazmat_2021_127848 crossref_primary_10_1007_s12274_020_2805_x crossref_primary_10_3390_coatings14121564 crossref_primary_10_1002_cssc_201902488 crossref_primary_10_1002_aesr_202300275 crossref_primary_10_1002_cjoc_202100672 crossref_primary_10_1021_acsaem_1c01600 crossref_primary_10_1002_solr_201900200 crossref_primary_10_1002_solr_202101098 crossref_primary_10_1021_acs_chemmater_4c02946 crossref_primary_10_1021_acs_jpcc_1c08811 crossref_primary_10_1126_science_aba2412 crossref_primary_10_1039_D0NA00852D crossref_primary_10_1016_j_jechem_2021_02_004 crossref_primary_10_1002_solr_202300458 crossref_primary_10_1007_s40843_022_2199_5 crossref_primary_10_1016_j_solener_2023_112040 crossref_primary_10_1021_acsami_0c18920 crossref_primary_10_1088_1674_4926_42_11_112202 crossref_primary_10_1002_cctc_201901856 crossref_primary_10_1093_micmic_ozad017 crossref_primary_10_1002_smll_201903613 crossref_primary_10_1002_admt_202201387 crossref_primary_10_1002_adom_202100390 crossref_primary_10_1002_adts_202500115 crossref_primary_10_1002_solr_202200720 crossref_primary_10_1039_C9CE00724E crossref_primary_10_1021_acsami_3c10126 crossref_primary_10_1016_j_orgel_2021_106378 crossref_primary_10_1016_j_mtphys_2022_100624 crossref_primary_10_1021_acsaem_3c01495 crossref_primary_10_1186_s11671_019_3120_x crossref_primary_10_1016_j_jechem_2022_02_018 crossref_primary_10_3389_fchem_2022_842924 crossref_primary_10_1016_j_jcis_2021_09_117 crossref_primary_10_1016_j_solener_2020_10_035 crossref_primary_10_1021_acs_jpclett_3c00522 crossref_primary_10_1007_s10853_021_06014_w crossref_primary_10_1016_j_solener_2024_112454 crossref_primary_10_1021_acsami_1c02626 crossref_primary_10_1002_aenm_202101219 crossref_primary_10_1007_s10854_023_11197_w crossref_primary_10_1002_adom_201901494 crossref_primary_10_1002_adfm_202206703 crossref_primary_10_1007_s12598_020_01595_y crossref_primary_10_1039_D4TC03961K crossref_primary_10_1007_s11664_024_11658_w crossref_primary_10_1016_j_jphotochem_2025_116337 crossref_primary_10_1038_s41467_024_48877_y crossref_primary_10_1016_j_jechem_2020_09_036 crossref_primary_10_1002_smll_202002201 crossref_primary_10_1002_adfm_202208841 crossref_primary_10_1021_acs_chemrev_3c00214 crossref_primary_10_1039_D4NR03140G crossref_primary_10_1016_j_cej_2020_126992 crossref_primary_10_1002_solr_202100249 crossref_primary_10_1021_acssuschemeng_0c04289 crossref_primary_10_1039_D1TA06247F crossref_primary_10_1186_s11671_019_3134_4 crossref_primary_10_1039_D4CC05454G crossref_primary_10_1002_adom_202100524 crossref_primary_10_1002_solr_202400262 crossref_primary_10_1002_solr_202300436 crossref_primary_10_1007_s10853_020_04883_1 crossref_primary_10_3390_molecules29092104 crossref_primary_10_1002_slct_202300342 crossref_primary_10_1021_jacs_0c03004 crossref_primary_10_1021_acsami_1c23832 crossref_primary_10_1002_admi_202001509 crossref_primary_10_1007_s40820_023_01083_9 crossref_primary_10_1039_D2YA00075J crossref_primary_10_1002_adma_202103078 crossref_primary_10_1186_s11671_020_03338_5 crossref_primary_10_1016_j_nanoen_2019_104249 crossref_primary_10_1021_jacs_1c01727 crossref_primary_10_1021_acsami_1c11237 crossref_primary_10_1021_acsami_9b15166 crossref_primary_10_1039_D1TA01763B crossref_primary_10_1088_1361_648X_ac2271 crossref_primary_10_1002_pssa_202300782 crossref_primary_10_1016_j_cej_2022_137164 crossref_primary_10_1021_acsenergylett_4c01118 crossref_primary_10_1007_s40042_022_00672_y crossref_primary_10_1021_acs_jpcc_0c09443 crossref_primary_10_3390_ijms232113375 crossref_primary_10_1016_j_nanoen_2019_06_049 crossref_primary_10_3390_molecules26185620 crossref_primary_10_1007_s10854_021_07512_y crossref_primary_10_1016_j_apsusc_2022_152826 crossref_primary_10_1039_D0TC05010E crossref_primary_10_1016_j_cej_2022_138017 crossref_primary_10_1016_j_orgel_2019_105573 crossref_primary_10_1016_j_jechem_2021_11_006 crossref_primary_10_1039_D3QM00515A crossref_primary_10_1002_cssc_202101475 crossref_primary_10_1039_D2EE03082A crossref_primary_10_1002_aenm_202201490 crossref_primary_10_1002_anie_202218429 crossref_primary_10_1039_D1CS01157J crossref_primary_10_1016_j_jpowsour_2020_228965 crossref_primary_10_1002_solr_202300817 crossref_primary_10_1016_j_jhazmat_2023_130829 crossref_primary_10_1016_j_infrared_2024_105306 crossref_primary_10_1016_j_isci_2019_100762 crossref_primary_10_1016_j_jechem_2021_05_019 crossref_primary_10_1021_acsami_3c09109 crossref_primary_10_3390_molecules29204976 crossref_primary_10_1007_s42247_022_00364_0 crossref_primary_10_1002_er_7270 crossref_primary_10_1007_s40843_023_2670_6 crossref_primary_10_1002_EXP_20240121 crossref_primary_10_3390_nanoenergyadv1010002 crossref_primary_10_1021_acsami_3c12101 crossref_primary_10_1039_D1SE01721G crossref_primary_10_1080_09506608_2022_2077030 crossref_primary_10_1002_aenm_202102730 crossref_primary_10_3390_coatings13101673 crossref_primary_10_1002_eem2_12249 crossref_primary_10_1039_D1TA07090H crossref_primary_10_1021_acs_chemmater_0c02269 crossref_primary_10_1002_aenm_202300025 crossref_primary_10_1002_adma_202408036 crossref_primary_10_1002_tcr_202200067 crossref_primary_10_1039_D1TA10313J crossref_primary_10_1021_acsorginorgau_4c00093 crossref_primary_10_1016_j_commatsci_2023_112215 crossref_primary_10_1021_acsami_0c09485 crossref_primary_10_1002_adma_202005410 crossref_primary_10_1007_s42765_022_00222_y crossref_primary_10_26599_EMD_2024_9370038 crossref_primary_10_1002_adfm_202416330 crossref_primary_10_1002_ange_201915928 crossref_primary_10_1039_D4MH00957F crossref_primary_10_1021_acsenergylett_4c02943 crossref_primary_10_1088_1361_6528_acc1ec crossref_primary_10_1016_j_cplett_2022_140084 crossref_primary_10_1016_j_jechem_2020_08_041 crossref_primary_10_1021_acsenergylett_9b01396 crossref_primary_10_1038_s41467_023_41931_1 crossref_primary_10_1109_JPHOTOV_2021_3067817 crossref_primary_10_1002_solr_202200932 crossref_primary_10_1002_advs_202308901 crossref_primary_10_1038_s43246_024_00516_1 crossref_primary_10_1021_acsami_4c13114 crossref_primary_10_1002_adhm_202302721 crossref_primary_10_1002_ente_202100204 crossref_primary_10_1002_pssa_202300525 crossref_primary_10_1016_j_molstruc_2024_138574 crossref_primary_10_1039_D3EE03511E crossref_primary_10_1002_anie_201915928 crossref_primary_10_1016_j_materresbull_2024_112707 crossref_primary_10_1016_j_solener_2024_113172 crossref_primary_10_1039_D0TA12458C crossref_primary_10_1021_acsaom_3c00002 crossref_primary_10_1002_solr_202000599 crossref_primary_10_1016_j_solener_2023_112185 crossref_primary_10_1039_D0SC06629J crossref_primary_10_1039_D4TA08802F crossref_primary_10_1002_adma_202205143 crossref_primary_10_1002_aenm_202400582 crossref_primary_10_1002_adfm_202310404 crossref_primary_10_1088_1361_6633_ac4be9 crossref_primary_10_20517_jmi_2024_10 crossref_primary_10_1002_er_8054 crossref_primary_10_1002_jccs_202300326 crossref_primary_10_1016_j_jpcs_2023_111596 crossref_primary_10_1002_ange_202218429 |
Cites_doi | 10.7567/APEX.6.076503 10.1038/s41570-017-0095 10.1109/JPHOTOV.2015.2416913 10.1039/C6EE02980A 10.1038/nphoton.2014.134 10.1038/srep00591 10.1038/nenergy.2016.177 10.1021/acsenergylett.8b00871 10.1039/c3ta10518k 10.1126/science.aat8235 10.1038/nature12340 10.1126/science.aam7092 10.1021/acsnano.6b02613 10.1002/adma.201804028 10.1002/adma.201701440 10.1039/C5SC03569D 10.1021/acsenergylett.7b01167 10.1002/aenm.201800177 10.1002/aenm.201802139 10.1021/nl5012992 10.1021/ja508758k 10.1039/C5EE02965A 10.1021/acs.chemrev.5b00715 10.1002/pip.2421 10.1021/jz5011169 10.1039/C5EE00615E 10.1039/C5EE02925B 10.1021/acsnano.6b01535 10.1039/C5TA02306H 10.1021/jacs.6b00142 10.1021/acsenergylett.6b00215 10.1002/solr.201700180 10.1002/aenm.201700576 10.1002/aenm.201702714 10.1002/adma.201600265 10.1002/anie.201504379 10.1038/s41467-018-04029-7 10.1021/acs.jpclett.6b00215 10.1021/acsami.8b02624 10.1021/acs.jpclett.7b01952 10.1002/pssb.200304296 10.1002/smll.201802385 10.1039/C6EE00030D 10.1039/C5TA00190K 10.1021/acsenergylett.8b01382 10.1039/C8EE02284D 10.1039/c4ta00379a 10.1021/jacs.5b03796 10.1002/solr.201800052 10.1002/adfm.201102284 10.1038/natrevmats.2017.42 10.1021/acsenergylett.6b00697 10.1038/nnano.2015.90 10.1039/C7EE02564E 10.1002/adma.201707166 10.1002/aenm.201700749 10.1016/j.joule.2017.07.013 10.1021/acsenergylett.6b00002 10.1021/acs.jpcc.8b02163 10.1039/C4NR04007D 10.3390/photonics2041139 10.1021/acsenergylett.6b00013 10.1016/j.nanoen.2018.03.047 10.1021/acs.jpclett.5b00480 10.1038/nenergy.2017.135 10.1016/j.susc.2006.07.040 10.1002/anie.201603608 10.1039/C4EE02539C 10.1039/C5TA06398A 10.1038/ncomms16045 10.1038/nphoton.2014.82 10.1002/solr.201700213 10.1016/j.nanoen.2015.05.027 10.1002/anie.201405334 10.1021/acs.chemmater.6b00711 10.1039/C4EE02465F 10.1002/admi.201800499 10.1002/anie.201406466 10.1002/adma.201706246 10.1126/sciadv.1700841 10.1039/C4EE00965G 10.1016/j.joule.2018.04.011 10.1021/cm404006p 10.1021/nn506864k 10.1126/sciadv.aao5616 10.1126/science.aag2700 10.1002/adfm.201706923 10.1038/ncomms4586 10.1557/mrs.2015.177 10.1039/C5TA03990H 10.1038/nmat4014 10.1039/C5TA07957H 10.1002/solr.201700048 10.1038/s41467-018-07099-9 10.1039/C6TA04685A 10.1039/C7EE01145H 10.1002/adma.201501978 10.1063/1.4914179 10.1002/aenm.201702762 10.1021/acs.jpclett.5b02229 10.1021/ja411014k 10.1021/jp411112k 10.1021/jz500833z 10.1039/C5NR08658B 10.1038/nchem.2324 10.1039/C4EE01076K 10.1038/353737a0 10.1021/acs.jpclett.5b01432 10.1126/science.aad1015 10.1126/science.aai9081 10.1002/pip.2978 10.1038/nmat4572 10.1002/adma.201803428 10.1038/s41467-018-04636-4 10.1002/adfm.201401658 10.1039/C5PY00431D 10.1016/j.synthmet.2015.07.013 10.1039/C4EE02977A 10.1126/science.aaa9272 10.1002/adma.201404598 10.1016/j.joule.2018.01.009 10.1126/science.aam6620 10.1021/acsenergylett.6b00341 10.1002/aenm.201601353 10.1038/ncomms3885 10.1021/acs.nanolett.6b00635 10.1021/cm502468k 10.1002/adma.201800544 10.1021/jacs.5b11740 10.1002/admi.201500195 10.1146/annurev.med.55.091902.103653 10.1002/adma.201801418 10.1021/acs.inorgchem.5b01481 10.1002/adma.201301327 10.1016/0022-3697(92)90121-S 10.1038/ncomms10228 10.1038/nnano.2014.181 10.1002/anie.201809781 10.1038/ncomms15684 10.1002/advs.201500392 10.1039/C4SC03141E 10.1021/nl504701y 10.1021/jacs.8b05949 10.1002/adma.201604984 10.1002/pip.3040 10.1039/C6TA09565H 10.1002/adma.201805660 10.1002/adfm.201804128 10.1126/science.1228604 10.1038/nenergy.2015.12 10.1021/jacs.5b08535 10.1021/jacs.7b01815 10.1038/ncomms6784 10.1039/C7RA12521F 10.1038/nature18306 10.1016/j.nanoen.2015.10.006 10.1039/C5TA00011D 10.1002/adma.201600624 10.1021/ja00124a012 10.1021/jp500449z 10.1016/j.nanoen.2014.08.015 10.1021/acsenergylett.6b00254 10.1038/natrevmats.2018.17 10.1021/acs.jpclett.5b02597 10.1039/C5TA01668A 10.1002/aenm.201500328 10.1021/acsenergylett.7b00187 10.1016/j.joule.2018.04.012 10.1002/adma.201801401 10.1038/ncomms15688 10.1038/s41467-018-05760-x 10.1002/solr.201600019 10.1021/acs.jpclett.6b02682 10.1039/C7NR04692H 10.1002/advs.201600269 10.1038/nature14133 10.1021/jz5011187 10.1039/C6EE02013E 10.1021/jz501392m 10.1002/cssc.201702221 10.1016/j.solmat.2015.12.025 10.1038/nature22072 10.1039/C4TA07030E 10.1039/C4TA04994B 10.1016/j.solmat.2017.11.010 10.1039/C6EE00409A 10.1039/C4TA05675B 10.1021/acsami.6b03767 10.1039/C7EE00757D 10.1002/pssa.201431366 10.1039/C5MH00126A 10.1038/ncomms11735 10.1021/acssuschemeng.6b03089 10.1021/ja411509g 10.1002/adma.201602992 10.1002/aenm.201701609 10.1021/jacs.7b11332 10.1002/aenm.201501310 10.1021/nn5014879 10.1021/acs.jpcc.6b02858 10.1016/j.jpowsour.2014.12.008 10.1021/acs.jpclett.5b00380 10.1002/adma.201801010 10.1039/C5TA05741H 10.1038/ncomms8747 10.1039/C6EE01411A 10.1557/mrc.2015.26 10.1126/science.1254050 10.1039/C6TA08117G 10.1002/aenm.201502177 10.1126/science.267.5203.1473 10.1038/s41467-017-02039-5 10.1021/nn505723h 10.1021/acs.chemmater.5b01989 10.1002/pip.2916 10.1021/nl400349b 10.1039/C4GC01149J 10.1002/anie.201309361 10.1021/acs.chemmater.5b04107 10.1002/aenm.201500486 10.1021/ja5033259 10.1039/C8TA02159G 10.1021/acs.jpclett.5b00289 10.1002/aenm.201500615 10.1039/C8EE00689J 10.1002/adma.201707583 10.1038/nenergy.2016.152 10.1002/aenm.201801509 10.1021/jz500113x 10.1002/cssc.201600868 10.1021/acsenergylett.7b00202 10.1039/C6NR00818F 10.1038/natrevmats.2016.99 10.1038/s41467-018-03169-0 10.1246/bcsj.20150110 10.1039/C7TA09721B 10.1002/anie.201603694 10.1002/adma.201502597 10.1021/acs.jpclett.5b02686 10.1021/acsenergylett.8b00428 10.1126/science.aam5655 10.1021/acs.jpclett.5b00504 10.1016/j.nanoen.2017.04.034 10.1007/BF01507527 10.1038/nphoton.2013.80 10.1021/jacs.6b08337 10.1002/adom.201800276 10.1038/nenergy.2017.38 10.1002/adma.201401685 10.1021/acsenergylett.6b00441 10.1002/adma.201602377 10.1002/aenm.201401808 10.1002/adma.201703852 10.1038/s41563-018-0115-4 10.1021/jacs.5b06658 10.1021/ic401215x 10.1021/acs.jpclett.6b01576 10.1038/nenergy.2017.102 10.1016/j.solmat.2016.09.013 10.1016/j.joule.2018.10.025 10.1002/pip.2871 10.1039/c3ee43822h 10.1021/jz5012109 10.1021/acsami.7b17824 10.1021/ja00006a076 10.1002/adma.200401171 10.1063/1.1736034 10.1021/acsenergylett.8b00217 10.1038/ncomms12305 10.1021/ja809598r 10.1038/ncomms7142 10.1039/C4CP03533J 10.1038/s41560-018-0200-6 10.1021/acsami.7b07625 10.1002/aenm.201701928 10.1038/s41560-018-0153-9 10.1039/C4TA04969A 10.1039/C8NR03589J 10.1021/acsenergylett.6b00457 10.1039/c3ee40343b 10.1002/smll.201501330 10.1016/j.nanoen.2016.09.009 10.1039/C6EE02373H 10.1039/C6TA08021A 10.1002/aenm.201602121 10.1038/s41563-017-0006-0 10.1021/acs.jpclett.5b00968 10.1021/cm970568f 10.1016/j.nanoen.2016.06.044 10.1039/C5EE00400D 10.1002/adma.201602696 10.1038/nmat1611 10.1038/ncomms7700 10.1002/adfm.201504041 10.1038/nenergy.2017.115 10.1002/aenm.201701688 10.1038/nenergy.2017.9 10.1039/c3cc46534a 10.1021/acs.jpclett.7b01851 10.1002/anie.201409208 10.1126/science.1254763 10.1016/j.solmat.2017.04.029 10.1021/acs.jpclett.7b00086 10.1063/1.453467 10.1038/s41598-017-18970-y 10.1146/annurev.fluid.32.1.709 10.1039/C7EE00358G 10.1126/science.aah5557 10.1002/aenm.201500477 10.1016/j.jpowsour.2015.05.106 10.1038/nature12509 10.1002/adma.201401991 10.1038/s41467-018-05454-4 10.1039/C5TA00358J 10.1021/acs.nanolett.5b02369 10.1021/acs.jpcc.5b11845 10.1021/acsenergylett.7b01221 10.1002/adma.201800455 10.1021/jacs.8b07927 10.1039/C5NR01864A 10.1038/nature23877 10.1021/jp064689r 10.1002/aenm.201702019 10.1002/solr.201800149 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201807661 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201807661 ADFM201807661 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: NSFC21773218 – fundername: Anshan Hifichem Co., Ltd – fundername: China Academy of Engineering Physics funderid: YZJJLX2018007; 0207; 0202 – fundername: Sichuan Province funderid: 2017GZ0052; 2018JY0206; 2018RZ0119 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4511-32b57ea64b37f1f301f577147672bb5e06917b9c4af89533a665d4078af5ffaa3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:00:39 EDT 2025 Tue Jul 01 04:11:58 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Wed Jan 22 16:37:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4511-32b57ea64b37f1f301f577147672bb5e06917b9c4af89533a665d4078af5ffaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3963-4073 0000-0002-6676-6231 |
PQID | 2315577400 |
PQPubID | 2045204 |
PageCount | 37 |
ParticipantIDs | proquest_journals_2315577400 crossref_citationtrail_10_1002_adfm_201807661 crossref_primary_10_1002_adfm_201807661 wiley_primary_10_1002_adfm_201807661_ADFM201807661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1991; 113 2013; 4 2013; 1 1991; 353 2014; 26 2014; 24 2017; 550 2016; 147 1992; 53 2013; 7 2013; 6 2014; 136 2017; 159 2018; 48 2018; 6 2018; 9 2018; 8 2018; 3 2018; 2 2018; 5 2015; 137 2015; 88 2013; 52 2014; 16 2014; 14 2014; 13 2018; 30 2006; 600 2017; 168 1998; 10 2012; 22 2014; 10 2018; 28 2018; 181 2019; 3 2013; 501 2015; 54 2016; 10 1926; 14 2016; 16 2016; 15 2018; 26 2017; 139 2016; 4 2015; 350 2004; 55 2016; 6 2016; 7 2018; 17 2016; 1 2016; 3 2017; 56 2015; 517 1995; 267 2016; 28 2018; 11 2005; 17 2018; 10 2016; 27 2016; 26 2016; 8 2016; 9 2017; 545 2018; 14 2017; 5 2018; 361 2017; 7 2018; 122 2004; 241 2017; 8 2017; 1 2017; 2 2013; 25 2017; 3 2017; 4 2019; 58 2015; 106 1961; 32 2015; 348 2017; 355 2017; 356 2017; 9 2017; 358 2014; 211 2015; 293 2014; 5 1987; 87 2014; 2 2017; 36 2013; 13 2015; 40 2016; 354 2016; 116 2014; 9 2014; 8 2014; 7 2014; 6 2012; 338 2014; 53 2014; 118 2015; 2 2015; 15 2015; 6 2015; 5 2018; 140 2015; 3 2015; 18 2013; 49 2017; 25 2006; 11 2015; 11 2015; 10 1995; 117 2006; 5 2015; 209 2017; 29 2009; 131 2015; 9 2015; 8 2015; 7 2016; 120 2016; 55 2015; 23 2012; 2 2015; 27 2016; 536 2015; 277 2000; 32 2017; 10 2007; 111 2013; 499 2018 2016; 138 2014; 345 e_1_2_9_79_1 e_1_2_9_254_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_277_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_71_1 e_1_2_9_231_1 e_1_2_9_292_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_314_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_265_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_288_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_242_1 e_1_2_9_280_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_325_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_302_1 e_1_2_9_172_1 e_1_2_9_232_1 e_1_2_9_255_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_278_1 e_1_2_9_270_1 e_1_2_9_293_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_315_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_266_1 e_1_2_9_289_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_220_1 e_1_2_9_281_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_326_1 e_1_2_9_303_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_256_1 e_1_2_9_233_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_279_1 e_1_2_9_294_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_271_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_316_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_218_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_221_1 e_1_2_9_244_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_267_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_282_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_327_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_304_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_257_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_317_1 e_1_2_9_272_1 e_1_2_9_295_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_245_1 e_1_2_9_222_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_268_1 e_1_2_9_260_1 e_1_2_9_283_1 e_1_2_9_328_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_320_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_305_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_212_1 Patrick L. (e_1_2_9_286_1) 2006; 11 e_1_2_9_318_1 e_1_2_9_258_1 e_1_2_9_90_1 e_1_2_9_273_1 e_1_2_9_296_1 e_1_2_9_250_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_310_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 e_1_2_9_246_1 e_1_2_9_269_1 e_1_2_9_306_1 e_1_2_9_284_1 e_1_2_9_2_1 e_1_2_9_261_1 e_1_2_9_138_1 e_1_2_9_321_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_319_1 e_1_2_9_236_1 e_1_2_9_259_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_274_1 e_1_2_9_297_1 e_1_2_9_251_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_311_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_307_1 e_1_2_9_65_1 e_1_2_9_247_1 e_1_2_9_80_1 e_1_2_9_285_1 e_1_2_9_262_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_322_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_298_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_237_1 e_1_2_9_275_1 e_1_2_9_252_1 e_1_2_9_290_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_312_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_308_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_248_1 e_1_2_9_4_1 e_1_2_9_263_1 e_1_2_9_240_1 e_1_2_9_323_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_300_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_238_1 e_1_2_9_276_1 e_1_2_9_299_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_230_1 e_1_2_9_253_1 e_1_2_9_291_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_313_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_287_1 e_1_2_9_309_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_264_1 e_1_2_9_3_1 e_1_2_9_241_1 e_1_2_9_139_1 e_1_2_9_324_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_301_1 e_1_2_9_192_1 |
References_xml | – volume: 7 start-page: 2633 year: 2016 publication-title: Chem. Sci. – volume: 27 start-page: 6806 year: 2015 publication-title: Adv. Mater. – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 4609 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 442 year: 2018 publication-title: Sci. Rep. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 7 start-page: 486 year: 2013 publication-title: Nat. Photonics – volume: 10 start-page: 391 year: 2015 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 682 year: 2018 publication-title: Nat. Energy – volume: 293 start-page: 533 year: 2015 publication-title: J. Power Sources – volume: 3 start-page: 3271 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 start-page: 3690 year: 2014 publication-title: Energy Environ. Sci. – volume: 4 start-page: 2885 year: 2013 publication-title: Nat. Commun. – volume: 9 start-page: 3172 year: 2016 publication-title: Energy Environ. Sci. – volume: 17 start-page: 261 year: 2018 publication-title: Nat. Mater. – volume: 26 start-page: 1485 year: 2014 publication-title: Chem. Mater. – volume: 8 start-page: 1618 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 start-page: 9427 year: 2015 publication-title: Nanoscale – volume: 10 start-page: 2095 year: 2017 publication-title: Energy Environ. Sci. – volume: 11 start-page: 837 year: 2018 publication-title: ChemSusChem – volume: 9 start-page: 927 year: 2014 publication-title: Nat. Nanotechnol. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 28 start-page: 5778 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 9103 year: 2015 publication-title: J. Mater. Chem. A – volume: 15 start-page: 2402 year: 2015 publication-title: Nano Lett. – volume: 1 year: 2017 publication-title: Sol. RRL – volume: 2 start-page: 578 year: 2015 publication-title: Mater. Horiz. – volume: 2 year: 2015 publication-title: Adv. Mater. Interfaces – volume: 9 start-page: 1655 year: 2016 publication-title: Energy Environ. Sci. – volume: 15 start-page: 6095 year: 2015 publication-title: Nano Lett. – volume: 9 start-page: 3021 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 3586 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 2452 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 1543 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 5 start-page: 265 year: 2015 publication-title: MRS Commun. – volume: 27 start-page: 51 year: 2016 publication-title: Nano Energy – volume: 7 start-page: 703 year: 2015 publication-title: Nat. Chem. – volume: 11 start-page: 2432 year: 2018 publication-title: Energy Environ. Sci. – volume: 113 start-page: 2328 year: 1991 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3239 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 1955 year: 2015 publication-title: ACS Nano – volume: 25 start-page: 1022 year: 2017 publication-title: Prog. Photovoltaics – volume: 6 year: 2013 publication-title: Appl. Phys. Express – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 2 start-page: 1313 year: 2018 publication-title: Joule – volume: 358 start-page: 751 year: 2017 publication-title: Science – volume: 6 start-page: 3209 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 277 start-page: 286 year: 2015 publication-title: J. Power Sources – volume: 1 start-page: 1014 year: 2016 publication-title: ACS Energy Lett. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: 8139 year: 2015 publication-title: J. Mater. Chem. A – volume: 358 start-page: 768 year: 2017 publication-title: Science – volume: 1 start-page: 38 year: 2016 publication-title: ACS Energy Lett. – volume: 28 start-page: 469 year: 2016 publication-title: Nano Energy – volume: 8 start-page: 772 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 2357 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 9333 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 3986 year: 2018 publication-title: J. Mater. Chem. A – volume: 53 start-page: 9898 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 1297 year: 2017 publication-title: Energy Environ. Sci. – volume: 26 start-page: 6160 year: 2014 publication-title: Chem. Mater. – volume: 7 start-page: 905 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 27 start-page: 5622 year: 2015 publication-title: Chem. Mater. – volume: 26 start-page: 3 year: 2018 publication-title: Prog. Photovoltaics – volume: 136 start-page: 758 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 87 start-page: 6373 year: 1987 publication-title: J. Chem. Phys. – volume: 3 start-page: 560 year: 2018 publication-title: Nat. Energy – volume: 10 start-page: 403 year: 1998 publication-title: Chem. Mater. – volume: 6 start-page: 7747 year: 2015 publication-title: Nat. Commun. – volume: 56 start-page: 1190 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 424 year: 2016 publication-title: ACS Energy Lett. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 9 start-page: 1076 year: 2018 publication-title: Nat. Commun. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 2 start-page: 1139 year: 2015 publication-title: Photonics – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 start-page: 1890 year: 2017 publication-title: Nat. Commun. – volume: 353 start-page: 737 year: 1991 publication-title: Nature – volume: 28 start-page: 284 year: 2016 publication-title: Chem. Mater. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 27 start-page: 1241 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 161 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 4546 year: 2014 publication-title: Green Chem. – volume: 11 start-page: 144 year: 2018 publication-title: Energy Environ. Sci. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 3 start-page: 1078 year: 2018 publication-title: ACS Energy Lett. – volume: 9 start-page: 81 year: 2016 publication-title: Energy Environ. Sci. – volume: 5 start-page: 5784 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 1480 year: 2013 publication-title: Energy Environ. Sci. – volume: 2 start-page: 438 year: 2017 publication-title: ACS Energy Lett. – volume: 5 start-page: 1374 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 start-page: 6142 year: 2015 publication-title: Nat. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 1 start-page: 0095 year: 2017 publication-title: Nat. Rev. Chem. – year: 2018 publication-title: Oxford PV perovskite solar cell achieves 28% efficiency – volume: 10 start-page: 10 year: 2014 publication-title: Nano Energy – volume: 5 start-page: 265 year: 2006 publication-title: Nat. Mater. – volume: 8 start-page: 1804 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 3608 year: 2014 publication-title: Nano Lett. – volume: 36 start-page: 295 year: 2017 publication-title: Nano Energy – volume: 7 start-page: 3061 year: 2014 publication-title: Energy Environ. Sci. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 8970 year: 2015 publication-title: J. Mater. Chem. A – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 167 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 22 start-page: 1005 year: 2012 publication-title: Adv. Funct. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 3603 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 807 year: 2017 publication-title: ACS Energy Lett. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 2 start-page: 591 year: 2012 publication-title: Sci. Rep. – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 16 start-page: 3563 year: 2016 publication-title: Nano Lett. – volume: 545 start-page: 208 year: 2017 publication-title: Nature – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 136 start-page: 622 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1500 year: 2018 publication-title: Joule – volume: 355 start-page: 722 year: 2017 publication-title: Science – volume: 550 start-page: 92 year: 2017 publication-title: Nature – volume: 23 start-page: 238 year: 2015 publication-title: Prog. Photovoltaics – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2390 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 3650 year: 2016 publication-title: Energy Environ. Sci. – volume: 26 start-page: 427 year: 2018 publication-title: Prog. Photovoltaics – volume: 18 start-page: 118 year: 2015 publication-title: Nano Energy – volume: 14 year: 2018 publication-title: Small – volume: 11 start-page: 5528 year: 2015 publication-title: Small – volume: 5 start-page: 3261 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 168 start-page: 165 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 11 start-page: 2 year: 2006 publication-title: Altern. Med. Rev. – volume: 6 start-page: 4693 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 506 year: 2014 publication-title: Nat. Photonics – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 6 year: 2014 publication-title: Nanoscale – volume: 48 start-page: 117 year: 2018 publication-title: Nano Energy – volume: 40 start-page: 638 year: 2015 publication-title: MRS Bull. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 354 start-page: 206 year: 2016 publication-title: Science – volume: 1 start-page: 5628 year: 2013 publication-title: J. Mater. Chem. A – volume: 137 start-page: 7843 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 4466 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 5999 year: 2016 publication-title: ACS Nano – volume: 5 start-page: 2160 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 120 start-page: 166 year: 2016 publication-title: J. Phys. Chem. C – volume: 9 start-page: 2225 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 2927 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 2900 year: 2018 publication-title: RSC Adv. – volume: 147 start-page: 255 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 181 start-page: 53 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – year: 2018 publication-title: New solar opportunities for a New Decade – volume: 1 start-page: 573 year: 2016 publication-title: ACS Energy Lett. – volume: 26 start-page: 101 year: 2016 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 3349 year: 2018 publication-title: Energy Environ. Sci. – volume: 6 start-page: 4089 year: 2015 publication-title: Polym. Chem. – volume: 55 start-page: 9586 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 6046 year: 2014 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 474 year: 2016 publication-title: ACS Energy Lett. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 159 start-page: 362 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 8 year: 2016 publication-title: Nanoscale – volume: 5 start-page: 1548 year: 2017 publication-title: J. Mater. Chem. A – volume: 8 start-page: 489 year: 2014 publication-title: Nat. Photonics – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 211 start-page: 2809 year: 2014 publication-title: Phys. Status Solidi A – volume: 2 year: 2018 publication-title: Sol. RRL – volume: 111 start-page: 849 year: 2007 publication-title: J. Phys. Chem. C – volume: 3 year: 2018 publication-title: Nat. Rev. Mater. – volume: 350 start-page: 944 year: 2015 publication-title: Science – volume: 53 start-page: 3151 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 361 year: 2018 publication-title: Science – volume: 17 start-page: 820 year: 2018 publication-title: Nat. Mater. – volume: 32 start-page: 510 year: 1961 publication-title: J. Appl. Phys. – volume: 3 start-page: 1781 year: 2018 publication-title: ACS Energy Lett. – volume: 28 start-page: 8990 year: 2016 publication-title: Adv. Mater. – volume: 139 start-page: 6693 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 5176 year: 2015 publication-title: Adv. Mater. – volume: 52 start-page: 9019 year: 2013 publication-title: Inorg. Chem. – volume: 26 start-page: 7122 year: 2014 publication-title: Adv. Mater. – volume: 8 start-page: 4300 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 613 year: 2015 publication-title: Chem. Sci. – volume: 2 start-page: 558 year: 2018 publication-title: Joule – volume: 8 start-page: 6386 year: 2016 publication-title: Nanoscale – volume: 3 start-page: 2299 year: 2018 publication-title: ACS Energy Lett. – volume: 6 start-page: 1249 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 1511 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 345 start-page: 295 year: 2014 publication-title: Science – volume: 17 start-page: 684 year: 2005 publication-title: Adv. Mater. – volume: 267 start-page: 1473 year: 1995 publication-title: Science – volume: 3 start-page: 322 year: 2018 publication-title: ACS Energy Lett. – volume: 14 start-page: 477 year: 1926 publication-title: Naturwissenschaften – volume: 600 start-page: 4712 year: 2006 publication-title: Surf. Sci. – volume: 140 start-page: 872 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1007 year: 2016 publication-title: ACS Energy Lett. – volume: 116 start-page: 4558 year: 2016 publication-title: Chem. Rev. – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 875 year: 2018 publication-title: ACS Energy Lett. – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 5 start-page: 2488 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 241 start-page: 783 year: 2004 publication-title: Phys. Status Solidi B – volume: 1 start-page: 29 year: 2017 publication-title: Joule – volume: 88 start-page: 1250 year: 2015 publication-title: Bull. Chem. Soc. Jpn. – volume: 15 start-page: 670 year: 2015 publication-title: Nano Energy – volume: 9 start-page: 155 year: 2016 publication-title: Energy Environ. Sci. – volume: 1 start-page: 32 year: 2016 publication-title: ACS Energy Lett. – volume: 3 start-page: 9092 year: 2015 publication-title: J. Mater. Chem. A – volume: 356 start-page: 167 year: 2017 publication-title: Science – volume: 7 start-page: 3659 year: 2014 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1645 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 145 year: 2017 publication-title: Energy Environ. Sci. – volume: 209 start-page: 247 year: 2015 publication-title: Synth. Met. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 9 start-page: 2597 year: 2016 publication-title: ChemSusChem – volume: 9 start-page: 2295 year: 2016 publication-title: Energy Environ. Sci. – volume: 8 start-page: 4122 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 1326 year: 2016 publication-title: J. Mater. Chem. A – volume: 13 start-page: 1764 year: 2013 publication-title: Nano Lett. – volume: 117 start-page: 5297 year: 1995 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 982 year: 2014 publication-title: Energy Environ. Sci. – volume: 536 start-page: 312 year: 2016 publication-title: Nature – volume: 25 start-page: 3727 year: 2013 publication-title: Adv. Mater. – volume: 3 start-page: 9074 year: 2015 publication-title: J. Mater. Chem. A – volume: 354 start-page: 92 year: 2016 publication-title: Science – volume: 106 year: 2015 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 247 year: 2016 publication-title: Nat. Mater. – volume: 10 start-page: 6306 year: 2016 publication-title: ACS Nano – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 28 start-page: 3131 year: 2016 publication-title: Chem. Mater. – volume: 54 year: 2015 publication-title: Inorg. Chem. – volume: 26 start-page: 6503 year: 2014 publication-title: Adv. Mater. – volume: 7 start-page: 3989 year: 2014 publication-title: Energy Environ. Sci. – volume: 28 start-page: 8007 year: 2016 publication-title: Adv. Mater. – volume: 8 start-page: 1953 year: 2015 publication-title: Energy Environ. Sci. – volume: 6 start-page: 6700 year: 2015 publication-title: Nat. Commun. – volume: 49 year: 2013 publication-title: Chem. Commun. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1087 year: 2015 publication-title: IEEE J. Photovoltaics – volume: 28 start-page: 5031 year: 2016 publication-title: Adv. Mater. – volume: 138 start-page: 3974 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1706 year: 2016 publication-title: Energy Environ. Sci. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 53 start-page: 935 year: 1992 publication-title: J. Phys. Chem. Solids – volume: 2 start-page: 8607 year: 2014 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1616 year: 2015 publication-title: Energy Environ. Sci. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 3 start-page: 297 year: 2018 publication-title: ACS Energy Lett. – volume: 32 start-page: 709 year: 2000 publication-title: Annu. Rev. Fluid Mech. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 852 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 55 start-page: 209 year: 2004 publication-title: Annu. Rev. Med. – volume: 138 start-page: 2649 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 982 year: 2017 publication-title: ACS Energy Lett. – volume: 8 start-page: 4053 year: 2014 publication-title: ACS Nano – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 9705 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 402 year: 2019 publication-title: Joule – volume: 9 start-page: 1607 year: 2018 publication-title: Nat. Commun. – volume: 25 start-page: 390 year: 2017 publication-title: Prog. Photovoltaics – volume: 10 start-page: 1234 year: 2017 publication-title: Energy Environ. Sci. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 501 start-page: 395 year: 2013 publication-title: Nature – ident: e_1_2_9_154_1 doi: 10.7567/APEX.6.076503 – ident: e_1_2_9_117_1 doi: 10.1038/s41570-017-0095 – ident: e_1_2_9_174_1 doi: 10.1109/JPHOTOV.2015.2416913 – ident: e_1_2_9_274_1 doi: 10.1039/C6EE02980A – ident: e_1_2_9_7_1 doi: 10.1038/nphoton.2014.134 – ident: e_1_2_9_100_1 doi: 10.1038/srep00591 – ident: e_1_2_9_50_1 doi: 10.1038/nenergy.2016.177 – ident: e_1_2_9_304_1 doi: 10.1021/acsenergylett.8b00871 – ident: e_1_2_9_37_1 doi: 10.1039/c3ta10518k – ident: e_1_2_9_114_1 doi: 10.1126/science.aat8235 – ident: e_1_2_9_6_1 doi: 10.1038/nature12340 – ident: e_1_2_9_99_1 doi: 10.1126/science.aam7092 – ident: e_1_2_9_271_1 doi: 10.1021/acsnano.6b02613 – ident: e_1_2_9_260_1 doi: 10.1002/adma.201804028 – ident: e_1_2_9_149_1 doi: 10.1002/adma.201701440 – ident: e_1_2_9_259_1 doi: 10.1039/C5SC03569D – ident: e_1_2_9_96_1 doi: 10.1021/acsenergylett.7b01167 – ident: e_1_2_9_325_1 doi: 10.1002/aenm.201800177 – ident: e_1_2_9_282_1 doi: 10.1002/aenm.201802139 – ident: e_1_2_9_43_1 doi: 10.1021/nl5012992 – ident: e_1_2_9_115_1 doi: 10.1021/ja508758k – ident: e_1_2_9_82_1 doi: 10.1039/C5EE02965A – ident: e_1_2_9_19_1 doi: 10.1021/acs.chemrev.5b00715 – ident: e_1_2_9_172_1 doi: 10.1002/pip.2421 – ident: e_1_2_9_200_1 doi: 10.1021/jz5011169 – ident: e_1_2_9_210_1 doi: 10.1039/C5EE00615E – ident: e_1_2_9_29_1 doi: 10.1039/C5EE02925B – ident: e_1_2_9_76_1 doi: 10.1021/acsnano.6b01535 – ident: e_1_2_9_137_1 doi: 10.1039/C5TA02306H – ident: e_1_2_9_289_1 doi: 10.1021/jacs.6b00142 – ident: e_1_2_9_38_1 doi: 10.1021/acsenergylett.6b00215 – ident: e_1_2_9_251_1 doi: 10.1002/solr.201700180 – ident: e_1_2_9_320_1 doi: 10.1002/aenm.201700576 – ident: e_1_2_9_77_1 doi: 10.1002/aenm.201702714 – ident: e_1_2_9_299_1 doi: 10.1002/adma.201600265 – ident: e_1_2_9_171_1 doi: 10.1002/anie.201504379 – ident: e_1_2_9_156_1 doi: 10.1038/s41467-018-04029-7 – ident: e_1_2_9_204_1 doi: 10.1021/acs.jpclett.6b00215 – ident: e_1_2_9_223_1 doi: 10.1021/acsami.8b02624 – ident: e_1_2_9_303_1 doi: 10.1021/acs.jpclett.7b01952 – ident: e_1_2_9_2_1 doi: 10.1002/pssb.200304296 – ident: e_1_2_9_231_1 doi: 10.1002/smll.201802385 – ident: e_1_2_9_49_1 doi: 10.1039/C6EE00030D – ident: e_1_2_9_83_1 doi: 10.1039/C5TA00190K – ident: e_1_2_9_217_1 doi: 10.1021/acsenergylett.8b01382 – ident: e_1_2_9_245_1 doi: 10.1039/C8EE02284D – ident: e_1_2_9_112_1 doi: 10.1039/c4ta00379a – ident: e_1_2_9_69_1 doi: 10.1021/jacs.5b03796 – ident: e_1_2_9_328_1 doi: 10.1002/solr.201800052 – ident: e_1_2_9_153_1 doi: 10.1002/adfm.201102284 – ident: e_1_2_9_218_1 doi: 10.1038/natrevmats.2017.42 – ident: e_1_2_9_140_1 doi: 10.1021/acsenergylett.6b00697 – ident: e_1_2_9_5_1 doi: 10.1038/nnano.2015.90 – ident: e_1_2_9_179_1 doi: 10.1039/C7EE02564E – ident: e_1_2_9_307_1 doi: 10.1002/adma.201707166 – ident: e_1_2_9_116_1 doi: 10.1002/aenm.201700749 – ident: e_1_2_9_80_1 doi: 10.1016/j.joule.2017.07.013 – ident: e_1_2_9_44_1 doi: 10.1021/acsenergylett.6b00002 – ident: e_1_2_9_133_1 doi: 10.1021/acs.jpcc.8b02163 – ident: e_1_2_9_194_1 doi: 10.1039/C4NR04007D – ident: e_1_2_9_229_1 doi: 10.3390/photonics2041139 – ident: e_1_2_9_239_1 doi: 10.1021/acsenergylett.6b00013 – ident: e_1_2_9_283_1 doi: 10.1016/j.nanoen.2018.03.047 – ident: e_1_2_9_202_1 doi: 10.1021/acs.jpclett.5b00480 – ident: e_1_2_9_75_1 doi: 10.1038/nenergy.2017.135 – ident: e_1_2_9_159_1 doi: 10.1016/j.susc.2006.07.040 – ident: e_1_2_9_302_1 doi: 10.1002/anie.201603608 – ident: e_1_2_9_121_1 doi: 10.1039/C4EE02539C – ident: e_1_2_9_56_1 doi: 10.1039/C5TA06398A – ident: e_1_2_9_151_1 doi: 10.1038/ncomms16045 – ident: e_1_2_9_87_1 doi: 10.1038/nphoton.2014.82 – ident: e_1_2_9_324_1 doi: 10.1002/solr.201700213 – ident: e_1_2_9_124_1 doi: 10.1016/j.nanoen.2015.05.027 – ident: e_1_2_9_195_1 doi: 10.1002/anie.201405334 – ident: e_1_2_9_71_1 doi: 10.1021/acs.chemmater.6b00711 – ident: e_1_2_9_186_1 doi: 10.1039/C4EE02465F – ident: e_1_2_9_181_1 doi: 10.1002/admi.201800499 – ident: e_1_2_9_68_1 doi: 10.1002/anie.201406466 – ident: e_1_2_9_305_1 doi: 10.1002/adma.201706246 – ident: e_1_2_9_70_1 doi: 10.1126/sciadv.1700841 – ident: e_1_2_9_311_1 doi: 10.1039/C4EE00965G – ident: e_1_2_9_146_1 doi: 10.1016/j.joule.2018.04.011 – ident: e_1_2_9_42_1 doi: 10.1021/cm404006p – ident: e_1_2_9_236_1 doi: 10.1021/nn506864k – ident: e_1_2_9_281_1 doi: 10.1126/sciadv.aao5616 – ident: e_1_2_9_61_1 doi: 10.1126/science.aag2700 – ident: e_1_2_9_78_1 doi: 10.1002/adfm.201706923 – ident: e_1_2_9_26_1 doi: 10.1038/ncomms4586 – ident: e_1_2_9_310_1 doi: 10.1557/mrs.2015.177 – ident: e_1_2_9_163_1 doi: 10.1039/C5TA03990H – ident: e_1_2_9_191_1 doi: 10.1038/nmat4014 – ident: e_1_2_9_270_1 doi: 10.1039/C5TA07957H – ident: e_1_2_9_55_1 doi: 10.1002/solr.201700048 – ident: e_1_2_9_225_1 doi: 10.1038/s41467-018-07099-9 – ident: e_1_2_9_298_1 doi: 10.1039/C6TA04685A – ident: e_1_2_9_72_1 doi: 10.1039/C7EE01145H – ident: e_1_2_9_90_1 doi: 10.1002/adma.201501978 – ident: e_1_2_9_119_1 doi: 10.1063/1.4914179 – ident: e_1_2_9_269_1 doi: 10.1002/aenm.201702762 – ident: e_1_2_9_205_1 doi: 10.1021/acs.jpclett.5b02229 – ident: e_1_2_9_262_1 doi: 10.1021/ja411014k – ident: e_1_2_9_47_1 doi: 10.1021/jp411112k – ident: e_1_2_9_110_1 doi: 10.1021/jz500833z – ident: e_1_2_9_170_1 doi: 10.1039/C5NR08658B – ident: e_1_2_9_255_1 doi: 10.1038/nchem.2324 – ident: e_1_2_9_91_1 doi: 10.1039/C4EE01076K – ident: e_1_2_9_98_1 doi: 10.1038/353737a0 – ident: e_1_2_9_248_1 doi: 10.1021/acs.jpclett.5b01432 – ident: e_1_2_9_265_1 doi: 10.1126/science.aad1015 – ident: e_1_2_9_105_1 doi: 10.1126/science.aai9081 – ident: e_1_2_9_173_1 doi: 10.1002/pip.2978 – ident: e_1_2_9_308_1 doi: 10.1038/nmat4572 – ident: e_1_2_9_147_1 doi: 10.1002/adma.201803428 – ident: e_1_2_9_250_1 doi: 10.1038/s41467-018-04636-4 – ident: e_1_2_9_234_1 doi: 10.1002/adfm.201401658 – ident: e_1_2_9_319_1 doi: 10.1039/C5PY00431D – ident: e_1_2_9_85_1 doi: 10.1016/j.synthmet.2015.07.013 – ident: e_1_2_9_313_1 doi: 10.1039/C4EE02977A – ident: e_1_2_9_249_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_9_129_1 doi: 10.1002/adma.201404598 – ident: e_1_2_9_97_1 doi: 10.1016/j.joule.2018.01.009 – ident: e_1_2_9_33_1 doi: 10.1126/science.aam6620 – ident: e_1_2_9_59_1 doi: 10.1021/acsenergylett.6b00341 – ident: e_1_2_9_94_1 doi: 10.1002/aenm.201601353 – ident: e_1_2_9_214_1 – ident: e_1_2_9_233_1 doi: 10.1038/ncomms3885 – ident: e_1_2_9_57_1 doi: 10.1021/acs.nanolett.6b00635 – ident: e_1_2_9_36_1 doi: 10.1021/cm502468k – ident: e_1_2_9_240_1 doi: 10.1002/adma.201800544 – ident: e_1_2_9_244_1 doi: 10.1021/jacs.5b11740 – ident: e_1_2_9_272_1 doi: 10.1002/admi.201500195 – ident: e_1_2_9_285_1 doi: 10.1146/annurev.med.55.091902.103653 – ident: e_1_2_9_221_1 doi: 10.1002/adma.201801418 – volume: 11 start-page: 2 year: 2006 ident: e_1_2_9_286_1 publication-title: Altern. Med. Rev. – ident: e_1_2_9_120_1 – ident: e_1_2_9_30_1 doi: 10.1021/acs.inorgchem.5b01481 – ident: e_1_2_9_104_1 doi: 10.1002/adma.201301327 – ident: e_1_2_9_25_1 doi: 10.1016/0022-3697(92)90121-S – ident: e_1_2_9_166_1 doi: 10.1038/ncomms10228 – ident: e_1_2_9_165_1 doi: 10.1038/nnano.2014.181 – ident: e_1_2_9_226_1 doi: 10.1002/anie.201809781 – ident: e_1_2_9_79_1 doi: 10.1038/ncomms15684 – ident: e_1_2_9_290_1 doi: 10.1002/advs.201500392 – ident: e_1_2_9_189_1 doi: 10.1039/C4SC03141E – ident: e_1_2_9_111_1 doi: 10.1021/nl504701y – ident: e_1_2_9_144_1 doi: 10.1021/jacs.8b05949 – ident: e_1_2_9_268_1 doi: 10.1002/adma.201604984 – ident: e_1_2_9_3_1 doi: 10.1002/pip.3040 – ident: e_1_2_9_142_1 doi: 10.1039/C6TA09565H – ident: e_1_2_9_254_1 doi: 10.1002/adma.201805660 – ident: e_1_2_9_266_1 doi: 10.1002/adfm.201804128 – ident: e_1_2_9_102_1 doi: 10.1126/science.1228604 – ident: e_1_2_9_257_1 doi: 10.1038/nenergy.2015.12 – ident: e_1_2_9_275_1 doi: 10.1021/jacs.5b08535 – ident: e_1_2_9_294_1 doi: 10.1021/jacs.7b01815 – ident: e_1_2_9_188_1 doi: 10.1038/ncomms6784 – ident: e_1_2_9_284_1 doi: 10.1039/C7RA12521F – ident: e_1_2_9_8_1 doi: 10.1038/nature18306 – ident: e_1_2_9_183_1 doi: 10.1016/j.nanoen.2015.10.006 – ident: e_1_2_9_197_1 doi: 10.1039/C5TA00011D – ident: e_1_2_9_22_1 doi: 10.1002/adma.201600624 – ident: e_1_2_9_65_1 doi: 10.1021/ja00124a012 – ident: e_1_2_9_232_1 doi: 10.1021/jp500449z – ident: e_1_2_9_138_1 doi: 10.1016/j.nanoen.2014.08.015 – ident: e_1_2_9_212_1 doi: 10.1021/acsenergylett.6b00254 – ident: e_1_2_9_219_1 doi: 10.1038/natrevmats.2018.17 – ident: e_1_2_9_53_1 doi: 10.1021/acs.jpclett.5b02597 – ident: e_1_2_9_176_1 doi: 10.1039/C5TA01668A – ident: e_1_2_9_128_1 doi: 10.1002/aenm.201500328 – ident: e_1_2_9_17_1 doi: 10.1021/acsenergylett.7b00187 – ident: e_1_2_9_252_1 doi: 10.1016/j.joule.2018.04.012 – ident: e_1_2_9_74_1 doi: 10.1002/adma.201801401 – ident: e_1_2_9_158_1 doi: 10.1038/ncomms15688 – ident: e_1_2_9_107_1 doi: 10.1038/s41467-018-05760-x – ident: e_1_2_9_148_1 doi: 10.1002/solr.201600019 – ident: e_1_2_9_88_1 doi: 10.1021/acs.jpclett.6b02682 – ident: e_1_2_9_15_1 doi: 10.1039/C7NR04692H – ident: e_1_2_9_206_1 doi: 10.1002/advs.201600269 – ident: e_1_2_9_48_1 doi: 10.1038/nature14133 – ident: e_1_2_9_201_1 doi: 10.1021/jz5011187 – ident: e_1_2_9_316_1 doi: 10.1039/C6EE02013E – ident: e_1_2_9_187_1 doi: 10.1021/jz501392m – ident: e_1_2_9_247_1 doi: 10.1002/cssc.201702221 – ident: e_1_2_9_273_1 doi: 10.1016/j.solmat.2015.12.025 – ident: e_1_2_9_164_1 doi: 10.1038/nature22072 – ident: e_1_2_9_131_1 doi: 10.1039/C4TA07030E – ident: e_1_2_9_238_1 doi: 10.1039/C4TA04994B – ident: e_1_2_9_130_1 doi: 10.1016/j.solmat.2017.11.010 – ident: e_1_2_9_228_1 doi: 10.1039/C6EE00409A – ident: e_1_2_9_134_1 doi: 10.1039/C4TA05675B – ident: e_1_2_9_314_1 doi: 10.1021/acsami.6b03767 – ident: e_1_2_9_208_1 doi: 10.1039/C7EE00757D – ident: e_1_2_9_256_1 doi: 10.1002/pssa.201431366 – ident: e_1_2_9_125_1 doi: 10.1039/C5MH00126A – ident: e_1_2_9_315_1 doi: 10.1038/ncomms11735 – ident: e_1_2_9_317_1 doi: 10.1021/acssuschemeng.6b03089 – ident: e_1_2_9_136_1 doi: 10.1021/ja411509g – ident: e_1_2_9_293_1 doi: 10.1002/adma.201602992 – ident: e_1_2_9_209_1 – ident: e_1_2_9_215_1 doi: 10.1002/aenm.201701609 – ident: e_1_2_9_306_1 doi: 10.1021/jacs.7b11332 – ident: e_1_2_9_237_1 doi: 10.1002/aenm.201501310 – ident: e_1_2_9_198_1 doi: 10.1021/nn5014879 – ident: e_1_2_9_27_1 doi: 10.1021/acs.jpcc.6b02858 – ident: e_1_2_9_145_1 doi: 10.1016/j.jpowsour.2014.12.008 – ident: e_1_2_9_45_1 doi: 10.1021/acs.jpclett.5b00380 – ident: e_1_2_9_241_1 doi: 10.1002/adma.201801010 – ident: e_1_2_9_86_1 doi: 10.1039/C5TA05741H – ident: e_1_2_9_242_1 doi: 10.1038/ncomms8747 – ident: e_1_2_9_135_1 doi: 10.1039/C6EE01411A – ident: e_1_2_9_23_1 doi: 10.1557/mrc.2015.26 – ident: e_1_2_9_108_1 doi: 10.1126/science.1254050 – ident: e_1_2_9_243_1 doi: 10.1039/C6TA08117G – ident: e_1_2_9_323_1 doi: 10.1002/aenm.201502177 – ident: e_1_2_9_66_1 doi: 10.1126/science.267.5203.1473 – ident: e_1_2_9_35_1 doi: 10.1038/s41467-017-02039-5 – ident: e_1_2_9_190_1 doi: 10.1021/nn505723h – ident: e_1_2_9_301_1 doi: 10.1021/acs.chemmater.5b01989 – ident: e_1_2_9_309_1 doi: 10.1002/pip.2916 – ident: e_1_2_9_32_1 doi: 10.1021/nl400349b – ident: e_1_2_9_321_1 doi: 10.1039/C4GC01149J – ident: e_1_2_9_118_1 doi: 10.1002/anie.201309361 – ident: e_1_2_9_246_1 doi: 10.1021/acs.chemmater.5b04107 – ident: e_1_2_9_261_1 doi: 10.1002/aenm.201500486 – ident: e_1_2_9_92_1 doi: 10.1021/ja5033259 – ident: e_1_2_9_287_1 doi: 10.1039/C8TA02159G – ident: e_1_2_9_199_1 doi: 10.1021/acs.jpclett.5b00289 – ident: e_1_2_9_276_1 doi: 10.1002/aenm.201500615 – ident: e_1_2_9_216_1 doi: 10.1039/C8EE00689J – ident: e_1_2_9_278_1 doi: 10.1002/adma.201707583 – ident: e_1_2_9_230_1 doi: 10.1038/nenergy.2016.152 – ident: e_1_2_9_13_1 doi: 10.1002/aenm.201801509 – ident: e_1_2_9_203_1 doi: 10.1021/jz500113x – ident: e_1_2_9_178_1 doi: 10.1002/cssc.201600868 – ident: e_1_2_9_295_1 doi: 10.1021/acsenergylett.7b00202 – ident: e_1_2_9_322_1 doi: 10.1039/C6NR00818F – ident: e_1_2_9_20_1 doi: 10.1038/natrevmats.2016.99 – ident: e_1_2_9_63_1 doi: 10.1038/s41467-018-03169-0 – ident: e_1_2_9_89_1 doi: 10.1246/bcsj.20150110 – ident: e_1_2_9_157_1 doi: 10.1039/C7TA09721B – ident: e_1_2_9_21_1 doi: 10.1002/anie.201603694 – ident: e_1_2_9_34_1 doi: 10.1002/adma.201502597 – ident: e_1_2_9_211_1 doi: 10.1021/acs.jpclett.5b02686 – ident: e_1_2_9_161_1 doi: 10.1021/acsenergylett.8b00428 – ident: e_1_2_9_253_1 doi: 10.1126/science.aam5655 – ident: e_1_2_9_81_1 doi: 10.1021/acs.jpclett.5b00504 – ident: e_1_2_9_327_1 doi: 10.1016/j.nanoen.2017.04.034 – ident: e_1_2_9_18_1 doi: 10.1007/BF01507527 – ident: e_1_2_9_101_1 doi: 10.1038/nphoton.2013.80 – ident: e_1_2_9_95_1 doi: 10.1021/jacs.6b08337 – ident: e_1_2_9_11_1 doi: 10.1002/adom.201800276 – ident: e_1_2_9_126_1 doi: 10.1038/nenergy.2017.38 – ident: e_1_2_9_168_1 doi: 10.1002/adma.201401685 – ident: e_1_2_9_277_1 doi: 10.1021/acsenergylett.6b00441 – ident: e_1_2_9_150_1 doi: 10.1002/adma.201602377 – ident: e_1_2_9_222_1 doi: 10.1002/aenm.201401808 – ident: e_1_2_9_103_1 doi: 10.1002/adma.201703852 – ident: e_1_2_9_213_1 doi: 10.1038/s41563-018-0115-4 – ident: e_1_2_9_288_1 doi: 10.1021/jacs.5b06658 – ident: e_1_2_9_46_1 doi: 10.1021/ic401215x – ident: e_1_2_9_62_1 doi: 10.1021/acs.jpclett.6b01576 – ident: e_1_2_9_106_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_9_141_1 doi: 10.1016/j.solmat.2016.09.013 – ident: e_1_2_9_143_1 doi: 10.1016/j.joule.2018.10.025 – ident: e_1_2_9_207_1 doi: 10.1002/pip.2871 – ident: e_1_2_9_41_1 doi: 10.1039/c3ee43822h – ident: e_1_2_9_40_1 doi: 10.1021/jz5012109 – ident: e_1_2_9_184_1 doi: 10.1021/acsami.7b17824 – ident: e_1_2_9_67_1 doi: 10.1021/ja00006a076 – ident: e_1_2_9_152_1 doi: 10.1002/adma.200401171 – ident: e_1_2_9_4_1 doi: 10.1063/1.1736034 – ident: e_1_2_9_14_1 doi: 10.1021/acsenergylett.8b00217 – ident: e_1_2_9_167_1 doi: 10.1038/ncomms12305 – ident: e_1_2_9_24_1 doi: 10.1021/ja809598r – ident: e_1_2_9_193_1 doi: 10.1038/ncomms7142 – ident: e_1_2_9_185_1 doi: 10.1039/C4CP03533J – ident: e_1_2_9_51_1 doi: 10.1038/s41560-018-0200-6 – ident: e_1_2_9_180_1 doi: 10.1021/acsami.7b07625 – ident: e_1_2_9_182_1 doi: 10.1002/aenm.201701928 – ident: e_1_2_9_127_1 doi: 10.1038/s41560-018-0153-9 – ident: e_1_2_9_196_1 doi: 10.1039/C4TA04969A – ident: e_1_2_9_297_1 doi: 10.1039/C8NR03589J – ident: e_1_2_9_280_1 doi: 10.1021/acsenergylett.6b00457 – ident: e_1_2_9_258_1 doi: 10.1039/c3ee40343b – ident: e_1_2_9_263_1 doi: 10.1002/smll.201501330 – ident: e_1_2_9_292_1 doi: 10.1016/j.nanoen.2016.09.009 – ident: e_1_2_9_326_1 doi: 10.1039/C6EE02373H – ident: e_1_2_9_113_1 doi: 10.1039/C6TA08021A – ident: e_1_2_9_122_1 doi: 10.1002/aenm.201602121 – ident: e_1_2_9_58_1 doi: 10.1038/s41563-017-0006-0 – ident: e_1_2_9_54_1 doi: 10.1021/acs.jpclett.5b00968 – ident: e_1_2_9_162_1 doi: 10.1021/cm970568f – ident: e_1_2_9_264_1 doi: 10.1016/j.nanoen.2016.06.044 – ident: e_1_2_9_312_1 doi: 10.1039/C5EE00400D – ident: e_1_2_9_93_1 doi: 10.1002/adma.201602696 – ident: e_1_2_9_160_1 doi: 10.1038/nmat1611 – ident: e_1_2_9_192_1 doi: 10.1038/ncomms7700 – ident: e_1_2_9_169_1 doi: 10.1002/adfm.201504041 – ident: e_1_2_9_227_1 doi: 10.1038/nenergy.2017.115 – ident: e_1_2_9_12_1 doi: 10.1002/aenm.201701688 – ident: e_1_2_9_16_1 doi: 10.1038/nenergy.2017.9 – ident: e_1_2_9_220_1 doi: 10.1039/c3cc46534a – ident: e_1_2_9_60_1 doi: 10.1021/acs.jpclett.7b01851 – ident: e_1_2_9_318_1 doi: 10.1002/anie.201409208 – ident: e_1_2_9_109_1 doi: 10.1126/science.1254763 – ident: e_1_2_9_139_1 doi: 10.1016/j.solmat.2017.04.029 – ident: e_1_2_9_300_1 doi: 10.1021/acs.jpclett.7b00086 – ident: e_1_2_9_28_1 doi: 10.1063/1.453467 – ident: e_1_2_9_224_1 doi: 10.1038/s41598-017-18970-y – ident: e_1_2_9_155_1 doi: 10.1146/annurev.fluid.32.1.709 – ident: e_1_2_9_279_1 doi: 10.1039/C7EE00358G – ident: e_1_2_9_52_1 doi: 10.1126/science.aah5557 – ident: e_1_2_9_39_1 doi: 10.1002/aenm.201500477 – ident: e_1_2_9_132_1 doi: 10.1016/j.jpowsour.2015.05.106 – ident: e_1_2_9_9_1 doi: 10.1038/nature12509 – ident: e_1_2_9_291_1 doi: 10.1002/adma.201401991 – ident: e_1_2_9_73_1 doi: 10.1038/s41467-018-05454-4 – ident: e_1_2_9_177_1 doi: 10.1039/C5TA00358J – ident: e_1_2_9_31_1 doi: 10.1021/acs.nanolett.5b02369 – ident: e_1_2_9_84_1 doi: 10.1021/acs.jpcc.5b11845 – ident: e_1_2_9_175_1 doi: 10.1021/acsenergylett.7b01221 – ident: e_1_2_9_1_1 doi: 10.1002/adma.201800455 – ident: e_1_2_9_64_1 doi: 10.1021/jacs.8b07927 – ident: e_1_2_9_267_1 doi: 10.1039/C5NR01864A – ident: e_1_2_9_123_1 doi: 10.1038/nature23877 – ident: e_1_2_9_235_1 doi: 10.1021/jp064689r – ident: e_1_2_9_296_1 doi: 10.1002/aenm.201702019 – ident: e_1_2_9_10_1 doi: 10.1002/solr.201800149 |
SSID | ssj0017734 |
Score | 2.6523614 |
SecondaryResourceType | review_article |
Snippet | In the last few years, organometal halide perovskites (OHPs) have emerged as a promising candidate for photovoltaic (PV) applications. A certified efficiency... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biocompatibility Blade coating commercialiazation Commercialization Crystallization Environmental impact Materials science perovskite solar cells Perovskites Photovoltaic cells Solar cells stability sustainability Sustainable development Technology assessment Toxicity up‐scaling |
Title | Solution‐Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201807661 https://www.proquest.com/docview/2315577400 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVQWWDgjSiUygMSU9rmZcdsVUtVIYoqSqVukZ3YC1GKmpSBiU_gG_kSfPNqi4SQYEsUO_Ezvq9zLkJXiikVMsc09GEsDCewQ4PZihmupILZImQyM12MHshw6tzN3Nkaij_nh6gMbrAzsv81bHAukvaKNJSHCpDkpqc18Uz_gYAtkIoeK_4ok9LcrUxMCPAyZyVrY8dqb1bfPJVWoua6wJqdOIN9xMu25oEmz61lKlrB2zcax_905gDtFeIo7ubr5xBtyfgI7a6RFB4jv7Scfb5_FLACgFvhsVzMXxMw_uIJ6Me4J6MowWkWh4sBeALJnHhUAD1v8BhCwXRtzGP9vEzikpyg6eD2qTc0irQMRgBkZoZtCZdKThxhU2UqPa7KpdR0KKGWEK7sEK0CChY4XHkQvMoJcUNwF3LlKsW5fYpq8TyWZwhLU5ckIvSYxR3KOsIDv7BW6pzMRUvqyCinxQ8KznJInRH5Oduy5cPA-dXA1dF1Vf4lZ-v4sWSjnGW_2LWJr2VdV3dFf7yOrGy6fnmL3-0PRtXd-V8qXaAdfc1yeGMD1dLFUl5qOScVTbTd7Y_uJ81sTX8BJrb2mg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LThsxFL2idNGyoA9aER6tF626miSehx0jdYFIo9A8hEoiZefaM_amUYKYAKKrfgK_wq_wCXwJvvMCKlWVKmXR5czYnrF97_g-zwX4YIW1iQip5w5j7YVxkHgisMKLDNci0IkwmeliMGTdcfh1Ek1W4LrMhcnxISqDG3JG9r9GBkeDdOMeNVQlFlPJacup4owWcZU9c3nhtLb082HbbfFH3-98GR10vaKwgBcjHJcX-DriRrFQB9xS62jcRpzTkDPuax2ZJnNKjBZxqGwLwy8VY1GCDi9lI2uVCty4T-AplhFHuP72twqxinKeO7IZxZAyOilxIpt-4_H3Pj4H74XbhyJydsZ1XsBNuTp5aMuP-tlC1-OfvwFH_lfL9xLWC4mb7Ocs8gpWzOw1rD3AYdwAWRoHb39dFZkTmFFGjszp_DxF-zY5RhMAOTDTaUoWWagxwdwarFelpkUu6x45wmg315uomXte1qlJ38B4KTN8C6uz-cxsAjHUtWQ6aQlfhVw0dQtd305vDTMvNKuBV9KBjAtYdqwOMpU5oLQvcaNktVE1-FS1P8kBSf7YcqckK1n8mFLpxPnITcW9vAZ-Rh9_GUXutzuD6mrrXzq9h2fd0aAv-4fD3jY8d_dFns25A6uL0zOz68S6hX6XMRKB78smvTtH2lFH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL3iIVWwoFBAHR6tFyBWgXHi2GOkLhDTEY-CRgWk2Rk7sTcdDYgMIFjxCXwKv8Iv8CX45gVUqipVYtFlEtuJ7Xvj-zwXYMVJ51LJaOAPYxOwJEoDGTkZxFYYGZlU2tx0cXDId07YXi_ujcBDlQtT4EPUBjfkjPx_jQx-nrqNF9BQnTrMJKctr4lzWoZV7tuba6-0Zd92236HV8Ow8_14eyco6woECaJxBVFoYmE1ZyYSjjpP4i4WgjLBRWhMbJvc6zBGJky7FkZfas7jFP1d2sXOaR35cUdhnPGmxGIR7Z81YBUVovBjc4oRZbRXwUQ2w4233_v2GHyRbV9LyPkR1_kIj9XiFJEtv9Yvh2Y9uf0NN_J_Wr1pmCrlbbJVMMgMjNjBJ5h8hcI4C6oyDT7d3Zd5E5hPRrr24uwqQ-s2OUIDANm2_X5GhnmgMcHMGqxWpftlJusm6WKsm-9N9MA_r6rUZHNw8i4znIexwdnAfgZiqW_JTdqSoWZCNk0LHd9ea2W5D5o3IKjIQCUlKDvWBumrAk46VLhRqt6oBqzV7c8LOJI_tlyqqEqVv6VMeWE-9lPxL29AmJPHX0ZRW-3OQX218C-dvsKHbrujfuwe7i_ChL8ti1TOJRgbXlzaZS_TDc2XnI0InL435T0D2wBP9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution%E2%80%90Processable+Perovskite+Solar+Cells+toward+Commercialization%3A+Progress+and+Challenges&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Peng&rft.au=Wu%2C+Yihui&rft.au=Cai%2C+Bing&rft.au=Ma%2C+Qingshan&rft.date=2019-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=47&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201807661&rft.externalDBID=10.1002%252Fadfm.201807661&rft.externalDocID=ADFM201807661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |