Solution‐Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges

In the last few years, organometal halide perovskites (OHPs) have emerged as a promising candidate for photovoltaic (PV) applications. A certified efficiency as high as 23.7% has been achieved, which is comparable with most of the well‐established PV technologies. Their good solubility due to the io...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 47
Main Authors Wang, Peng, Wu, Yihui, Cai, Bing, Ma, Qingshan, Zheng, Xiaojia, Zhang, Wen‐Hua
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the last few years, organometal halide perovskites (OHPs) have emerged as a promising candidate for photovoltaic (PV) applications. A certified efficiency as high as 23.7% has been achieved, which is comparable with most of the well‐established PV technologies. Their good solubility due to the ionic nature enables versatile low‐temperature solution processes, including blade coating, slot‐die coating, etc., most of which are scalable and compatible with roll‐to‐roll large‐scale manufacturing processes. The low cost, high efficiency, and facile processable features make perovskite solar cells (PSCs) a very competitive PV technology. Despite the great progress, long‐term durability concerns, toxicity issues of both materials and manufacturing process, and lack of robust high‐throughput production technology for fabricating efficient large‐area modules are major obstacles toward commercialization. In this review, the recent progress of commercially available process of PSCs is surveyed, the underlying determinants for upscaling high‐quality PSCs from hydrodynamic characteristics and crystallization thermodynamic mechanism are identified, the influence of external stress factors on stability of PSCs and intrinsic instability mechanism in OHPs themselves is revealed, and the environmental impact and sustainable development of PSC technology are analyzed. Strategies and opportunities for large‐scale production of PSCs are suggested to promote the development of PSCs toward commercialization. Perovskite solar cells (PSCs) have emerged as a promising candidate for photovoltaic applications. This review summarizes the recent progress and discusses the obstacles for PSCs toward industrial production, including upscaling of high‐quality perovskites for efficient PSC modules, stability issue of PSCs, Pb substitution, and greener manufacturing process, which can promote the development of PSCs toward commercialization.
AbstractList In the last few years, organometal halide perovskites (OHPs) have emerged as a promising candidate for photovoltaic (PV) applications. A certified efficiency as high as 23.7% has been achieved, which is comparable with most of the well‐established PV technologies. Their good solubility due to the ionic nature enables versatile low‐temperature solution processes, including blade coating, slot‐die coating, etc., most of which are scalable and compatible with roll‐to‐roll large‐scale manufacturing processes. The low cost, high efficiency, and facile processable features make perovskite solar cells (PSCs) a very competitive PV technology. Despite the great progress, long‐term durability concerns, toxicity issues of both materials and manufacturing process, and lack of robust high‐throughput production technology for fabricating efficient large‐area modules are major obstacles toward commercialization. In this review, the recent progress of commercially available process of PSCs is surveyed, the underlying determinants for upscaling high‐quality PSCs from hydrodynamic characteristics and crystallization thermodynamic mechanism are identified, the influence of external stress factors on stability of PSCs and intrinsic instability mechanism in OHPs themselves is revealed, and the environmental impact and sustainable development of PSC technology are analyzed. Strategies and opportunities for large‐scale production of PSCs are suggested to promote the development of PSCs toward commercialization. Perovskite solar cells (PSCs) have emerged as a promising candidate for photovoltaic applications. This review summarizes the recent progress and discusses the obstacles for PSCs toward industrial production, including upscaling of high‐quality perovskites for efficient PSC modules, stability issue of PSCs, Pb substitution, and greener manufacturing process, which can promote the development of PSCs toward commercialization.
In the last few years, organometal halide perovskites (OHPs) have emerged as a promising candidate for photovoltaic (PV) applications. A certified efficiency as high as 23.7% has been achieved, which is comparable with most of the well‐established PV technologies. Their good solubility due to the ionic nature enables versatile low‐temperature solution processes, including blade coating, slot‐die coating, etc., most of which are scalable and compatible with roll‐to‐roll large‐scale manufacturing processes. The low cost, high efficiency, and facile processable features make perovskite solar cells (PSCs) a very competitive PV technology. Despite the great progress, long‐term durability concerns, toxicity issues of both materials and manufacturing process, and lack of robust high‐throughput production technology for fabricating efficient large‐area modules are major obstacles toward commercialization. In this review, the recent progress of commercially available process of PSCs is surveyed, the underlying determinants for upscaling high‐quality PSCs from hydrodynamic characteristics and crystallization thermodynamic mechanism are identified, the influence of external stress factors on stability of PSCs and intrinsic instability mechanism in OHPs themselves is revealed, and the environmental impact and sustainable development of PSC technology are analyzed. Strategies and opportunities for large‐scale production of PSCs are suggested to promote the development of PSCs toward commercialization.
Author Zheng, Xiaojia
Wang, Peng
Zhang, Wen‐Hua
Ma, Qingshan
Wu, Yihui
Cai, Bing
Author_xml – sequence: 1
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: China Academy of Engineering Physics
– sequence: 2
  givenname: Yihui
  surname: Wu
  fullname: Wu, Yihui
  organization: China Academy of Engineering Physics
– sequence: 3
  givenname: Bing
  surname: Cai
  fullname: Cai, Bing
  organization: China Academy of Engineering Physics
– sequence: 4
  givenname: Qingshan
  surname: Ma
  fullname: Ma, Qingshan
  organization: China Academy of Engineering Physics
– sequence: 5
  givenname: Xiaojia
  orcidid: 0000-0002-3963-4073
  surname: Zheng
  fullname: Zheng, Xiaojia
  email: xiaojia@caep.cn
  organization: China Academy of Engineering Physics
– sequence: 6
  givenname: Wen‐Hua
  orcidid: 0000-0002-6676-6231
  surname: Zhang
  fullname: Zhang, Wen‐Hua
  email: whzhang@caep.cn
  organization: China Academy of Engineering Physics
BookMark eNqFkM9KAzEQxoMo2Favnhc8b032T7LrraxWhYoFFbyF2W1SU7Obmmwt9eQj-Iw-iamVCoJ4moH5ft_MfF2025hGIHREcJ9gHJ3ARNb9CJMMM0rJDuoQSmgY4yjb3fbkYR91nZthTBiLkw7it0YvWmWaj7f3sTWVcA5KLYKxsObFPalWBF4BNiiE1i5ozRLsJChMXQtbKdDqFdb0aeDhqfV0AI2fP4LWopkKd4D2JGgnDr9rD90Pz--Ky3B0c3FVDEZhlaSEhHFUpkwATcqYSSL9oTJljCSMsqgsU4FpTliZVwnILE_jGChNJwlmGchUSoC4h443vnNrnhfCtXxmFrbxK3kUk9SbJRh7VbJRVdY4Z4XklWq_HmgtKM0J5uso-TpKvo3SY_1f2NyqGuzqbyDfAEulxeofNR-cDa9_2E_qs4rQ
CitedBy_id crossref_primary_10_1021_acs_jpcc_3c00824
crossref_primary_10_1021_acs_chemmater_3c02694
crossref_primary_10_1016_j_nanoen_2022_108154
crossref_primary_10_1002_aenm_201902253
crossref_primary_10_1007_s11771_020_4353_7
crossref_primary_10_1021_acsenergylett_0c00781
crossref_primary_10_1021_acs_jpcc_1c07795
crossref_primary_10_35848_1882_0786_acb893
crossref_primary_10_1016_j_jhazmat_2021_127848
crossref_primary_10_1007_s12274_020_2805_x
crossref_primary_10_3390_coatings14121564
crossref_primary_10_1002_cssc_201902488
crossref_primary_10_1002_aesr_202300275
crossref_primary_10_1002_cjoc_202100672
crossref_primary_10_1021_acsaem_1c01600
crossref_primary_10_1002_solr_201900200
crossref_primary_10_1002_solr_202101098
crossref_primary_10_1021_acs_chemmater_4c02946
crossref_primary_10_1021_acs_jpcc_1c08811
crossref_primary_10_1126_science_aba2412
crossref_primary_10_1039_D0NA00852D
crossref_primary_10_1016_j_jechem_2021_02_004
crossref_primary_10_1002_solr_202300458
crossref_primary_10_1007_s40843_022_2199_5
crossref_primary_10_1016_j_solener_2023_112040
crossref_primary_10_1021_acsami_0c18920
crossref_primary_10_1088_1674_4926_42_11_112202
crossref_primary_10_1002_cctc_201901856
crossref_primary_10_1093_micmic_ozad017
crossref_primary_10_1002_smll_201903613
crossref_primary_10_1002_admt_202201387
crossref_primary_10_1002_adom_202100390
crossref_primary_10_1002_adts_202500115
crossref_primary_10_1002_solr_202200720
crossref_primary_10_1039_C9CE00724E
crossref_primary_10_1021_acsami_3c10126
crossref_primary_10_1016_j_orgel_2021_106378
crossref_primary_10_1016_j_mtphys_2022_100624
crossref_primary_10_1021_acsaem_3c01495
crossref_primary_10_1186_s11671_019_3120_x
crossref_primary_10_1016_j_jechem_2022_02_018
crossref_primary_10_3389_fchem_2022_842924
crossref_primary_10_1016_j_jcis_2021_09_117
crossref_primary_10_1016_j_solener_2020_10_035
crossref_primary_10_1021_acs_jpclett_3c00522
crossref_primary_10_1007_s10853_021_06014_w
crossref_primary_10_1016_j_solener_2024_112454
crossref_primary_10_1021_acsami_1c02626
crossref_primary_10_1002_aenm_202101219
crossref_primary_10_1007_s10854_023_11197_w
crossref_primary_10_1002_adom_201901494
crossref_primary_10_1002_adfm_202206703
crossref_primary_10_1007_s12598_020_01595_y
crossref_primary_10_1039_D4TC03961K
crossref_primary_10_1007_s11664_024_11658_w
crossref_primary_10_1016_j_jphotochem_2025_116337
crossref_primary_10_1038_s41467_024_48877_y
crossref_primary_10_1016_j_jechem_2020_09_036
crossref_primary_10_1002_smll_202002201
crossref_primary_10_1002_adfm_202208841
crossref_primary_10_1021_acs_chemrev_3c00214
crossref_primary_10_1039_D4NR03140G
crossref_primary_10_1016_j_cej_2020_126992
crossref_primary_10_1002_solr_202100249
crossref_primary_10_1021_acssuschemeng_0c04289
crossref_primary_10_1039_D1TA06247F
crossref_primary_10_1186_s11671_019_3134_4
crossref_primary_10_1039_D4CC05454G
crossref_primary_10_1002_adom_202100524
crossref_primary_10_1002_solr_202400262
crossref_primary_10_1002_solr_202300436
crossref_primary_10_1007_s10853_020_04883_1
crossref_primary_10_3390_molecules29092104
crossref_primary_10_1002_slct_202300342
crossref_primary_10_1021_jacs_0c03004
crossref_primary_10_1021_acsami_1c23832
crossref_primary_10_1002_admi_202001509
crossref_primary_10_1007_s40820_023_01083_9
crossref_primary_10_1039_D2YA00075J
crossref_primary_10_1002_adma_202103078
crossref_primary_10_1186_s11671_020_03338_5
crossref_primary_10_1016_j_nanoen_2019_104249
crossref_primary_10_1021_jacs_1c01727
crossref_primary_10_1021_acsami_1c11237
crossref_primary_10_1021_acsami_9b15166
crossref_primary_10_1039_D1TA01763B
crossref_primary_10_1088_1361_648X_ac2271
crossref_primary_10_1002_pssa_202300782
crossref_primary_10_1016_j_cej_2022_137164
crossref_primary_10_1021_acsenergylett_4c01118
crossref_primary_10_1007_s40042_022_00672_y
crossref_primary_10_1021_acs_jpcc_0c09443
crossref_primary_10_3390_ijms232113375
crossref_primary_10_1016_j_nanoen_2019_06_049
crossref_primary_10_3390_molecules26185620
crossref_primary_10_1007_s10854_021_07512_y
crossref_primary_10_1016_j_apsusc_2022_152826
crossref_primary_10_1039_D0TC05010E
crossref_primary_10_1016_j_cej_2022_138017
crossref_primary_10_1016_j_orgel_2019_105573
crossref_primary_10_1016_j_jechem_2021_11_006
crossref_primary_10_1039_D3QM00515A
crossref_primary_10_1002_cssc_202101475
crossref_primary_10_1039_D2EE03082A
crossref_primary_10_1002_aenm_202201490
crossref_primary_10_1002_anie_202218429
crossref_primary_10_1039_D1CS01157J
crossref_primary_10_1016_j_jpowsour_2020_228965
crossref_primary_10_1002_solr_202300817
crossref_primary_10_1016_j_jhazmat_2023_130829
crossref_primary_10_1016_j_infrared_2024_105306
crossref_primary_10_1016_j_isci_2019_100762
crossref_primary_10_1016_j_jechem_2021_05_019
crossref_primary_10_1021_acsami_3c09109
crossref_primary_10_3390_molecules29204976
crossref_primary_10_1007_s42247_022_00364_0
crossref_primary_10_1002_er_7270
crossref_primary_10_1007_s40843_023_2670_6
crossref_primary_10_1002_EXP_20240121
crossref_primary_10_3390_nanoenergyadv1010002
crossref_primary_10_1021_acsami_3c12101
crossref_primary_10_1039_D1SE01721G
crossref_primary_10_1080_09506608_2022_2077030
crossref_primary_10_1002_aenm_202102730
crossref_primary_10_3390_coatings13101673
crossref_primary_10_1002_eem2_12249
crossref_primary_10_1039_D1TA07090H
crossref_primary_10_1021_acs_chemmater_0c02269
crossref_primary_10_1002_aenm_202300025
crossref_primary_10_1002_adma_202408036
crossref_primary_10_1002_tcr_202200067
crossref_primary_10_1039_D1TA10313J
crossref_primary_10_1021_acsorginorgau_4c00093
crossref_primary_10_1016_j_commatsci_2023_112215
crossref_primary_10_1021_acsami_0c09485
crossref_primary_10_1002_adma_202005410
crossref_primary_10_1007_s42765_022_00222_y
crossref_primary_10_26599_EMD_2024_9370038
crossref_primary_10_1002_adfm_202416330
crossref_primary_10_1002_ange_201915928
crossref_primary_10_1039_D4MH00957F
crossref_primary_10_1021_acsenergylett_4c02943
crossref_primary_10_1088_1361_6528_acc1ec
crossref_primary_10_1016_j_cplett_2022_140084
crossref_primary_10_1016_j_jechem_2020_08_041
crossref_primary_10_1021_acsenergylett_9b01396
crossref_primary_10_1038_s41467_023_41931_1
crossref_primary_10_1109_JPHOTOV_2021_3067817
crossref_primary_10_1002_solr_202200932
crossref_primary_10_1002_advs_202308901
crossref_primary_10_1038_s43246_024_00516_1
crossref_primary_10_1021_acsami_4c13114
crossref_primary_10_1002_adhm_202302721
crossref_primary_10_1002_ente_202100204
crossref_primary_10_1002_pssa_202300525
crossref_primary_10_1016_j_molstruc_2024_138574
crossref_primary_10_1039_D3EE03511E
crossref_primary_10_1002_anie_201915928
crossref_primary_10_1016_j_materresbull_2024_112707
crossref_primary_10_1016_j_solener_2024_113172
crossref_primary_10_1039_D0TA12458C
crossref_primary_10_1021_acsaom_3c00002
crossref_primary_10_1002_solr_202000599
crossref_primary_10_1016_j_solener_2023_112185
crossref_primary_10_1039_D0SC06629J
crossref_primary_10_1039_D4TA08802F
crossref_primary_10_1002_adma_202205143
crossref_primary_10_1002_aenm_202400582
crossref_primary_10_1002_adfm_202310404
crossref_primary_10_1088_1361_6633_ac4be9
crossref_primary_10_20517_jmi_2024_10
crossref_primary_10_1002_er_8054
crossref_primary_10_1002_jccs_202300326
crossref_primary_10_1016_j_jpcs_2023_111596
crossref_primary_10_1002_ange_202218429
Cites_doi 10.7567/APEX.6.076503
10.1038/s41570-017-0095
10.1109/JPHOTOV.2015.2416913
10.1039/C6EE02980A
10.1038/nphoton.2014.134
10.1038/srep00591
10.1038/nenergy.2016.177
10.1021/acsenergylett.8b00871
10.1039/c3ta10518k
10.1126/science.aat8235
10.1038/nature12340
10.1126/science.aam7092
10.1021/acsnano.6b02613
10.1002/adma.201804028
10.1002/adma.201701440
10.1039/C5SC03569D
10.1021/acsenergylett.7b01167
10.1002/aenm.201800177
10.1002/aenm.201802139
10.1021/nl5012992
10.1021/ja508758k
10.1039/C5EE02965A
10.1021/acs.chemrev.5b00715
10.1002/pip.2421
10.1021/jz5011169
10.1039/C5EE00615E
10.1039/C5EE02925B
10.1021/acsnano.6b01535
10.1039/C5TA02306H
10.1021/jacs.6b00142
10.1021/acsenergylett.6b00215
10.1002/solr.201700180
10.1002/aenm.201700576
10.1002/aenm.201702714
10.1002/adma.201600265
10.1002/anie.201504379
10.1038/s41467-018-04029-7
10.1021/acs.jpclett.6b00215
10.1021/acsami.8b02624
10.1021/acs.jpclett.7b01952
10.1002/pssb.200304296
10.1002/smll.201802385
10.1039/C6EE00030D
10.1039/C5TA00190K
10.1021/acsenergylett.8b01382
10.1039/C8EE02284D
10.1039/c4ta00379a
10.1021/jacs.5b03796
10.1002/solr.201800052
10.1002/adfm.201102284
10.1038/natrevmats.2017.42
10.1021/acsenergylett.6b00697
10.1038/nnano.2015.90
10.1039/C7EE02564E
10.1002/adma.201707166
10.1002/aenm.201700749
10.1016/j.joule.2017.07.013
10.1021/acsenergylett.6b00002
10.1021/acs.jpcc.8b02163
10.1039/C4NR04007D
10.3390/photonics2041139
10.1021/acsenergylett.6b00013
10.1016/j.nanoen.2018.03.047
10.1021/acs.jpclett.5b00480
10.1038/nenergy.2017.135
10.1016/j.susc.2006.07.040
10.1002/anie.201603608
10.1039/C4EE02539C
10.1039/C5TA06398A
10.1038/ncomms16045
10.1038/nphoton.2014.82
10.1002/solr.201700213
10.1016/j.nanoen.2015.05.027
10.1002/anie.201405334
10.1021/acs.chemmater.6b00711
10.1039/C4EE02465F
10.1002/admi.201800499
10.1002/anie.201406466
10.1002/adma.201706246
10.1126/sciadv.1700841
10.1039/C4EE00965G
10.1016/j.joule.2018.04.011
10.1021/cm404006p
10.1021/nn506864k
10.1126/sciadv.aao5616
10.1126/science.aag2700
10.1002/adfm.201706923
10.1038/ncomms4586
10.1557/mrs.2015.177
10.1039/C5TA03990H
10.1038/nmat4014
10.1039/C5TA07957H
10.1002/solr.201700048
10.1038/s41467-018-07099-9
10.1039/C6TA04685A
10.1039/C7EE01145H
10.1002/adma.201501978
10.1063/1.4914179
10.1002/aenm.201702762
10.1021/acs.jpclett.5b02229
10.1021/ja411014k
10.1021/jp411112k
10.1021/jz500833z
10.1039/C5NR08658B
10.1038/nchem.2324
10.1039/C4EE01076K
10.1038/353737a0
10.1021/acs.jpclett.5b01432
10.1126/science.aad1015
10.1126/science.aai9081
10.1002/pip.2978
10.1038/nmat4572
10.1002/adma.201803428
10.1038/s41467-018-04636-4
10.1002/adfm.201401658
10.1039/C5PY00431D
10.1016/j.synthmet.2015.07.013
10.1039/C4EE02977A
10.1126/science.aaa9272
10.1002/adma.201404598
10.1016/j.joule.2018.01.009
10.1126/science.aam6620
10.1021/acsenergylett.6b00341
10.1002/aenm.201601353
10.1038/ncomms3885
10.1021/acs.nanolett.6b00635
10.1021/cm502468k
10.1002/adma.201800544
10.1021/jacs.5b11740
10.1002/admi.201500195
10.1146/annurev.med.55.091902.103653
10.1002/adma.201801418
10.1021/acs.inorgchem.5b01481
10.1002/adma.201301327
10.1016/0022-3697(92)90121-S
10.1038/ncomms10228
10.1038/nnano.2014.181
10.1002/anie.201809781
10.1038/ncomms15684
10.1002/advs.201500392
10.1039/C4SC03141E
10.1021/nl504701y
10.1021/jacs.8b05949
10.1002/adma.201604984
10.1002/pip.3040
10.1039/C6TA09565H
10.1002/adma.201805660
10.1002/adfm.201804128
10.1126/science.1228604
10.1038/nenergy.2015.12
10.1021/jacs.5b08535
10.1021/jacs.7b01815
10.1038/ncomms6784
10.1039/C7RA12521F
10.1038/nature18306
10.1016/j.nanoen.2015.10.006
10.1039/C5TA00011D
10.1002/adma.201600624
10.1021/ja00124a012
10.1021/jp500449z
10.1016/j.nanoen.2014.08.015
10.1021/acsenergylett.6b00254
10.1038/natrevmats.2018.17
10.1021/acs.jpclett.5b02597
10.1039/C5TA01668A
10.1002/aenm.201500328
10.1021/acsenergylett.7b00187
10.1016/j.joule.2018.04.012
10.1002/adma.201801401
10.1038/ncomms15688
10.1038/s41467-018-05760-x
10.1002/solr.201600019
10.1021/acs.jpclett.6b02682
10.1039/C7NR04692H
10.1002/advs.201600269
10.1038/nature14133
10.1021/jz5011187
10.1039/C6EE02013E
10.1021/jz501392m
10.1002/cssc.201702221
10.1016/j.solmat.2015.12.025
10.1038/nature22072
10.1039/C4TA07030E
10.1039/C4TA04994B
10.1016/j.solmat.2017.11.010
10.1039/C6EE00409A
10.1039/C4TA05675B
10.1021/acsami.6b03767
10.1039/C7EE00757D
10.1002/pssa.201431366
10.1039/C5MH00126A
10.1038/ncomms11735
10.1021/acssuschemeng.6b03089
10.1021/ja411509g
10.1002/adma.201602992
10.1002/aenm.201701609
10.1021/jacs.7b11332
10.1002/aenm.201501310
10.1021/nn5014879
10.1021/acs.jpcc.6b02858
10.1016/j.jpowsour.2014.12.008
10.1021/acs.jpclett.5b00380
10.1002/adma.201801010
10.1039/C5TA05741H
10.1038/ncomms8747
10.1039/C6EE01411A
10.1557/mrc.2015.26
10.1126/science.1254050
10.1039/C6TA08117G
10.1002/aenm.201502177
10.1126/science.267.5203.1473
10.1038/s41467-017-02039-5
10.1021/nn505723h
10.1021/acs.chemmater.5b01989
10.1002/pip.2916
10.1021/nl400349b
10.1039/C4GC01149J
10.1002/anie.201309361
10.1021/acs.chemmater.5b04107
10.1002/aenm.201500486
10.1021/ja5033259
10.1039/C8TA02159G
10.1021/acs.jpclett.5b00289
10.1002/aenm.201500615
10.1039/C8EE00689J
10.1002/adma.201707583
10.1038/nenergy.2016.152
10.1002/aenm.201801509
10.1021/jz500113x
10.1002/cssc.201600868
10.1021/acsenergylett.7b00202
10.1039/C6NR00818F
10.1038/natrevmats.2016.99
10.1038/s41467-018-03169-0
10.1246/bcsj.20150110
10.1039/C7TA09721B
10.1002/anie.201603694
10.1002/adma.201502597
10.1021/acs.jpclett.5b02686
10.1021/acsenergylett.8b00428
10.1126/science.aam5655
10.1021/acs.jpclett.5b00504
10.1016/j.nanoen.2017.04.034
10.1007/BF01507527
10.1038/nphoton.2013.80
10.1021/jacs.6b08337
10.1002/adom.201800276
10.1038/nenergy.2017.38
10.1002/adma.201401685
10.1021/acsenergylett.6b00441
10.1002/adma.201602377
10.1002/aenm.201401808
10.1002/adma.201703852
10.1038/s41563-018-0115-4
10.1021/jacs.5b06658
10.1021/ic401215x
10.1021/acs.jpclett.6b01576
10.1038/nenergy.2017.102
10.1016/j.solmat.2016.09.013
10.1016/j.joule.2018.10.025
10.1002/pip.2871
10.1039/c3ee43822h
10.1021/jz5012109
10.1021/acsami.7b17824
10.1021/ja00006a076
10.1002/adma.200401171
10.1063/1.1736034
10.1021/acsenergylett.8b00217
10.1038/ncomms12305
10.1021/ja809598r
10.1038/ncomms7142
10.1039/C4CP03533J
10.1038/s41560-018-0200-6
10.1021/acsami.7b07625
10.1002/aenm.201701928
10.1038/s41560-018-0153-9
10.1039/C4TA04969A
10.1039/C8NR03589J
10.1021/acsenergylett.6b00457
10.1039/c3ee40343b
10.1002/smll.201501330
10.1016/j.nanoen.2016.09.009
10.1039/C6EE02373H
10.1039/C6TA08021A
10.1002/aenm.201602121
10.1038/s41563-017-0006-0
10.1021/acs.jpclett.5b00968
10.1021/cm970568f
10.1016/j.nanoen.2016.06.044
10.1039/C5EE00400D
10.1002/adma.201602696
10.1038/nmat1611
10.1038/ncomms7700
10.1002/adfm.201504041
10.1038/nenergy.2017.115
10.1002/aenm.201701688
10.1038/nenergy.2017.9
10.1039/c3cc46534a
10.1021/acs.jpclett.7b01851
10.1002/anie.201409208
10.1126/science.1254763
10.1016/j.solmat.2017.04.029
10.1021/acs.jpclett.7b00086
10.1063/1.453467
10.1038/s41598-017-18970-y
10.1146/annurev.fluid.32.1.709
10.1039/C7EE00358G
10.1126/science.aah5557
10.1002/aenm.201500477
10.1016/j.jpowsour.2015.05.106
10.1038/nature12509
10.1002/adma.201401991
10.1038/s41467-018-05454-4
10.1039/C5TA00358J
10.1021/acs.nanolett.5b02369
10.1021/acs.jpcc.5b11845
10.1021/acsenergylett.7b01221
10.1002/adma.201800455
10.1021/jacs.8b07927
10.1039/C5NR01864A
10.1038/nature23877
10.1021/jp064689r
10.1002/aenm.201702019
10.1002/solr.201800149
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201807661
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201807661
ADFM201807661
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: NSFC21773218
– fundername: Anshan Hifichem Co., Ltd
– fundername: China Academy of Engineering Physics
  funderid: YZJJLX2018007; 0207; 0202
– fundername: Sichuan Province
  funderid: 2017GZ0052; 2018JY0206; 2018RZ0119
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4511-32b57ea64b37f1f301f577147672bb5e06917b9c4af89533a665d4078af5ffaa3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:00:39 EDT 2025
Tue Jul 01 04:11:58 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Wed Jan 22 16:37:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4511-32b57ea64b37f1f301f577147672bb5e06917b9c4af89533a665d4078af5ffaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3963-4073
0000-0002-6676-6231
PQID 2315577400
PQPubID 2045204
PageCount 37
ParticipantIDs proquest_journals_2315577400
crossref_citationtrail_10_1002_adfm_201807661
crossref_primary_10_1002_adfm_201807661
wiley_primary_10_1002_adfm_201807661_ADFM201807661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 113
2013; 4
2013; 1
1991; 353
2014; 26
2014; 24
2017; 550
2016; 147
1992; 53
2013; 7
2013; 6
2014; 136
2017; 159
2018; 48
2018; 6
2018; 9
2018; 8
2018; 3
2018; 2
2018; 5
2015; 137
2015; 88
2013; 52
2014; 16
2014; 14
2014; 13
2018; 30
2006; 600
2017; 168
1998; 10
2012; 22
2014; 10
2018; 28
2018; 181
2019; 3
2013; 501
2015; 54
2016; 10
1926; 14
2016; 16
2016; 15
2018; 26
2017; 139
2016; 4
2015; 350
2004; 55
2016; 6
2016; 7
2018; 17
2016; 1
2016; 3
2017; 56
2015; 517
1995; 267
2016; 28
2018; 11
2005; 17
2018; 10
2016; 27
2016; 26
2016; 8
2016; 9
2017; 545
2018; 14
2017; 5
2018; 361
2017; 7
2018; 122
2004; 241
2017; 8
2017; 1
2017; 2
2013; 25
2017; 3
2017; 4
2019; 58
2015; 106
1961; 32
2015; 348
2017; 355
2017; 356
2017; 9
2017; 358
2014; 211
2015; 293
2014; 5
1987; 87
2014; 2
2017; 36
2013; 13
2015; 40
2016; 354
2016; 116
2014; 9
2014; 8
2014; 7
2014; 6
2012; 338
2014; 53
2014; 118
2015; 2
2015; 15
2015; 6
2015; 5
2018; 140
2015; 3
2015; 18
2013; 49
2017; 25
2006; 11
2015; 11
2015; 10
1995; 117
2006; 5
2015; 209
2017; 29
2009; 131
2015; 9
2015; 8
2015; 7
2016; 120
2016; 55
2015; 23
2012; 2
2015; 27
2016; 536
2015; 277
2000; 32
2017; 10
2007; 111
2013; 499
2018
2016; 138
2014; 345
e_1_2_9_79_1
e_1_2_9_254_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_277_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_71_1
e_1_2_9_231_1
e_1_2_9_292_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_314_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_265_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_288_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_242_1
e_1_2_9_280_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_325_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_302_1
e_1_2_9_172_1
e_1_2_9_232_1
e_1_2_9_255_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_278_1
e_1_2_9_270_1
e_1_2_9_293_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_315_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_266_1
e_1_2_9_289_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_220_1
e_1_2_9_281_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_326_1
e_1_2_9_303_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_256_1
e_1_2_9_233_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_279_1
e_1_2_9_294_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_271_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_316_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_218_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_221_1
e_1_2_9_244_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_267_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_282_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_327_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_304_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_257_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_317_1
e_1_2_9_272_1
e_1_2_9_295_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_245_1
e_1_2_9_222_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_268_1
e_1_2_9_260_1
e_1_2_9_283_1
e_1_2_9_328_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_320_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_305_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_212_1
Patrick L. (e_1_2_9_286_1) 2006; 11
e_1_2_9_318_1
e_1_2_9_258_1
e_1_2_9_90_1
e_1_2_9_273_1
e_1_2_9_296_1
e_1_2_9_250_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_310_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
e_1_2_9_246_1
e_1_2_9_269_1
e_1_2_9_306_1
e_1_2_9_284_1
e_1_2_9_2_1
e_1_2_9_261_1
e_1_2_9_138_1
e_1_2_9_321_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_319_1
e_1_2_9_236_1
e_1_2_9_259_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_274_1
e_1_2_9_297_1
e_1_2_9_251_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_311_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_307_1
e_1_2_9_65_1
e_1_2_9_247_1
e_1_2_9_80_1
e_1_2_9_285_1
e_1_2_9_262_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_322_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_298_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_237_1
e_1_2_9_275_1
e_1_2_9_252_1
e_1_2_9_290_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_312_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_308_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_248_1
e_1_2_9_4_1
e_1_2_9_263_1
e_1_2_9_240_1
e_1_2_9_323_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_300_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_238_1
e_1_2_9_276_1
e_1_2_9_299_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_230_1
e_1_2_9_253_1
e_1_2_9_291_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_313_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_287_1
e_1_2_9_309_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_264_1
e_1_2_9_3_1
e_1_2_9_241_1
e_1_2_9_139_1
e_1_2_9_324_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_301_1
e_1_2_9_192_1
References_xml – volume: 7
  start-page: 2633
  year: 2016
  publication-title: Chem. Sci.
– volume: 27
  start-page: 6806
  year: 2015
  publication-title: Adv. Mater.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 4609
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 442
  year: 2018
  publication-title: Sci. Rep.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 7
  start-page: 486
  year: 2013
  publication-title: Nat. Photonics
– volume: 10
  start-page: 391
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 682
  year: 2018
  publication-title: Nat. Energy
– volume: 293
  start-page: 533
  year: 2015
  publication-title: J. Power Sources
– volume: 3
  start-page: 3271
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 3690
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 2885
  year: 2013
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3172
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 261
  year: 2018
  publication-title: Nat. Mater.
– volume: 26
  start-page: 1485
  year: 2014
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1618
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 9427
  year: 2015
  publication-title: Nanoscale
– volume: 10
  start-page: 2095
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 837
  year: 2018
  publication-title: ChemSusChem
– volume: 9
  start-page: 927
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 5778
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 9103
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 2402
  year: 2015
  publication-title: Nano Lett.
– volume: 1
  year: 2017
  publication-title: Sol. RRL
– volume: 2
  start-page: 578
  year: 2015
  publication-title: Mater. Horiz.
– volume: 2
  year: 2015
  publication-title: Adv. Mater. Interfaces
– volume: 9
  start-page: 1655
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 6095
  year: 2015
  publication-title: Nano Lett.
– volume: 9
  start-page: 3021
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3586
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 2452
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 1543
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 265
  year: 2015
  publication-title: MRS Commun.
– volume: 27
  start-page: 51
  year: 2016
  publication-title: Nano Energy
– volume: 7
  start-page: 703
  year: 2015
  publication-title: Nat. Chem.
– volume: 11
  start-page: 2432
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 113
  start-page: 2328
  year: 1991
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3239
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1955
  year: 2015
  publication-title: ACS Nano
– volume: 25
  start-page: 1022
  year: 2017
  publication-title: Prog. Photovoltaics
– volume: 6
  year: 2013
  publication-title: Appl. Phys. Express
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 2
  start-page: 1313
  year: 2018
  publication-title: Joule
– volume: 358
  start-page: 751
  year: 2017
  publication-title: Science
– volume: 6
  start-page: 3209
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 277
  start-page: 286
  year: 2015
  publication-title: J. Power Sources
– volume: 1
  start-page: 1014
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 8139
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 358
  start-page: 768
  year: 2017
  publication-title: Science
– volume: 1
  start-page: 38
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 469
  year: 2016
  publication-title: Nano Energy
– volume: 8
  start-page: 772
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 2357
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 9333
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3986
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 9898
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 1297
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 6160
  year: 2014
  publication-title: Chem. Mater.
– volume: 7
  start-page: 905
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 27
  start-page: 5622
  year: 2015
  publication-title: Chem. Mater.
– volume: 26
  start-page: 3
  year: 2018
  publication-title: Prog. Photovoltaics
– volume: 136
  start-page: 758
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 87
  start-page: 6373
  year: 1987
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 560
  year: 2018
  publication-title: Nat. Energy
– volume: 10
  start-page: 403
  year: 1998
  publication-title: Chem. Mater.
– volume: 6
  start-page: 7747
  year: 2015
  publication-title: Nat. Commun.
– volume: 56
  start-page: 1190
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 424
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 9
  start-page: 1076
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 2
  start-page: 1139
  year: 2015
  publication-title: Photonics
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  start-page: 1890
  year: 2017
  publication-title: Nat. Commun.
– volume: 353
  start-page: 737
  year: 1991
  publication-title: Nature
– volume: 28
  start-page: 284
  year: 2016
  publication-title: Chem. Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 27
  start-page: 1241
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 161
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 4546
  year: 2014
  publication-title: Green Chem.
– volume: 11
  start-page: 144
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 3
  start-page: 1078
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 81
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 5784
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1480
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 438
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 1374
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 6142
  year: 2015
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 1
  start-page: 0095
  year: 2017
  publication-title: Nat. Rev. Chem.
– year: 2018
  publication-title: Oxford PV perovskite solar cell achieves 28% efficiency
– volume: 10
  start-page: 10
  year: 2014
  publication-title: Nano Energy
– volume: 5
  start-page: 265
  year: 2006
  publication-title: Nat. Mater.
– volume: 8
  start-page: 1804
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 3608
  year: 2014
  publication-title: Nano Lett.
– volume: 36
  start-page: 295
  year: 2017
  publication-title: Nano Energy
– volume: 7
  start-page: 3061
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 8970
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 167
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 22
  start-page: 1005
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 3603
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 807
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 2
  start-page: 591
  year: 2012
  publication-title: Sci. Rep.
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 16
  start-page: 3563
  year: 2016
  publication-title: Nano Lett.
– volume: 545
  start-page: 208
  year: 2017
  publication-title: Nature
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 136
  start-page: 622
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1500
  year: 2018
  publication-title: Joule
– volume: 355
  start-page: 722
  year: 2017
  publication-title: Science
– volume: 550
  start-page: 92
  year: 2017
  publication-title: Nature
– volume: 23
  start-page: 238
  year: 2015
  publication-title: Prog. Photovoltaics
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2390
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 3650
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 427
  year: 2018
  publication-title: Prog. Photovoltaics
– volume: 18
  start-page: 118
  year: 2015
  publication-title: Nano Energy
– volume: 14
  year: 2018
  publication-title: Small
– volume: 11
  start-page: 5528
  year: 2015
  publication-title: Small
– volume: 5
  start-page: 3261
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 168
  start-page: 165
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 11
  start-page: 2
  year: 2006
  publication-title: Altern. Med. Rev.
– volume: 6
  start-page: 4693
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 506
  year: 2014
  publication-title: Nat. Photonics
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 48
  start-page: 117
  year: 2018
  publication-title: Nano Energy
– volume: 40
  start-page: 638
  year: 2015
  publication-title: MRS Bull.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 354
  start-page: 206
  year: 2016
  publication-title: Science
– volume: 1
  start-page: 5628
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 7843
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 4466
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 5999
  year: 2016
  publication-title: ACS Nano
– volume: 5
  start-page: 2160
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 120
  start-page: 166
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 2225
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2927
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 2900
  year: 2018
  publication-title: RSC Adv.
– volume: 147
  start-page: 255
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 181
  start-page: 53
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– year: 2018
  publication-title: New solar opportunities for a New Decade
– volume: 1
  start-page: 573
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 26
  start-page: 101
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3349
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 4089
  year: 2015
  publication-title: Polym. Chem.
– volume: 55
  start-page: 9586
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 6046
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 474
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 159
  start-page: 362
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 5
  start-page: 1548
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 489
  year: 2014
  publication-title: Nat. Photonics
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 211
  start-page: 2809
  year: 2014
  publication-title: Phys. Status Solidi A
– volume: 2
  year: 2018
  publication-title: Sol. RRL
– volume: 111
  start-page: 849
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 3
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 350
  start-page: 944
  year: 2015
  publication-title: Science
– volume: 53
  start-page: 3151
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 361
  year: 2018
  publication-title: Science
– volume: 17
  start-page: 820
  year: 2018
  publication-title: Nat. Mater.
– volume: 32
  start-page: 510
  year: 1961
  publication-title: J. Appl. Phys.
– volume: 3
  start-page: 1781
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 8990
  year: 2016
  publication-title: Adv. Mater.
– volume: 139
  start-page: 6693
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 5176
  year: 2015
  publication-title: Adv. Mater.
– volume: 52
  start-page: 9019
  year: 2013
  publication-title: Inorg. Chem.
– volume: 26
  start-page: 7122
  year: 2014
  publication-title: Adv. Mater.
– volume: 8
  start-page: 4300
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 613
  year: 2015
  publication-title: Chem. Sci.
– volume: 2
  start-page: 558
  year: 2018
  publication-title: Joule
– volume: 8
  start-page: 6386
  year: 2016
  publication-title: Nanoscale
– volume: 3
  start-page: 2299
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 1249
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 1511
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 345
  start-page: 295
  year: 2014
  publication-title: Science
– volume: 17
  start-page: 684
  year: 2005
  publication-title: Adv. Mater.
– volume: 267
  start-page: 1473
  year: 1995
  publication-title: Science
– volume: 3
  start-page: 322
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 477
  year: 1926
  publication-title: Naturwissenschaften
– volume: 600
  start-page: 4712
  year: 2006
  publication-title: Surf. Sci.
– volume: 140
  start-page: 872
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1007
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 116
  start-page: 4558
  year: 2016
  publication-title: Chem. Rev.
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 875
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 5
  start-page: 2488
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 241
  start-page: 783
  year: 2004
  publication-title: Phys. Status Solidi B
– volume: 1
  start-page: 29
  year: 2017
  publication-title: Joule
– volume: 88
  start-page: 1250
  year: 2015
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 15
  start-page: 670
  year: 2015
  publication-title: Nano Energy
– volume: 9
  start-page: 155
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 32
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 9092
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 356
  start-page: 167
  year: 2017
  publication-title: Science
– volume: 7
  start-page: 3659
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1645
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 145
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 209
  start-page: 247
  year: 2015
  publication-title: Synth. Met.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 2597
  year: 2016
  publication-title: ChemSusChem
– volume: 9
  start-page: 2295
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 4122
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 1326
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 1764
  year: 2013
  publication-title: Nano Lett.
– volume: 117
  start-page: 5297
  year: 1995
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 536
  start-page: 312
  year: 2016
  publication-title: Nature
– volume: 25
  start-page: 3727
  year: 2013
  publication-title: Adv. Mater.
– volume: 3
  start-page: 9074
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 354
  start-page: 92
  year: 2016
  publication-title: Science
– volume: 106
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 247
  year: 2016
  publication-title: Nat. Mater.
– volume: 10
  start-page: 6306
  year: 2016
  publication-title: ACS Nano
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 28
  start-page: 3131
  year: 2016
  publication-title: Chem. Mater.
– volume: 54
  year: 2015
  publication-title: Inorg. Chem.
– volume: 26
  start-page: 6503
  year: 2014
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3989
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 8007
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1953
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 6700
  year: 2015
  publication-title: Nat. Commun.
– volume: 49
  year: 2013
  publication-title: Chem. Commun.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1087
  year: 2015
  publication-title: IEEE J. Photovoltaics
– volume: 28
  start-page: 5031
  year: 2016
  publication-title: Adv. Mater.
– volume: 138
  start-page: 3974
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1706
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 53
  start-page: 935
  year: 1992
  publication-title: J. Phys. Chem. Solids
– volume: 2
  start-page: 8607
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1616
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 3
  start-page: 297
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 32
  start-page: 709
  year: 2000
  publication-title: Annu. Rev. Fluid Mech.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 852
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 55
  start-page: 209
  year: 2004
  publication-title: Annu. Rev. Med.
– volume: 138
  start-page: 2649
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 982
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 4053
  year: 2014
  publication-title: ACS Nano
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 9705
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 402
  year: 2019
  publication-title: Joule
– volume: 9
  start-page: 1607
  year: 2018
  publication-title: Nat. Commun.
– volume: 25
  start-page: 390
  year: 2017
  publication-title: Prog. Photovoltaics
– volume: 10
  start-page: 1234
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 501
  start-page: 395
  year: 2013
  publication-title: Nature
– ident: e_1_2_9_154_1
  doi: 10.7567/APEX.6.076503
– ident: e_1_2_9_117_1
  doi: 10.1038/s41570-017-0095
– ident: e_1_2_9_174_1
  doi: 10.1109/JPHOTOV.2015.2416913
– ident: e_1_2_9_274_1
  doi: 10.1039/C6EE02980A
– ident: e_1_2_9_7_1
  doi: 10.1038/nphoton.2014.134
– ident: e_1_2_9_100_1
  doi: 10.1038/srep00591
– ident: e_1_2_9_50_1
  doi: 10.1038/nenergy.2016.177
– ident: e_1_2_9_304_1
  doi: 10.1021/acsenergylett.8b00871
– ident: e_1_2_9_37_1
  doi: 10.1039/c3ta10518k
– ident: e_1_2_9_114_1
  doi: 10.1126/science.aat8235
– ident: e_1_2_9_6_1
  doi: 10.1038/nature12340
– ident: e_1_2_9_99_1
  doi: 10.1126/science.aam7092
– ident: e_1_2_9_271_1
  doi: 10.1021/acsnano.6b02613
– ident: e_1_2_9_260_1
  doi: 10.1002/adma.201804028
– ident: e_1_2_9_149_1
  doi: 10.1002/adma.201701440
– ident: e_1_2_9_259_1
  doi: 10.1039/C5SC03569D
– ident: e_1_2_9_96_1
  doi: 10.1021/acsenergylett.7b01167
– ident: e_1_2_9_325_1
  doi: 10.1002/aenm.201800177
– ident: e_1_2_9_282_1
  doi: 10.1002/aenm.201802139
– ident: e_1_2_9_43_1
  doi: 10.1021/nl5012992
– ident: e_1_2_9_115_1
  doi: 10.1021/ja508758k
– ident: e_1_2_9_82_1
  doi: 10.1039/C5EE02965A
– ident: e_1_2_9_19_1
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_2_9_172_1
  doi: 10.1002/pip.2421
– ident: e_1_2_9_200_1
  doi: 10.1021/jz5011169
– ident: e_1_2_9_210_1
  doi: 10.1039/C5EE00615E
– ident: e_1_2_9_29_1
  doi: 10.1039/C5EE02925B
– ident: e_1_2_9_76_1
  doi: 10.1021/acsnano.6b01535
– ident: e_1_2_9_137_1
  doi: 10.1039/C5TA02306H
– ident: e_1_2_9_289_1
  doi: 10.1021/jacs.6b00142
– ident: e_1_2_9_38_1
  doi: 10.1021/acsenergylett.6b00215
– ident: e_1_2_9_251_1
  doi: 10.1002/solr.201700180
– ident: e_1_2_9_320_1
  doi: 10.1002/aenm.201700576
– ident: e_1_2_9_77_1
  doi: 10.1002/aenm.201702714
– ident: e_1_2_9_299_1
  doi: 10.1002/adma.201600265
– ident: e_1_2_9_171_1
  doi: 10.1002/anie.201504379
– ident: e_1_2_9_156_1
  doi: 10.1038/s41467-018-04029-7
– ident: e_1_2_9_204_1
  doi: 10.1021/acs.jpclett.6b00215
– ident: e_1_2_9_223_1
  doi: 10.1021/acsami.8b02624
– ident: e_1_2_9_303_1
  doi: 10.1021/acs.jpclett.7b01952
– ident: e_1_2_9_2_1
  doi: 10.1002/pssb.200304296
– ident: e_1_2_9_231_1
  doi: 10.1002/smll.201802385
– ident: e_1_2_9_49_1
  doi: 10.1039/C6EE00030D
– ident: e_1_2_9_83_1
  doi: 10.1039/C5TA00190K
– ident: e_1_2_9_217_1
  doi: 10.1021/acsenergylett.8b01382
– ident: e_1_2_9_245_1
  doi: 10.1039/C8EE02284D
– ident: e_1_2_9_112_1
  doi: 10.1039/c4ta00379a
– ident: e_1_2_9_69_1
  doi: 10.1021/jacs.5b03796
– ident: e_1_2_9_328_1
  doi: 10.1002/solr.201800052
– ident: e_1_2_9_153_1
  doi: 10.1002/adfm.201102284
– ident: e_1_2_9_218_1
  doi: 10.1038/natrevmats.2017.42
– ident: e_1_2_9_140_1
  doi: 10.1021/acsenergylett.6b00697
– ident: e_1_2_9_5_1
  doi: 10.1038/nnano.2015.90
– ident: e_1_2_9_179_1
  doi: 10.1039/C7EE02564E
– ident: e_1_2_9_307_1
  doi: 10.1002/adma.201707166
– ident: e_1_2_9_116_1
  doi: 10.1002/aenm.201700749
– ident: e_1_2_9_80_1
  doi: 10.1016/j.joule.2017.07.013
– ident: e_1_2_9_44_1
  doi: 10.1021/acsenergylett.6b00002
– ident: e_1_2_9_133_1
  doi: 10.1021/acs.jpcc.8b02163
– ident: e_1_2_9_194_1
  doi: 10.1039/C4NR04007D
– ident: e_1_2_9_229_1
  doi: 10.3390/photonics2041139
– ident: e_1_2_9_239_1
  doi: 10.1021/acsenergylett.6b00013
– ident: e_1_2_9_283_1
  doi: 10.1016/j.nanoen.2018.03.047
– ident: e_1_2_9_202_1
  doi: 10.1021/acs.jpclett.5b00480
– ident: e_1_2_9_75_1
  doi: 10.1038/nenergy.2017.135
– ident: e_1_2_9_159_1
  doi: 10.1016/j.susc.2006.07.040
– ident: e_1_2_9_302_1
  doi: 10.1002/anie.201603608
– ident: e_1_2_9_121_1
  doi: 10.1039/C4EE02539C
– ident: e_1_2_9_56_1
  doi: 10.1039/C5TA06398A
– ident: e_1_2_9_151_1
  doi: 10.1038/ncomms16045
– ident: e_1_2_9_87_1
  doi: 10.1038/nphoton.2014.82
– ident: e_1_2_9_324_1
  doi: 10.1002/solr.201700213
– ident: e_1_2_9_124_1
  doi: 10.1016/j.nanoen.2015.05.027
– ident: e_1_2_9_195_1
  doi: 10.1002/anie.201405334
– ident: e_1_2_9_71_1
  doi: 10.1021/acs.chemmater.6b00711
– ident: e_1_2_9_186_1
  doi: 10.1039/C4EE02465F
– ident: e_1_2_9_181_1
  doi: 10.1002/admi.201800499
– ident: e_1_2_9_68_1
  doi: 10.1002/anie.201406466
– ident: e_1_2_9_305_1
  doi: 10.1002/adma.201706246
– ident: e_1_2_9_70_1
  doi: 10.1126/sciadv.1700841
– ident: e_1_2_9_311_1
  doi: 10.1039/C4EE00965G
– ident: e_1_2_9_146_1
  doi: 10.1016/j.joule.2018.04.011
– ident: e_1_2_9_42_1
  doi: 10.1021/cm404006p
– ident: e_1_2_9_236_1
  doi: 10.1021/nn506864k
– ident: e_1_2_9_281_1
  doi: 10.1126/sciadv.aao5616
– ident: e_1_2_9_61_1
  doi: 10.1126/science.aag2700
– ident: e_1_2_9_78_1
  doi: 10.1002/adfm.201706923
– ident: e_1_2_9_26_1
  doi: 10.1038/ncomms4586
– ident: e_1_2_9_310_1
  doi: 10.1557/mrs.2015.177
– ident: e_1_2_9_163_1
  doi: 10.1039/C5TA03990H
– ident: e_1_2_9_191_1
  doi: 10.1038/nmat4014
– ident: e_1_2_9_270_1
  doi: 10.1039/C5TA07957H
– ident: e_1_2_9_55_1
  doi: 10.1002/solr.201700048
– ident: e_1_2_9_225_1
  doi: 10.1038/s41467-018-07099-9
– ident: e_1_2_9_298_1
  doi: 10.1039/C6TA04685A
– ident: e_1_2_9_72_1
  doi: 10.1039/C7EE01145H
– ident: e_1_2_9_90_1
  doi: 10.1002/adma.201501978
– ident: e_1_2_9_119_1
  doi: 10.1063/1.4914179
– ident: e_1_2_9_269_1
  doi: 10.1002/aenm.201702762
– ident: e_1_2_9_205_1
  doi: 10.1021/acs.jpclett.5b02229
– ident: e_1_2_9_262_1
  doi: 10.1021/ja411014k
– ident: e_1_2_9_47_1
  doi: 10.1021/jp411112k
– ident: e_1_2_9_110_1
  doi: 10.1021/jz500833z
– ident: e_1_2_9_170_1
  doi: 10.1039/C5NR08658B
– ident: e_1_2_9_255_1
  doi: 10.1038/nchem.2324
– ident: e_1_2_9_91_1
  doi: 10.1039/C4EE01076K
– ident: e_1_2_9_98_1
  doi: 10.1038/353737a0
– ident: e_1_2_9_248_1
  doi: 10.1021/acs.jpclett.5b01432
– ident: e_1_2_9_265_1
  doi: 10.1126/science.aad1015
– ident: e_1_2_9_105_1
  doi: 10.1126/science.aai9081
– ident: e_1_2_9_173_1
  doi: 10.1002/pip.2978
– ident: e_1_2_9_308_1
  doi: 10.1038/nmat4572
– ident: e_1_2_9_147_1
  doi: 10.1002/adma.201803428
– ident: e_1_2_9_250_1
  doi: 10.1038/s41467-018-04636-4
– ident: e_1_2_9_234_1
  doi: 10.1002/adfm.201401658
– ident: e_1_2_9_319_1
  doi: 10.1039/C5PY00431D
– ident: e_1_2_9_85_1
  doi: 10.1016/j.synthmet.2015.07.013
– ident: e_1_2_9_313_1
  doi: 10.1039/C4EE02977A
– ident: e_1_2_9_249_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_9_129_1
  doi: 10.1002/adma.201404598
– ident: e_1_2_9_97_1
  doi: 10.1016/j.joule.2018.01.009
– ident: e_1_2_9_33_1
  doi: 10.1126/science.aam6620
– ident: e_1_2_9_59_1
  doi: 10.1021/acsenergylett.6b00341
– ident: e_1_2_9_94_1
  doi: 10.1002/aenm.201601353
– ident: e_1_2_9_214_1
– ident: e_1_2_9_233_1
  doi: 10.1038/ncomms3885
– ident: e_1_2_9_57_1
  doi: 10.1021/acs.nanolett.6b00635
– ident: e_1_2_9_36_1
  doi: 10.1021/cm502468k
– ident: e_1_2_9_240_1
  doi: 10.1002/adma.201800544
– ident: e_1_2_9_244_1
  doi: 10.1021/jacs.5b11740
– ident: e_1_2_9_272_1
  doi: 10.1002/admi.201500195
– ident: e_1_2_9_285_1
  doi: 10.1146/annurev.med.55.091902.103653
– ident: e_1_2_9_221_1
  doi: 10.1002/adma.201801418
– volume: 11
  start-page: 2
  year: 2006
  ident: e_1_2_9_286_1
  publication-title: Altern. Med. Rev.
– ident: e_1_2_9_120_1
– ident: e_1_2_9_30_1
  doi: 10.1021/acs.inorgchem.5b01481
– ident: e_1_2_9_104_1
  doi: 10.1002/adma.201301327
– ident: e_1_2_9_25_1
  doi: 10.1016/0022-3697(92)90121-S
– ident: e_1_2_9_166_1
  doi: 10.1038/ncomms10228
– ident: e_1_2_9_165_1
  doi: 10.1038/nnano.2014.181
– ident: e_1_2_9_226_1
  doi: 10.1002/anie.201809781
– ident: e_1_2_9_79_1
  doi: 10.1038/ncomms15684
– ident: e_1_2_9_290_1
  doi: 10.1002/advs.201500392
– ident: e_1_2_9_189_1
  doi: 10.1039/C4SC03141E
– ident: e_1_2_9_111_1
  doi: 10.1021/nl504701y
– ident: e_1_2_9_144_1
  doi: 10.1021/jacs.8b05949
– ident: e_1_2_9_268_1
  doi: 10.1002/adma.201604984
– ident: e_1_2_9_3_1
  doi: 10.1002/pip.3040
– ident: e_1_2_9_142_1
  doi: 10.1039/C6TA09565H
– ident: e_1_2_9_254_1
  doi: 10.1002/adma.201805660
– ident: e_1_2_9_266_1
  doi: 10.1002/adfm.201804128
– ident: e_1_2_9_102_1
  doi: 10.1126/science.1228604
– ident: e_1_2_9_257_1
  doi: 10.1038/nenergy.2015.12
– ident: e_1_2_9_275_1
  doi: 10.1021/jacs.5b08535
– ident: e_1_2_9_294_1
  doi: 10.1021/jacs.7b01815
– ident: e_1_2_9_188_1
  doi: 10.1038/ncomms6784
– ident: e_1_2_9_284_1
  doi: 10.1039/C7RA12521F
– ident: e_1_2_9_8_1
  doi: 10.1038/nature18306
– ident: e_1_2_9_183_1
  doi: 10.1016/j.nanoen.2015.10.006
– ident: e_1_2_9_197_1
  doi: 10.1039/C5TA00011D
– ident: e_1_2_9_22_1
  doi: 10.1002/adma.201600624
– ident: e_1_2_9_65_1
  doi: 10.1021/ja00124a012
– ident: e_1_2_9_232_1
  doi: 10.1021/jp500449z
– ident: e_1_2_9_138_1
  doi: 10.1016/j.nanoen.2014.08.015
– ident: e_1_2_9_212_1
  doi: 10.1021/acsenergylett.6b00254
– ident: e_1_2_9_219_1
  doi: 10.1038/natrevmats.2018.17
– ident: e_1_2_9_53_1
  doi: 10.1021/acs.jpclett.5b02597
– ident: e_1_2_9_176_1
  doi: 10.1039/C5TA01668A
– ident: e_1_2_9_128_1
  doi: 10.1002/aenm.201500328
– ident: e_1_2_9_17_1
  doi: 10.1021/acsenergylett.7b00187
– ident: e_1_2_9_252_1
  doi: 10.1016/j.joule.2018.04.012
– ident: e_1_2_9_74_1
  doi: 10.1002/adma.201801401
– ident: e_1_2_9_158_1
  doi: 10.1038/ncomms15688
– ident: e_1_2_9_107_1
  doi: 10.1038/s41467-018-05760-x
– ident: e_1_2_9_148_1
  doi: 10.1002/solr.201600019
– ident: e_1_2_9_88_1
  doi: 10.1021/acs.jpclett.6b02682
– ident: e_1_2_9_15_1
  doi: 10.1039/C7NR04692H
– ident: e_1_2_9_206_1
  doi: 10.1002/advs.201600269
– ident: e_1_2_9_48_1
  doi: 10.1038/nature14133
– ident: e_1_2_9_201_1
  doi: 10.1021/jz5011187
– ident: e_1_2_9_316_1
  doi: 10.1039/C6EE02013E
– ident: e_1_2_9_187_1
  doi: 10.1021/jz501392m
– ident: e_1_2_9_247_1
  doi: 10.1002/cssc.201702221
– ident: e_1_2_9_273_1
  doi: 10.1016/j.solmat.2015.12.025
– ident: e_1_2_9_164_1
  doi: 10.1038/nature22072
– ident: e_1_2_9_131_1
  doi: 10.1039/C4TA07030E
– ident: e_1_2_9_238_1
  doi: 10.1039/C4TA04994B
– ident: e_1_2_9_130_1
  doi: 10.1016/j.solmat.2017.11.010
– ident: e_1_2_9_228_1
  doi: 10.1039/C6EE00409A
– ident: e_1_2_9_134_1
  doi: 10.1039/C4TA05675B
– ident: e_1_2_9_314_1
  doi: 10.1021/acsami.6b03767
– ident: e_1_2_9_208_1
  doi: 10.1039/C7EE00757D
– ident: e_1_2_9_256_1
  doi: 10.1002/pssa.201431366
– ident: e_1_2_9_125_1
  doi: 10.1039/C5MH00126A
– ident: e_1_2_9_315_1
  doi: 10.1038/ncomms11735
– ident: e_1_2_9_317_1
  doi: 10.1021/acssuschemeng.6b03089
– ident: e_1_2_9_136_1
  doi: 10.1021/ja411509g
– ident: e_1_2_9_293_1
  doi: 10.1002/adma.201602992
– ident: e_1_2_9_209_1
– ident: e_1_2_9_215_1
  doi: 10.1002/aenm.201701609
– ident: e_1_2_9_306_1
  doi: 10.1021/jacs.7b11332
– ident: e_1_2_9_237_1
  doi: 10.1002/aenm.201501310
– ident: e_1_2_9_198_1
  doi: 10.1021/nn5014879
– ident: e_1_2_9_27_1
  doi: 10.1021/acs.jpcc.6b02858
– ident: e_1_2_9_145_1
  doi: 10.1016/j.jpowsour.2014.12.008
– ident: e_1_2_9_45_1
  doi: 10.1021/acs.jpclett.5b00380
– ident: e_1_2_9_241_1
  doi: 10.1002/adma.201801010
– ident: e_1_2_9_86_1
  doi: 10.1039/C5TA05741H
– ident: e_1_2_9_242_1
  doi: 10.1038/ncomms8747
– ident: e_1_2_9_135_1
  doi: 10.1039/C6EE01411A
– ident: e_1_2_9_23_1
  doi: 10.1557/mrc.2015.26
– ident: e_1_2_9_108_1
  doi: 10.1126/science.1254050
– ident: e_1_2_9_243_1
  doi: 10.1039/C6TA08117G
– ident: e_1_2_9_323_1
  doi: 10.1002/aenm.201502177
– ident: e_1_2_9_66_1
  doi: 10.1126/science.267.5203.1473
– ident: e_1_2_9_35_1
  doi: 10.1038/s41467-017-02039-5
– ident: e_1_2_9_190_1
  doi: 10.1021/nn505723h
– ident: e_1_2_9_301_1
  doi: 10.1021/acs.chemmater.5b01989
– ident: e_1_2_9_309_1
  doi: 10.1002/pip.2916
– ident: e_1_2_9_32_1
  doi: 10.1021/nl400349b
– ident: e_1_2_9_321_1
  doi: 10.1039/C4GC01149J
– ident: e_1_2_9_118_1
  doi: 10.1002/anie.201309361
– ident: e_1_2_9_246_1
  doi: 10.1021/acs.chemmater.5b04107
– ident: e_1_2_9_261_1
  doi: 10.1002/aenm.201500486
– ident: e_1_2_9_92_1
  doi: 10.1021/ja5033259
– ident: e_1_2_9_287_1
  doi: 10.1039/C8TA02159G
– ident: e_1_2_9_199_1
  doi: 10.1021/acs.jpclett.5b00289
– ident: e_1_2_9_276_1
  doi: 10.1002/aenm.201500615
– ident: e_1_2_9_216_1
  doi: 10.1039/C8EE00689J
– ident: e_1_2_9_278_1
  doi: 10.1002/adma.201707583
– ident: e_1_2_9_230_1
  doi: 10.1038/nenergy.2016.152
– ident: e_1_2_9_13_1
  doi: 10.1002/aenm.201801509
– ident: e_1_2_9_203_1
  doi: 10.1021/jz500113x
– ident: e_1_2_9_178_1
  doi: 10.1002/cssc.201600868
– ident: e_1_2_9_295_1
  doi: 10.1021/acsenergylett.7b00202
– ident: e_1_2_9_322_1
  doi: 10.1039/C6NR00818F
– ident: e_1_2_9_20_1
  doi: 10.1038/natrevmats.2016.99
– ident: e_1_2_9_63_1
  doi: 10.1038/s41467-018-03169-0
– ident: e_1_2_9_89_1
  doi: 10.1246/bcsj.20150110
– ident: e_1_2_9_157_1
  doi: 10.1039/C7TA09721B
– ident: e_1_2_9_21_1
  doi: 10.1002/anie.201603694
– ident: e_1_2_9_34_1
  doi: 10.1002/adma.201502597
– ident: e_1_2_9_211_1
  doi: 10.1021/acs.jpclett.5b02686
– ident: e_1_2_9_161_1
  doi: 10.1021/acsenergylett.8b00428
– ident: e_1_2_9_253_1
  doi: 10.1126/science.aam5655
– ident: e_1_2_9_81_1
  doi: 10.1021/acs.jpclett.5b00504
– ident: e_1_2_9_327_1
  doi: 10.1016/j.nanoen.2017.04.034
– ident: e_1_2_9_18_1
  doi: 10.1007/BF01507527
– ident: e_1_2_9_101_1
  doi: 10.1038/nphoton.2013.80
– ident: e_1_2_9_95_1
  doi: 10.1021/jacs.6b08337
– ident: e_1_2_9_11_1
  doi: 10.1002/adom.201800276
– ident: e_1_2_9_126_1
  doi: 10.1038/nenergy.2017.38
– ident: e_1_2_9_168_1
  doi: 10.1002/adma.201401685
– ident: e_1_2_9_277_1
  doi: 10.1021/acsenergylett.6b00441
– ident: e_1_2_9_150_1
  doi: 10.1002/adma.201602377
– ident: e_1_2_9_222_1
  doi: 10.1002/aenm.201401808
– ident: e_1_2_9_103_1
  doi: 10.1002/adma.201703852
– ident: e_1_2_9_213_1
  doi: 10.1038/s41563-018-0115-4
– ident: e_1_2_9_288_1
  doi: 10.1021/jacs.5b06658
– ident: e_1_2_9_46_1
  doi: 10.1021/ic401215x
– ident: e_1_2_9_62_1
  doi: 10.1021/acs.jpclett.6b01576
– ident: e_1_2_9_106_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_9_141_1
  doi: 10.1016/j.solmat.2016.09.013
– ident: e_1_2_9_143_1
  doi: 10.1016/j.joule.2018.10.025
– ident: e_1_2_9_207_1
  doi: 10.1002/pip.2871
– ident: e_1_2_9_41_1
  doi: 10.1039/c3ee43822h
– ident: e_1_2_9_40_1
  doi: 10.1021/jz5012109
– ident: e_1_2_9_184_1
  doi: 10.1021/acsami.7b17824
– ident: e_1_2_9_67_1
  doi: 10.1021/ja00006a076
– ident: e_1_2_9_152_1
  doi: 10.1002/adma.200401171
– ident: e_1_2_9_4_1
  doi: 10.1063/1.1736034
– ident: e_1_2_9_14_1
  doi: 10.1021/acsenergylett.8b00217
– ident: e_1_2_9_167_1
  doi: 10.1038/ncomms12305
– ident: e_1_2_9_24_1
  doi: 10.1021/ja809598r
– ident: e_1_2_9_193_1
  doi: 10.1038/ncomms7142
– ident: e_1_2_9_185_1
  doi: 10.1039/C4CP03533J
– ident: e_1_2_9_51_1
  doi: 10.1038/s41560-018-0200-6
– ident: e_1_2_9_180_1
  doi: 10.1021/acsami.7b07625
– ident: e_1_2_9_182_1
  doi: 10.1002/aenm.201701928
– ident: e_1_2_9_127_1
  doi: 10.1038/s41560-018-0153-9
– ident: e_1_2_9_196_1
  doi: 10.1039/C4TA04969A
– ident: e_1_2_9_297_1
  doi: 10.1039/C8NR03589J
– ident: e_1_2_9_280_1
  doi: 10.1021/acsenergylett.6b00457
– ident: e_1_2_9_258_1
  doi: 10.1039/c3ee40343b
– ident: e_1_2_9_263_1
  doi: 10.1002/smll.201501330
– ident: e_1_2_9_292_1
  doi: 10.1016/j.nanoen.2016.09.009
– ident: e_1_2_9_326_1
  doi: 10.1039/C6EE02373H
– ident: e_1_2_9_113_1
  doi: 10.1039/C6TA08021A
– ident: e_1_2_9_122_1
  doi: 10.1002/aenm.201602121
– ident: e_1_2_9_58_1
  doi: 10.1038/s41563-017-0006-0
– ident: e_1_2_9_54_1
  doi: 10.1021/acs.jpclett.5b00968
– ident: e_1_2_9_162_1
  doi: 10.1021/cm970568f
– ident: e_1_2_9_264_1
  doi: 10.1016/j.nanoen.2016.06.044
– ident: e_1_2_9_312_1
  doi: 10.1039/C5EE00400D
– ident: e_1_2_9_93_1
  doi: 10.1002/adma.201602696
– ident: e_1_2_9_160_1
  doi: 10.1038/nmat1611
– ident: e_1_2_9_192_1
  doi: 10.1038/ncomms7700
– ident: e_1_2_9_169_1
  doi: 10.1002/adfm.201504041
– ident: e_1_2_9_227_1
  doi: 10.1038/nenergy.2017.115
– ident: e_1_2_9_12_1
  doi: 10.1002/aenm.201701688
– ident: e_1_2_9_16_1
  doi: 10.1038/nenergy.2017.9
– ident: e_1_2_9_220_1
  doi: 10.1039/c3cc46534a
– ident: e_1_2_9_60_1
  doi: 10.1021/acs.jpclett.7b01851
– ident: e_1_2_9_318_1
  doi: 10.1002/anie.201409208
– ident: e_1_2_9_109_1
  doi: 10.1126/science.1254763
– ident: e_1_2_9_139_1
  doi: 10.1016/j.solmat.2017.04.029
– ident: e_1_2_9_300_1
  doi: 10.1021/acs.jpclett.7b00086
– ident: e_1_2_9_28_1
  doi: 10.1063/1.453467
– ident: e_1_2_9_224_1
  doi: 10.1038/s41598-017-18970-y
– ident: e_1_2_9_155_1
  doi: 10.1146/annurev.fluid.32.1.709
– ident: e_1_2_9_279_1
  doi: 10.1039/C7EE00358G
– ident: e_1_2_9_52_1
  doi: 10.1126/science.aah5557
– ident: e_1_2_9_39_1
  doi: 10.1002/aenm.201500477
– ident: e_1_2_9_132_1
  doi: 10.1016/j.jpowsour.2015.05.106
– ident: e_1_2_9_9_1
  doi: 10.1038/nature12509
– ident: e_1_2_9_291_1
  doi: 10.1002/adma.201401991
– ident: e_1_2_9_73_1
  doi: 10.1038/s41467-018-05454-4
– ident: e_1_2_9_177_1
  doi: 10.1039/C5TA00358J
– ident: e_1_2_9_31_1
  doi: 10.1021/acs.nanolett.5b02369
– ident: e_1_2_9_84_1
  doi: 10.1021/acs.jpcc.5b11845
– ident: e_1_2_9_175_1
  doi: 10.1021/acsenergylett.7b01221
– ident: e_1_2_9_1_1
  doi: 10.1002/adma.201800455
– ident: e_1_2_9_64_1
  doi: 10.1021/jacs.8b07927
– ident: e_1_2_9_267_1
  doi: 10.1039/C5NR01864A
– ident: e_1_2_9_123_1
  doi: 10.1038/nature23877
– ident: e_1_2_9_235_1
  doi: 10.1021/jp064689r
– ident: e_1_2_9_296_1
  doi: 10.1002/aenm.201702019
– ident: e_1_2_9_10_1
  doi: 10.1002/solr.201800149
SSID ssj0017734
Score 2.6523614
SecondaryResourceType review_article
Snippet In the last few years, organometal halide perovskites (OHPs) have emerged as a promising candidate for photovoltaic (PV) applications. A certified efficiency...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Biocompatibility
Blade coating
commercialiazation
Commercialization
Crystallization
Environmental impact
Materials science
perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
stability
sustainability
Sustainable development
Technology assessment
Toxicity
up‐scaling
Title Solution‐Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201807661
https://www.proquest.com/docview/2315577400
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVQWWDgjSiUygMSU9rmZcdsVUtVIYoqSqVukZ3YC1GKmpSBiU_gG_kSfPNqi4SQYEsUO_Ezvq9zLkJXiikVMsc09GEsDCewQ4PZihmupILZImQyM12MHshw6tzN3Nkaij_nh6gMbrAzsv81bHAukvaKNJSHCpDkpqc18Uz_gYAtkIoeK_4ok9LcrUxMCPAyZyVrY8dqb1bfPJVWoua6wJqdOIN9xMu25oEmz61lKlrB2zcax_905gDtFeIo7ubr5xBtyfgI7a6RFB4jv7Scfb5_FLACgFvhsVzMXxMw_uIJ6Me4J6MowWkWh4sBeALJnHhUAD1v8BhCwXRtzGP9vEzikpyg6eD2qTc0irQMRgBkZoZtCZdKThxhU2UqPa7KpdR0KKGWEK7sEK0CChY4XHkQvMoJcUNwF3LlKsW5fYpq8TyWZwhLU5ckIvSYxR3KOsIDv7BW6pzMRUvqyCinxQ8KznJInRH5Oduy5cPA-dXA1dF1Vf4lZ-v4sWSjnGW_2LWJr2VdV3dFf7yOrGy6fnmL3-0PRtXd-V8qXaAdfc1yeGMD1dLFUl5qOScVTbTd7Y_uJ81sTX8BJrb2mg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LThsxFL2idNGyoA9aER6tF626miSehx0jdYFIo9A8hEoiZefaM_amUYKYAKKrfgK_wq_wCXwJvvMCKlWVKmXR5czYnrF97_g-zwX4YIW1iQip5w5j7YVxkHgisMKLDNci0IkwmeliMGTdcfh1Ek1W4LrMhcnxISqDG3JG9r9GBkeDdOMeNVQlFlPJacup4owWcZU9c3nhtLb082HbbfFH3-98GR10vaKwgBcjHJcX-DriRrFQB9xS62jcRpzTkDPuax2ZJnNKjBZxqGwLwy8VY1GCDi9lI2uVCty4T-AplhFHuP72twqxinKeO7IZxZAyOilxIpt-4_H3Pj4H74XbhyJydsZ1XsBNuTp5aMuP-tlC1-OfvwFH_lfL9xLWC4mb7Ocs8gpWzOw1rD3AYdwAWRoHb39dFZkTmFFGjszp_DxF-zY5RhMAOTDTaUoWWagxwdwarFelpkUu6x45wmg315uomXte1qlJ38B4KTN8C6uz-cxsAjHUtWQ6aQlfhVw0dQtd305vDTMvNKuBV9KBjAtYdqwOMpU5oLQvcaNktVE1-FS1P8kBSf7YcqckK1n8mFLpxPnITcW9vAZ-Rh9_GUXutzuD6mrrXzq9h2fd0aAv-4fD3jY8d_dFns25A6uL0zOz68S6hX6XMRKB78smvTtH2lFH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL3iIVWwoFBAHR6tFyBWgXHi2GOkLhDTEY-CRgWk2Rk7sTcdDYgMIFjxCXwKv8Iv8CX45gVUqipVYtFlEtuJ7Xvj-zwXYMVJ51LJaOAPYxOwJEoDGTkZxFYYGZlU2tx0cXDId07YXi_ujcBDlQtT4EPUBjfkjPx_jQx-nrqNF9BQnTrMJKctr4lzWoZV7tuba6-0Zd92236HV8Ow8_14eyco6woECaJxBVFoYmE1ZyYSjjpP4i4WgjLBRWhMbJvc6zBGJky7FkZfas7jFP1d2sXOaR35cUdhnPGmxGIR7Z81YBUVovBjc4oRZbRXwUQ2w4233_v2GHyRbV9LyPkR1_kIj9XiFJEtv9Yvh2Y9uf0NN_J_Wr1pmCrlbbJVMMgMjNjBJ5h8hcI4C6oyDT7d3Zd5E5hPRrr24uwqQ-s2OUIDANm2_X5GhnmgMcHMGqxWpftlJusm6WKsm-9N9MA_r6rUZHNw8i4znIexwdnAfgZiqW_JTdqSoWZCNk0LHd9ea2W5D5o3IKjIQCUlKDvWBumrAk46VLhRqt6oBqzV7c8LOJI_tlyqqEqVv6VMeWE-9lPxL29AmJPHX0ZRW-3OQX218C-dvsKHbrujfuwe7i_ChL8ti1TOJRgbXlzaZS_TDc2XnI0InL435T0D2wBP9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution%E2%80%90Processable+Perovskite+Solar+Cells+toward+Commercialization%3A+Progress+and+Challenges&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Peng&rft.au=Wu%2C+Yihui&rft.au=Cai%2C+Bing&rft.au=Ma%2C+Qingshan&rft.date=2019-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=47&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201807661&rft.externalDBID=10.1002%252Fadfm.201807661&rft.externalDocID=ADFM201807661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon