Oligothiophene molecular wires at graphene-based molecular junctions
The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molec...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 23; no. 37; pp. 21163 - 21171 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
29.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold-graphene junctions and we measure their electrical properties using the STM-
I
(
s
) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions.
The electrical properties of oligopthiophene-based hybrid gold-graphene junctions were measured with the STM-
I
(
s
) method to determine the attenuation factor and effect of specific anchoring groups. It shows that graphene is an effective contact in forming nano-junctions. |
---|---|
AbstractList | The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold–graphene junctions and we measure their electrical properties using the STM-I(s) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions. The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold-graphene junctions and we measure their electrical properties using the STM-I(s) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions.The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold-graphene junctions and we measure their electrical properties using the STM-I(s) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions. The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance forlonger molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold– graphene junctions and we measure their electrical properties using the STM-I(s) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions. The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold–graphene junctions and we measure their electrical properties using the STM- I ( s ) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions. The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold-graphene junctions and we measure their electrical properties using the STM- I ( s ) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions. The electrical properties of oligopthiophene-based hybrid gold-graphene junctions were measured with the STM- I ( s ) method to determine the attenuation factor and effect of specific anchoring groups. It shows that graphene is an effective contact in forming nano-junctions. |
Author | Gao, Tingwei Liu, Chenguang Zhao, Cezhou Zhao, Chun Dappe, Yannick J Fan, Yinqi Yang, Li Su, Weitao He, Chunhui |
AuthorAffiliation | Department of Chemistry University of Liverpool Xi'an-Jiaotong Liverpool University CNRS Université Paris-Saclay CEA Saclay Hangzhou Dianzi University Department of Electrical and Electronic Engineering College of Materials and Environmental Engineering SPEC CEA |
AuthorAffiliation_xml | – name: University of Liverpool – name: Xi'an-Jiaotong Liverpool University – name: Department of Electrical and Electronic Engineering – name: College of Materials and Environmental Engineering – name: Department of Chemistry – name: CEA – name: Hangzhou Dianzi University – name: SPEC – name: CNRS – name: CEA Saclay – name: Université Paris-Saclay |
Author_xml | – sequence: 1 givenname: Tingwei surname: Gao fullname: Gao, Tingwei – sequence: 2 givenname: Chunhui surname: He fullname: He, Chunhui – sequence: 3 givenname: Chenguang surname: Liu fullname: Liu, Chenguang – sequence: 4 givenname: Yinqi surname: Fan fullname: Fan, Yinqi – sequence: 5 givenname: Cezhou surname: Zhao fullname: Zhao, Cezhou – sequence: 6 givenname: Chun surname: Zhao fullname: Zhao, Chun – sequence: 7 givenname: Weitao surname: Su fullname: Su, Weitao – sequence: 8 givenname: Yannick J surname: Dappe fullname: Dappe, Yannick J – sequence: 9 givenname: Li surname: Yang fullname: Yang, Li |
BackLink | https://hal.science/hal-03856799$$DView record in HAL |
BookMark | eNpt0d9LwzAQB_AgCm7TF9-FgS8qVC-9pF0fZfMXDPRBn8MtTbeMrplJq_jf2zqdIj7lSD535Pj22W7lKsPYEYcLDphd5lyvAUHCfIf1uEgwymAkdrd1muyzfghLAOCSY49NHko7d_XCuvXCVGa4cqXRTUl--Ga9CUOqh3NPn2_RjILJf4llU-nauiocsL2CymAOv84Be765fhrfRdOH2_vx1TTSQkIdFVma6wRnqHMiQpTAZ8lMkiAhJRKkGUCeSYjJYJHHhRRGC8RYYlEIMZI4YGebuQsq1drbFfl35ciqu6up6u4ARzJJs-yVt_Z0Y9fevTQm1GplgzZlSZVxTVCxTFEIPoKOnvyhS9f4qt2kUy2LM5m0CjZKexeCN4XStqZu_9qTLRUH1UWgJnz8-BnBbdty_qfl-9P_4uMN9kFv3U-e-AGGTpDd |
CitedBy_id | crossref_primary_10_1093_bulcsj_uoae130 crossref_primary_10_3390_M1817 crossref_primary_10_3390_nano14010098 |
Cites_doi | 10.1039/C9TA04642A 10.1021/cm504254n 10.1021/nl052373+ 10.1103/PhysRevB.104.045412 10.1021/jp9084603 10.1002/cphc.201900424 10.1021/jacs.7b11016 10.1080/17458080.2010.529174 10.1021/jp806129u 10.1103/PhysRevB.71.235101 10.1103/PhysRevB.39.12520 10.1103/PhysRevB.52.1618 10.1021/acs.jpclett.7b02822 10.1021/jacs.5b11605 10.1016/j.commatsci.2006.09.003 10.1021/nl062923j 10.1016/0009-2614(88)87486-4 10.1021/nl050860j 10.1002/9780470745533 10.1021/ja038214e 10.1088/0957-4484/27/10/105201 10.1063/1.1702682 10.1039/D0CP01774D 10.1073/pnas.1406926111 10.1039/C4CP03605K 10.1021/acsanm.8b01379 10.1021/ja0773857 10.1021/acs.jpclett.9b02059 10.1021/jacs.6b07416 10.1021/acs.jpclett.5b01283 10.1142/7434 10.1039/C8CP02877J 10.1063/1.1688442 10.1039/C6NR03807G 10.1021/nl0732023 10.1038/nnano.2006.130 10.1038/natrevmats.2016.2 10.1126/science.1087481 10.1103/PhysRevB.40.3979 10.1021/nl503518q 10.1021/acs.nanolett.6b03180 10.1002/anie.201913344 10.1103/PhysRevB.59.12505 10.1021/ja505277z 10.1038/nnano.2009.10 10.1103/PhysRevB.31.1770 10.1021/acs.jpcc.7b04607 10.1002/pssb.201147259 10.1002/anie.201205607 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 1XC VOOES |
DOI | 10.1039/d1cp03050g |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1463-9084 |
EndPage | 21171 |
ExternalDocumentID | oai_HAL_hal_03856799v1 10_1039_D1CP03050G d1cp03050g |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 1XC UMC VOOES |
ID | FETCH-LOGICAL-c450t-f97dc63b3cdaaa33501b6b5a4a4553a07900d9502ae3fd2f54ec433253ff44853 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri May 09 12:25:47 EDT 2025 Fri Jul 11 10:15:22 EDT 2025 Mon Jun 30 05:05:29 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Tue Jul 01 00:54:01 EDT 2025 Mon Apr 11 04:40:51 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-f97dc63b3cdaaa33501b6b5a4a4553a07900d9502ae3fd2f54ec433253ff44853 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1cp03050g ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1040-4223 |
OpenAccessLink | https://hal.science/hal-03856799 |
PQID | 2577342956 |
PQPubID | 2047499 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1039_D1CP03050G crossref_primary_10_1039_D1CP03050G proquest_miscellaneous_2573441801 proquest_journals_2577342956 rsc_primary_d1cp03050g hal_primary_oai_HAL_hal_03856799v1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210929 |
PublicationDateYYYYMMDD | 2021-09-29 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210929 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Harris (D1CP03050G/cit27) 1985; 31 Foulkes (D1CP03050G/cit28) 1989; 39 Kim (D1CP03050G/cit15) 2014; 111 Haiss (D1CP03050G/cit20) 2003; 125 Basanta (D1CP03050G/cit32) 2007; 39 He (D1CP03050G/cit24) 2019; 20 Xu (D1CP03050G/cit7) 2005; 5 Wu (D1CP03050G/cit47) 2019; 7 Peng (D1CP03050G/cit36) 2009; 113 Demkov (D1CP03050G/cit29) 1995; 52 Zhang (D1CP03050G/cit17) 2017; 8 Late (D1CP03050G/cit45) 2011; 6 Venkataraman (D1CP03050G/cit46) 2007; 7 Sankey (D1CP03050G/cit31) 1989; 40 Cuevas (D1CP03050G/cit2) 2010 Cao (D1CP03050G/cit16) 2012; 51 He (D1CP03050G/cit22) 2018; 20 Park (D1CP03050G/cit12) 2007; 129 Xu (D1CP03050G/cit9) 2003; 301 Kergueris (D1CP03050G/cit6) 1999; 59 Kuang (D1CP03050G/cit42) 2018; 140 Yamada (D1CP03050G/cit8) 2008; 8 Quek (D1CP03050G/cit10) 2009; 4 Lewis (D1CP03050G/cit26) 2011; 248 Liu (D1CP03050G/cit39) 2021; 104 Venkataraman (D1CP03050G/cit11) 2006; 6 Reecht (D1CP03050G/cit33) 2015; 6 Xiang (D1CP03050G/cit44) 2016; 138 Kiguchi (D1CP03050G/cit50) 2008; 112 Ohto (D1CP03050G/cit43) 2019; 10 Simmons (D1CP03050G/cit38) 1963; 34 Tao (D1CP03050G/cit19) 2018; 2 Fan (D1CP03050G/cit40) 2017; 121 Su (D1CP03050G/cit3) 2016; 1 Liu (D1CP03050G/cit23) 2016; 8 Wu (D1CP03050G/cit35) 2020; 63 Brooke (D1CP03050G/cit14) 2015; 15 Tao (D1CP03050G/cit49) 2006; 1 Ren (D1CP03050G/cit25) 2004; 75 Kaliginedi (D1CP03050G/cit13) 2014; 16 Capozzi (D1CP03050G/cit4) 2014; 136 Zhang (D1CP03050G/cit18) 2016; 16 Perepichka (D1CP03050G/cit5) 2009 He (D1CP03050G/cit21) 2020; 22 Gonzalez (D1CP03050G/cit34) 2016; 27 Chang (D1CP03050G/cit37) 2014; 26 Jelinek (D1CP03050G/cit30) 2005; 71 Li (D1CP03050G/cit48) 2020; 59 Kuang (D1CP03050G/cit41) 2016; 138 Aviram (D1CP03050G/cit1) 1988; 146 |
References_xml | – issn: 2010 publication-title: Molecular Electronics: an Introduction to Theory and Experiment doi: Cuevas Scheer – issn: 2009 publication-title: Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics doi: Perepichka Dmitrii – volume: 7 start-page: 19037 year: 2019 ident: D1CP03050G/cit47 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04642A – volume: 26 start-page: 7229 year: 2014 ident: D1CP03050G/cit37 publication-title: Chem. Mater. doi: 10.1021/cm504254n – volume: 6 start-page: 458 year: 2006 ident: D1CP03050G/cit11 publication-title: Nano Lett. doi: 10.1021/nl052373+ – volume: 104 start-page: 045412 year: 2021 ident: D1CP03050G/cit39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.045412 – volume: 113 start-page: 20967 year: 2009 ident: D1CP03050G/cit36 publication-title: J. Phys. Chem. C doi: 10.1021/jp9084603 – volume: 20 start-page: 1830 year: 2019 ident: D1CP03050G/cit24 publication-title: ChemPhysChem doi: 10.1002/cphc.201900424 – volume: 140 start-page: 570 year: 2018 ident: D1CP03050G/cit42 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11016 – volume: 6 start-page: 641 year: 2011 ident: D1CP03050G/cit45 publication-title: J. Exp. Nanosci. doi: 10.1080/17458080.2010.529174 – volume: 112 start-page: 13349 year: 2008 ident: D1CP03050G/cit50 publication-title: J. Phys. Chem. C doi: 10.1021/jp806129u – volume: 71 start-page: 2351011 year: 2005 ident: D1CP03050G/cit30 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.71.235101 – volume: 39 start-page: 12520 year: 1989 ident: D1CP03050G/cit28 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.39.12520 – volume: 52 start-page: 1618 year: 1995 ident: D1CP03050G/cit29 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.52.1618 – volume: 8 start-page: 5987 year: 2017 ident: D1CP03050G/cit17 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02822 – volume: 138 start-page: 679 year: 2016 ident: D1CP03050G/cit44 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11605 – volume: 39 start-page: 759 year: 2007 ident: D1CP03050G/cit32 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2006.09.003 – volume: 7 start-page: 502 year: 2007 ident: D1CP03050G/cit46 publication-title: Nano Lett. doi: 10.1021/nl062923j – volume: 146 start-page: 490 year: 1988 ident: D1CP03050G/cit1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(88)87486-4 – volume: 5 start-page: 1491 year: 2005 ident: D1CP03050G/cit7 publication-title: Nano Lett. doi: 10.1021/nl050860j – volume-title: Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics year: 2009 ident: D1CP03050G/cit5 doi: 10.1002/9780470745533 – volume: 63 start-page: 276811 year: 2020 ident: D1CP03050G/cit35 publication-title: Sci. China: Phys., Mech. Astron. – volume: 125 start-page: 15294 year: 2003 ident: D1CP03050G/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038214e – volume: 27 start-page: 105201 year: 2016 ident: D1CP03050G/cit34 publication-title: Nanotechnology doi: 10.1088/0957-4484/27/10/105201 – volume: 34 start-page: 1793 year: 1963 ident: D1CP03050G/cit38 publication-title: J. Appl. Phys. doi: 10.1063/1.1702682 – volume: 22 start-page: 13498 year: 2020 ident: D1CP03050G/cit21 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP01774D – volume: 111 start-page: 10928 year: 2014 ident: D1CP03050G/cit15 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1406926111 – volume: 16 start-page: 23529 year: 2014 ident: D1CP03050G/cit13 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03605K – volume: 2 start-page: 12 year: 2018 ident: D1CP03050G/cit19 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b01379 – volume: 129 start-page: 15768 year: 2007 ident: D1CP03050G/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0773857 – volume: 10 start-page: 5292 year: 2019 ident: D1CP03050G/cit43 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02059 – volume: 138 start-page: 11140 year: 2016 ident: D1CP03050G/cit41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07416 – volume: 6 start-page: 2987 year: 2015 ident: D1CP03050G/cit33 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01283 – volume-title: Molecular Electronics: an Introduction to Theory and Experiment year: 2010 ident: D1CP03050G/cit2 doi: 10.1142/7434 – volume: 20 start-page: 24553 year: 2018 ident: D1CP03050G/cit22 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP02877J – volume: 75 start-page: 837 year: 2004 ident: D1CP03050G/cit25 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1688442 – volume: 8 start-page: 14507 year: 2016 ident: D1CP03050G/cit23 publication-title: Nanoscale doi: 10.1039/C6NR03807G – volume: 8 start-page: 1237 year: 2008 ident: D1CP03050G/cit8 publication-title: Nano Lett. doi: 10.1021/nl0732023 – volume: 1 start-page: 173 year: 2006 ident: D1CP03050G/cit49 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.130 – volume: 1 start-page: 16002 year: 2016 ident: D1CP03050G/cit3 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.2 – volume: 301 start-page: 1221 year: 2003 ident: D1CP03050G/cit9 publication-title: Science doi: 10.1126/science.1087481 – volume: 40 start-page: 3979 year: 1989 ident: D1CP03050G/cit31 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.40.3979 – volume: 15 start-page: 275 year: 2015 ident: D1CP03050G/cit14 publication-title: Nano Lett. doi: 10.1021/nl503518q – volume: 16 start-page: 6534 year: 2016 ident: D1CP03050G/cit18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03180 – volume: 59 start-page: 3280 year: 2020 ident: D1CP03050G/cit48 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913344 – volume: 59 start-page: 12505 year: 1999 ident: D1CP03050G/cit6 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.12505 – volume: 136 start-page: 10486 year: 2014 ident: D1CP03050G/cit4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505277z – volume: 4 start-page: 230 year: 2009 ident: D1CP03050G/cit10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.10 – volume: 31 start-page: 1770 year: 1985 ident: D1CP03050G/cit27 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.31.1770 – volume: 121 start-page: 14373 year: 2017 ident: D1CP03050G/cit40 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b04607 – volume: 248 start-page: 1989 year: 2011 ident: D1CP03050G/cit26 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201147259 – volume: 51 start-page: 12228 year: 2012 ident: D1CP03050G/cit16 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205607 |
SSID | ssj0001513 |
Score | 2.3817153 |
Snippet | The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by... |
SourceID | hal proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 21163 |
SubjectTerms | Alkanes Attenuation Broken symmetry Chemical Sciences Density functional theory Electrical junctions Electrical properties Graphene Molecular electronics Physics |
Title | Oligothiophene molecular wires at graphene-based molecular junctions |
URI | https://www.proquest.com/docview/2577342956 https://www.proquest.com/docview/2573441801 https://hal.science/hal-03856799 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfo9gAviK-JwEDh4wWhQBLHafNYZWMFFehDJ42nyIntLdNIx9qCxF_Pnb_SiiEBL1F6viaV73p3Pvt-R8jLtBnVQrJhJGSmoowpsIMiZVGCW0IQnwup2719_JRPjrMPJ-ykLyHQ1SWr-k3z89q6kv-RKtBArlgl-w-S9Q8FAtyDfOEKEobrX8n480WL8AUtYgNAsPjVtbp9jQDES6xT1HjUMBahtxIbHOfgz_pcnY1OZ05ojWsDZ-6QZFIgS51CmJWlLws74gsj8-70h2z71KrZy193Z2tPnLZrQ5WYI7UuUwNBatP3pe2-tZtZiDTBIxM2VWEMZ5bTCBbaFtZ6k2ZawDlra6qLrVYZvBdvOxNr66T7bLqz_GblY4ogqSJpLtFcxae9L_MnDPvBAdlNYQkBNnB3fDh_P_V-GmIdamrPzC934LW0eNt_eytcGZzhYdmNlcjgyrWJ0eHI_A65bdcR4dgoxV1yQ3b3yM3Sye0-OdhWjtCLPtTKEfJVuK0cGxxeOR6Q43eH83IS2ZYZUZOxeBWpYiianNa0EZxzirvGdV4znvGMMcrjYRHHomBxyiVVIlUskw0i2DGqFCzUGd0jO92ikw9JGOd1mqsEHiRUJhUdjXguFQK8FZKncRaQV25mqsbiyWNbk4tKn2ugRXWQlDM9i0cBeeF5Lw2KyrVcz2GCPQMCn0_G0wppuH-dD4viexKQfTf_lf0rLivwO0MKkRXLA_LMD8OE4-4X7-RirXkoxP4QkQVkD-Tm39ML-9GfBh6TW73S75Od1dVaPoFgdFU_tVr1Cwh2ifo |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oligothiophene+molecular+wires+at+graphene-based+molecular+junctions&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Gao%2C+Tingwei&rft.au=He%2C+Chunhui&rft.au=Liu%2C+Chenguang&rft.au=Fan%2C+Yinqi&rft.date=2021-09-29&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=23&rft.issue=37&rft.spage=21163&rft.epage=21171&rft_id=info:doi/10.1039%2Fd1cp03050g&rft.externalDocID=d1cp03050g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |