Oligothiophene molecular wires at graphene-based molecular junctions

The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molec...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 23; no. 37; pp. 21163 - 21171
Main Authors Gao, Tingwei, He, Chunhui, Liu, Chenguang, Fan, Yinqi, Zhao, Cezhou, Zhao, Chun, Su, Weitao, Dappe, Yannick J, Yang, Li
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 29.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold-graphene junctions and we measure their electrical properties using the STM- I ( s ) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions. The electrical properties of oligopthiophene-based hybrid gold-graphene junctions were measured with the STM- I ( s ) method to determine the attenuation factor and effect of specific anchoring groups. It shows that graphene is an effective contact in forming nano-junctions.
AbstractList The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold–graphene junctions and we measure their electrical properties using the STM-I(s) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions.
The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold-graphene junctions and we measure their electrical properties using the STM-I(s) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions.The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold-graphene junctions and we measure their electrical properties using the STM-I(s) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions.
The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance forlonger molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold– graphene junctions and we measure their electrical properties using the STM-I(s) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions.
The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold–graphene junctions and we measure their electrical properties using the STM- I ( s ) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions.
The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold-graphene junctions and we measure their electrical properties using the STM- I ( s ) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions. The electrical properties of oligopthiophene-based hybrid gold-graphene junctions were measured with the STM- I ( s ) method to determine the attenuation factor and effect of specific anchoring groups. It shows that graphene is an effective contact in forming nano-junctions.
Author Gao, Tingwei
Liu, Chenguang
Zhao, Cezhou
Zhao, Chun
Dappe, Yannick J
Fan, Yinqi
Yang, Li
Su, Weitao
He, Chunhui
AuthorAffiliation Department of Chemistry
University of Liverpool
Xi'an-Jiaotong Liverpool University
CNRS
Université Paris-Saclay
CEA Saclay
Hangzhou Dianzi University
Department of Electrical and Electronic Engineering
College of Materials and Environmental Engineering
SPEC
CEA
AuthorAffiliation_xml – name: University of Liverpool
– name: Xi'an-Jiaotong Liverpool University
– name: Department of Electrical and Electronic Engineering
– name: College of Materials and Environmental Engineering
– name: Department of Chemistry
– name: CEA
– name: Hangzhou Dianzi University
– name: SPEC
– name: CNRS
– name: CEA Saclay
– name: Université Paris-Saclay
Author_xml – sequence: 1
  givenname: Tingwei
  surname: Gao
  fullname: Gao, Tingwei
– sequence: 2
  givenname: Chunhui
  surname: He
  fullname: He, Chunhui
– sequence: 3
  givenname: Chenguang
  surname: Liu
  fullname: Liu, Chenguang
– sequence: 4
  givenname: Yinqi
  surname: Fan
  fullname: Fan, Yinqi
– sequence: 5
  givenname: Cezhou
  surname: Zhao
  fullname: Zhao, Cezhou
– sequence: 6
  givenname: Chun
  surname: Zhao
  fullname: Zhao, Chun
– sequence: 7
  givenname: Weitao
  surname: Su
  fullname: Su, Weitao
– sequence: 8
  givenname: Yannick J
  surname: Dappe
  fullname: Dappe, Yannick J
– sequence: 9
  givenname: Li
  surname: Yang
  fullname: Yang, Li
BackLink https://hal.science/hal-03856799$$DView record in HAL
BookMark eNpt0d9LwzAQB_AgCm7TF9-FgS8qVC-9pF0fZfMXDPRBn8MtTbeMrplJq_jf2zqdIj7lSD535Pj22W7lKsPYEYcLDphd5lyvAUHCfIf1uEgwymAkdrd1muyzfghLAOCSY49NHko7d_XCuvXCVGa4cqXRTUl--Ga9CUOqh3NPn2_RjILJf4llU-nauiocsL2CymAOv84Be765fhrfRdOH2_vx1TTSQkIdFVma6wRnqHMiQpTAZ8lMkiAhJRKkGUCeSYjJYJHHhRRGC8RYYlEIMZI4YGebuQsq1drbFfl35ciqu6up6u4ARzJJs-yVt_Z0Y9fevTQm1GplgzZlSZVxTVCxTFEIPoKOnvyhS9f4qt2kUy2LM5m0CjZKexeCN4XStqZu_9qTLRUH1UWgJnz8-BnBbdty_qfl-9P_4uMN9kFv3U-e-AGGTpDd
CitedBy_id crossref_primary_10_1093_bulcsj_uoae130
crossref_primary_10_3390_M1817
crossref_primary_10_3390_nano14010098
Cites_doi 10.1039/C9TA04642A
10.1021/cm504254n
10.1021/nl052373+
10.1103/PhysRevB.104.045412
10.1021/jp9084603
10.1002/cphc.201900424
10.1021/jacs.7b11016
10.1080/17458080.2010.529174
10.1021/jp806129u
10.1103/PhysRevB.71.235101
10.1103/PhysRevB.39.12520
10.1103/PhysRevB.52.1618
10.1021/acs.jpclett.7b02822
10.1021/jacs.5b11605
10.1016/j.commatsci.2006.09.003
10.1021/nl062923j
10.1016/0009-2614(88)87486-4
10.1021/nl050860j
10.1002/9780470745533
10.1021/ja038214e
10.1088/0957-4484/27/10/105201
10.1063/1.1702682
10.1039/D0CP01774D
10.1073/pnas.1406926111
10.1039/C4CP03605K
10.1021/acsanm.8b01379
10.1021/ja0773857
10.1021/acs.jpclett.9b02059
10.1021/jacs.6b07416
10.1021/acs.jpclett.5b01283
10.1142/7434
10.1039/C8CP02877J
10.1063/1.1688442
10.1039/C6NR03807G
10.1021/nl0732023
10.1038/nnano.2006.130
10.1038/natrevmats.2016.2
10.1126/science.1087481
10.1103/PhysRevB.40.3979
10.1021/nl503518q
10.1021/acs.nanolett.6b03180
10.1002/anie.201913344
10.1103/PhysRevB.59.12505
10.1021/ja505277z
10.1038/nnano.2009.10
10.1103/PhysRevB.31.1770
10.1021/acs.jpcc.7b04607
10.1002/pssb.201147259
10.1002/anie.201205607
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
1XC
VOOES
DOI 10.1039/d1cp03050g
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1463-9084
EndPage 21171
ExternalDocumentID oai_HAL_hal_03856799v1
10_1039_D1CP03050G
d1cp03050g
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
1XC
UMC
VOOES
ID FETCH-LOGICAL-c450t-f97dc63b3cdaaa33501b6b5a4a4553a07900d9502ae3fd2f54ec433253ff44853
ISSN 1463-9076
1463-9084
IngestDate Fri May 09 12:25:47 EDT 2025
Fri Jul 11 10:15:22 EDT 2025
Mon Jun 30 05:05:29 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Tue Jul 01 00:54:01 EDT 2025
Mon Apr 11 04:40:51 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-f97dc63b3cdaaa33501b6b5a4a4553a07900d9502ae3fd2f54ec433253ff44853
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d1cp03050g
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1040-4223
OpenAccessLink https://hal.science/hal-03856799
PQID 2577342956
PQPubID 2047499
PageCount 9
ParticipantIDs crossref_citationtrail_10_1039_D1CP03050G
crossref_primary_10_1039_D1CP03050G
proquest_miscellaneous_2573441801
proquest_journals_2577342956
rsc_primary_d1cp03050g
hal_primary_oai_HAL_hal_03856799v1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210929
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 9
  year: 2021
  text: 20210929
  day: 29
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Harris (D1CP03050G/cit27) 1985; 31
Foulkes (D1CP03050G/cit28) 1989; 39
Kim (D1CP03050G/cit15) 2014; 111
Haiss (D1CP03050G/cit20) 2003; 125
Basanta (D1CP03050G/cit32) 2007; 39
He (D1CP03050G/cit24) 2019; 20
Xu (D1CP03050G/cit7) 2005; 5
Wu (D1CP03050G/cit47) 2019; 7
Peng (D1CP03050G/cit36) 2009; 113
Demkov (D1CP03050G/cit29) 1995; 52
Zhang (D1CP03050G/cit17) 2017; 8
Late (D1CP03050G/cit45) 2011; 6
Venkataraman (D1CP03050G/cit46) 2007; 7
Sankey (D1CP03050G/cit31) 1989; 40
Cuevas (D1CP03050G/cit2) 2010
Cao (D1CP03050G/cit16) 2012; 51
He (D1CP03050G/cit22) 2018; 20
Park (D1CP03050G/cit12) 2007; 129
Xu (D1CP03050G/cit9) 2003; 301
Kergueris (D1CP03050G/cit6) 1999; 59
Kuang (D1CP03050G/cit42) 2018; 140
Yamada (D1CP03050G/cit8) 2008; 8
Quek (D1CP03050G/cit10) 2009; 4
Lewis (D1CP03050G/cit26) 2011; 248
Liu (D1CP03050G/cit39) 2021; 104
Venkataraman (D1CP03050G/cit11) 2006; 6
Reecht (D1CP03050G/cit33) 2015; 6
Xiang (D1CP03050G/cit44) 2016; 138
Kiguchi (D1CP03050G/cit50) 2008; 112
Ohto (D1CP03050G/cit43) 2019; 10
Simmons (D1CP03050G/cit38) 1963; 34
Tao (D1CP03050G/cit19) 2018; 2
Fan (D1CP03050G/cit40) 2017; 121
Su (D1CP03050G/cit3) 2016; 1
Liu (D1CP03050G/cit23) 2016; 8
Wu (D1CP03050G/cit35) 2020; 63
Brooke (D1CP03050G/cit14) 2015; 15
Tao (D1CP03050G/cit49) 2006; 1
Ren (D1CP03050G/cit25) 2004; 75
Kaliginedi (D1CP03050G/cit13) 2014; 16
Capozzi (D1CP03050G/cit4) 2014; 136
Zhang (D1CP03050G/cit18) 2016; 16
Perepichka (D1CP03050G/cit5) 2009
He (D1CP03050G/cit21) 2020; 22
Gonzalez (D1CP03050G/cit34) 2016; 27
Chang (D1CP03050G/cit37) 2014; 26
Jelinek (D1CP03050G/cit30) 2005; 71
Li (D1CP03050G/cit48) 2020; 59
Kuang (D1CP03050G/cit41) 2016; 138
Aviram (D1CP03050G/cit1) 1988; 146
References_xml – issn: 2010
  publication-title: Molecular Electronics: an Introduction to Theory and Experiment
  doi: Cuevas Scheer
– issn: 2009
  publication-title: Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics
  doi: Perepichka Dmitrii
– volume: 7
  start-page: 19037
  year: 2019
  ident: D1CP03050G/cit47
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04642A
– volume: 26
  start-page: 7229
  year: 2014
  ident: D1CP03050G/cit37
  publication-title: Chem. Mater.
  doi: 10.1021/cm504254n
– volume: 6
  start-page: 458
  year: 2006
  ident: D1CP03050G/cit11
  publication-title: Nano Lett.
  doi: 10.1021/nl052373+
– volume: 104
  start-page: 045412
  year: 2021
  ident: D1CP03050G/cit39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.045412
– volume: 113
  start-page: 20967
  year: 2009
  ident: D1CP03050G/cit36
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9084603
– volume: 20
  start-page: 1830
  year: 2019
  ident: D1CP03050G/cit24
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201900424
– volume: 140
  start-page: 570
  year: 2018
  ident: D1CP03050G/cit42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11016
– volume: 6
  start-page: 641
  year: 2011
  ident: D1CP03050G/cit45
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2010.529174
– volume: 112
  start-page: 13349
  year: 2008
  ident: D1CP03050G/cit50
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806129u
– volume: 71
  start-page: 2351011
  year: 2005
  ident: D1CP03050G/cit30
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.71.235101
– volume: 39
  start-page: 12520
  year: 1989
  ident: D1CP03050G/cit28
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.39.12520
– volume: 52
  start-page: 1618
  year: 1995
  ident: D1CP03050G/cit29
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.52.1618
– volume: 8
  start-page: 5987
  year: 2017
  ident: D1CP03050G/cit17
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02822
– volume: 138
  start-page: 679
  year: 2016
  ident: D1CP03050G/cit44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11605
– volume: 39
  start-page: 759
  year: 2007
  ident: D1CP03050G/cit32
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2006.09.003
– volume: 7
  start-page: 502
  year: 2007
  ident: D1CP03050G/cit46
  publication-title: Nano Lett.
  doi: 10.1021/nl062923j
– volume: 146
  start-page: 490
  year: 1988
  ident: D1CP03050G/cit1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(88)87486-4
– volume: 5
  start-page: 1491
  year: 2005
  ident: D1CP03050G/cit7
  publication-title: Nano Lett.
  doi: 10.1021/nl050860j
– volume-title: Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics
  year: 2009
  ident: D1CP03050G/cit5
  doi: 10.1002/9780470745533
– volume: 63
  start-page: 276811
  year: 2020
  ident: D1CP03050G/cit35
  publication-title: Sci. China: Phys., Mech. Astron.
– volume: 125
  start-page: 15294
  year: 2003
  ident: D1CP03050G/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038214e
– volume: 27
  start-page: 105201
  year: 2016
  ident: D1CP03050G/cit34
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/10/105201
– volume: 34
  start-page: 1793
  year: 1963
  ident: D1CP03050G/cit38
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1702682
– volume: 22
  start-page: 13498
  year: 2020
  ident: D1CP03050G/cit21
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP01774D
– volume: 111
  start-page: 10928
  year: 2014
  ident: D1CP03050G/cit15
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1406926111
– volume: 16
  start-page: 23529
  year: 2014
  ident: D1CP03050G/cit13
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP03605K
– volume: 2
  start-page: 12
  year: 2018
  ident: D1CP03050G/cit19
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b01379
– volume: 129
  start-page: 15768
  year: 2007
  ident: D1CP03050G/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0773857
– volume: 10
  start-page: 5292
  year: 2019
  ident: D1CP03050G/cit43
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02059
– volume: 138
  start-page: 11140
  year: 2016
  ident: D1CP03050G/cit41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07416
– volume: 6
  start-page: 2987
  year: 2015
  ident: D1CP03050G/cit33
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01283
– volume-title: Molecular Electronics: an Introduction to Theory and Experiment
  year: 2010
  ident: D1CP03050G/cit2
  doi: 10.1142/7434
– volume: 20
  start-page: 24553
  year: 2018
  ident: D1CP03050G/cit22
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP02877J
– volume: 75
  start-page: 837
  year: 2004
  ident: D1CP03050G/cit25
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1688442
– volume: 8
  start-page: 14507
  year: 2016
  ident: D1CP03050G/cit23
  publication-title: Nanoscale
  doi: 10.1039/C6NR03807G
– volume: 8
  start-page: 1237
  year: 2008
  ident: D1CP03050G/cit8
  publication-title: Nano Lett.
  doi: 10.1021/nl0732023
– volume: 1
  start-page: 173
  year: 2006
  ident: D1CP03050G/cit49
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.130
– volume: 1
  start-page: 16002
  year: 2016
  ident: D1CP03050G/cit3
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.2
– volume: 301
  start-page: 1221
  year: 2003
  ident: D1CP03050G/cit9
  publication-title: Science
  doi: 10.1126/science.1087481
– volume: 40
  start-page: 3979
  year: 1989
  ident: D1CP03050G/cit31
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.40.3979
– volume: 15
  start-page: 275
  year: 2015
  ident: D1CP03050G/cit14
  publication-title: Nano Lett.
  doi: 10.1021/nl503518q
– volume: 16
  start-page: 6534
  year: 2016
  ident: D1CP03050G/cit18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03180
– volume: 59
  start-page: 3280
  year: 2020
  ident: D1CP03050G/cit48
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913344
– volume: 59
  start-page: 12505
  year: 1999
  ident: D1CP03050G/cit6
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.12505
– volume: 136
  start-page: 10486
  year: 2014
  ident: D1CP03050G/cit4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505277z
– volume: 4
  start-page: 230
  year: 2009
  ident: D1CP03050G/cit10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.10
– volume: 31
  start-page: 1770
  year: 1985
  ident: D1CP03050G/cit27
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.31.1770
– volume: 121
  start-page: 14373
  year: 2017
  ident: D1CP03050G/cit40
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b04607
– volume: 248
  start-page: 1989
  year: 2011
  ident: D1CP03050G/cit26
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201147259
– volume: 51
  start-page: 12228
  year: 2012
  ident: D1CP03050G/cit16
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205607
SSID ssj0001513
Score 2.3817153
Snippet The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by...
SourceID hal
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21163
SubjectTerms Alkanes
Attenuation
Broken symmetry
Chemical Sciences
Density functional theory
Electrical junctions
Electrical properties
Graphene
Molecular electronics
Physics
Title Oligothiophene molecular wires at graphene-based molecular junctions
URI https://www.proquest.com/docview/2577342956
https://www.proquest.com/docview/2573441801
https://hal.science/hal-03856799
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfo9gAviK-JwEDh4wWhQBLHafNYZWMFFehDJ42nyIntLdNIx9qCxF_Pnb_SiiEBL1F6viaV73p3Pvt-R8jLtBnVQrJhJGSmoowpsIMiZVGCW0IQnwup2719_JRPjrMPJ-ykLyHQ1SWr-k3z89q6kv-RKtBArlgl-w-S9Q8FAtyDfOEKEobrX8n480WL8AUtYgNAsPjVtbp9jQDES6xT1HjUMBahtxIbHOfgz_pcnY1OZ05ojWsDZ-6QZFIgS51CmJWlLws74gsj8-70h2z71KrZy193Z2tPnLZrQ5WYI7UuUwNBatP3pe2-tZtZiDTBIxM2VWEMZ5bTCBbaFtZ6k2ZawDlra6qLrVYZvBdvOxNr66T7bLqz_GblY4ogqSJpLtFcxae9L_MnDPvBAdlNYQkBNnB3fDh_P_V-GmIdamrPzC934LW0eNt_eytcGZzhYdmNlcjgyrWJ0eHI_A65bdcR4dgoxV1yQ3b3yM3Sye0-OdhWjtCLPtTKEfJVuK0cGxxeOR6Q43eH83IS2ZYZUZOxeBWpYiianNa0EZxzirvGdV4znvGMMcrjYRHHomBxyiVVIlUskw0i2DGqFCzUGd0jO92ikw9JGOd1mqsEHiRUJhUdjXguFQK8FZKncRaQV25mqsbiyWNbk4tKn2ugRXWQlDM9i0cBeeF5Lw2KyrVcz2GCPQMCn0_G0wppuH-dD4viexKQfTf_lf0rLivwO0MKkRXLA_LMD8OE4-4X7-RirXkoxP4QkQVkD-Tm39ML-9GfBh6TW73S75Od1dVaPoFgdFU_tVr1Cwh2ifo
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oligothiophene+molecular+wires+at+graphene-based+molecular+junctions&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Gao%2C+Tingwei&rft.au=He%2C+Chunhui&rft.au=Liu%2C+Chenguang&rft.au=Fan%2C+Yinqi&rft.date=2021-09-29&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=23&rft.issue=37&rft.spage=21163&rft.epage=21171&rft_id=info:doi/10.1039%2Fd1cp03050g&rft.externalDocID=d1cp03050g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon