On System-Dependent Sources of Uncertainty and Bias in Ultrasonic Quantitative Shear-Wave Imaging

Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 63; no. 3; pp. 381 - 393
Main Authors Yufeng Deng, Rouze, Ned C., Palmeri, Mark L., Nightingale, Kathryn R.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-3010
1525-8955
1525-8955
DOI10.1109/TUFFC.2016.2524260

Cover

Loading…
Abstract Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system-dependent parameters in ultrasound shear-wave speed (SWS) measurements. Each of the eight sources of error is discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2-D acoustic propagation simulations, and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency (PRF) and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear-wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over a region of interest (ROI) is employed to reduce the sources of uncertainty, an SWS error <; 3% can be expected.
AbstractList Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system-dependent parameters in ultrasound shear-wave speed (SWS) measurements. Each of the eight sources of error is discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2-D acoustic propagation simulations, and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency (PRF) and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear-wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over a region of interest (ROI) is employed to reduce the sources of uncertainty, an SWS error <; 3% can be expected.
Ultrasonic quantitative shear wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system dependent parameters in ultrasound shear wave speed (SWS) measurements. Each of the eight sources of error are discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2D acoustic propagation simulations and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over an ROI is employed to reduce the sources of uncertainty, a SWS error < 3% can be expected.
Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system-dependent parameters in ultrasound shear-wave speed (SWS) measurements. Each of the eight sources of error is discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2-D acoustic propagation simulations, and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency (PRF) and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear-wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over a region of interest (ROI) is employed to reduce the sources of uncertainty, an SWS error [Formula Omitted] can be expected.
Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system-dependent parameters in ultrasound shear-wave speed (SWS) measurements. Each of the eight sources of error is discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2-D acoustic propagation simulations, and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency (PRF) and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear-wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over a region of interest (ROI) is employed to reduce the sources of uncertainty, an SWS error can be expected.
Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system-dependent parameters in ultrasound shear-wave speed (SWS) measurements. Each of the eight sources of error is discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2-D acoustic propagation simulations, and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency (PRF) and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear-wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over a region of interest (ROI) is employed to reduce the sources of uncertainty, an SWS error can be expected.Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system-dependent parameters in ultrasound shear-wave speed (SWS) measurements. Each of the eight sources of error is discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2-D acoustic propagation simulations, and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency (PRF) and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear-wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over a region of interest (ROI) is employed to reduce the sources of uncertainty, an SWS error can be expected.
Author Nightingale, Kathryn R.
Palmeri, Mark L.
Rouze, Ned C.
Yufeng Deng
Author_xml – sequence: 1
  surname: Yufeng Deng
  fullname: Yufeng Deng
  email: yufeng.deng@duke.edu
  organization: Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA
– sequence: 2
  givenname: Ned C.
  surname: Rouze
  fullname: Rouze, Ned C.
  email: ned.rouze@duke.edu
  organization: Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA
– sequence: 3
  givenname: Mark L.
  surname: Palmeri
  fullname: Palmeri, Mark L.
  email: mark.palmeri@duke.edu
  organization: Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA
– sequence: 4
  givenname: Kathryn R.
  surname: Nightingale
  fullname: Nightingale, Kathryn R.
  email: kathy.nightingale@duke.edu
  organization: Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26886980$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEYhYNU7Lb6BxQk4E1vZs3nTHIj6NrVQqHIdvEyZDLvbFNmkzWZKey_d_bDRXvhVQJ5zsl73nOBzkIMgNBbSqaUEv3xfjmfz6aM0HLKJBOsJC_QhEomC6WlPEMTopQsOKHkHF3k_EgIFUKzV-iclUqVWpEJsncBL7a5h3XxFTYQGgg9XsQhOcg4tngZHKTe-tBvsQ0N_uJtxj7gZdcnm2PwDv8YbOh9b3v_BHjxADYVP-14vVnblQ-r1-hla7sMb47nJVrOr-9n34vbu283s8-3hROS9EXLysrVuql427auJkJXNaUKNDDNSckl1Q5oK6BmFKBueF1TKCW3TnNZs5Zfok8H381Qr6FxY5BkO7NJfm3T1kTrzb8vwT-YVXwyQjFaqXI0uDoapPhrgNybtc8Ous4GiEM2tKq0oErv0Q_P0MdxZWGMZ3ZWI8a4Gqn3f090GuXP9keAHQCXYs4J2hNCidlVbPYVm13F5ljxKFLPRG6__LhL5bv_S98dpB4ATn9VglBKBf8NIyG1Ig
CODEN ITUCER
CitedBy_id crossref_primary_10_1002_mp_17581
crossref_primary_10_3390_app14114860
crossref_primary_10_1109_TUFFC_2018_2842468
crossref_primary_10_1109_TUFFC_2016_2614944
crossref_primary_10_3390_s21134420
crossref_primary_10_1016_j_ultrasmedbio_2019_06_417
crossref_primary_10_1109_TMI_2022_3141084
crossref_primary_10_3179_jjmu_JJMU_R_209
crossref_primary_10_1007_s10396_021_01127_w
crossref_primary_10_1007_s42452_024_06065_z
crossref_primary_10_14366_usg_16053
crossref_primary_10_1016_j_ultrasmedbio_2021_03_003
crossref_primary_10_1088_1361_6560_ada686
crossref_primary_10_1109_TBME_2023_3322420
crossref_primary_10_1259_bjr_20160283
crossref_primary_10_1002_jum_15609
crossref_primary_10_3390_app12126210
crossref_primary_10_1002_jum_14608
crossref_primary_10_1002_sono_12204
crossref_primary_10_1016_j_compbiomed_2021_104382
crossref_primary_10_1097_RLI_0000000000000627
crossref_primary_10_1109_TUFFC_2018_2811738
crossref_primary_10_3390_s24154961
crossref_primary_10_1109_TUFFC_2018_2884348
Cites_doi 10.1016/j.ultrasmedbio.2008.02.002
10.1016/j.ultrasmedbio.2003.08.008
10.6028/jres.070C.025
10.1016/S0301-5629(98)00110-0
10.1177/0161734612474159
10.1055/s-0029-1245948
10.1088/0031-9155/58/8/2675
10.11152/mu.201.3.2066.162.is1sb2
10.1121/1.382016
10.1109/TUFFC.2009.1066
10.1177/016173469101300104
10.1109/TMI.2008.925077
10.1177/016173461003200401
10.1109/ULTSYM.2014.0158
10.1109/TUFFC.2010.1740
10.1109/ULTSYM.1987.199098
10.3748/wjg.15.5525
10.1109/TUFFC.2004.1295425
10.1109/TUFFC.2013.6644738
10.1148/radiol.2015150619
10.1109/ULTSYM.2010.5935793
10.1016/j.ultrasmedbio.2015.03.009
10.1016/j.ultrasmedbio.2015.03.007
10.1109/ULTSYM.2013.0103
10.1109/58.139123
10.1109/TUFFC.2012.2472
10.1177/016173469201400406
10.1121/1.408347
10.1088/0266-5611/22/2/019
10.1016/j.ultrasmedbio.2011.07.012
10.1016/j.ultrasmedbio.2010.02.007
10.1002/mrm.20355
10.1016/j.jhep.2010.12.019
10.1109/ULTSYM.2015.0283
10.1080/01621459.1960.10483369
10.1121/1.1739480
10.1016/j.ultrasmedbio.2007.10.009
10.1109/TUFFC.2006.1665078
10.1016/S0301-5629(00)00331-8
10.1109/TUFFC.2003.1209550
10.1121/1.421015
10.1109/TUFFC.2012.2377
10.1109/TUFFC.2006.1642509
10.1002/1522-2594(200102)45:2<299::AID-MRM1039>3.0.CO;2-O
10.1210/jc.2010-0766
10.1148/radiol.11110640
10.1016/j.ultrasmedbio.2015.03.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7U5
8FD
F28
FR3
L7M
7X8
5PM
DOI 10.1109/TUFFC.2016.2524260
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList

Solid State and Superconductivity Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 393
ExternalDocumentID PMC4821786
4045665081
26886980
10_1109_TUFFC_2016_2524260
7401114
Genre orig-research
Research Support, U.S. Gov't, P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: RSNA QIBA, FDA
  grantid: HHSF223201400703P; HHSN268201300071C
– fundername: NIH
  grantid: R01EB002132; R01CA142824
  funderid: 10.13039/100000002
– fundername: PHS HHS
  grantid: HHSN268201300071C
– fundername: NCI NIH HHS
  grantid: R01CA142824
– fundername: NIBIB NIH HHS
  grantid: R01 EB002132
– fundername: NCI NIH HHS
  grantid: R01 CA142824
– fundername: PHS HHS
  grantid: HHSF223201400703P
– fundername: NIBIB NIH HHS
  grantid: R01EB002132
– fundername: NIBIB NIH HHS
  grantid: HHSN268201300071C
GroupedDBID ---
-~X
.GJ
0R~
186
29I
3EH
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
UKR
VH1
ZXP
ZY4
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7U5
8FD
F28
FR3
L7M
7X8
5PM
ID FETCH-LOGICAL-c450t-f267cb9d73fffcb0497b118e9e293063519ce1f4eb21eebd3bb1e653ac935b2f3
IEDL.DBID RIE
ISSN 0885-3010
1525-8955
IngestDate Thu Aug 21 18:18:39 EDT 2025
Fri Jul 11 01:54:24 EDT 2025
Mon Jun 30 10:15:45 EDT 2025
Mon Jul 21 06:03:41 EDT 2025
Tue Jul 01 00:46:18 EDT 2025
Thu Apr 24 22:54:10 EDT 2025
Wed Aug 27 02:58:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords shear-wave speed estimation
ultrasound imaging
Beamforming
speckle bias
uncertainty and bias
phase aberration
shear-wave imaging
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-f267cb9d73fffcb0497b118e9e293063519ce1f4eb21eebd3bb1e653ac935b2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4821786
PMID 26886980
PQID 1786941238
PQPubID 85455
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4821786
crossref_citationtrail_10_1109_TUFFC_2016_2524260
pubmed_primary_26886980
ieee_primary_7401114
proquest_journals_1786941238
proquest_miscellaneous_1779418986
crossref_primary_10_1109_TUFFC_2016_2524260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAbbrev T-UFFC
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
lazebnik (ref16) 2008
barr (ref17) 2014
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
bercoff (ref20) 2008
ref32
ref2
ref1
ref39
ref38
(ref18) 2014
ref24
ref23
ref26
ref25
iijima (ref19) 2014
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref28
  doi: 10.1016/j.ultrasmedbio.2008.02.002
– ident: ref27
  doi: 10.1016/j.ultrasmedbio.2003.08.008
– ident: ref35
  doi: 10.6028/jres.070C.025
– ident: ref1
  doi: 10.1016/S0301-5629(98)00110-0
– ident: ref37
  doi: 10.1177/0161734612474159
– ident: ref13
  doi: 10.1055/s-0029-1245948
– year: 2008
  ident: ref16
  publication-title: Tissue Strain Analytics Virtual Touch Tissue Imaging and Quantification
– year: 2014
  ident: ref18
– ident: ref8
  doi: 10.1088/0031-9155/58/8/2675
– ident: ref15
  doi: 10.11152/mu.201.3.2066.162.is1sb2
– ident: ref45
  doi: 10.1121/1.382016
– year: 2008
  ident: ref20
  publication-title: ShearWave? Elastography
– ident: ref39
  doi: 10.1109/TUFFC.2009.1066
– ident: ref46
  doi: 10.1177/016173469101300104
– ident: ref3
  doi: 10.1109/TMI.2008.925077
– ident: ref12
  doi: 10.1177/016173461003200401
– ident: ref44
  doi: 10.1109/ULTSYM.2014.0158
– ident: ref32
  doi: 10.1109/TUFFC.2010.1740
– ident: ref48
  doi: 10.1109/ULTSYM.1987.199098
– ident: ref14
  doi: 10.3748/wjg.15.5525
– ident: ref2
  doi: 10.1109/TUFFC.2004.1295425
– ident: ref49
  doi: 10.1109/TUFFC.2013.6644738
– ident: ref21
  doi: 10.1148/radiol.2015150619
– ident: ref9
  doi: 10.1109/ULTSYM.2010.5935793
– ident: ref43
  doi: 10.1016/j.ultrasmedbio.2015.03.009
– ident: ref6
  doi: 10.1016/j.ultrasmedbio.2015.03.007
– ident: ref22
  doi: 10.1109/ULTSYM.2013.0103
– ident: ref38
  doi: 10.1109/58.139123
– ident: ref36
  doi: 10.1109/TUFFC.2012.2472
– ident: ref47
  doi: 10.1177/016173469201400406
– ident: ref41
  doi: 10.1121/1.408347
– ident: ref33
  doi: 10.1088/0266-5611/22/2/019
– ident: ref52
  doi: 10.1016/j.ultrasmedbio.2011.07.012
– ident: ref31
  doi: 10.1016/j.ultrasmedbio.2010.02.007
– ident: ref26
  doi: 10.1002/mrm.20355
– ident: ref7
  doi: 10.1016/j.jhep.2010.12.019
– ident: ref23
  doi: 10.1109/ULTSYM.2015.0283
– ident: ref34
  doi: 10.1080/01621459.1960.10483369
– ident: ref4
  doi: 10.1121/1.1739480
– ident: ref29
  doi: 10.1016/j.ultrasmedbio.2007.10.009
– ident: ref50
  doi: 10.1109/TUFFC.2006.1665078
– ident: ref42
  doi: 10.1016/S0301-5629(00)00331-8
– ident: ref51
  doi: 10.1109/TUFFC.2003.1209550
– ident: ref40
  doi: 10.1121/1.421015
– year: 2014
  ident: ref17
  article-title: Noninvasive liver fibrosis assessment, ElastPQ ultrasound shear wave elastography
– ident: ref30
  doi: 10.1109/TUFFC.2012.2377
– ident: ref24
  doi: 10.1109/TUFFC.2006.1642509
– ident: ref25
  doi: 10.1002/1522-2594(200102)45:2<299::AID-MRM1039>3.0.CO;2-O
– ident: ref10
  doi: 10.1210/jc.2010-0766
– ident: ref11
  doi: 10.1148/radiol.11110640
– year: 2014
  ident: ref19
– ident: ref5
  doi: 10.1016/j.ultrasmedbio.2015.03.008
SSID ssj0014492
Score 2.2136471
Snippet Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating...
Ultrasonic quantitative shear wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms Abdomen - diagnostic imaging
Acoustics
Algorithms
Analytical models
Bias
Frequency measurement
Humans
Image Processing, Computer-Assisted - methods
Imaging
Measurement uncertainty
Models, Biological
Phantoms, Imaging
Ultrasonic imaging
Ultrasonography - methods
Uncertainty
Title On System-Dependent Sources of Uncertainty and Bias in Ultrasonic Quantitative Shear-Wave Imaging
URI https://ieeexplore.ieee.org/document/7401114
https://www.ncbi.nlm.nih.gov/pubmed/26886980
https://www.proquest.com/docview/1786941238
https://www.proquest.com/docview/1779418986
https://pubmed.ncbi.nlm.nih.gov/PMC4821786
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VSkhw4NHyCBRkJG6Q7Tpx7OQIhVVBKgjRiN6i2LHVFcWLSHKAX8-M89C2qhC3SHF2Y81M_I09830ALwtjGqURueVF7mJhtYy1a2SccyeU0C5rHG3on3ySx6X4eJad7cDruRfGWhuKz-yCLsNZfrMxPW2VHZJ6HCfV6huYuA29WvOJgRBBABmDJovRaZdTg8yyODwtV6sjquKSiySjJYnk3xKZ57IgNsit9SgIrFyHNa-WTG6tQau7cDK9_VB68n3Rd3ph_lwhdvzf6d2DOyMYZW8G77kPO9bvwe0tisI9uBlKRE27D_VnzwZ-8_jdqJzbsa9h779lG8dKdJ9QXtD9ZrVv2Nt13bK1Z-UFTqUlBl72pa99aGrDTywLWtrxtxovP_wIWkkPoFy9Pz06jkeBhtiIbNnFLpHK6KJRqXPOaEw2lMaExRYWQQRiH0SHxqLRMXvn1uom1ZpbmaW1KdJMJy59CLt-4-1jYAnmacrWNhfcCGUdwijtHM9c0mRSmCICPpmpMiN7OYloXFQhi1kWVbByRVauRitH8Gp-5ufA3fHP0ftkknnkaI0IDiZvqMbwbiuucmoARrgTwYv5NgYmnbbU3m56GoOfOo4hICN4NDjP_NuT80WgLrnVPIBIvy_f8evzQP4t8oT-_cn1b_sUbtGchiK5A9jtfvX2GaKmTj8P4fIXCfATWg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VRQh64KOFklLASNwg203iOPERCqstdIsQG9FbFDu2WFGyiCQH-uuZcT60rSrELVKc3VgzE7-xZ94DeCW1LhOFyC2VqfW5UcJXthR-GliecGXj0tKG_uJMzDP-8Tw-34I3Yy-MMcYVn5kJXbqz_HKtW9oqOyL1uIBUq2_hus9l1601nhlw7iSQMWxiH912OrTITOXRMpvNjqmOS0zCmBYlEoALRZoKSXyQGyuSk1i5CW1eL5rcWIVm92ExvH9XfPJj0jZqoi-vUTv-7wQfwL0ejrK3nf88hC1T7cLOBknhLtx2RaK63oPic8U6hnP_fa-d27Cvbve_ZmvLMnQgV2DQ_GFFVbJ3q6Jmq4plFziVmjh42Ze2qFxbG35kmVPT9r8VeHny06klPYJs9mF5PPd7iQZf83ja-DYUiVayTCJrrVaYbiQKUxYjDcIIRD-ID7VBs2P-HhijykipwIg4KrSMYhXa6DFsV-vKPAEWYqaWmMKkPNA8MRaBlLI2iG1YxoJr6UEwmCnXPX85yWhc5C6PmcrcWTknK-e9lT14PT7zq2Pv-OfoPTLJOLK3hgeHgzfkfYDXeZCk1AKMgMeDl-NtDE06bykqs25pDH7sAgwC4cF-5zzjbw_O50Fyxa3GAUT7ffVOtfru6L95GtK_H9z8ti_gzny5OM1PT84-PYW7NL-uZO4QtpvfrXmGGKpRz13o_AWaKhaq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+System-Dependent+Sources+of+Uncertainty+and+Bias+in+Ultrasonic+Quantitative+Shear-Wave+Imaging&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Deng%2C+Yufeng&rft.au=Rouze%2C+Ned+C.&rft.au=Palmeri%2C+Mark+L.&rft.au=Nightingale%2C+Kathryn+R.&rft.date=2016-03-01&rft.issn=0885-3010&rft.eissn=1525-8955&rft.volume=63&rft.issue=3&rft.spage=381&rft.epage=393&rft_id=info:doi/10.1109%2FTUFFC.2016.2524260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TUFFC_2016_2524260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon