Biosynthesis of copper oxide nanoparticles using Caesalpinia sappan extract: In vitro evaluation of antifungal and antibiofilm activities against Candida albicans
Synthesis of nanoparticles using natural organic substances has attracted more attention due to avoiding inorganic toxicity. This work aimed to synthesize copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract as a reducing agent. The effects of pH of synthesis reaction were...
Saved in:
Published in | Drug Discoveries & Therapeutics Vol. 17; no. 4; pp. 238 - 247 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
International Research and Cooperation Association for Bio & Socio-Sciences Advancement
31.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthesis of nanoparticles using natural organic substances has attracted more attention due to avoiding inorganic toxicity. This work aimed to synthesize copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract as a reducing agent. The effects of pH of synthesis reaction were investigated. The obtained CuONPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Their particle size, size distribution, and zeta potential were determined using photon correlation spectrophotometry. Candida albicans is a major cause of chronic fungal infections due to its biofilms leading to severe drug resistance problems. In this study, in vitro antifungal and antibiofilm activities as well as killing kinetics of the synthesized CuONPs against C. albicans were investigated. Additionally, fungal biofilm was observed by using confocal laser scanning microscopy. The results showed that the pH of the synthesis reaction played an important role in the physicochemical properties and antifungal activities of the obtained CuONPs. CuONPs synthesized at pH 10 and 12 showed the relatively small and narrow size distribution with high negative zeta potential and time-dependent killing kinetics. Confocal laser scanning microscopy confirms obvious fungal biofilm reduction and increased fungal cell death after exposure to CuONPs. These findings suggest the optimal pH of CuONPs synthesis using C. sappan extract as a reducing agent. The results on antifungal and antibiofilm activities indicate that the obtained CuONPs can be a promising agent for treating fungal infection. |
---|---|
AbstractList | Synthesis of nanoparticles using natural organic substances has attracted more attention due to avoiding inorganic toxicity. This work aimed to synthesize copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract as a reducing agent. The effects of pH of synthesis reaction were investigated. The obtained CuONPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Their particle size, size distribution, and zeta potential were determined using photon correlation spectrophotometry. Candida albicans is a major cause of chronic fungal infections due to its biofilms leading to severe drug resistance problems. In this study, in vitro antifungal and antibiofilm activities as well as killing kinetics of the synthesized CuONPs against C. albicans were investigated. Additionally, fungal biofilm was observed by using confocal laser scanning microscopy. The results showed that the pH of the synthesis reaction played an important role in the physicochemical properties and antifungal activities of the obtained CuONPs. CuONPs synthesized at pH 10 and 12 showed the relatively small and narrow size distribution with high negative zeta potential and time-dependent killing kinetics. Confocal laser scanning microscopy confirms obvious fungal biofilm reduction and increased fungal cell death after exposure to CuONPs. These findings suggest the optimal pH of CuONPs synthesis using C. sappan extract as a reducing agent. The results on antifungal and antibiofilm activities indicate that the obtained CuONPs can be a promising agent for treating fungal infection. |
ArticleNumber | 2023.01032 |
Author | Wanachantararak, Phenphichar Chaijareenont, Pisaisit Okonogi, Siriporn Sasarom, Mathurada |
Author_xml | – sequence: 1 fullname: Sasarom, Mathurada organization: Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand – sequence: 2 fullname: Wanachantararak, Phenphichar organization: Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand – sequence: 3 fullname: Chaijareenont, Pisaisit organization: Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand – sequence: 4 fullname: Okonogi, Siriporn organization: Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand |
BookMark | eNp1kMtKAzEUhoNUsF62rvMCrclM5uZO6xUKbhTcDWcyST0yJkOSlvZ1fFIzo1QQzCI5Ief7w_mOycRYowg552yeZWVy0bZhnrAknTPO0uSATHlZ8llRitfJvk75ETnz_p3FlYmSl9mUfF6j9TsT3pRHT62m0va9ctRusVXUgLE9uICyU56uPZoVXYDy0PVoEKiHvgdD1TY4kOGSPhq6weAsVRvo1hDQmiETTEC9NivoYtmO1watxu6DRgwjgjEeVoDGh_iBabEFCl2DEow_JYcaOq_Ofs4T8nJ3-7x4mC2f7h8XV8uZFBkLM80ayEHKokqrJFrgRdVIwRMuGJO5lilrZJVDqVIls1a0payE1rkQwCDPG5GeEPGdK5313ildSwzjDHE67GrO6kF1HVXXg-p6VB2x-R-sd_gBbvc_cPMNvPsAK7Vv__E8tvOiFsP2i-2f5Ru4Wpn0C5URn-c |
CitedBy_id | crossref_primary_10_1016_j_jddst_2024_105891 crossref_primary_10_1016_j_eti_2025_104147 crossref_primary_10_5582_ddt_2024_01030 crossref_primary_10_21272_eumj_2024_12_4__914_927 crossref_primary_10_3390_vetsci11040179 crossref_primary_10_1007_s10853_024_09546_z crossref_primary_10_7759_cureus_50142 |
Cites_doi | 10.3390/microorganisms10112179 10.1016/j.bcab.2018.05.011 10.1016/j.biotechadv.2013.01.003 10.1155/2014/637858 10.7567/JJAP.53.05FC05 10.1016/0009-2614(92)85313-Y 10.1128/AAC.39.9.2128 10.1016/j.matpr.2020.05.504 10.1007/s00520-010-0892-z 10.1155/2014/417305 10.1039/C6RA14173K 10.1007/s11106-008-9034-2 10.4317/jced.51798 10.1016/j.micpath.2018.12.017 10.1016/j.apjtm.2015.05.014 10.1016/j.jep.2011.09.011 10.1186/1556-276X-7-70 10.1248/bpb.26.1534 10.1155/2021/5589703 10.1007/s00210-019-01666-7 10.1039/C9CC01741K 10.1007/s11051-007-9275-x 10.1093/mmy/myy054 10.1093/jac/dkz178 10.1016/S2221-1691(12)60144-0 10.1016/j.heliyon.2019.e03123 10.1002/jctb.4052 10.5812/jjm.37385 10.5582/ddt.2018.01059 10.1016/j.jphotobiol.2018.09.014 10.5582/ddt.2019.01021 10.1111/j.1439-0507.2009.01694.x 10.1016/j.jsps.2017.10.012 10.1016/S1473-3099(17)30009-9 10.15412/J.MNB.05010102 10.1038/sj.bdj.4807849 10.1128/AAC.02894-14 10.1111/nyas.12403 10.1007/s11051-007-9343-2 10.1021/am404226e 10.1021/acs.chemrev.5b00482 10.1016/j.drudis.2015.05.009 10.2147/IJN.S29020 10.1177/00220345010800031101 10.1128/CMR.17.2.268-280.2004 10.3390/nano11041005 10.1039/C4RA12163E |
ContentType | Journal Article |
Copyright | 2023 International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
Copyright_xml | – notice: 2023 International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
DBID | AAYXX CITATION |
DOI | 10.5582/ddt.2023.01032 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1881-784X |
EndPage | 247 |
ExternalDocumentID | 10_5582_ddt_2023_01032 article_ddt_17_4_17_2023_01032_article_char_en |
GroupedDBID | --- 53G ABDBF ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL DIK EBD EMOBN ESX F5P JSF JSH KQ8 MK0 OK1 P2P RJT RZJ SV3 TUS 7.U AAYXX ACUHS CITATION |
ID | FETCH-LOGICAL-c450t-f0ba6acc79392010179bc4121400c6fc30bc96a8e3ec5d4d8c94ff644a0a66b43 |
ISSN | 1881-7831 |
IngestDate | Tue Jul 01 01:15:39 EDT 2025 Thu Apr 24 22:57:56 EDT 2025 Tue Mar 26 04:11:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-f0ba6acc79392010179bc4121400c6fc30bc96a8e3ec5d4d8c94ff644a0a66b43 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ddt/17/4/17_2023.01032/_article/-char/en |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_5582_ddt_2023_01032 crossref_primary_10_5582_ddt_2023_01032 jstage_primary_article_ddt_17_4_17_2023_01032_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023/08/31 |
PublicationDateYYYYMMDD | 2023-08-31 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023/08/31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Drug Discoveries & Therapeutics |
PublicationTitleAlternate | DD&T |
PublicationYear | 2023 |
Publisher | International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
Publisher_xml | – name: International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
References | 7. Gleiznys A, Zdanavičienė E, Žilinskas J. Candida albicans importance to denture wearers. A literature review. Stomatologija. 2015; 17:54-66. 27. Badami S, Moorkoth S, Rai SR, Kannan E, Bhojraj S. Antioxidant activity of Caesalpinia sappan heartwood. Biol Pharm Bull. 2003; 26:1534-1537. 15. Tinkle S, Mcneil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, Tamarkin L, Desai N. Nanomedicines: Addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014; 1313:35-56. 42. Ethiraj AS, Kang DJ. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett. 2012; 7:1-5. 35. Hori T, Nagata K, Iwase A, Hori F. Synthesis of Cu nanoparticles using gamma-ray irradiation reduction method. Jpn J Appl Phys. 2014; 53:1-5. 26. Wu SQ, Otero M, Unger FM, Goldring MB, Phrutivorapongkul A, Chiari C, Kolb A, Viernstein H, Toegel S. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. J Ethnopharmacol. 2011; 138:364-372. 8. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun. 2019; 5:6964-6996. 33. Azam A, Ahmed AS, Oves M, Khan MS, Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine. 2012; 7:3527-3535. 40. Jana J, Ganguly M, Pal T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 2016; 6:86174-86211. 21. Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, Chan YS, Danquah MK. Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schmiedebergs Arch Pharmacol. 2019; 392:755-771. 6. Garcia-Cuesta C, Sarrion-Pérez MG, Bagán JV. Current treatment of oral candidiasis: A literature review. J Clin Exp Dent. 2014; 6:576-582. 31. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018; 26:64-70. 25. Srinivasan R, Selvam GG, Karthik S, Mathivanan K, Baskaran R, Karthikeyan M, Gopi M, Govindasamy C. In vitro antimicrobial activity of Caesalpinia sappan L. Asian Pac J Trop Biomed. 2012; 2:136-139. 30. Patra JK, Baek KH. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater. 2014; 2014:1-12. 46. Pfaller MA, Sheehan DJ, Rex JH. Determination of fungicidal activities against yeasts and molds: Lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev . 2004; 17:268-280. 49. Rajivgandhi G, Maruthupandy M, Muneeswaran T, Ramachandran G, Manoharan N, Quero F, Anand M, Song JM. Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria. Microb Pathog. 2019; 127:267-276. 1. Sandai D, Tabana YM, El Ouweini A, Ayodeji IO. Resistance of Candida albicans biofilms to drugs and the host immune system. Jundishapur J Microbiol. 2016; 9:1-7. 9. Dharmadasa R, Jha M, Amos DA, Druffel T. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. ACS Appl Mater Interfaces. 2013; 5:13227-13234. 34. Raja M. Production of copper nanoparticles by electrochemical process. Powder Metall Met Ceram. 2008; 47:402-405. 32. Raut S, Adhikari B. The need to focus China's national plan to combat antimicrobial resistance. Lancet Infect Dis. 2017; 17:137-138. 43. Nanoscale Res Lett. 2012; 7:1-5. Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015; 5:12293-12299. 14. Rahimi G, Khodavandi A, Yaghobi R. Antimycotic effect of copper oxide nanoparticles on Candida albicans biofilm. J Micro Nano Biomed. 2016; 1:7-12. 39. Sathiyavimal S, Vasantharaj S, Bharathi D, Saravanan M, Manikandan E, Kumar SS, Pugazhendhi A. Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J Photochem Photobiol B. 2018; 188:126-134. 18. Suwan T, Khongkhunthian S, Okonogi S. Silver nanoparticles fabricated by reducing property of cellulose derivatives. Drug Discov Ther. 2019; 13:70-79. 37. Lee HJ, Song JY, Kim BS. Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol. 2013; 88:1971-1977. 47. Forsberg K, Woodworth K, Walters M, Berkow EL, Jackson B, Chiller T, Vallabhaneni S. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Med Mycol. 2019; 57:1-12. 36. method. Jpn J Appl Phys. 2014; 53:1-5. Giuffrida S, Costanzo LL, Ventimiglia G, Bongiorno C. Photochemical synthesis of copper nanoparticles incorporated in poly(vinyl pyrrolidone). J Nanoparticle Res. 2008; 10:1183-1192. 3. Hawser SP, Douglas LJ. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother. 1995; 39:2128-2131. 17. Amin F, Fozia, Khattak B, Alotaibi A, Qasim M, Ahmad I, Ullah R, Bourhia M, Gul A, Zahoor S, Ahmad R. Green synthesis of copper oxide nanoparticles using Aerva javanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities. Evid Based Complement Alternat Med. 2021; 2021:1-12. 45. Keepers TR, Gomez M, Celeri C, Nichols WW, Krause KM. Bactericidal activity, absence of serum effect, and time-kill kinetics of ceftazidime-avibactam against β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014; 58:5297-5305. 44. Dudiuk C, Berrio I, Leonardelli F, Morales-Lopez S, Theill L, Macedo D, Yesid-Rodriguez J, Salcedo S, Marin A, Gamarra S, Garcia-Effron G. Antifungal activity and killing kinetics of anidulafungin, caspofungin and amphotericin B against Candida auris. J Antimicrob Chemother. 2019; 74:2295-2302. 12. Ahamed M, Alhadlaq HA, Khan MAM, Karuppiah P, Al-Dhabi NA. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater. 2014; 2014:1-4. 24. Nirmal NP, Rajput MS, Prasad RGSV, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med. 2015; 8:421-430. 4. Lalla RV, Latortue MC, Hong CH, Ariyawardana A, D'Amato-Palumbo S, Fischer DJ, Martof A, Nicolatou-Galitis O, Patton LL, Elting LS, Spijkervet FKL, Brennan MT. A systematic review of oral fungal infections in patients receiving cancer therapy. Support Care Cancer. 2010; 18:985-992. 22. Mohamed EA. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon. 2020; 6:1-6. 19. Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanoparticle Res. 2008; 10:507-517. 16. Nabila MI, Kannabiran K. Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal Agric Biotechnol. 2018; 15:56-62. 20. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013; 31:346-356. 13. Hardie JM. Oral microbiology: Current concepts in the microbiology of dental caries and periodontal disease. Br Dent J. 1992; 172:271-278. 23. Siddiqui VU, Ansari A, Chauhan R, Siddiqi WA. Green synthesis of copper oxide (CuO) nanoparticles by Punica granatum peel extract. Mater Today Proc. 2019; 36:751-755. 2. Eshima S, Kurakado S, Matsumoto Y, Kudo T, Sugita T. Candida albicans promotes the antimicrobial tolerance of Escherichia coli in a cross-kingdom dual-species biofilm. Microorganisms. 2022; 10:2179-2192. 41. Khatouri J, Mostafavi M, Amblard J, Belloni J. Radiation-induced copper aggregates and oligomers. Chem Phys Lett. 1992; 191:351-356. 11. Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: A theranostic nanotool against cancer. Drug Discov Today. 2015; 20:1143-1151. 29. Salayov A, Bedlovičová Z, Daneu N, Baláž M, Bujňáková ZL, Balážová L, Tkáčiková L. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials. 2021; 11:1005-1025. 5. Yoshijima Y, Murakami K, Kayama S, Liu D, Hirota K, Ichikawa T, Miyake Y. Effect of substrate surface hydrophobicity on the adherence of yeast and hyphal Candida. Mycoses. 2010; 53:221-226. 10. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem Rev. 2016; 116:3722-3811. 38. Suwan T, Wanachantararak P, Khongkhunthian S, Okonogi S. Antioxidant activity and potential of Caesalpinia sappan aqueous extract on synthesis of silver nanoparticles. Drug Discov Ther. 2018; 12:259-266. 48. Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA. Antifungal resistance of Candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001; 80:903-908. 28. Nirmal NP, Rajput MS, Prasad RGS V, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities : A review. Asian Pac J Trop Med. 2015; 8:421-430. 44 45 46 47 48 49 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 23. Siddiqui VU, Ansari A, Chauhan R, Siddiqi WA. Green synthesis of copper oxide (CuO) nanoparticles by Punica granatum peel extract. Mater Today Proc. 2019; 36:751-755. – reference: 1. Sandai D, Tabana YM, El Ouweini A, Ayodeji IO. Resistance of Candida albicans biofilms to drugs and the host immune system. Jundishapur J Microbiol. 2016; 9:1-7. – reference: 47. Forsberg K, Woodworth K, Walters M, Berkow EL, Jackson B, Chiller T, Vallabhaneni S. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Med Mycol. 2019; 57:1-12. – reference: 20. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013; 31:346-356. – reference: 10. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem Rev. 2016; 116:3722-3811. – reference: 31. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018; 26:64-70. – reference: 44. Dudiuk C, Berrio I, Leonardelli F, Morales-Lopez S, Theill L, Macedo D, Yesid-Rodriguez J, Salcedo S, Marin A, Gamarra S, Garcia-Effron G. Antifungal activity and killing kinetics of anidulafungin, caspofungin and amphotericin B against Candida auris. J Antimicrob Chemother. 2019; 74:2295-2302. – reference: 36. method. Jpn J Appl Phys. 2014; 53:1-5. Giuffrida S, Costanzo LL, Ventimiglia G, Bongiorno C. Photochemical synthesis of copper nanoparticles incorporated in poly(vinyl pyrrolidone). J Nanoparticle Res. 2008; 10:1183-1192. – reference: 27. Badami S, Moorkoth S, Rai SR, Kannan E, Bhojraj S. Antioxidant activity of Caesalpinia sappan heartwood. Biol Pharm Bull. 2003; 26:1534-1537. – reference: 40. Jana J, Ganguly M, Pal T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 2016; 6:86174-86211. – reference: 4. Lalla RV, Latortue MC, Hong CH, Ariyawardana A, D'Amato-Palumbo S, Fischer DJ, Martof A, Nicolatou-Galitis O, Patton LL, Elting LS, Spijkervet FKL, Brennan MT. A systematic review of oral fungal infections in patients receiving cancer therapy. Support Care Cancer. 2010; 18:985-992. – reference: 38. Suwan T, Wanachantararak P, Khongkhunthian S, Okonogi S. Antioxidant activity and potential of Caesalpinia sappan aqueous extract on synthesis of silver nanoparticles. Drug Discov Ther. 2018; 12:259-266. – reference: 45. Keepers TR, Gomez M, Celeri C, Nichols WW, Krause KM. Bactericidal activity, absence of serum effect, and time-kill kinetics of ceftazidime-avibactam against β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014; 58:5297-5305. – reference: 49. Rajivgandhi G, Maruthupandy M, Muneeswaran T, Ramachandran G, Manoharan N, Quero F, Anand M, Song JM. Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria. Microb Pathog. 2019; 127:267-276. – reference: 37. Lee HJ, Song JY, Kim BS. Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol. 2013; 88:1971-1977. – reference: 26. Wu SQ, Otero M, Unger FM, Goldring MB, Phrutivorapongkul A, Chiari C, Kolb A, Viernstein H, Toegel S. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. J Ethnopharmacol. 2011; 138:364-372. – reference: 11. Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: A theranostic nanotool against cancer. Drug Discov Today. 2015; 20:1143-1151. – reference: 30. Patra JK, Baek KH. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater. 2014; 2014:1-12. – reference: 22. Mohamed EA. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon. 2020; 6:1-6. – reference: 18. Suwan T, Khongkhunthian S, Okonogi S. Silver nanoparticles fabricated by reducing property of cellulose derivatives. Drug Discov Ther. 2019; 13:70-79. – reference: 25. Srinivasan R, Selvam GG, Karthik S, Mathivanan K, Baskaran R, Karthikeyan M, Gopi M, Govindasamy C. In vitro antimicrobial activity of Caesalpinia sappan L. Asian Pac J Trop Biomed. 2012; 2:136-139. – reference: 35. Hori T, Nagata K, Iwase A, Hori F. Synthesis of Cu nanoparticles using gamma-ray irradiation reduction method. Jpn J Appl Phys. 2014; 53:1-5. – reference: 5. Yoshijima Y, Murakami K, Kayama S, Liu D, Hirota K, Ichikawa T, Miyake Y. Effect of substrate surface hydrophobicity on the adherence of yeast and hyphal Candida. Mycoses. 2010; 53:221-226. – reference: 9. Dharmadasa R, Jha M, Amos DA, Druffel T. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. ACS Appl Mater Interfaces. 2013; 5:13227-13234. – reference: 19. Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanoparticle Res. 2008; 10:507-517. – reference: 41. Khatouri J, Mostafavi M, Amblard J, Belloni J. Radiation-induced copper aggregates and oligomers. Chem Phys Lett. 1992; 191:351-356. – reference: 32. Raut S, Adhikari B. The need to focus China's national plan to combat antimicrobial resistance. Lancet Infect Dis. 2017; 17:137-138. – reference: 33. Azam A, Ahmed AS, Oves M, Khan MS, Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine. 2012; 7:3527-3535. – reference: 15. Tinkle S, Mcneil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, Tamarkin L, Desai N. Nanomedicines: Addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014; 1313:35-56. – reference: 24. Nirmal NP, Rajput MS, Prasad RGSV, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med. 2015; 8:421-430. – reference: 8. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun. 2019; 5:6964-6996. – reference: 13. Hardie JM. Oral microbiology: Current concepts in the microbiology of dental caries and periodontal disease. Br Dent J. 1992; 172:271-278. – reference: 42. Ethiraj AS, Kang DJ. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett. 2012; 7:1-5. – reference: 14. Rahimi G, Khodavandi A, Yaghobi R. Antimycotic effect of copper oxide nanoparticles on Candida albicans biofilm. J Micro Nano Biomed. 2016; 1:7-12. – reference: 16. Nabila MI, Kannabiran K. Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal Agric Biotechnol. 2018; 15:56-62. – reference: 17. Amin F, Fozia, Khattak B, Alotaibi A, Qasim M, Ahmad I, Ullah R, Bourhia M, Gul A, Zahoor S, Ahmad R. Green synthesis of copper oxide nanoparticles using Aerva javanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities. Evid Based Complement Alternat Med. 2021; 2021:1-12. – reference: 21. Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, Chan YS, Danquah MK. Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schmiedebergs Arch Pharmacol. 2019; 392:755-771. – reference: 12. Ahamed M, Alhadlaq HA, Khan MAM, Karuppiah P, Al-Dhabi NA. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater. 2014; 2014:1-4. – reference: 6. Garcia-Cuesta C, Sarrion-Pérez MG, Bagán JV. Current treatment of oral candidiasis: A literature review. J Clin Exp Dent. 2014; 6:576-582. – reference: 46. Pfaller MA, Sheehan DJ, Rex JH. Determination of fungicidal activities against yeasts and molds: Lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev . 2004; 17:268-280. – reference: 39. Sathiyavimal S, Vasantharaj S, Bharathi D, Saravanan M, Manikandan E, Kumar SS, Pugazhendhi A. Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J Photochem Photobiol B. 2018; 188:126-134. – reference: 2. Eshima S, Kurakado S, Matsumoto Y, Kudo T, Sugita T. Candida albicans promotes the antimicrobial tolerance of Escherichia coli in a cross-kingdom dual-species biofilm. Microorganisms. 2022; 10:2179-2192. – reference: 28. Nirmal NP, Rajput MS, Prasad RGS V, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities : A review. Asian Pac J Trop Med. 2015; 8:421-430. – reference: 43. Nanoscale Res Lett. 2012; 7:1-5. Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015; 5:12293-12299. – reference: 3. Hawser SP, Douglas LJ. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother. 1995; 39:2128-2131. – reference: 7. Gleiznys A, Zdanavičienė E, Žilinskas J. Candida albicans importance to denture wearers. A literature review. Stomatologija. 2015; 17:54-66. – reference: 48. Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA. Antifungal resistance of Candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001; 80:903-908. – reference: 29. Salayov A, Bedlovičová Z, Daneu N, Baláž M, Bujňáková ZL, Balážová L, Tkáčiková L. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials. 2021; 11:1005-1025. – reference: 34. Raja M. Production of copper nanoparticles by electrochemical process. Powder Metall Met Ceram. 2008; 47:402-405. – ident: 2 doi: 10.3390/microorganisms10112179 – ident: 16 doi: 10.1016/j.bcab.2018.05.011 – ident: 20 doi: 10.1016/j.biotechadv.2013.01.003 – ident: 12 doi: 10.1155/2014/637858 – ident: 35 doi: 10.7567/JJAP.53.05FC05 – ident: 41 doi: 10.1016/0009-2614(92)85313-Y – ident: 3 doi: 10.1128/AAC.39.9.2128 – ident: 23 doi: 10.1016/j.matpr.2020.05.504 – ident: 4 doi: 10.1007/s00520-010-0892-z – ident: 30 doi: 10.1155/2014/417305 – ident: 40 doi: 10.1039/C6RA14173K – ident: 34 doi: 10.1007/s11106-008-9034-2 – ident: 6 doi: 10.4317/jced.51798 – ident: 49 doi: 10.1016/j.micpath.2018.12.017 – ident: 24 doi: 10.1016/j.apjtm.2015.05.014 – ident: 26 doi: 10.1016/j.jep.2011.09.011 – ident: 42 doi: 10.1186/1556-276X-7-70 – ident: 27 doi: 10.1248/bpb.26.1534 – ident: 17 doi: 10.1155/2021/5589703 – ident: 21 doi: 10.1007/s00210-019-01666-7 – ident: 8 doi: 10.1039/C9CC01741K – ident: 19 doi: 10.1007/s11051-007-9275-x – ident: 47 doi: 10.1093/mmy/myy054 – ident: 44 doi: 10.1093/jac/dkz178 – ident: 25 doi: 10.1016/S2221-1691(12)60144-0 – ident: 22 doi: 10.1016/j.heliyon.2019.e03123 – ident: 37 doi: 10.1002/jctb.4052 – ident: 1 doi: 10.5812/jjm.37385 – ident: 38 doi: 10.5582/ddt.2018.01059 – ident: 39 doi: 10.1016/j.jphotobiol.2018.09.014 – ident: 18 doi: 10.5582/ddt.2019.01021 – ident: 7 – ident: 5 doi: 10.1111/j.1439-0507.2009.01694.x – ident: 31 doi: 10.1016/j.jsps.2017.10.012 – ident: 32 doi: 10.1016/S1473-3099(17)30009-9 – ident: 14 doi: 10.15412/J.MNB.05010102 – ident: 13 doi: 10.1038/sj.bdj.4807849 – ident: 45 doi: 10.1128/AAC.02894-14 – ident: 15 doi: 10.1111/nyas.12403 – ident: 36 doi: 10.1007/s11051-007-9343-2 – ident: 9 doi: 10.1021/am404226e – ident: 10 doi: 10.1021/acs.chemrev.5b00482 – ident: 11 doi: 10.1016/j.drudis.2015.05.009 – ident: 33 doi: 10.2147/IJN.S29020 – ident: 48 doi: 10.1177/00220345010800031101 – ident: 46 doi: 10.1128/CMR.17.2.268-280.2004 – ident: 29 doi: 10.3390/nano11041005 – ident: 43 doi: 10.1039/C4RA12163E – ident: 28 doi: 10.1016/j.apjtm.2015.05.014 |
SSID | ssj0000548185 |
Score | 2.319273 |
Snippet | Synthesis of nanoparticles using natural organic substances has attracted more attention due to avoiding inorganic toxicity. This work aimed to synthesize... |
SourceID | crossref jstage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 238 |
SubjectTerms | antibiofilm activity antifungal activity Caesalpinia sappan copper oxide nanoparticles green synthesis |
Title | Biosynthesis of copper oxide nanoparticles using Caesalpinia sappan extract: In vitro evaluation of antifungal and antibiofilm activities against Candida albicans |
URI | https://www.jstage.jst.go.jp/article/ddt/17/4/17_2023.01032/_article/-char/en |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Drug Discoveries & Therapeutics, 2023/08/31, Vol.17(4), pp.238-247 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKx4EL4qcYv-QDGocso0mTNEHisDKmjQOqRCd2qxzbGR4jqZJ2ovw5_JUcec92E3ca0uASpa7jtH1fn997-fyZkFcijTNZhEM_YYz7URRzPxcy99M8TYdgZhkUmm3xKTk6iT6exqe93m-HtbRc5Hv857XrSv7HqtAGdsVVsv9g2XZQaIBzsC8cwcJwvJGNx6pqViWEcFZVhFfzuay96ocS0itZCQmx5b15S_OAn8mGXcwVLsVq2Bw8gQfOGRdKYWXguPQu1aKuHAlwTRNAPhH4BKsqgC9zhTt9f9dKHJdak9VjZ0xBqAm3KIUSDHnP6GEbN_o9qJdn-EiII29U6YJv4jkrwNr4_jNrWF2Zai2EqMuadYWDL6xkuFx5gY9J2DdTFZLl_KteQebQFdQ5Q1JRZZQVJqphqlEdywciY3D7uvqrwHNWdelWQABXtqTbOu00DfxRapuk22bYn62nHzmIjly3bRRmbAQQGg3Qq5NLHKcoVisEUnDD4R7ukBF20-iaOnBldm05j5Bt4QgzuH6G18_09bfIVggJTtgnW_vjg_FhWx-EUBpjKawXrL-e0RzFQd5sfoiNmOr2OaQVa0qijpKm98hdm97QfQO7-6QnywdkZ2L00Ve7dOoYe5fu0EmnnL56SH65gKZVQQ2gqQY03QA01YCmDqCpATS1gH5Lj0uq4Uw7OOOYHZzhVFAHzrSDM7VwphbOdA3nR-Tk8MP0_ZFvNxHxeRQPFn4xyFnCOId5KEPmB0xAOY-CMIDJiycFHw5yniUslUPJYxGJlGdRUUCWwAYsSfJo-Jj0AanyCaGZgOQuLNI0LmAEWWSBiDKZCz4aFCwp5Dbx12aYcauwjxu9XMyut_02ed32nxttmb_2fGes2vazv7buF4xmER66_u3b-McDT_n0xnd6Ru50f7HnpL-ol_IFhN2L_KVF6B9XAuZv |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biosynthesis+of+copper+oxide+nanoparticles+using+Caesalpinia+sappan+extract%3A+In+vitro+evaluation+of+antifungal+and+antibiofilm+activities+against+Candida+albicans&rft.jtitle=Drug+discoveries+%26+therapeutics&rft.au=Sasarom%2C+Mathurada&rft.au=Wanachantararak%2C+Phenphichar&rft.au=Chaijareenont%2C+Pisaisit&rft.au=Okonogi%2C+Siriporn&rft.date=2023-08-31&rft.issn=1881-7831&rft.eissn=1881-784X&rft.volume=17&rft.issue=4&rft.spage=238&rft.epage=247&rft_id=info:doi/10.5582%2Fddt.2023.01032&rft.externalDBID=n%2Fa&rft.externalDocID=10_5582_ddt_2023_01032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7831&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7831&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7831&client=summon |