Oral Microbes and Mucosal Dendritic Cells, “Spark and Flame” of Local and Distant Inflammatory Diseases
Mucosal health and disease is mediated by a complex interplay between the microbiota (“spark”) and the inflammatory response (“flame”). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly “under the radar” in their human hosts, in a cooper...
Saved in:
Published in | International journal of molecular sciences Vol. 21; no. 5; p. 1643 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
28.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1422-0067 |
DOI | 10.3390/ijms21051643 |
Cover
Loading…
Abstract | Mucosal health and disease is mediated by a complex interplay between the microbiota (“spark”) and the inflammatory response (“flame”). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly “under the radar” in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an “awakening” of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer’s disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized. |
---|---|
AbstractList | Mucosal health and disease is mediated by a complex interplay between the microbiota (“spark”) and the inflammatory response (“flame”). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly “under the radar” in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an “awakening” of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer’s disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized. Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific class of microbes, exemplified by the oral microbe , live mostly "under the radar" in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an "awakening" of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer's disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized. Mucosal health and disease is mediated by a complex interplay between the microbiota (“spark”) and the inflammatory response (“flame”). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis , live mostly “under the radar” in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an “awakening” of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer’s disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized. Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly "under the radar" in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an "awakening" of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer's disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized.Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly "under the radar" in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an "awakening" of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer's disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized. |
Author | Meghil, Mohamed M. Cutler, Christopher W. |
AuthorAffiliation | Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA; mmeghil@augusta.edu |
AuthorAffiliation_xml | – name: Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA; mmeghil@augusta.edu |
Author_xml | – sequence: 1 givenname: Mohamed M. orcidid: 0000-0003-2344-3579 surname: Meghil fullname: Meghil, Mohamed M. – sequence: 2 givenname: Christopher W. orcidid: 0000-0003-4396-4072 surname: Cutler fullname: Cutler, Christopher W. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32121251$$D View this record in MEDLINE/PubMed |
BookMark | eNptkblOAzEQhi0E4u6o0ZYUBHys7aRBQgmXFEQB1JbXOwuGXTvYDhIdDwIvx5PgcCkg5MKjfz7PjP9ZQ4vOO0Boi-A9xgZ43951kRLMiSjZAlolJaU9jIVcnItX0FqMdxhTRvlgGa0wSvLhZBXdXwTdFufWBF9BLLSri_Op8TGLI3B1sMmaYghtG3eLt-eXy4kO9x_Ucas7eHt-LXxTjL3J_Ewd2Zi0S8WZa3K-08mHp5kIOkLcQEuNbiNsft3r6Pr46Gp42htfnJwND8c9U3KcegCQJ5W07JOa1BWpQPZNKQXokhMjBpIzyTiVAI0WFQy0ySFuIJNlLQRn6-jgs-5kWnVQG3Apf1JNgu10eFJeW_U74-ytuvGPSuJ-KSjNBXa-CgT_MIWYVGejySZoB34aFWUScyz7VGR0e77XT5NvhzOw-wlkh2MM0PwgBKvZAtX8AjNO_-DGJp2sn01q2_8fvQMaI6Gt |
CitedBy_id | crossref_primary_10_1111_jre_13000 crossref_primary_10_3390_jcm13175297 crossref_primary_10_1016_j_fbio_2023_103278 crossref_primary_10_2174_1871530322666220629101357 crossref_primary_10_2329_perio_66_67 crossref_primary_10_7554_eLife_92895_3 crossref_primary_10_3390_ijms25052763 crossref_primary_10_3390_cells11010115 crossref_primary_10_3390_ijms21124432 crossref_primary_10_1016_j_jdsr_2020_04_002 crossref_primary_10_1111_prd_12428 crossref_primary_10_5005_jp_journals_10024_2949 crossref_primary_10_1080_1744666X_2023_2182291 crossref_primary_10_1016_j_fander_2020_06_008 crossref_primary_10_3389_fimmu_2023_1103592 crossref_primary_10_3389_fgene_2024_1382270 crossref_primary_10_37882_2223_2966_2021_02_11 crossref_primary_10_3389_fimmu_2021_766560 crossref_primary_10_3389_fimmu_2021_781378 crossref_primary_10_3390_diseases13020043 crossref_primary_10_51620_0869_2084_2021_66_7_422_427 crossref_primary_10_1002_biof_1691 crossref_primary_10_3390_ijms24043158 crossref_primary_10_3389_fimmu_2021_705206 crossref_primary_10_1177_0022034520949486 crossref_primary_10_3389_fcimb_2023_1151021 crossref_primary_10_3389_falgy_2023_1067483 crossref_primary_10_1080_20002297_2024_2355823 crossref_primary_10_1080_13813455_2023_2296346 crossref_primary_10_3389_fimmu_2023_1220610 crossref_primary_10_7554_eLife_92895 crossref_primary_10_1111_odi_14354 crossref_primary_10_3389_fdmed_2022_995423 crossref_primary_10_1038_s41368_021_00150_4 crossref_primary_10_1080_08923973_2021_2025245 |
Cites_doi | 10.1189/jlb.0213108 10.1038/nrmicro2128 10.1111/odi.13097 10.1158/0008-5472.CAN-04-4140 10.1177/154405910308200915 10.1111/jdv.12857 10.1016/j.immuni.2007.05.022 10.1016/0092-8674(95)90013-6 10.1177/154405910408300504 10.1034/j.1600-0757.2002.280102.x 10.1016/j.cell.2017.02.004 10.1016/S0092-8674(00)80085-9 10.1126/science.1157535 10.1038/sj.cdd.4400640 10.1073/pnas.89.17.8356 10.1083/jcb.200911141 10.7554/eLife.05289 10.1038/nature07383 10.1111/j.1600-0609.2011.01617.x 10.1182/blood-2002-01-0312 10.1038/nature09572 10.1006/viro.2002.1730 10.1371/journal.ppat.1000862 10.1016/j.immuni.2009.02.009 10.1038/embor.2008.246 10.1016/j.celrep.2016.04.002 10.1128/JB.00275-10 10.1084/jem.20021229 10.1084/jem.20141441 10.3109/08830185.2010.529976 10.1016/j.molcel.2006.12.009 10.1038/nature06421 10.1126/science.7539157 10.1016/j.tcb.2014.03.003 10.1186/1742-4690-8-43 10.1126/science.1122545 10.1038/srep01055 10.1128/iai.64.11.4788-4794.1996 10.1016/j.imbio.2005.05.013 10.1128/IAI.67.7.3227-3235.1999 10.1038/356314a0 10.1091/mbc.e08-12-1248 10.1126/science.1352913 10.1084/jem.20141442 10.1126/science.1205405 10.1016/j.immuni.2010.02.009 10.4049/jimmunol.167.8.4693 10.1016/S0092-8674(00)81266-0 10.1126/science.1104904 10.1128/JVI.77.7.4070-4080.2003 10.1038/376181a0 10.15252/embr.201439076 10.1128/IAI.69.9.5650-5660.2001 10.15252/embj.201797006 10.4049/jimmunol.175.8.4839 10.1016/0092-8674(94)90375-1 10.1016/j.chom.2010.01.007 10.1093/intimm/dxh258 10.1016/j.cell.2011.10.026 10.1016/S1074-7613(02)00447-8 10.1016/j.cell.2013.08.015 10.1038/ni.1634 10.1038/nri3785 10.1074/jbc.M115.686915 10.1371/journal.ppat.1004647 10.1038/ni.3365 10.1084/jem.20041061 10.1002/j.1460-2075.1995.tb00245.x 10.1016/j.cell.2012.11.001 10.4049/jimmunol.1201053 10.1038/nrm3696 10.1080/15548627.2017.1422851 10.1016/j.molcel.2014.11.006 10.1038/nature10744 10.1016/j.chom.2008.10.003 10.4049/jimmunol.0901030 10.1016/S0092-8674(00)80694-7 10.1091/mbc.e07-12-1257 10.1016/j.febslet.2005.09.089 10.4161/auto.7.11.17661 10.1016/S0021-9258(19)88686-6 10.1177/154405910608500801 10.1091/mbc.e08-12-1249 10.1111/j.1600-0757.1999.tb00162.x 10.1042/bse0550051 10.1371/journal.pone.0185580 10.1038/nature19346 10.1016/j.chom.2009.08.004 10.1046/j.0906-6713.2003.03203.x 10.1016/j.devcel.2011.02.006 10.1126/science.286.5445.1735 10.1073/pnas.1307736110 10.1080/15548627.2016.1185576 10.4049/jimmunol.170.4.1635 10.3389/fimmu.2019.02286 10.4049/jimmunol.165.11.6037 10.1182/blood-2001-11-0097 10.1128/IAI.01157-13 10.1016/S0966-842X(00)88874-5 10.1126/science.1225967 10.1182/blood-2003-11-3943 10.15252/embj.201695189 10.1074/jbc.M801716200 10.15252/embj.201696010 10.1016/0092-8674(95)90071-3 10.1016/j.cell.2010.02.024 10.1016/j.imbio.2005.05.014 10.1016/S0092-8674(00)80693-5 10.1128/MCB.01082-08 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.3390/ijms21051643 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7084622 32121251 10_3390_ijms21051643 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE014328 – fundername: The Carlos and Marguerite Mason trust grantid: to improve Kidney transplant outcomes in Georgia |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7X8 PJZUB PPXIY PUEGO 5PM |
ID | FETCH-LOGICAL-c450t-eee00272481d1db1be78c476ea451c6975373527eefa6be9ac7ee0feb1b4d6653 |
IEDL.DBID | M48 |
ISSN | 1422-0067 |
IngestDate | Thu Aug 21 14:05:55 EDT 2025 Thu Sep 04 21:18:19 EDT 2025 Wed Feb 19 02:05:39 EST 2025 Tue Jul 01 04:15:09 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Dendritic cells immunology periodontitis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-eee00272481d1db1be78c476ea451c6975373527eefa6be9ac7ee0feb1b4d6653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4396-4072 0000-0003-2344-3579 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms21051643 |
PMID | 32121251 |
PQID | 2370507826 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084622 proquest_miscellaneous_2370507826 pubmed_primary_32121251 crossref_primary_10_3390_ijms21051643 crossref_citationtrail_10_3390_ijms21051643 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200228 |
PublicationDateYYYYMMDD | 2020-02-28 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200228 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2020 |
Publisher | MDPI |
Publisher_xml | – name: MDPI |
References | Simmons (ref_19) 2003; 305 Geijtenbeek (ref_22) 2000; 100 Fujita (ref_81) 2008; 19 Geijtenbeek (ref_12) 2000; 100 ref_97 Steinman (ref_1) 2001; 68 Fisher (ref_63) 1995; 81 Takahashi (ref_61) 1994; 76 ref_18 Yano (ref_70) 2008; 9 Thurston (ref_103) 2012; 482 Loi (ref_107) 2016; 15 Guillet (ref_121) 2015; 29 Zhang (ref_98) 2016; 12 Koppel (ref_25) 2005; 210 Lamb (ref_72) 2013; 14 Caparros (ref_26) 2005; 210 Kischkel (ref_55) 1995; 14 ref_29 Bouillet (ref_66) 1999; 286 Cameron (ref_28) 1992; 257 Carrion (ref_43) 2012; 189 Brannan (ref_60) 1992; 356 Hivroz (ref_64) 1995; 268 Orvedahl (ref_117) 2010; 7 Wei (ref_95) 2013; 154 Chinnaiyan (ref_54) 1995; 81 Slobodkin (ref_82) 2013; 55 Wei (ref_108) 2016; 17 Muzio (ref_56) 1996; 85 Zhao (ref_116) 2008; 4 Wang (ref_118) 2008; 283 Chan (ref_77) 2009; 29 Ludwig (ref_16) 2005; 579 Madkaikar (ref_62) 2011; 87 Hajishengallis (ref_35) 2015; 15 Rathmell (ref_65) 1995; 376 Park (ref_96) 2018; 14 Gurumurthy (ref_92) 2010; 468 ref_89 Breton (ref_7) 2015; 212 Xu (ref_111) 2007; 27 Jung (ref_101) 2009; 20 MacDonald (ref_5) 2002; 100 Cutler (ref_45) 1995; 3 Kumar (ref_10) 2011; 30 Srivatsan (ref_14) 1992; 267 Sancak (ref_90) 2008; 320 Hamada (ref_49) 1996; 64 Aarnoudse (ref_27) 2005; 65 Shelly (ref_115) 2009; 30 Weidberg (ref_83) 2011; 20 Holt (ref_48) 1999; 20 Peng (ref_2) 1994; 82 Curtis (ref_11) 1992; 89 Tripathi (ref_93) 2013; 110 Pohlmann (ref_20) 2003; 77 Patterson (ref_52) 2000; 7 McEwan (ref_86) 2015; 57 Yuk (ref_120) 2009; 6 Geijtenbeek (ref_23) 2003; 197 Kotzin (ref_67) 2016; 537 Zeituni (ref_47) 2009; 183 Molejon (ref_80) 2013; 3 Gonzalez (ref_88) 2017; 36 Sancak (ref_91) 2010; 141 Jotwani (ref_33) 2001; 167 Martinez (ref_17) 2005; 17 ref_69 ref_68 Socransky (ref_36) 2002; 28 Karanasios (ref_78) 2013; 126 Meghil (ref_122) 2019; 25 Wang (ref_94) 2012; 338 Zalckvar (ref_99) 2009; 10 Halary (ref_21) 2002; 17 Jotwani (ref_32) 2004; 83 Evans (ref_8) 2011; 8 Longo (ref_59) 2004; 104 Matsunaga (ref_79) 2010; 190 Bastholm (ref_119) 2007; 25 Olsvik (ref_85) 2015; 290 Miles (ref_51) 2013; 94 ref_114 Sanjuan (ref_109) 2007; 450 Wild (ref_104) 2011; 333 Itakura (ref_84) 2012; 151 Zeituni (ref_15) 2010; 192 Dzionek (ref_3) 2000; 165 Lee (ref_6) 2015; 212 ref_113 Fischer (ref_37) 2016; 15 Ponpuak (ref_112) 2010; 32 Flannagan (ref_110) 2009; 7 Cutler (ref_30) 2006; 85 ref_39 ref_38 Appelmelk (ref_13) 2003; 170 Cremer (ref_57) 2002; 100 Saxton (ref_87) 2017; 168 Nishimura (ref_76) 2017; 36 Ezzo (ref_46) 2003; 32 Bergman (ref_24) 2004; 200 ref_44 ref_42 Mizushima (ref_71) 2011; 147 ref_41 ref_102 ref_40 Abada (ref_75) 2014; 15 Klionsky (ref_73) 2011; 7 Lindstedt (ref_4) 2005; 175 Miles (ref_34) 2014; 82 Nascimbeni (ref_74) 2017; 36 ref_9 Jotwani (ref_31) 2003; 82 Paludan (ref_106) 2005; 307 Xie (ref_50) 1999; 67 Liu (ref_53) 1996; 86 Saitoh (ref_105) 2008; 456 Chen (ref_58) 2006; 311 Hosokawa (ref_100) 2009; 20 |
References_xml | – ident: ref_9 – volume: 94 start-page: 281 year: 2013 ident: ref_51 article-title: Noncanonical dendritic cell differentiation and survival driven by a bacteremic pathogen publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0213108 – volume: 7 start-page: 355 year: 2009 ident: ref_110 article-title: Antimicrobial mechanisms of phagocytes and bacterial evasion strategies publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2128 – volume: 25 start-page: 1403 year: 2019 ident: ref_122 article-title: The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: A pilot study publication-title: Oral Dis. doi: 10.1111/odi.13097 – ident: ref_39 – volume: 65 start-page: 5935 year: 2005 ident: ref_27 article-title: Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-4140 – volume: 82 start-page: 736 year: 2003 ident: ref_31 article-title: Multiple dendritic cell (DC) subpopulations in human gingiva and association of mature DCs with CD4+ T-cells in situ publication-title: J. Dent. Res. doi: 10.1177/154405910308200915 – ident: ref_42 – volume: 29 start-page: 1347 year: 2015 ident: ref_121 article-title: Verneuil’s disease, innate immunity and vitamin D: A pilot study publication-title: J. Eur. Acad. Dermatol. Venereol. doi: 10.1111/jdv.12857 – volume: 27 start-page: 135 year: 2007 ident: ref_111 article-title: Toll-like receptor 4 is a sensor for autophagy associated with innate immunity publication-title: Immunity doi: 10.1016/j.immuni.2007.05.022 – ident: ref_114 – volume: 81 start-page: 935 year: 1995 ident: ref_63 article-title: Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome publication-title: Cell doi: 10.1016/0092-8674(95)90013-6 – volume: 83 start-page: 371 year: 2004 ident: ref_32 article-title: Increase in HIV receptors/co-receptors/alpha-defensins in inflamed human gingiva publication-title: J. Dent. Res. doi: 10.1177/154405910408300504 – volume: 28 start-page: 12 year: 2002 ident: ref_36 article-title: Dental biofilms: Difficult therapeutic targets publication-title: Periodontology 2000 doi: 10.1034/j.1600-0757.2002.280102.x – volume: 168 start-page: 960 year: 2017 ident: ref_87 article-title: mTOR Signaling in Growth, Metabolism, and Disease publication-title: Cell doi: 10.1016/j.cell.2017.02.004 – volume: 68 start-page: 160 year: 2001 ident: ref_1 article-title: Dendritic cells and the control of immunity: Enhancing the efficiency of antigen presentation publication-title: Mt. Sinai J. Med. – volume: 86 start-page: 147 year: 1996 ident: ref_53 article-title: Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c publication-title: Cell doi: 10.1016/S0092-8674(00)80085-9 – volume: 320 start-page: 1496 year: 2008 ident: ref_90 article-title: The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1 publication-title: Science doi: 10.1126/science.1157535 – volume: 7 start-page: 137 year: 2000 ident: ref_52 article-title: Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4400640 – volume: 89 start-page: 8356 year: 1992 ident: ref_11 article-title: Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.17.8356 – volume: 190 start-page: 511 year: 2010 ident: ref_79 article-title: Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L publication-title: J. Cell Biol. doi: 10.1083/jcb.200911141 – ident: ref_97 doi: 10.7554/eLife.05289 – volume: 456 start-page: 264 year: 2008 ident: ref_105 article-title: Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production publication-title: Nature doi: 10.1038/nature07383 – volume: 87 start-page: 1 year: 2011 ident: ref_62 article-title: Advances in autoimmune lymphoproliferative syndromes publication-title: Eur. J. Haematol. doi: 10.1111/j.1600-0609.2011.01617.x – volume: 100 start-page: 3646 year: 2002 ident: ref_57 article-title: Long-lived immature dendritic cells mediated by TRANCE-RANK interaction publication-title: Blood doi: 10.1182/blood-2002-01-0312 – volume: 468 start-page: 659 year: 2010 ident: ref_92 article-title: The Lkb1 metabolic sensor maintains haematopoietic stem cell survival publication-title: Nature doi: 10.1038/nature09572 – volume: 305 start-page: 115 year: 2003 ident: ref_19 article-title: DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells publication-title: Virology doi: 10.1006/viro.2002.1730 – ident: ref_29 doi: 10.1371/journal.ppat.1000862 – volume: 30 start-page: 588 year: 2009 ident: ref_115 article-title: Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus publication-title: Immunity doi: 10.1016/j.immuni.2009.02.009 – volume: 10 start-page: 285 year: 2009 ident: ref_99 article-title: DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy publication-title: EMBO Rep. doi: 10.1038/embor.2008.246 – volume: 15 start-page: 1076 year: 2016 ident: ref_107 article-title: Macroautophagy Proteins Control MHC Class I Levels on Dendritic Cells and Shape Anti-viral CD8(+) T Cell Responses publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.04.002 – volume: 192 start-page: 4103 year: 2010 ident: ref_15 article-title: The native 67-kilodalton minor fimbria of Porphyromonas gingivalis is a novel glycoprotein with DC-SIGN-targeting motifs publication-title: J. Bacteriol. doi: 10.1128/JB.00275-10 – volume: 197 start-page: 7 year: 2003 ident: ref_23 article-title: Mycobacteria target DC-SIGN to suppress dendritic cell function publication-title: J. Exp. Med. doi: 10.1084/jem.20021229 – volume: 212 start-page: 401 year: 2015 ident: ref_7 article-title: Circulating precursors of human CD1c+ and CD141+ dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20141441 – ident: ref_44 – volume: 15 start-page: 1435 year: 2016 ident: ref_37 article-title: Mucosal Langerhans Cells Promote Differentiation of Th17 Cells in a Murine Model of Periodontitis but Are Not Required for Porphyromonas gingivalis-Driven Alveolar Bone Destruction publication-title: J. Immunol. – volume: 30 start-page: 16 year: 2011 ident: ref_10 article-title: Pathogen recognition by the innate immune system publication-title: Int. Rev. Immunol. doi: 10.3109/08830185.2010.529976 – volume: 25 start-page: 193 year: 2007 ident: ref_119 article-title: Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2 publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.12.009 – volume: 450 start-page: 1253 year: 2007 ident: ref_109 article-title: Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis publication-title: Nature doi: 10.1038/nature06421 – volume: 268 start-page: 1347 year: 1995 ident: ref_64 article-title: Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity publication-title: Science doi: 10.1126/science.7539157 – ident: ref_89 doi: 10.1016/j.tcb.2014.03.003 – volume: 8 start-page: 43 year: 2011 ident: ref_8 article-title: Thymic plasmacytoid dendritic cells are susceptible to productive HIV-1 infection and efficiently transfer R5 HIV-1 to thymocytes in vitro publication-title: Retrovirology doi: 10.1186/1742-4690-8-43 – volume: 311 start-page: 1160 year: 2006 ident: ref_58 article-title: Dendritic cell apoptosis in the maintenance of immune tolerance publication-title: Science doi: 10.1126/science.1122545 – volume: 3 start-page: 1055 year: 2013 ident: ref_80 article-title: The VMP1-Beclin 1 interaction regulates autophagy induction publication-title: Sci. Rep. doi: 10.1038/srep01055 – volume: 64 start-page: 4788 year: 1996 ident: ref_49 article-title: Isolation and characterization of a minor fimbria from Porphyromonas gingivalis publication-title: Infect. Immun. doi: 10.1128/iai.64.11.4788-4794.1996 – volume: 210 start-page: 185 year: 2005 ident: ref_26 article-title: Role of the C-type lectins DC-SIGN and L-SIGN in Leishmania interaction with host phagocytes publication-title: Immunobiology doi: 10.1016/j.imbio.2005.05.013 – volume: 67 start-page: 3227 year: 1999 ident: ref_50 article-title: Promoter architecture of the Porphyromonas gingivalis fimbrillin gene publication-title: Infect. Immun. doi: 10.1128/IAI.67.7.3227-3235.1999 – volume: 356 start-page: 314 year: 1992 ident: ref_60 article-title: Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis publication-title: Nature doi: 10.1038/356314a0 – volume: 20 start-page: 1981 year: 2009 ident: ref_100 article-title: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e08-12-1248 – volume: 257 start-page: 383 year: 1992 ident: ref_28 article-title: Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells publication-title: Science doi: 10.1126/science.1352913 – volume: 212 start-page: 385 year: 2015 ident: ref_6 article-title: Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow publication-title: J. Exp. Med. doi: 10.1084/jem.20141442 – volume: 333 start-page: 228 year: 2011 ident: ref_104 article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth publication-title: Science doi: 10.1126/science.1205405 – volume: 32 start-page: 329 year: 2010 ident: ref_112 article-title: Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties publication-title: Immunity. doi: 10.1016/j.immuni.2010.02.009 – volume: 167 start-page: 4693 year: 2001 ident: ref_33 article-title: Mature dendritic cells infiltrate the T cell-rich region of oral mucosa in chronic periodontitis: In situ, in vivo, and in vitro studies publication-title: J. Immunol. doi: 10.4049/jimmunol.167.8.4693 – volume: 85 start-page: 817 year: 1996 ident: ref_56 article-title: FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex publication-title: Cell doi: 10.1016/S0092-8674(00)81266-0 – volume: 307 start-page: 593 year: 2005 ident: ref_106 article-title: Endogenous MHC class II processing of a viral nuclear antigen after autophagy publication-title: Science doi: 10.1126/science.1104904 – volume: 77 start-page: 4070 year: 2003 ident: ref_20 article-title: Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR publication-title: J. Virol. doi: 10.1128/JVI.77.7.4070-4080.2003 – volume: 376 start-page: 181 year: 1995 ident: ref_65 article-title: CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+ T cells publication-title: Nature doi: 10.1038/376181a0 – volume: 15 start-page: 839 year: 2014 ident: ref_75 article-title: Getting ready for building: Signaling and autophagosome biogenesis publication-title: EMBO Rep. doi: 10.15252/embr.201439076 – ident: ref_40 doi: 10.1128/IAI.69.9.5650-5660.2001 – volume: 36 start-page: 2018 year: 2017 ident: ref_74 article-title: ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis publication-title: Embo J. doi: 10.15252/embj.201797006 – ident: ref_113 – volume: 175 start-page: 4839 year: 2005 ident: ref_4 article-title: Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells publication-title: J. Immunol. doi: 10.4049/jimmunol.175.8.4839 – volume: 76 start-page: 969 year: 1994 ident: ref_61 article-title: Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand publication-title: Cell doi: 10.1016/0092-8674(94)90375-1 – volume: 7 start-page: 115 year: 2010 ident: ref_117 article-title: Autophagy protects against Sindbis virus infection of the central nervous system publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2010.01.007 – volume: 17 start-page: 769 year: 2005 ident: ref_17 article-title: DC-SIGN, but not sDC-SIGN, can modulate IL-2 production from PMA- and anti-CD3-stimulated primary human CD4 T. cells publication-title: Int. Immunol. doi: 10.1093/intimm/dxh258 – volume: 147 start-page: 728 year: 2011 ident: ref_71 article-title: Autophagy: Renovation of cells and tissues publication-title: Cell doi: 10.1016/j.cell.2011.10.026 – volume: 17 start-page: 653 year: 2002 ident: ref_21 article-title: Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection publication-title: Immunity doi: 10.1016/S1074-7613(02)00447-8 – volume: 154 start-page: 1269 year: 2013 ident: ref_95 article-title: EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance publication-title: Cell doi: 10.1016/j.cell.2013.08.015 – volume: 126 start-page: 5224 year: 2013 ident: ref_78 article-title: Dynamic association of the ULK1 complex with omegasomes during autophagy induction publication-title: J. Cell Sci. – volume: 9 start-page: 908 year: 2008 ident: ref_70 article-title: Autophagic control of listeria through intracellular innate immune recognition in drosophila publication-title: Nat. Immunol. doi: 10.1038/ni.1634 – volume: 15 start-page: 30 year: 2015 ident: ref_35 article-title: Periodontitis: From microbial immune subversion to systemic inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3785 – volume: 290 start-page: 29361 year: 2015 ident: ref_85 article-title: FYCO1 Contains a C-terminally Extended, LC3A/B-preferring LC3-interacting Region (LIR) Motif Required for Efficient Maturation of Autophagosomes during Basal Autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.686915 – volume: 82 start-page: 487 year: 1994 ident: ref_2 article-title: Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature publication-title: Immunology – ident: ref_102 doi: 10.1371/journal.ppat.1004647 – ident: ref_69 – volume: 17 start-page: 277 year: 2016 ident: ref_108 article-title: Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis publication-title: Nat. Immunol. doi: 10.1038/ni.3365 – volume: 200 start-page: 979 year: 2004 ident: ref_24 article-title: Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN publication-title: J. Exp. Med. doi: 10.1084/jem.20041061 – volume: 14 start-page: 5579 year: 1995 ident: ref_55 article-title: Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor publication-title: Embo J. doi: 10.1002/j.1460-2075.1995.tb00245.x – ident: ref_41 – volume: 151 start-page: 1256 year: 2012 ident: ref_84 article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes publication-title: Cell doi: 10.1016/j.cell.2012.11.001 – volume: 189 start-page: 3178 year: 2012 ident: ref_43 article-title: Microbial Carriage State of Peripheral Blood Dendritic Cells (DCs) in Chronic Periodontitis Influences DC Differentiation, Atherogenic Potential publication-title: J. Immunol. doi: 10.4049/jimmunol.1201053 – volume: 14 start-page: 759 year: 2013 ident: ref_72 article-title: The autophagosome: Origins unknown, biogenesis complex publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3696 – volume: 14 start-page: 584 year: 2018 ident: ref_96 article-title: ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction publication-title: Autophagy doi: 10.1080/15548627.2017.1422851 – ident: ref_38 – volume: 57 start-page: 39 year: 2015 ident: ref_86 article-title: PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.11.006 – volume: 482 start-page: 414 year: 2012 ident: ref_103 article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion publication-title: Nature doi: 10.1038/nature10744 – volume: 4 start-page: 458 year: 2008 ident: ref_116 article-title: Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2008.10.003 – volume: 183 start-page: 5694 year: 2009 ident: ref_47 article-title: Targeting of DC-SIGN on human dendritic cells by minor fimbriated Porphyromonas gingivalis strains elicits a distinct effector T cell response publication-title: J. Immunol. doi: 10.4049/jimmunol.0901030 – volume: 100 start-page: 587 year: 2000 ident: ref_12 article-title: DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells publication-title: Cell doi: 10.1016/S0092-8674(00)80694-7 – volume: 19 start-page: 2092 year: 2008 ident: ref_81 article-title: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-12-1257 – volume: 579 start-page: 6159 year: 2005 ident: ref_16 article-title: Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.09.089 – volume: 7 start-page: 1273 year: 2011 ident: ref_73 article-title: A comprehensive glossary of autophagy-related molecules and processes (2nd edition) publication-title: Autophagy doi: 10.4161/auto.7.11.17661 – volume: 267 start-page: 20196 year: 1992 ident: ref_14 article-title: The human blood fluke Schistosoma mansoni synthesizes glycoproteins containing the Lewis X antigen publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)88686-6 – volume: 85 start-page: 678 year: 2006 ident: ref_30 article-title: Dendritic cells at the oral mucosal interface publication-title: J. Dent. Res. doi: 10.1177/154405910608500801 – volume: 20 start-page: 1992 year: 2009 ident: ref_101 article-title: ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e08-12-1249 – volume: 20 start-page: 168 year: 1999 ident: ref_48 article-title: Virulence factors of Porphyromonas gingivalis publication-title: Periodontol. 2000 doi: 10.1111/j.1600-0757.1999.tb00162.x – volume: 55 start-page: 51 year: 2013 ident: ref_82 article-title: The Atg8 family: Multifunctional ubiquitin-like key regulators of autophagy publication-title: Essays Biochem. doi: 10.1042/bse0550051 – ident: ref_18 doi: 10.1371/journal.pone.0185580 – volume: 537 start-page: 239 year: 2016 ident: ref_67 article-title: The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan publication-title: Nature doi: 10.1038/nature19346 – volume: 6 start-page: 231 year: 2009 ident: ref_120 article-title: Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2009.08.004 – volume: 32 start-page: 24 year: 2003 ident: ref_46 article-title: Microorganisms as risk indicators for periodontal disease publication-title: Periodontol. 2000 doi: 10.1046/j.0906-6713.2003.03203.x – volume: 20 start-page: 444 year: 2011 ident: ref_83 article-title: LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.02.006 – volume: 286 start-page: 1735 year: 1999 ident: ref_66 article-title: Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity publication-title: Science doi: 10.1126/science.286.5445.1735 – volume: 110 start-page: E2950 year: 2013 ident: ref_93 article-title: Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1307736110 – volume: 12 start-page: 1447 year: 2016 ident: ref_98 article-title: AMPK regulates autophagy by phosphorylating BECN1 at threonine 388 publication-title: Autophagy doi: 10.1080/15548627.2016.1185576 – volume: 170 start-page: 1635 year: 2003 ident: ref_13 article-title: Cutting edge: Carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells publication-title: J. Immunol. doi: 10.4049/jimmunol.170.4.1635 – ident: ref_68 doi: 10.3389/fimmu.2019.02286 – volume: 165 start-page: 6037 year: 2000 ident: ref_3 article-title: BDCA-2, BDCA-3, and BDCA-4: Three markers for distinct subsets of dendritic cells in human peripheral blood publication-title: J. Immunol. doi: 10.4049/jimmunol.165.11.6037 – volume: 100 start-page: 4512 year: 2002 ident: ref_5 article-title: Characterization of human blood dendritic cell subsets publication-title: Blood doi: 10.1182/blood-2001-11-0097 – volume: 82 start-page: 101 year: 2014 ident: ref_34 article-title: Secondary lymphoid organ homing phenotype of human myeloid dendritic cells disrupted by an intracellular oral pathogen publication-title: Infect. Immun. doi: 10.1128/IAI.01157-13 – volume: 3 start-page: 45 year: 1995 ident: ref_45 article-title: Pathogenic strategies of the oral anaerobe, Porphyromonas gingivalis publication-title: Trends Microbiol. doi: 10.1016/S0966-842X(00)88874-5 – volume: 338 start-page: 956 year: 2012 ident: ref_94 article-title: Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation publication-title: Science doi: 10.1126/science.1225967 – volume: 104 start-page: 619 year: 2004 ident: ref_59 article-title: Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells publication-title: Blood doi: 10.1182/blood-2003-11-3943 – volume: 36 start-page: 1719 year: 2017 ident: ref_76 article-title: Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains publication-title: Embo J. doi: 10.15252/embj.201695189 – volume: 283 start-page: 25596 year: 2008 ident: ref_118 article-title: Vitamin D3 induces autophagy of human myeloid leukemia cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801716200 – volume: 36 start-page: 397 year: 2017 ident: ref_88 article-title: Nutrient sensing and TOR signaling in yeast and mammals publication-title: Embo J. doi: 10.15252/embj.201696010 – volume: 81 start-page: 505 year: 1995 ident: ref_54 article-title: FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis publication-title: Cell doi: 10.1016/0092-8674(95)90071-3 – volume: 141 start-page: 290 year: 2010 ident: ref_91 article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids publication-title: Cell doi: 10.1016/j.cell.2010.02.024 – volume: 210 start-page: 203 year: 2005 ident: ref_25 article-title: DC-SIGN specifically recognizes Streptococcus pneumoniae serotypes 3 and 14 publication-title: Immunobiology doi: 10.1016/j.imbio.2005.05.014 – volume: 100 start-page: 575 year: 2000 ident: ref_22 article-title: Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses publication-title: Cell doi: 10.1016/S0092-8674(00)80693-5 – volume: 29 start-page: 157 year: 2009 ident: ref_77 article-title: Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01082-08 |
SSID | ssj0023259 |
Score | 2.421638 |
SecondaryResourceType | review_article |
Snippet | Mucosal health and disease is mediated by a complex interplay between the microbiota (“spark”) and the inflammatory response (“flame”). Pathobionts, a specific... Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1643 |
SubjectTerms | Animals Autophagy Dendritic Cells - pathology Humans Inflammation - pathology Microbiota Mouth Diseases - microbiology Mouth Mucosa - microbiology Mouth Mucosa - pathology Review |
Title | Oral Microbes and Mucosal Dendritic Cells, “Spark and Flame” of Local and Distant Inflammatory Diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32121251 https://www.proquest.com/docview/2370507826 https://pubmed.ncbi.nlm.nih.gov/PMC7084622 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED_xoUl7Qey7wCoPsactWxLHdnmYEF-FoZVN2yr1LXKSM1_FhaZI47_nLmkrOjaJlyiyz4l0tu9-5zvfAWxETuuWzIsgjySSgYJhYI1SgS0Ia9gkV5jxbeTOsT7sJkc91ZuDSbXRMQPLf5p2XE-qO-x_-nN9u0Ub_gtbnGSyfz47vyzJclGE_OU8LJJO0ry-O8nUn0CwoSqbxgceAQvoOgT-wehZ5fQAcf4dOHlPE7WXYWkMIcV2PefPYA79c3hSF5W8fQEn32mM6HCgXYalsL4QHQ5Lp8Y99EVV2kDsYr9ffhTrv67s8KKiadPSwHUxcOIbq7eqbY_BpR-Jr95R72XlkOdGdumUL6Hb3v-9exiMyykEeaLCUYCIbITGCUHUqMiiDE0rT4xGm6go13zD1hAcM4jO6gw3bU6voSNhniWF1kq-ggU_8PgGhMzQSWel03aTJIAmkeq4VB2hBceHwA34MOFjmo9zjXPJi35KNgdzPb3P9Qa8n1Jf1Tk2_kP3bjIlKW0C9mxYj4ObMo2lCRWDHd2A1_UUTb8kSTkzimuAmZm8KQEn2J7t8WenVaJtExI6i-OVR_x3FZ7GbIlXl93XYGE0vMG3BFdGWRPmTc_Qs9U-aMLizv7xj59NViCqWa3ROyku7o4 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oral+Microbes+and+Mucosal+Dendritic+Cells%2C+%22Spark+and+Flame%22+of+Local+and+Distant+Inflammatory+Diseases&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Meghil%2C+Mohamed+M&rft.au=Cutler%2C+Christopher+W&rft.date=2020-02-28&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=21&rft.issue=5&rft_id=info:doi/10.3390%2Fijms21051643&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |