Oral Microbes and Mucosal Dendritic Cells, “Spark and Flame” of Local and Distant Inflammatory Diseases

Mucosal health and disease is mediated by a complex interplay between the microbiota (“spark”) and the inflammatory response (“flame”). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly “under the radar” in their human hosts, in a cooper...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 5; p. 1643
Main Authors Meghil, Mohamed M., Cutler, Christopher W.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 28.02.2020
Subjects
Online AccessGet full text
ISSN1422-0067
1422-0067
DOI10.3390/ijms21051643

Cover

Loading…
Abstract Mucosal health and disease is mediated by a complex interplay between the microbiota (“spark”) and the inflammatory response (“flame”). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly “under the radar” in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an “awakening” of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer’s disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized.
AbstractList Mucosal health and disease is mediated by a complex interplay between the microbiota (“spark”) and the inflammatory response (“flame”). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly “under the radar” in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an “awakening” of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer’s disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized.
Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific class of microbes, exemplified by the oral microbe , live mostly "under the radar" in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an "awakening" of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer's disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized.
Mucosal health and disease is mediated by a complex interplay between the microbiota (“spark”) and the inflammatory response (“flame”). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis , live mostly “under the radar” in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an “awakening” of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer’s disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized.
Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly "under the radar" in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an "awakening" of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer's disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized.Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly "under the radar" in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an "awakening" of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer's disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized.
Author Meghil, Mohamed M.
Cutler, Christopher W.
AuthorAffiliation Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA; mmeghil@augusta.edu
AuthorAffiliation_xml – name: Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA; mmeghil@augusta.edu
Author_xml – sequence: 1
  givenname: Mohamed M.
  orcidid: 0000-0003-2344-3579
  surname: Meghil
  fullname: Meghil, Mohamed M.
– sequence: 2
  givenname: Christopher W.
  orcidid: 0000-0003-4396-4072
  surname: Cutler
  fullname: Cutler, Christopher W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32121251$$D View this record in MEDLINE/PubMed
BookMark eNptkblOAzEQhi0E4u6o0ZYUBHys7aRBQgmXFEQB1JbXOwuGXTvYDhIdDwIvx5PgcCkg5MKjfz7PjP9ZQ4vOO0Boi-A9xgZ43951kRLMiSjZAlolJaU9jIVcnItX0FqMdxhTRvlgGa0wSvLhZBXdXwTdFufWBF9BLLSri_Op8TGLI3B1sMmaYghtG3eLt-eXy4kO9x_Ucas7eHt-LXxTjL3J_Ewd2Zi0S8WZa3K-08mHp5kIOkLcQEuNbiNsft3r6Pr46Gp42htfnJwND8c9U3KcegCQJ5W07JOa1BWpQPZNKQXokhMjBpIzyTiVAI0WFQy0ySFuIJNlLQRn6-jgs-5kWnVQG3Apf1JNgu10eFJeW_U74-ytuvGPSuJ-KSjNBXa-CgT_MIWYVGejySZoB34aFWUScyz7VGR0e77XT5NvhzOw-wlkh2MM0PwgBKvZAtX8AjNO_-DGJp2sn01q2_8fvQMaI6Gt
CitedBy_id crossref_primary_10_1111_jre_13000
crossref_primary_10_3390_jcm13175297
crossref_primary_10_1016_j_fbio_2023_103278
crossref_primary_10_2174_1871530322666220629101357
crossref_primary_10_2329_perio_66_67
crossref_primary_10_7554_eLife_92895_3
crossref_primary_10_3390_ijms25052763
crossref_primary_10_3390_cells11010115
crossref_primary_10_3390_ijms21124432
crossref_primary_10_1016_j_jdsr_2020_04_002
crossref_primary_10_1111_prd_12428
crossref_primary_10_5005_jp_journals_10024_2949
crossref_primary_10_1080_1744666X_2023_2182291
crossref_primary_10_1016_j_fander_2020_06_008
crossref_primary_10_3389_fimmu_2023_1103592
crossref_primary_10_3389_fgene_2024_1382270
crossref_primary_10_37882_2223_2966_2021_02_11
crossref_primary_10_3389_fimmu_2021_766560
crossref_primary_10_3389_fimmu_2021_781378
crossref_primary_10_3390_diseases13020043
crossref_primary_10_51620_0869_2084_2021_66_7_422_427
crossref_primary_10_1002_biof_1691
crossref_primary_10_3390_ijms24043158
crossref_primary_10_3389_fimmu_2021_705206
crossref_primary_10_1177_0022034520949486
crossref_primary_10_3389_fcimb_2023_1151021
crossref_primary_10_3389_falgy_2023_1067483
crossref_primary_10_1080_20002297_2024_2355823
crossref_primary_10_1080_13813455_2023_2296346
crossref_primary_10_3389_fimmu_2023_1220610
crossref_primary_10_7554_eLife_92895
crossref_primary_10_1111_odi_14354
crossref_primary_10_3389_fdmed_2022_995423
crossref_primary_10_1038_s41368_021_00150_4
crossref_primary_10_1080_08923973_2021_2025245
Cites_doi 10.1189/jlb.0213108
10.1038/nrmicro2128
10.1111/odi.13097
10.1158/0008-5472.CAN-04-4140
10.1177/154405910308200915
10.1111/jdv.12857
10.1016/j.immuni.2007.05.022
10.1016/0092-8674(95)90013-6
10.1177/154405910408300504
10.1034/j.1600-0757.2002.280102.x
10.1016/j.cell.2017.02.004
10.1016/S0092-8674(00)80085-9
10.1126/science.1157535
10.1038/sj.cdd.4400640
10.1073/pnas.89.17.8356
10.1083/jcb.200911141
10.7554/eLife.05289
10.1038/nature07383
10.1111/j.1600-0609.2011.01617.x
10.1182/blood-2002-01-0312
10.1038/nature09572
10.1006/viro.2002.1730
10.1371/journal.ppat.1000862
10.1016/j.immuni.2009.02.009
10.1038/embor.2008.246
10.1016/j.celrep.2016.04.002
10.1128/JB.00275-10
10.1084/jem.20021229
10.1084/jem.20141441
10.3109/08830185.2010.529976
10.1016/j.molcel.2006.12.009
10.1038/nature06421
10.1126/science.7539157
10.1016/j.tcb.2014.03.003
10.1186/1742-4690-8-43
10.1126/science.1122545
10.1038/srep01055
10.1128/iai.64.11.4788-4794.1996
10.1016/j.imbio.2005.05.013
10.1128/IAI.67.7.3227-3235.1999
10.1038/356314a0
10.1091/mbc.e08-12-1248
10.1126/science.1352913
10.1084/jem.20141442
10.1126/science.1205405
10.1016/j.immuni.2010.02.009
10.4049/jimmunol.167.8.4693
10.1016/S0092-8674(00)81266-0
10.1126/science.1104904
10.1128/JVI.77.7.4070-4080.2003
10.1038/376181a0
10.15252/embr.201439076
10.1128/IAI.69.9.5650-5660.2001
10.15252/embj.201797006
10.4049/jimmunol.175.8.4839
10.1016/0092-8674(94)90375-1
10.1016/j.chom.2010.01.007
10.1093/intimm/dxh258
10.1016/j.cell.2011.10.026
10.1016/S1074-7613(02)00447-8
10.1016/j.cell.2013.08.015
10.1038/ni.1634
10.1038/nri3785
10.1074/jbc.M115.686915
10.1371/journal.ppat.1004647
10.1038/ni.3365
10.1084/jem.20041061
10.1002/j.1460-2075.1995.tb00245.x
10.1016/j.cell.2012.11.001
10.4049/jimmunol.1201053
10.1038/nrm3696
10.1080/15548627.2017.1422851
10.1016/j.molcel.2014.11.006
10.1038/nature10744
10.1016/j.chom.2008.10.003
10.4049/jimmunol.0901030
10.1016/S0092-8674(00)80694-7
10.1091/mbc.e07-12-1257
10.1016/j.febslet.2005.09.089
10.4161/auto.7.11.17661
10.1016/S0021-9258(19)88686-6
10.1177/154405910608500801
10.1091/mbc.e08-12-1249
10.1111/j.1600-0757.1999.tb00162.x
10.1042/bse0550051
10.1371/journal.pone.0185580
10.1038/nature19346
10.1016/j.chom.2009.08.004
10.1046/j.0906-6713.2003.03203.x
10.1016/j.devcel.2011.02.006
10.1126/science.286.5445.1735
10.1073/pnas.1307736110
10.1080/15548627.2016.1185576
10.4049/jimmunol.170.4.1635
10.3389/fimmu.2019.02286
10.4049/jimmunol.165.11.6037
10.1182/blood-2001-11-0097
10.1128/IAI.01157-13
10.1016/S0966-842X(00)88874-5
10.1126/science.1225967
10.1182/blood-2003-11-3943
10.15252/embj.201695189
10.1074/jbc.M801716200
10.15252/embj.201696010
10.1016/0092-8674(95)90071-3
10.1016/j.cell.2010.02.024
10.1016/j.imbio.2005.05.014
10.1016/S0092-8674(00)80693-5
10.1128/MCB.01082-08
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.3390/ijms21051643
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC7084622
32121251
10_3390_ijms21051643
Genre Journal Article
Review
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE014328
– fundername: The Carlos and Marguerite Mason trust
  grantid: to improve Kidney transplant outcomes in Georgia
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7X8
PJZUB
PPXIY
PUEGO
5PM
ID FETCH-LOGICAL-c450t-eee00272481d1db1be78c476ea451c6975373527eefa6be9ac7ee0feb1b4d6653
IEDL.DBID M48
ISSN 1422-0067
IngestDate Thu Aug 21 14:05:55 EDT 2025
Thu Sep 04 21:18:19 EDT 2025
Wed Feb 19 02:05:39 EST 2025
Tue Jul 01 04:15:09 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Dendritic cells
immunology
periodontitis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-eee00272481d1db1be78c476ea451c6975373527eefa6be9ac7ee0feb1b4d6653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4396-4072
0000-0003-2344-3579
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms21051643
PMID 32121251
PQID 2370507826
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084622
proquest_miscellaneous_2370507826
pubmed_primary_32121251
crossref_primary_10_3390_ijms21051643
crossref_citationtrail_10_3390_ijms21051643
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200228
PublicationDateYYYYMMDD 2020-02-28
PublicationDate_xml – month: 2
  year: 2020
  text: 20200228
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2020
Publisher MDPI
Publisher_xml – name: MDPI
References Simmons (ref_19) 2003; 305
Geijtenbeek (ref_22) 2000; 100
Fujita (ref_81) 2008; 19
Geijtenbeek (ref_12) 2000; 100
ref_97
Steinman (ref_1) 2001; 68
Fisher (ref_63) 1995; 81
Takahashi (ref_61) 1994; 76
ref_18
Yano (ref_70) 2008; 9
Thurston (ref_103) 2012; 482
Loi (ref_107) 2016; 15
Guillet (ref_121) 2015; 29
Zhang (ref_98) 2016; 12
Koppel (ref_25) 2005; 210
Lamb (ref_72) 2013; 14
Caparros (ref_26) 2005; 210
Kischkel (ref_55) 1995; 14
ref_29
Bouillet (ref_66) 1999; 286
Cameron (ref_28) 1992; 257
Carrion (ref_43) 2012; 189
Brannan (ref_60) 1992; 356
Hivroz (ref_64) 1995; 268
Orvedahl (ref_117) 2010; 7
Wei (ref_95) 2013; 154
Chinnaiyan (ref_54) 1995; 81
Slobodkin (ref_82) 2013; 55
Wei (ref_108) 2016; 17
Muzio (ref_56) 1996; 85
Zhao (ref_116) 2008; 4
Wang (ref_118) 2008; 283
Chan (ref_77) 2009; 29
Ludwig (ref_16) 2005; 579
Madkaikar (ref_62) 2011; 87
Hajishengallis (ref_35) 2015; 15
Rathmell (ref_65) 1995; 376
Park (ref_96) 2018; 14
Gurumurthy (ref_92) 2010; 468
ref_89
Breton (ref_7) 2015; 212
Xu (ref_111) 2007; 27
Jung (ref_101) 2009; 20
MacDonald (ref_5) 2002; 100
Cutler (ref_45) 1995; 3
Kumar (ref_10) 2011; 30
Srivatsan (ref_14) 1992; 267
Sancak (ref_90) 2008; 320
Hamada (ref_49) 1996; 64
Aarnoudse (ref_27) 2005; 65
Shelly (ref_115) 2009; 30
Weidberg (ref_83) 2011; 20
Holt (ref_48) 1999; 20
Peng (ref_2) 1994; 82
Curtis (ref_11) 1992; 89
Tripathi (ref_93) 2013; 110
Pohlmann (ref_20) 2003; 77
Patterson (ref_52) 2000; 7
McEwan (ref_86) 2015; 57
Yuk (ref_120) 2009; 6
Geijtenbeek (ref_23) 2003; 197
Kotzin (ref_67) 2016; 537
Zeituni (ref_47) 2009; 183
Molejon (ref_80) 2013; 3
Gonzalez (ref_88) 2017; 36
Sancak (ref_91) 2010; 141
Jotwani (ref_33) 2001; 167
Martinez (ref_17) 2005; 17
ref_69
ref_68
Socransky (ref_36) 2002; 28
Karanasios (ref_78) 2013; 126
Meghil (ref_122) 2019; 25
Wang (ref_94) 2012; 338
Zalckvar (ref_99) 2009; 10
Halary (ref_21) 2002; 17
Jotwani (ref_32) 2004; 83
Evans (ref_8) 2011; 8
Longo (ref_59) 2004; 104
Matsunaga (ref_79) 2010; 190
Bastholm (ref_119) 2007; 25
Olsvik (ref_85) 2015; 290
Miles (ref_51) 2013; 94
ref_114
Sanjuan (ref_109) 2007; 450
Wild (ref_104) 2011; 333
Itakura (ref_84) 2012; 151
Zeituni (ref_15) 2010; 192
Dzionek (ref_3) 2000; 165
Lee (ref_6) 2015; 212
ref_113
Fischer (ref_37) 2016; 15
Ponpuak (ref_112) 2010; 32
Flannagan (ref_110) 2009; 7
Cutler (ref_30) 2006; 85
ref_39
ref_38
Appelmelk (ref_13) 2003; 170
Cremer (ref_57) 2002; 100
Saxton (ref_87) 2017; 168
Nishimura (ref_76) 2017; 36
Ezzo (ref_46) 2003; 32
Bergman (ref_24) 2004; 200
ref_44
ref_42
Mizushima (ref_71) 2011; 147
ref_41
ref_102
ref_40
Abada (ref_75) 2014; 15
Klionsky (ref_73) 2011; 7
Lindstedt (ref_4) 2005; 175
Miles (ref_34) 2014; 82
Nascimbeni (ref_74) 2017; 36
ref_9
Jotwani (ref_31) 2003; 82
Paludan (ref_106) 2005; 307
Xie (ref_50) 1999; 67
Liu (ref_53) 1996; 86
Saitoh (ref_105) 2008; 456
Chen (ref_58) 2006; 311
Hosokawa (ref_100) 2009; 20
References_xml – ident: ref_9
– volume: 94
  start-page: 281
  year: 2013
  ident: ref_51
  article-title: Noncanonical dendritic cell differentiation and survival driven by a bacteremic pathogen
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0213108
– volume: 7
  start-page: 355
  year: 2009
  ident: ref_110
  article-title: Antimicrobial mechanisms of phagocytes and bacterial evasion strategies
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2128
– volume: 25
  start-page: 1403
  year: 2019
  ident: ref_122
  article-title: The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: A pilot study
  publication-title: Oral Dis.
  doi: 10.1111/odi.13097
– ident: ref_39
– volume: 65
  start-page: 5935
  year: 2005
  ident: ref_27
  article-title: Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-4140
– volume: 82
  start-page: 736
  year: 2003
  ident: ref_31
  article-title: Multiple dendritic cell (DC) subpopulations in human gingiva and association of mature DCs with CD4+ T-cells in situ
  publication-title: J. Dent. Res.
  doi: 10.1177/154405910308200915
– ident: ref_42
– volume: 29
  start-page: 1347
  year: 2015
  ident: ref_121
  article-title: Verneuil’s disease, innate immunity and vitamin D: A pilot study
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.12857
– volume: 27
  start-page: 135
  year: 2007
  ident: ref_111
  article-title: Toll-like receptor 4 is a sensor for autophagy associated with innate immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.05.022
– ident: ref_114
– volume: 81
  start-page: 935
  year: 1995
  ident: ref_63
  article-title: Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90013-6
– volume: 83
  start-page: 371
  year: 2004
  ident: ref_32
  article-title: Increase in HIV receptors/co-receptors/alpha-defensins in inflamed human gingiva
  publication-title: J. Dent. Res.
  doi: 10.1177/154405910408300504
– volume: 28
  start-page: 12
  year: 2002
  ident: ref_36
  article-title: Dental biofilms: Difficult therapeutic targets
  publication-title: Periodontology 2000
  doi: 10.1034/j.1600-0757.2002.280102.x
– volume: 168
  start-page: 960
  year: 2017
  ident: ref_87
  article-title: mTOR Signaling in Growth, Metabolism, and Disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.004
– volume: 68
  start-page: 160
  year: 2001
  ident: ref_1
  article-title: Dendritic cells and the control of immunity: Enhancing the efficiency of antigen presentation
  publication-title: Mt. Sinai J. Med.
– volume: 86
  start-page: 147
  year: 1996
  ident: ref_53
  article-title: Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80085-9
– volume: 320
  start-page: 1496
  year: 2008
  ident: ref_90
  article-title: The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
  publication-title: Science
  doi: 10.1126/science.1157535
– volume: 7
  start-page: 137
  year: 2000
  ident: ref_52
  article-title: Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4400640
– volume: 89
  start-page: 8356
  year: 1992
  ident: ref_11
  article-title: Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.17.8356
– volume: 190
  start-page: 511
  year: 2010
  ident: ref_79
  article-title: Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200911141
– ident: ref_97
  doi: 10.7554/eLife.05289
– volume: 456
  start-page: 264
  year: 2008
  ident: ref_105
  article-title: Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
  publication-title: Nature
  doi: 10.1038/nature07383
– volume: 87
  start-page: 1
  year: 2011
  ident: ref_62
  article-title: Advances in autoimmune lymphoproliferative syndromes
  publication-title: Eur. J. Haematol.
  doi: 10.1111/j.1600-0609.2011.01617.x
– volume: 100
  start-page: 3646
  year: 2002
  ident: ref_57
  article-title: Long-lived immature dendritic cells mediated by TRANCE-RANK interaction
  publication-title: Blood
  doi: 10.1182/blood-2002-01-0312
– volume: 468
  start-page: 659
  year: 2010
  ident: ref_92
  article-title: The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
  publication-title: Nature
  doi: 10.1038/nature09572
– volume: 305
  start-page: 115
  year: 2003
  ident: ref_19
  article-title: DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells
  publication-title: Virology
  doi: 10.1006/viro.2002.1730
– ident: ref_29
  doi: 10.1371/journal.ppat.1000862
– volume: 30
  start-page: 588
  year: 2009
  ident: ref_115
  article-title: Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.02.009
– volume: 10
  start-page: 285
  year: 2009
  ident: ref_99
  article-title: DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2008.246
– volume: 15
  start-page: 1076
  year: 2016
  ident: ref_107
  article-title: Macroautophagy Proteins Control MHC Class I Levels on Dendritic Cells and Shape Anti-viral CD8(+) T Cell Responses
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.04.002
– volume: 192
  start-page: 4103
  year: 2010
  ident: ref_15
  article-title: The native 67-kilodalton minor fimbria of Porphyromonas gingivalis is a novel glycoprotein with DC-SIGN-targeting motifs
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00275-10
– volume: 197
  start-page: 7
  year: 2003
  ident: ref_23
  article-title: Mycobacteria target DC-SIGN to suppress dendritic cell function
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20021229
– volume: 212
  start-page: 401
  year: 2015
  ident: ref_7
  article-title: Circulating precursors of human CD1c+ and CD141+ dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20141441
– ident: ref_44
– volume: 15
  start-page: 1435
  year: 2016
  ident: ref_37
  article-title: Mucosal Langerhans Cells Promote Differentiation of Th17 Cells in a Murine Model of Periodontitis but Are Not Required for Porphyromonas gingivalis-Driven Alveolar Bone Destruction
  publication-title: J. Immunol.
– volume: 30
  start-page: 16
  year: 2011
  ident: ref_10
  article-title: Pathogen recognition by the innate immune system
  publication-title: Int. Rev. Immunol.
  doi: 10.3109/08830185.2010.529976
– volume: 25
  start-page: 193
  year: 2007
  ident: ref_119
  article-title: Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.12.009
– volume: 450
  start-page: 1253
  year: 2007
  ident: ref_109
  article-title: Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
  publication-title: Nature
  doi: 10.1038/nature06421
– volume: 268
  start-page: 1347
  year: 1995
  ident: ref_64
  article-title: Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity
  publication-title: Science
  doi: 10.1126/science.7539157
– ident: ref_89
  doi: 10.1016/j.tcb.2014.03.003
– volume: 8
  start-page: 43
  year: 2011
  ident: ref_8
  article-title: Thymic plasmacytoid dendritic cells are susceptible to productive HIV-1 infection and efficiently transfer R5 HIV-1 to thymocytes in vitro
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-8-43
– volume: 311
  start-page: 1160
  year: 2006
  ident: ref_58
  article-title: Dendritic cell apoptosis in the maintenance of immune tolerance
  publication-title: Science
  doi: 10.1126/science.1122545
– volume: 3
  start-page: 1055
  year: 2013
  ident: ref_80
  article-title: The VMP1-Beclin 1 interaction regulates autophagy induction
  publication-title: Sci. Rep.
  doi: 10.1038/srep01055
– volume: 64
  start-page: 4788
  year: 1996
  ident: ref_49
  article-title: Isolation and characterization of a minor fimbria from Porphyromonas gingivalis
  publication-title: Infect. Immun.
  doi: 10.1128/iai.64.11.4788-4794.1996
– volume: 210
  start-page: 185
  year: 2005
  ident: ref_26
  article-title: Role of the C-type lectins DC-SIGN and L-SIGN in Leishmania interaction with host phagocytes
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2005.05.013
– volume: 67
  start-page: 3227
  year: 1999
  ident: ref_50
  article-title: Promoter architecture of the Porphyromonas gingivalis fimbrillin gene
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.67.7.3227-3235.1999
– volume: 356
  start-page: 314
  year: 1992
  ident: ref_60
  article-title: Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis
  publication-title: Nature
  doi: 10.1038/356314a0
– volume: 20
  start-page: 1981
  year: 2009
  ident: ref_100
  article-title: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e08-12-1248
– volume: 257
  start-page: 383
  year: 1992
  ident: ref_28
  article-title: Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells
  publication-title: Science
  doi: 10.1126/science.1352913
– volume: 212
  start-page: 385
  year: 2015
  ident: ref_6
  article-title: Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20141442
– volume: 333
  start-page: 228
  year: 2011
  ident: ref_104
  article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
  publication-title: Science
  doi: 10.1126/science.1205405
– volume: 32
  start-page: 329
  year: 2010
  ident: ref_112
  article-title: Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2010.02.009
– volume: 167
  start-page: 4693
  year: 2001
  ident: ref_33
  article-title: Mature dendritic cells infiltrate the T cell-rich region of oral mucosa in chronic periodontitis: In situ, in vivo, and in vitro studies
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.167.8.4693
– volume: 85
  start-page: 817
  year: 1996
  ident: ref_56
  article-title: FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81266-0
– volume: 307
  start-page: 593
  year: 2005
  ident: ref_106
  article-title: Endogenous MHC class II processing of a viral nuclear antigen after autophagy
  publication-title: Science
  doi: 10.1126/science.1104904
– volume: 77
  start-page: 4070
  year: 2003
  ident: ref_20
  article-title: Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.7.4070-4080.2003
– volume: 376
  start-page: 181
  year: 1995
  ident: ref_65
  article-title: CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+ T cells
  publication-title: Nature
  doi: 10.1038/376181a0
– volume: 15
  start-page: 839
  year: 2014
  ident: ref_75
  article-title: Getting ready for building: Signaling and autophagosome biogenesis
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201439076
– ident: ref_40
  doi: 10.1128/IAI.69.9.5650-5660.2001
– volume: 36
  start-page: 2018
  year: 2017
  ident: ref_74
  article-title: ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis
  publication-title: Embo J.
  doi: 10.15252/embj.201797006
– ident: ref_113
– volume: 175
  start-page: 4839
  year: 2005
  ident: ref_4
  article-title: Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.175.8.4839
– volume: 76
  start-page: 969
  year: 1994
  ident: ref_61
  article-title: Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90375-1
– volume: 7
  start-page: 115
  year: 2010
  ident: ref_117
  article-title: Autophagy protects against Sindbis virus infection of the central nervous system
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2010.01.007
– volume: 17
  start-page: 769
  year: 2005
  ident: ref_17
  article-title: DC-SIGN, but not sDC-SIGN, can modulate IL-2 production from PMA- and anti-CD3-stimulated primary human CD4 T. cells
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxh258
– volume: 147
  start-page: 728
  year: 2011
  ident: ref_71
  article-title: Autophagy: Renovation of cells and tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.026
– volume: 17
  start-page: 653
  year: 2002
  ident: ref_21
  article-title: Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection
  publication-title: Immunity
  doi: 10.1016/S1074-7613(02)00447-8
– volume: 154
  start-page: 1269
  year: 2013
  ident: ref_95
  article-title: EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.015
– volume: 126
  start-page: 5224
  year: 2013
  ident: ref_78
  article-title: Dynamic association of the ULK1 complex with omegasomes during autophagy induction
  publication-title: J. Cell Sci.
– volume: 9
  start-page: 908
  year: 2008
  ident: ref_70
  article-title: Autophagic control of listeria through intracellular innate immune recognition in drosophila
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1634
– volume: 15
  start-page: 30
  year: 2015
  ident: ref_35
  article-title: Periodontitis: From microbial immune subversion to systemic inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3785
– volume: 290
  start-page: 29361
  year: 2015
  ident: ref_85
  article-title: FYCO1 Contains a C-terminally Extended, LC3A/B-preferring LC3-interacting Region (LIR) Motif Required for Efficient Maturation of Autophagosomes during Basal Autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.686915
– volume: 82
  start-page: 487
  year: 1994
  ident: ref_2
  article-title: Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature
  publication-title: Immunology
– ident: ref_102
  doi: 10.1371/journal.ppat.1004647
– ident: ref_69
– volume: 17
  start-page: 277
  year: 2016
  ident: ref_108
  article-title: Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3365
– volume: 200
  start-page: 979
  year: 2004
  ident: ref_24
  article-title: Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20041061
– volume: 14
  start-page: 5579
  year: 1995
  ident: ref_55
  article-title: Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor
  publication-title: Embo J.
  doi: 10.1002/j.1460-2075.1995.tb00245.x
– ident: ref_41
– volume: 151
  start-page: 1256
  year: 2012
  ident: ref_84
  article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.001
– volume: 189
  start-page: 3178
  year: 2012
  ident: ref_43
  article-title: Microbial Carriage State of Peripheral Blood Dendritic Cells (DCs) in Chronic Periodontitis Influences DC Differentiation, Atherogenic Potential
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1201053
– volume: 14
  start-page: 759
  year: 2013
  ident: ref_72
  article-title: The autophagosome: Origins unknown, biogenesis complex
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3696
– volume: 14
  start-page: 584
  year: 2018
  ident: ref_96
  article-title: ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1422851
– ident: ref_38
– volume: 57
  start-page: 39
  year: 2015
  ident: ref_86
  article-title: PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.11.006
– volume: 482
  start-page: 414
  year: 2012
  ident: ref_103
  article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
  publication-title: Nature
  doi: 10.1038/nature10744
– volume: 4
  start-page: 458
  year: 2008
  ident: ref_116
  article-title: Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2008.10.003
– volume: 183
  start-page: 5694
  year: 2009
  ident: ref_47
  article-title: Targeting of DC-SIGN on human dendritic cells by minor fimbriated Porphyromonas gingivalis strains elicits a distinct effector T cell response
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0901030
– volume: 100
  start-page: 587
  year: 2000
  ident: ref_12
  article-title: DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80694-7
– volume: 19
  start-page: 2092
  year: 2008
  ident: ref_81
  article-title: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-12-1257
– volume: 579
  start-page: 6159
  year: 2005
  ident: ref_16
  article-title: Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.09.089
– volume: 7
  start-page: 1273
  year: 2011
  ident: ref_73
  article-title: A comprehensive glossary of autophagy-related molecules and processes (2nd edition)
  publication-title: Autophagy
  doi: 10.4161/auto.7.11.17661
– volume: 267
  start-page: 20196
  year: 1992
  ident: ref_14
  article-title: The human blood fluke Schistosoma mansoni synthesizes glycoproteins containing the Lewis X antigen
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)88686-6
– volume: 85
  start-page: 678
  year: 2006
  ident: ref_30
  article-title: Dendritic cells at the oral mucosal interface
  publication-title: J. Dent. Res.
  doi: 10.1177/154405910608500801
– volume: 20
  start-page: 1992
  year: 2009
  ident: ref_101
  article-title: ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e08-12-1249
– volume: 20
  start-page: 168
  year: 1999
  ident: ref_48
  article-title: Virulence factors of Porphyromonas gingivalis
  publication-title: Periodontol. 2000
  doi: 10.1111/j.1600-0757.1999.tb00162.x
– volume: 55
  start-page: 51
  year: 2013
  ident: ref_82
  article-title: The Atg8 family: Multifunctional ubiquitin-like key regulators of autophagy
  publication-title: Essays Biochem.
  doi: 10.1042/bse0550051
– ident: ref_18
  doi: 10.1371/journal.pone.0185580
– volume: 537
  start-page: 239
  year: 2016
  ident: ref_67
  article-title: The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan
  publication-title: Nature
  doi: 10.1038/nature19346
– volume: 6
  start-page: 231
  year: 2009
  ident: ref_120
  article-title: Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2009.08.004
– volume: 32
  start-page: 24
  year: 2003
  ident: ref_46
  article-title: Microorganisms as risk indicators for periodontal disease
  publication-title: Periodontol. 2000
  doi: 10.1046/j.0906-6713.2003.03203.x
– volume: 20
  start-page: 444
  year: 2011
  ident: ref_83
  article-title: LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.02.006
– volume: 286
  start-page: 1735
  year: 1999
  ident: ref_66
  article-title: Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity
  publication-title: Science
  doi: 10.1126/science.286.5445.1735
– volume: 110
  start-page: E2950
  year: 2013
  ident: ref_93
  article-title: Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1307736110
– volume: 12
  start-page: 1447
  year: 2016
  ident: ref_98
  article-title: AMPK regulates autophagy by phosphorylating BECN1 at threonine 388
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1185576
– volume: 170
  start-page: 1635
  year: 2003
  ident: ref_13
  article-title: Cutting edge: Carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.4.1635
– ident: ref_68
  doi: 10.3389/fimmu.2019.02286
– volume: 165
  start-page: 6037
  year: 2000
  ident: ref_3
  article-title: BDCA-2, BDCA-3, and BDCA-4: Three markers for distinct subsets of dendritic cells in human peripheral blood
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.165.11.6037
– volume: 100
  start-page: 4512
  year: 2002
  ident: ref_5
  article-title: Characterization of human blood dendritic cell subsets
  publication-title: Blood
  doi: 10.1182/blood-2001-11-0097
– volume: 82
  start-page: 101
  year: 2014
  ident: ref_34
  article-title: Secondary lymphoid organ homing phenotype of human myeloid dendritic cells disrupted by an intracellular oral pathogen
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01157-13
– volume: 3
  start-page: 45
  year: 1995
  ident: ref_45
  article-title: Pathogenic strategies of the oral anaerobe, Porphyromonas gingivalis
  publication-title: Trends Microbiol.
  doi: 10.1016/S0966-842X(00)88874-5
– volume: 338
  start-page: 956
  year: 2012
  ident: ref_94
  article-title: Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
  publication-title: Science
  doi: 10.1126/science.1225967
– volume: 104
  start-page: 619
  year: 2004
  ident: ref_59
  article-title: Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells
  publication-title: Blood
  doi: 10.1182/blood-2003-11-3943
– volume: 36
  start-page: 1719
  year: 2017
  ident: ref_76
  article-title: Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains
  publication-title: Embo J.
  doi: 10.15252/embj.201695189
– volume: 283
  start-page: 25596
  year: 2008
  ident: ref_118
  article-title: Vitamin D3 induces autophagy of human myeloid leukemia cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801716200
– volume: 36
  start-page: 397
  year: 2017
  ident: ref_88
  article-title: Nutrient sensing and TOR signaling in yeast and mammals
  publication-title: Embo J.
  doi: 10.15252/embj.201696010
– volume: 81
  start-page: 505
  year: 1995
  ident: ref_54
  article-title: FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90071-3
– volume: 141
  start-page: 290
  year: 2010
  ident: ref_91
  article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.024
– volume: 210
  start-page: 203
  year: 2005
  ident: ref_25
  article-title: DC-SIGN specifically recognizes Streptococcus pneumoniae serotypes 3 and 14
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2005.05.014
– volume: 100
  start-page: 575
  year: 2000
  ident: ref_22
  article-title: Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80693-5
– volume: 29
  start-page: 157
  year: 2009
  ident: ref_77
  article-title: Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01082-08
SSID ssj0023259
Score 2.421638
SecondaryResourceType review_article
Snippet Mucosal health and disease is mediated by a complex interplay between the microbiota (“spark”) and the inflammatory response (“flame”). Pathobionts, a specific...
Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1643
SubjectTerms Animals
Autophagy
Dendritic Cells - pathology
Humans
Inflammation - pathology
Microbiota
Mouth Diseases - microbiology
Mouth Mucosa - microbiology
Mouth Mucosa - pathology
Review
Title Oral Microbes and Mucosal Dendritic Cells, “Spark and Flame” of Local and Distant Inflammatory Diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/32121251
https://www.proquest.com/docview/2370507826
https://pubmed.ncbi.nlm.nih.gov/PMC7084622
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED_xoUl7Qey7wCoPsactWxLHdnmYEF-FoZVN2yr1LXKSM1_FhaZI47_nLmkrOjaJlyiyz4l0tu9-5zvfAWxETuuWzIsgjySSgYJhYI1SgS0Ia9gkV5jxbeTOsT7sJkc91ZuDSbXRMQPLf5p2XE-qO-x_-nN9u0Ub_gtbnGSyfz47vyzJclGE_OU8LJJO0ry-O8nUn0CwoSqbxgceAQvoOgT-wehZ5fQAcf4dOHlPE7WXYWkMIcV2PefPYA79c3hSF5W8fQEn32mM6HCgXYalsL4QHQ5Lp8Y99EVV2kDsYr9ffhTrv67s8KKiadPSwHUxcOIbq7eqbY_BpR-Jr95R72XlkOdGdumUL6Hb3v-9exiMyykEeaLCUYCIbITGCUHUqMiiDE0rT4xGm6go13zD1hAcM4jO6gw3bU6voSNhniWF1kq-ggU_8PgGhMzQSWel03aTJIAmkeq4VB2hBceHwA34MOFjmo9zjXPJi35KNgdzPb3P9Qa8n1Jf1Tk2_kP3bjIlKW0C9mxYj4ObMo2lCRWDHd2A1_UUTb8kSTkzimuAmZm8KQEn2J7t8WenVaJtExI6i-OVR_x3FZ7GbIlXl93XYGE0vMG3BFdGWRPmTc_Qs9U-aMLizv7xj59NViCqWa3ROyku7o4
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oral+Microbes+and+Mucosal+Dendritic+Cells%2C+%22Spark+and+Flame%22+of+Local+and+Distant+Inflammatory+Diseases&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Meghil%2C+Mohamed+M&rft.au=Cutler%2C+Christopher+W&rft.date=2020-02-28&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=21&rft.issue=5&rft_id=info:doi/10.3390%2Fijms21051643&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon