Probing Carbon Utilization of Cordyceps militaris by Sugar Transportome and Protein Structural Analysis
Beyond comparative genomics, we identified 85 sugar transporter genes in , clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression pat...
Saved in:
Published in | Cells (Basel, Switzerland) Vol. 9; no. 2; p. 401 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
10.02.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Beyond comparative genomics, we identified 85 sugar transporter genes in
, clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of
showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson-Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in
. Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin. |
---|---|
AbstractList | Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris, clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of C. militaris showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson−Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in C. militaris. Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin. Beyond comparative genomics, we identified 85 sugar transporter genes in , clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson-Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in . Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin. Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris, clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of C. militaris showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson–Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in C. militaris. Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin. Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris , clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of C. militaris showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson–Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in C. militaris . Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin. |
Author | Vongsangnak, Wanwipa Zhang, Yuhan Laoteng, Kobkul Xiao, Fei Sirithep, Kanokwadee Raethong, Nachon Hu, Guang |
AuthorAffiliation | 2 Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand 1 Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; kanokwadee.s@ku.th (K.S.); xiaofei@suda.edu.cn (F.X.) 3 Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; nachonase@hotmail.com 4 Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand 5 Omics Center for Agriculture, Bioresources, Food, and Health, Faculty of Science, Kasetsart University (OmiKU), Bangkok 10900, Thailand |
AuthorAffiliation_xml | – name: 1 Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; kanokwadee.s@ku.th (K.S.); xiaofei@suda.edu.cn (F.X.) – name: 4 Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand – name: 5 Omics Center for Agriculture, Bioresources, Food, and Health, Faculty of Science, Kasetsart University (OmiKU), Bangkok 10900, Thailand – name: 2 Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand – name: 3 Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; nachonase@hotmail.com |
Author_xml | – sequence: 1 givenname: Kanokwadee surname: Sirithep fullname: Sirithep, Kanokwadee organization: Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand – sequence: 2 givenname: Fei surname: Xiao fullname: Xiao, Fei organization: Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China – sequence: 3 givenname: Nachon surname: Raethong fullname: Raethong, Nachon organization: Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand – sequence: 4 givenname: Yuhan surname: Zhang fullname: Zhang, Yuhan organization: Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China – sequence: 5 givenname: Kobkul surname: Laoteng fullname: Laoteng, Kobkul organization: Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand – sequence: 6 givenname: Guang surname: Hu fullname: Hu, Guang organization: Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China – sequence: 7 givenname: Wanwipa surname: Vongsangnak fullname: Vongsangnak, Wanwipa organization: Omics Center for Agriculture, Bioresources, Food, and Health, Faculty of Science, Kasetsart University (OmiKU), Bangkok 10900, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32050592$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU1rHDEMhk1JadJtbj0XH3votv4Yr8eXQlj6EQi0kORsZI89dZixt7YnsP31dbpp2OgiIb08knhfo5OYokPoLSUfOVfkk3XTVBRhpCP0BTpjRPJ11xF1clSfovNS7kiLnm4oEa_QKWdEEKHYGRp_5mRCHPEWskkR39YwhT9QQ6uTx9uUh711u4Ln1q-QQ8Fmj6-XETK-yRDLLuWaZochDrixqgsRX9e82LpkmPBFhGlfQnmDXnqYijt_zCt0-_XLzfb7-urHt8vtxdXadoLUtZOM0YFZGHrPVQfcekusINbKrh8M40A9E500iku_6aU11ouedyAoE7S3fIUuD9whwZ3e5TBD3usEQf9rpDxqyDXYyWkDvQIPgzCSdoYRUEMjbpTtjWdKmMb6fGDtFjO7wbpY20vPoM8nMfzSY7rXkki2aWet0PtHQE6_F1eqnkN5sAyiS0vRjLdXuFKMNemHg9TmVEp2_mkNJfrBan1sdZO_Oz7tSfzfWP4XfKCpbA |
CitedBy_id | crossref_primary_10_1007_s10910_023_01511_6 crossref_primary_10_1016_j_biortech_2023_129742 crossref_primary_10_1155_2020_7146701 crossref_primary_10_1002_pca_3310 crossref_primary_10_1152_physiol_00010_2023 crossref_primary_10_1007_s00203_023_03766_8 crossref_primary_10_1021_acs_jcim_0c00447 crossref_primary_10_1007_s00253_021_11392_x crossref_primary_10_3390_biology11010071 crossref_primary_10_1371_journal_pcbi_1010009 crossref_primary_10_1039_D2CP05611A crossref_primary_10_3390_biology9090242 |
Cites_doi | 10.1073/pnas.1311970111 10.1093/nar/gkv485 10.1063/1.447334 10.1016/j.ygeno.2019.04.015 10.1007/s00726-014-1710-6 10.1038/s41598-018-27534-7 10.1007/978-1-4939-0366-5_1 10.1093/molbev/msy096 10.1186/s12918-016-0382-0 10.3390/ijms20010015 10.1016/j.ymben.2012.03.004 10.1063/1.3177008 10.1002/jcc.20291 10.1093/nar/gkz378 10.1016/S0022-2836(05)80360-2 10.1038/nprot.2012.004 10.1016/j.bpj.2009.04.013 10.1016/j.apsb.2018.10.004 10.1007/978-1-4939-7877-9_19 10.1107/S0021889807011053 10.1186/s13068-018-1084-1 10.1186/gb-2011-12-11-r116 10.1093/bioinformatics/17.9.849 10.1016/j.tibs.2011.01.002 10.1016/j.jtbi.2014.01.023 10.1016/j.fitote.2010.07.010 10.1093/nar/gkv1103 10.1111/j.1365-2672.2005.02682.x 10.1093/nar/gkt111 10.1038/s41420-018-0063-4 10.1016/j.resmic.2013.02.008 10.1093/nar/gkv416 10.1073/pnas.0406811102 10.1002/jcc.20945 10.1093/nar/gky995 10.1021/jp101759q 10.1073/pnas.1400336111 10.1063/1.470117 10.1093/nar/gku989 10.3109/07388551.2014.900604 10.1111/j.1476-5381.2012.02005.x 10.1371/journal.pcbi.1002708 10.1063/1.328693 10.1063/1.445869 10.1093/nar/gky1055 10.1038/s41467-018-08176-9 10.1016/j.bcp.2008.11.014 10.1104/pp.110.163014 10.1039/c001459c 10.3389/fmicb.2018.01045 10.1073/pnas.181342398 10.1093/nar/gky1033 10.1021/ci500020m 10.1186/s13068-016-0564-4 10.1093/nar/gku1223 10.1128/AEM.01522-17 10.1073/pnas.1815994116 10.1093/nar/gkw1107 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3390/cells9020401 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4409 |
ExternalDocumentID | oai_doaj_org_article_ba89afad5b714b20a9d68769c8bf295b 10_3390_cells9020401 32050592 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Thailand Graduate Institute of Science and Technology grantid: - – fundername: Thailand Research Fund grantid: RSA6180001 – fundername: National Natural Science Foundation of China grantid: 31872723 – fundername: Kasetsart University grantid: - |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CGR CUY CVF DIK EBD ECM EIF ESX GROUPED_DOAJ HCIFZ HYE IAO IHR KQ8 LK8 M48 M7P MODMG M~E NPM OK1 PGMZT PIMPY PROAC RIG RPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c450t-e7221d2cad8f394a3cfc0c50cc748db23a1f2547b937f687cbcf5834a512518c3 |
IEDL.DBID | RPM |
ISSN | 2073-4409 |
IngestDate | Tue Oct 22 15:15:51 EDT 2024 Tue Sep 17 21:21:39 EDT 2024 Fri Aug 16 01:14:35 EDT 2024 Fri Aug 23 04:49:57 EDT 2024 Sat Sep 28 08:24:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | protein structure cordyceps militaris network analysis sugar transporter carbon metabolism comparative genomics |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-e7221d2cad8f394a3cfc0c50cc748db23a1f2547b937f687cbcf5834a512518c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-4442-3411 0000-0002-8754-1541 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072658/ |
PMID | 32050592 |
PQID | 2354739922 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ba89afad5b714b20a9d68769c8bf295b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7072658 proquest_miscellaneous_2354739922 crossref_primary_10_3390_cells9020401 pubmed_primary_32050592 |
PublicationCentury | 2000 |
PublicationDate | 2020-02-10 |
PublicationDateYYYYMMDD | 2020-02-10 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Cells (Basel, Switzerland) |
PublicationTitleAlternate | Cells |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Bailey (ref_27) 2015; 43 Stourac (ref_52) 2019; 47 ref_57 Essmann (ref_38) 1995; 103 Farinas (ref_10) 2018; 1796 Das (ref_7) 2010; 81 Webb (ref_31) 2014; 1137 Kim (ref_12) 2005; 99 Hu (ref_55) 2014; 348 Yan (ref_54) 2014; 46 Galperin (ref_22) 2015; 43 Nogueira (ref_15) 2018; 11 Patil (ref_29) 2005; 102 Tusnady (ref_50) 2001; 17 Cui (ref_1) 2015; 35 Jorgensen (ref_41) 1983; 79 Sloothaak (ref_49) 2016; 9 Peng (ref_13) 2018; 9 Doncheva (ref_53) 2012; 7 Raethong (ref_9) 2018; 8 Saier (ref_23) 2016; 44 ref_26 Fang (ref_16) 2010; 154 Kapetis (ref_56) 2017; 11 Kumar (ref_25) 2018; 35 Kumari (ref_44) 2014; 54 Klauda (ref_34) 2010; 114 Lindahl (ref_37) 2005; 26 Gibson (ref_2) 2010; 27 Tsirigos (ref_19) 2015; 43 Takahashi (ref_5) 2012; 167 Kim (ref_33) 2019; 47 Khodade (ref_32) 2007; 40 Nose (ref_39) 1984; 81 Baker (ref_45) 2001; 98 Teeravivattanakit (ref_11) 2017; 83 Jo (ref_36) 2009; 97 Finn (ref_21) 2017; 45 Paulsen (ref_51) 2019; 10 Nielsen (ref_28) 2013; 41 Madej (ref_58) 2014; 111 Qi (ref_6) 2019; 9 Meliciani (ref_46) 2009; 131 Jo (ref_35) 2008; 29 Altschul (ref_24) 1990; 215 Young (ref_48) 2012; 14 Mistry (ref_20) 2019; 47 Consortium (ref_30) 2014; 43 Young (ref_47) 2014; 111 Parrinello (ref_40) 1981; 52 ref_42 Zheng (ref_18) 2011; 12 Cui (ref_3) 2018; 4 Wongsa (ref_8) 2020; 112 Doncheva (ref_43) 2011; 36 Huang (ref_4) 2009; 77 Milner (ref_14) 2019; 116 Wang (ref_17) 2013; 164 |
References_xml | – volume: 111 start-page: 131 year: 2014 ident: ref_47 article-title: Rewiring yeast sugar transporter preference through modifying a conserved protein motif publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1311970111 contributor: fullname: Young – volume: 43 start-page: W401 year: 2015 ident: ref_19 article-title: The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv485 contributor: fullname: Tsirigos – volume: 81 start-page: 511 year: 1984 ident: ref_39 article-title: A Unified Formulation of the Constant Temperature Molecular Dynamics Methods publication-title: J. Chem. Phys. doi: 10.1063/1.447334 contributor: fullname: Nose – volume: 112 start-page: 629 year: 2020 ident: ref_8 article-title: Alternative metabolic routes in channeling xylose to cordycepin production of Cordyceps militaris identified by comparative transcriptome analysis publication-title: Genomics doi: 10.1016/j.ygeno.2019.04.015 contributor: fullname: Wongsa – volume: 46 start-page: 1419 year: 2014 ident: ref_54 article-title: The construction of an amino acid network for understanding protein structure and function publication-title: Amino Acids doi: 10.1007/s00726-014-1710-6 contributor: fullname: Yan – volume: 8 start-page: 9250 year: 2018 ident: ref_9 article-title: Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis publication-title: Sci. Rep. doi: 10.1038/s41598-018-27534-7 contributor: fullname: Raethong – volume: 1137 start-page: 1 year: 2014 ident: ref_31 article-title: Protein structure modeling with MODELLER publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-0366-5_1 contributor: fullname: Webb – volume: 35 start-page: 1547 year: 2018 ident: ref_25 article-title: MEGA X: Molecular evolutionary genetics analysis across computing platforms publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msy096 contributor: fullname: Kumar – volume: 11 start-page: 28 year: 2017 ident: ref_56 article-title: Network topology of NaV1.7 mutations in sodium channel-related painful disorders publication-title: Bmc Syst. Biol. doi: 10.1186/s12918-016-0382-0 contributor: fullname: Kapetis – ident: ref_57 doi: 10.3390/ijms20010015 – volume: 14 start-page: 401 year: 2012 ident: ref_48 article-title: A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces Cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2012.03.004 contributor: fullname: Young – volume: 131 start-page: 034114 year: 2009 ident: ref_46 article-title: Probing hot spots on protein-protein interfaces with all-atom freeenergy simulation publication-title: J. Chem Phys. doi: 10.1063/1.3177008 contributor: fullname: Meliciani – volume: 26 start-page: 1701 year: 2005 ident: ref_37 article-title: GROMACS: Fast, flexible, and free publication-title: J. Comput. Chem. doi: 10.1002/jcc.20291 contributor: fullname: Lindahl – volume: 47 start-page: W414 year: 2019 ident: ref_52 article-title: Caver Web 1.0: Identification of tunnels and channels in proteins and analysis of ligand transport publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz378 contributor: fullname: Stourac – volume: 215 start-page: 403 year: 1990 ident: ref_24 article-title: Basic local alignment search tool publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80360-2 contributor: fullname: Altschul – volume: 7 start-page: 670 year: 2012 ident: ref_53 article-title: Topological analysis and interactive visualization of biological networks and protein structures publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.004 contributor: fullname: Doncheva – volume: 97 start-page: 50 year: 2009 ident: ref_36 article-title: CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.04.013 contributor: fullname: Jo – volume: 9 start-page: 135 year: 2019 ident: ref_6 article-title: Cordycepin promotes browning of white adipose tissue through an AMP-activated protein kinase (AMPK)-dependent pathway publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2018.10.004 contributor: fullname: Qi – volume: 1796 start-page: 273 year: 2018 ident: ref_10 article-title: On-site production of cellulolytic enzymes by the sequential cultivation method publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7877-9_19 contributor: fullname: Farinas – volume: 40 start-page: 598 year: 2007 ident: ref_32 article-title: Parallel implementation of AutoDock publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889807011053 contributor: fullname: Khodade – volume: 11 start-page: 84 year: 2018 ident: ref_15 article-title: Characterization of a novel sugar transporter involved in sugarcane bagasse degradation in Trichoderma reesei publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-018-1084-1 contributor: fullname: Nogueira – volume: 12 start-page: R116 year: 2011 ident: ref_18 article-title: Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine publication-title: Genome Biol. doi: 10.1186/gb-2011-12-11-r116 contributor: fullname: Zheng – volume: 17 start-page: 849 year: 2001 ident: ref_50 article-title: The HMMTOP transmembrane topology prediction server publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.9.849 contributor: fullname: Tusnady – volume: 36 start-page: 179 year: 2011 ident: ref_43 article-title: Analyzing and visualizing residue networks of protein structures publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2011.01.002 contributor: fullname: Doncheva – volume: 348 start-page: 55 year: 2014 ident: ref_55 article-title: Residue interaction network analysis of Dronpa and a DNA clamp publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2014.01.023 contributor: fullname: Hu – volume: 81 start-page: 961 year: 2010 ident: ref_7 article-title: Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects publication-title: Fitoterapia doi: 10.1016/j.fitote.2010.07.010 contributor: fullname: Das – volume: 44 start-page: D372 year: 2016 ident: ref_23 article-title: The Transporter Classification Database (TCDB): Recent advances publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1103 contributor: fullname: Saier – volume: 99 start-page: 728 year: 2005 ident: ref_12 article-title: A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2005.02682.x contributor: fullname: Kim – volume: 41 start-page: 4378 year: 2013 ident: ref_28 article-title: Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt111 contributor: fullname: Nielsen – volume: 4 start-page: 62 year: 2018 ident: ref_3 article-title: Cordycepin induces apoptosis of human ovarian cancer cells by inhibiting CCL5-mediated Akt/NF-κB signaling pathway publication-title: Cell Death Discov. doi: 10.1038/s41420-018-0063-4 contributor: fullname: Cui – volume: 164 start-page: 480 year: 2013 ident: ref_17 article-title: A putative alpha-glucoside transporter gene BbAGT1 contributes to carbohydrate utilization, growth, conidiation and virulence of filamentous entomopathogenic fungus Beauveria bassiana publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2013.02.008 contributor: fullname: Wang – volume: 43 start-page: W39 year: 2015 ident: ref_27 article-title: The MEME Suite publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv416 contributor: fullname: Bailey – volume: 102 start-page: 2685 year: 2005 ident: ref_29 article-title: Uncovering transcriptional regulation of metabolism by using metabolic network topology publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0406811102 contributor: fullname: Patil – volume: 29 start-page: 1859 year: 2008 ident: ref_35 article-title: CHARMM-GUI: A web-based graphical user interface for CHARMM publication-title: J. Comput. Chem doi: 10.1002/jcc.20945 contributor: fullname: Jo – volume: 47 start-page: D427 year: 2019 ident: ref_20 article-title: The Pfam protein families database in 2019 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky995 contributor: fullname: Mistry – volume: 114 start-page: 7830 year: 2010 ident: ref_34 article-title: Update of the CHARMM all-atom additive force field for lipids: Validation on sixlipid types publication-title: J. Phys. Chem. B doi: 10.1021/jp101759q contributor: fullname: Klauda – volume: 111 start-page: E719 year: 2014 ident: ref_58 article-title: Functional architecture of MFS-glucose transporters publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1400336111 contributor: fullname: Madej – volume: 103 start-page: 8577 year: 1995 ident: ref_38 article-title: A Smooth Particle Mesh Ewald Method publication-title: J. Chem. Phys. doi: 10.1063/1.470117 contributor: fullname: Essmann – volume: 43 start-page: D204 year: 2014 ident: ref_30 article-title: UniProt: A hub for protein information publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku989 contributor: fullname: Consortium – volume: 35 start-page: 475 year: 2015 ident: ref_1 article-title: Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2014.900604 contributor: fullname: Cui – volume: 167 start-page: 561 year: 2012 ident: ref_5 article-title: Blockade of adipocyte differentiation by cordycepin publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2012.02005.x contributor: fullname: Takahashi – ident: ref_42 doi: 10.1371/journal.pcbi.1002708 – volume: 52 start-page: 7182 year: 1981 ident: ref_40 article-title: Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method publication-title: J. Appl. Phys. doi: 10.1063/1.328693 contributor: fullname: Parrinello – volume: 79 start-page: 926 year: 1983 ident: ref_41 article-title: Comparison of Simple Potential Functions for Simulating Liquid Water publication-title: J. Chem. Phys. doi: 10.1063/1.445869 contributor: fullname: Jorgensen – ident: ref_26 doi: 10.1093/nar/gky1055 – volume: 10 start-page: 407 year: 2019 ident: ref_51 article-title: Crystal structure of the plant symporter STP10 illuminates sugar uptake mechanism in monosaccharide transporter superfamily publication-title: Nat. Commun. doi: 10.1038/s41467-018-08176-9 contributor: fullname: Paulsen – volume: 77 start-page: 794 year: 2009 ident: ref_4 article-title: CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2008.11.014 contributor: fullname: Huang – volume: 154 start-page: 1549 year: 2010 ident: ref_16 article-title: Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii publication-title: Plant. Physiol. doi: 10.1104/pp.110.163014 contributor: fullname: Fang – volume: 27 start-page: 1241 year: 2010 ident: ref_2 article-title: Secondary metabolites from entomopathogenic Hypocrealean fungi publication-title: Nat. Prod. Rep. doi: 10.1039/c001459c contributor: fullname: Gibson – volume: 9 start-page: 1045 year: 2018 ident: ref_13 article-title: In silico analysis of putative sugar transporter genes in Aspergillus niger using phylogeny and comparative transcriptomics publication-title: Front Microbiol. doi: 10.3389/fmicb.2018.01045 contributor: fullname: Peng – volume: 98 start-page: 10037 year: 2001 ident: ref_45 article-title: Electrostatics of nanosystems: Application to microtubules and the ribosome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.181342398 contributor: fullname: Baker – volume: 47 start-page: D1102 year: 2019 ident: ref_33 article-title: PubChem 2019 update: Improved access to chemical data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1033 contributor: fullname: Kim – volume: 54 start-page: 1951 year: 2014 ident: ref_44 article-title: g_ mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations publication-title: J. Chem Inf Model. doi: 10.1021/ci500020m contributor: fullname: Kumari – volume: 9 start-page: 148 year: 2016 ident: ref_49 article-title: Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0564-4 contributor: fullname: Sloothaak – volume: 43 start-page: D261 year: 2015 ident: ref_22 article-title: Expanded microbial genome coverage and improved protein family annotation in the COG database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1223 contributor: fullname: Galperin – volume: 83 start-page: e01522-17 year: 2017 ident: ref_11 article-title: Chemical pretreatment-independent saccharifications of xylan and cellulose of rice straw by bacterial weak lignin-binding xylanolytic and cellulolytic enzymes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01522-17 contributor: fullname: Teeravivattanakit – volume: 116 start-page: 5613 year: 2019 ident: ref_14 article-title: Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1815994116 contributor: fullname: Milner – volume: 45 start-page: D190 year: 2017 ident: ref_21 article-title: InterPro in 2017—beyond protein family and domain annotations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1107 contributor: fullname: Finn |
SSID | ssj0000816105 |
Score | 2.248636 |
Snippet | Beyond comparative genomics, we identified 85 sugar transporter genes in
, clustering into nine subfamilies as sequence- and phylogenetic-based functional... Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris, clustering into nine subfamilies as sequence- and... Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris , clustering into nine subfamilies as sequence- and... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 401 |
SubjectTerms | Amino Acid Motifs Amino Acid Sequence Biological Transport Carbon - metabolism comparative genomics Cordyceps - genetics Cordyceps - metabolism cordyceps militaris Fungal Proteins - chemistry Fungal Proteins - metabolism Gene Regulatory Networks Membrane Transport Proteins - metabolism Metabolome network analysis Phylogeny protein structure sugar transporter Sugars - metabolism Thermodynamics Transcriptome - genetics Xylose - metabolism |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUMil9JE220dQoT2aaPWwpGO7JIRCQiBZyM3ouVlo5JDdHPbfd8b2LrulkEuulrHFfB7pG6P5PkK-e137oGVdCVO7StbjXFkGeZWMTZYbZpnBfueLy_p8Kn_fqtstqy88E9bLA_eBO_HOWJddVF6PpefM2VhDBttgfOZW-W71ZXarmOrWYANMhqn-pLuAuv4E_4MvLLaCDv4v6z2ok-r_H7_895jk1r5z9oa8Hggj_dlP9C3ZS-UdedVbSK7ek9kVCimVGZ24R98WOl3O_wytlbTNdAK15SqkhwW97-S4IaWpX9Hrp5l7pBth8_Y-UVcivULRhnmh152oLApy0LVoySGZnp3eTM6rwTyhClKxZZU05-PIg4smCyudCDmwoFgAZEz0XLhxhuJQe-AnGSIafMjKCOkUUh4TxAeyX9qSjggFGlDLbL1gTkkXucnAgbTPEapHJmUckR_rcDYPvUZGA7UFhr3ZDvuI_MJYb-5BZevuAuDdDHg3z-E9It_WSDWQCfh8V1L7tGi4QB9l1NkdkY89cptXCY6OfRZG9A6mO3PZHSnzu05tWzPNgaZ9eonJfyYHHOt1NJRhX8g-oJm-AqlZ-uPu-_0L8nP40A priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBalY7CXsfuyS9Fge_Sm6GJJD2NsYaUUNgpdoG9G1yzQyl2SwvLvd47thKbrQ18t2zLn-FjfZ3S-j5D3Xtc-aFlXwtSukvU4V5ZBXSVjk-WGWWaw3_nHz_poKo_P1Nke2biNDgFc3krt0E9qujj_-PfP-gsU_GdknEDZP-Ev7qXFLk9s5LrHJXB03MQ3AP3um2wA2TDV73z_76KdNamT7r8Nb97cNnltHTp8RB4OAJJ-7TP-mOyl8oTc7y0l10_J7ASFlcqMTtzCt4VOV_PzodWStplOgGuuQ7pc0otOnhtKnPo1Pb2auQXdCp23F4m6EukJijjMCz3tRGZRoINuREyekenh91-To2owU6iCVGxVJc35OPLgosnCSidCDiwoFiBTJnou3DgDWdQe8EqujQ4-ZGWEdAohkAniOdkvbUkvCQVYUMtsvWBOSRe5yYCJtM8R2CSTMo7Ih004m8teM6MBroFhb66HfUS-Yay356DSdXegXcyaoXBgMTfWZReV12PpOXM2wtPVNhifuVV-RN5tMtVAZeD9XUnt1bLhAn2VUXd3RF70mdtOJTg6-FkY0Ts53XmW3ZEy_92pb2umOcC2V3eY9zV5wJGeo38Me0P2IVnpLWCYlT_oXs9_2fP0Ow priority: 102 providerName: Scholars Portal |
Title | Probing Carbon Utilization of Cordyceps militaris by Sugar Transportome and Protein Structural Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32050592 https://search.proquest.com/docview/2354739922 https://pubmed.ncbi.nlm.nih.gov/PMC7072658 https://doaj.org/article/ba89afad5b714b20a9d68769c8bf295b |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZJSqGXkr63aY0K7XFjWY-VdGxMQig4mKaG3BZJu3INsdbYzsH_viPtrrFLT73sYZ9C32jnGzHzDUJfrSysk7zImSpMzouRzzWBdVUrXWuqiCYq1jtP7orbGf_xIB5OkOhrYVLSvrOLy_C4vAyL3ym3crV0wz5PbDidjCWRFDzn8BSdgoEehOjp96uAxBDRJrkzCOmHcQt8o2MVKImNYRiN3ds0PfJESbD_Xyzz72TJA-9zc45edrQRf2-H9wqd1OE1et42kty9QfNplFMKczw2a9sEPNsuHrsCS9x4PIYIc-fq1QYvkyg3LGxsd_j-aW7WeC9v3ixrbEKFp1G6YRHwfZKWjbIcuJcueYtmN9e_xrd510Ihd1yQbV5LSkcVdaZSnmlumPOOOEEc4KMqS5kZeQgRpQWW4gslnXVeKMaNiMRHOfYOnYUm1B8QBjJQcK8tI0ZwU1HlgQlJ6yuIIQnnVYa-9dNZrlqljBIijIhAeYhAhq7iXO_vifrW6USznpcdyuDClTbeVMLKEbeUGF3B6ArtlPVUC5uhLz1SJayH-H4T6uZpU1IWuylHtd0MvW-R23-qRz5D8gjTo7EcXwETTJrbncl9_O8nL9ALGkP12EuGfEJnAGH9GfjM1g7Qs6vru-nPQdoPgOOEq0Gy6T9PBvu6 |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,33757,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYIL4s3yNBIct3H8WNtHiKgCNFWkNlJvK9trh0iNN0rSQ_49431ECeLEdZ-Wv5mdb1Yz3yD02crCOsmLnKnC5LwYhlwT8CuvtNdUEU1U6neeXBbjGf95I25OkOh7YZqifWcXZ_F2eRYXv5vaytXSDfo6scF0MpJEUoicg3voPvgr4QdJevMBVkBjiGjL3Bkk9YP0E3yjUx8oSaNhGE3z2zQ9ikWNZP-_eObf5ZIH8ef8CXrcEUf8tV3gU3Ti4zP0oB0luXuO5tMkqBTneGTWto54tl3cdi2WuA54BDnmzvnVBi8bWW5wbWx3-OpubtZ4L3BeLz02scLTJN6wiPiqEZdNwhy4Fy95gWbn369H47wbopA7Lsg295LSYUWdqVRgmhvmgiNOEAcIqcpSZoYBkkRpgaeEQklnXRCKcSMS9VGOvUSnsY7-NcJABwoetGXECG4qqgJwIWlDBVkk4bzK0Jd-O8tVq5VRQo6RECgPEcjQt7TX-2uSwnVzoF7Pyw5nCOJKm2AqYeWQW0qMrmB1hXbKBqqFzdCnHqkSPCI930Rf321KytI85aS3m6FXLXL7V_XIZ0geYXq0luMzYISN6nZndG_--86P6OH4enJRXvy4_PUWPaIpcU-TZcg7dApw-vfAbrb2Q2PLfwD43fun |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZgEIgLYiesRoJjJq7txPYRCtWwzKjSUGlukddSaepUbefQf89zlqpFnLhmtfz55X0vev4-hD4YURkreJUzWemcV6OQKwJx5aXyikqiiEz7nc8vqrMZ_35VXh1YfbVN-9YsTuP18jQufre9laulLYY-sWJ6PhZEUMicxcqF4ja6AzFLqoNCvf0IS6AypOxa3RkU9kX6Eb5RaS8oSfYwjCYPN0WP8lEr2_8vrvl3y-RBDpo8RA968og_dYN8hG75-Bjd7ewkd0_QfJpEleIcj_XaNBHPtovrfpslbgIeQ525s361wctWmhvCG5sdvryZ6zXei5w3S491dHiaBBwWEV-2ArNJnAMPAiZP0Wzy9df4LO-NFHLLS7LNvaB05KjVTgamuGY2WGJLYgEl6QxlehSgUBQGuEqopLDGhlIyrstEf6Rlz9BJbKJ_gTBQgooHZRjRJdeOygB8SJjgoJIknLsMfRyms151ehk11BkJgfoQgQx9TnO9vyapXLcHmvW87rGGRC6VDtqVRoy4oUQrB6OrlJUmUFWaDL0fkKohKtLzdfTNzaamLHkqJ83dDD3vkNu_akA-Q-II06OxHJ-Bhdgqb_cL7-V_3_kO3Zt-mdQ_v138eIXu01S7J3MZ8hqdAJr-DRCcrXnbLuU_ifX8ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+Carbon+Utilization+of+Cordyceps+militaris+by+Sugar+Transportome+and+Protein+Structural+Analysis&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Sirithep%2C+Kanokwadee&rft.au=Xiao%2C+Fei&rft.au=Raethong%2C+Nachon&rft.au=Zhang%2C+Yuhan&rft.date=2020-02-10&rft.eissn=2073-4409&rft.volume=9&rft.issue=2&rft_id=info:doi/10.3390%2Fcells9020401&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |