Probing Carbon Utilization of Cordyceps militaris by Sugar Transportome and Protein Structural Analysis

Beyond comparative genomics, we identified 85 sugar transporter genes in , clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression pat...

Full description

Saved in:
Bibliographic Details
Published inCells (Basel, Switzerland) Vol. 9; no. 2; p. 401
Main Authors Sirithep, Kanokwadee, Xiao, Fei, Raethong, Nachon, Zhang, Yuhan, Laoteng, Kobkul, Hu, Guang, Vongsangnak, Wanwipa
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 10.02.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Beyond comparative genomics, we identified 85 sugar transporter genes in , clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson-Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in . Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin.
AbstractList Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris, clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of C. militaris showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson−Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in C. militaris. Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin.
Beyond comparative genomics, we identified 85 sugar transporter genes in , clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson-Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in . Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin.
Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris, clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of C. militaris showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson–Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in C. militaris. Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin.
Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris , clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of C. militaris showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson–Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in C. militaris . Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin.
Author Vongsangnak, Wanwipa
Zhang, Yuhan
Laoteng, Kobkul
Xiao, Fei
Sirithep, Kanokwadee
Raethong, Nachon
Hu, Guang
AuthorAffiliation 2 Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand
1 Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; kanokwadee.s@ku.th (K.S.); xiaofei@suda.edu.cn (F.X.)
3 Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; nachonase@hotmail.com
4 Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
5 Omics Center for Agriculture, Bioresources, Food, and Health, Faculty of Science, Kasetsart University (OmiKU), Bangkok 10900, Thailand
AuthorAffiliation_xml – name: 1 Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; kanokwadee.s@ku.th (K.S.); xiaofei@suda.edu.cn (F.X.)
– name: 4 Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
– name: 5 Omics Center for Agriculture, Bioresources, Food, and Health, Faculty of Science, Kasetsart University (OmiKU), Bangkok 10900, Thailand
– name: 2 Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand
– name: 3 Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; nachonase@hotmail.com
Author_xml – sequence: 1
  givenname: Kanokwadee
  surname: Sirithep
  fullname: Sirithep, Kanokwadee
  organization: Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand
– sequence: 2
  givenname: Fei
  surname: Xiao
  fullname: Xiao, Fei
  organization: Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
– sequence: 3
  givenname: Nachon
  surname: Raethong
  fullname: Raethong, Nachon
  organization: Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
– sequence: 4
  givenname: Yuhan
  surname: Zhang
  fullname: Zhang, Yuhan
  organization: Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
– sequence: 5
  givenname: Kobkul
  surname: Laoteng
  fullname: Laoteng, Kobkul
  organization: Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
– sequence: 6
  givenname: Guang
  surname: Hu
  fullname: Hu, Guang
  organization: Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
– sequence: 7
  givenname: Wanwipa
  surname: Vongsangnak
  fullname: Vongsangnak, Wanwipa
  organization: Omics Center for Agriculture, Bioresources, Food, and Health, Faculty of Science, Kasetsart University (OmiKU), Bangkok 10900, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32050592$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1rHDEMhk1JadJtbj0XH3votv4Yr8eXQlj6EQi0kORsZI89dZixt7YnsP31dbpp2OgiIb08knhfo5OYokPoLSUfOVfkk3XTVBRhpCP0BTpjRPJ11xF1clSfovNS7kiLnm4oEa_QKWdEEKHYGRp_5mRCHPEWskkR39YwhT9QQ6uTx9uUh711u4Ln1q-QQ8Fmj6-XETK-yRDLLuWaZochDrixqgsRX9e82LpkmPBFhGlfQnmDXnqYijt_zCt0-_XLzfb7-urHt8vtxdXadoLUtZOM0YFZGHrPVQfcekusINbKrh8M40A9E500iku_6aU11ouedyAoE7S3fIUuD9whwZ3e5TBD3usEQf9rpDxqyDXYyWkDvQIPgzCSdoYRUEMjbpTtjWdKmMb6fGDtFjO7wbpY20vPoM8nMfzSY7rXkki2aWet0PtHQE6_F1eqnkN5sAyiS0vRjLdXuFKMNemHg9TmVEp2_mkNJfrBan1sdZO_Oz7tSfzfWP4XfKCpbA
CitedBy_id crossref_primary_10_1007_s10910_023_01511_6
crossref_primary_10_1016_j_biortech_2023_129742
crossref_primary_10_1155_2020_7146701
crossref_primary_10_1002_pca_3310
crossref_primary_10_1152_physiol_00010_2023
crossref_primary_10_1007_s00203_023_03766_8
crossref_primary_10_1021_acs_jcim_0c00447
crossref_primary_10_1007_s00253_021_11392_x
crossref_primary_10_3390_biology11010071
crossref_primary_10_1371_journal_pcbi_1010009
crossref_primary_10_1039_D2CP05611A
crossref_primary_10_3390_biology9090242
Cites_doi 10.1073/pnas.1311970111
10.1093/nar/gkv485
10.1063/1.447334
10.1016/j.ygeno.2019.04.015
10.1007/s00726-014-1710-6
10.1038/s41598-018-27534-7
10.1007/978-1-4939-0366-5_1
10.1093/molbev/msy096
10.1186/s12918-016-0382-0
10.3390/ijms20010015
10.1016/j.ymben.2012.03.004
10.1063/1.3177008
10.1002/jcc.20291
10.1093/nar/gkz378
10.1016/S0022-2836(05)80360-2
10.1038/nprot.2012.004
10.1016/j.bpj.2009.04.013
10.1016/j.apsb.2018.10.004
10.1007/978-1-4939-7877-9_19
10.1107/S0021889807011053
10.1186/s13068-018-1084-1
10.1186/gb-2011-12-11-r116
10.1093/bioinformatics/17.9.849
10.1016/j.tibs.2011.01.002
10.1016/j.jtbi.2014.01.023
10.1016/j.fitote.2010.07.010
10.1093/nar/gkv1103
10.1111/j.1365-2672.2005.02682.x
10.1093/nar/gkt111
10.1038/s41420-018-0063-4
10.1016/j.resmic.2013.02.008
10.1093/nar/gkv416
10.1073/pnas.0406811102
10.1002/jcc.20945
10.1093/nar/gky995
10.1021/jp101759q
10.1073/pnas.1400336111
10.1063/1.470117
10.1093/nar/gku989
10.3109/07388551.2014.900604
10.1111/j.1476-5381.2012.02005.x
10.1371/journal.pcbi.1002708
10.1063/1.328693
10.1063/1.445869
10.1093/nar/gky1055
10.1038/s41467-018-08176-9
10.1016/j.bcp.2008.11.014
10.1104/pp.110.163014
10.1039/c001459c
10.3389/fmicb.2018.01045
10.1073/pnas.181342398
10.1093/nar/gky1033
10.1021/ci500020m
10.1186/s13068-016-0564-4
10.1093/nar/gku1223
10.1128/AEM.01522-17
10.1073/pnas.1815994116
10.1093/nar/gkw1107
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/cells9020401
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2073-4409
ExternalDocumentID oai_doaj_org_article_ba89afad5b714b20a9d68769c8bf295b
10_3390_cells9020401
32050592
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Thailand Graduate Institute of Science and Technology
  grantid: -
– fundername: Thailand Research Fund
  grantid: RSA6180001
– fundername: National Natural Science Foundation of China
  grantid: 31872723
– fundername: Kasetsart University
  grantid: -
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CGR
CUY
CVF
DIK
EBD
ECM
EIF
ESX
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
KQ8
LK8
M48
M7P
MODMG
M~E
NPM
OK1
PGMZT
PIMPY
PROAC
RIG
RPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c450t-e7221d2cad8f394a3cfc0c50cc748db23a1f2547b937f687cbcf5834a512518c3
IEDL.DBID RPM
ISSN 2073-4409
IngestDate Tue Oct 22 15:15:51 EDT 2024
Tue Sep 17 21:21:39 EDT 2024
Fri Aug 16 01:14:35 EDT 2024
Fri Aug 23 04:49:57 EDT 2024
Sat Sep 28 08:24:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords protein structure
cordyceps militaris
network analysis
sugar transporter
carbon metabolism
comparative genomics
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-e7221d2cad8f394a3cfc0c50cc748db23a1f2547b937f687cbcf5834a512518c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-4442-3411
0000-0002-8754-1541
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072658/
PMID 32050592
PQID 2354739922
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ba89afad5b714b20a9d68769c8bf295b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7072658
proquest_miscellaneous_2354739922
crossref_primary_10_3390_cells9020401
pubmed_primary_32050592
PublicationCentury 2000
PublicationDate 2020-02-10
PublicationDateYYYYMMDD 2020-02-10
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Cells (Basel, Switzerland)
PublicationTitleAlternate Cells
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Bailey (ref_27) 2015; 43
Stourac (ref_52) 2019; 47
ref_57
Essmann (ref_38) 1995; 103
Farinas (ref_10) 2018; 1796
Das (ref_7) 2010; 81
Webb (ref_31) 2014; 1137
Kim (ref_12) 2005; 99
Hu (ref_55) 2014; 348
Yan (ref_54) 2014; 46
Galperin (ref_22) 2015; 43
Nogueira (ref_15) 2018; 11
Patil (ref_29) 2005; 102
Tusnady (ref_50) 2001; 17
Cui (ref_1) 2015; 35
Jorgensen (ref_41) 1983; 79
Sloothaak (ref_49) 2016; 9
Peng (ref_13) 2018; 9
Doncheva (ref_53) 2012; 7
Raethong (ref_9) 2018; 8
Saier (ref_23) 2016; 44
ref_26
Fang (ref_16) 2010; 154
Kapetis (ref_56) 2017; 11
Kumar (ref_25) 2018; 35
Kumari (ref_44) 2014; 54
Klauda (ref_34) 2010; 114
Lindahl (ref_37) 2005; 26
Gibson (ref_2) 2010; 27
Tsirigos (ref_19) 2015; 43
Takahashi (ref_5) 2012; 167
Kim (ref_33) 2019; 47
Khodade (ref_32) 2007; 40
Nose (ref_39) 1984; 81
Baker (ref_45) 2001; 98
Teeravivattanakit (ref_11) 2017; 83
Jo (ref_36) 2009; 97
Finn (ref_21) 2017; 45
Paulsen (ref_51) 2019; 10
Nielsen (ref_28) 2013; 41
Madej (ref_58) 2014; 111
Qi (ref_6) 2019; 9
Meliciani (ref_46) 2009; 131
Jo (ref_35) 2008; 29
Altschul (ref_24) 1990; 215
Young (ref_48) 2012; 14
Mistry (ref_20) 2019; 47
Consortium (ref_30) 2014; 43
Young (ref_47) 2014; 111
Parrinello (ref_40) 1981; 52
ref_42
Zheng (ref_18) 2011; 12
Cui (ref_3) 2018; 4
Wongsa (ref_8) 2020; 112
Doncheva (ref_43) 2011; 36
Huang (ref_4) 2009; 77
Milner (ref_14) 2019; 116
Wang (ref_17) 2013; 164
References_xml – volume: 111
  start-page: 131
  year: 2014
  ident: ref_47
  article-title: Rewiring yeast sugar transporter preference through modifying a conserved protein motif
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1311970111
  contributor:
    fullname: Young
– volume: 43
  start-page: W401
  year: 2015
  ident: ref_19
  article-title: The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv485
  contributor:
    fullname: Tsirigos
– volume: 81
  start-page: 511
  year: 1984
  ident: ref_39
  article-title: A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
  contributor:
    fullname: Nose
– volume: 112
  start-page: 629
  year: 2020
  ident: ref_8
  article-title: Alternative metabolic routes in channeling xylose to cordycepin production of Cordyceps militaris identified by comparative transcriptome analysis
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.04.015
  contributor:
    fullname: Wongsa
– volume: 46
  start-page: 1419
  year: 2014
  ident: ref_54
  article-title: The construction of an amino acid network for understanding protein structure and function
  publication-title: Amino Acids
  doi: 10.1007/s00726-014-1710-6
  contributor:
    fullname: Yan
– volume: 8
  start-page: 9250
  year: 2018
  ident: ref_9
  article-title: Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27534-7
  contributor:
    fullname: Raethong
– volume: 1137
  start-page: 1
  year: 2014
  ident: ref_31
  article-title: Protein structure modeling with MODELLER
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-0366-5_1
  contributor:
    fullname: Webb
– volume: 35
  start-page: 1547
  year: 2018
  ident: ref_25
  article-title: MEGA X: Molecular evolutionary genetics analysis across computing platforms
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msy096
  contributor:
    fullname: Kumar
– volume: 11
  start-page: 28
  year: 2017
  ident: ref_56
  article-title: Network topology of NaV1.7 mutations in sodium channel-related painful disorders
  publication-title: Bmc Syst. Biol.
  doi: 10.1186/s12918-016-0382-0
  contributor:
    fullname: Kapetis
– ident: ref_57
  doi: 10.3390/ijms20010015
– volume: 14
  start-page: 401
  year: 2012
  ident: ref_48
  article-title: A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces Cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2012.03.004
  contributor:
    fullname: Young
– volume: 131
  start-page: 034114
  year: 2009
  ident: ref_46
  article-title: Probing hot spots on protein-protein interfaces with all-atom freeenergy simulation
  publication-title: J. Chem Phys.
  doi: 10.1063/1.3177008
  contributor:
    fullname: Meliciani
– volume: 26
  start-page: 1701
  year: 2005
  ident: ref_37
  article-title: GROMACS: Fast, flexible, and free
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20291
  contributor:
    fullname: Lindahl
– volume: 47
  start-page: W414
  year: 2019
  ident: ref_52
  article-title: Caver Web 1.0: Identification of tunnels and channels in proteins and analysis of ligand transport
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz378
  contributor:
    fullname: Stourac
– volume: 215
  start-page: 403
  year: 1990
  ident: ref_24
  article-title: Basic local alignment search tool
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(05)80360-2
  contributor:
    fullname: Altschul
– volume: 7
  start-page: 670
  year: 2012
  ident: ref_53
  article-title: Topological analysis and interactive visualization of biological networks and protein structures
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.004
  contributor:
    fullname: Doncheva
– volume: 97
  start-page: 50
  year: 2009
  ident: ref_36
  article-title: CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.04.013
  contributor:
    fullname: Jo
– volume: 9
  start-page: 135
  year: 2019
  ident: ref_6
  article-title: Cordycepin promotes browning of white adipose tissue through an AMP-activated protein kinase (AMPK)-dependent pathway
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2018.10.004
  contributor:
    fullname: Qi
– volume: 1796
  start-page: 273
  year: 2018
  ident: ref_10
  article-title: On-site production of cellulolytic enzymes by the sequential cultivation method
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7877-9_19
  contributor:
    fullname: Farinas
– volume: 40
  start-page: 598
  year: 2007
  ident: ref_32
  article-title: Parallel implementation of AutoDock
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889807011053
  contributor:
    fullname: Khodade
– volume: 11
  start-page: 84
  year: 2018
  ident: ref_15
  article-title: Characterization of a novel sugar transporter involved in sugarcane bagasse degradation in Trichoderma reesei
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-018-1084-1
  contributor:
    fullname: Nogueira
– volume: 12
  start-page: R116
  year: 2011
  ident: ref_18
  article-title: Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-11-r116
  contributor:
    fullname: Zheng
– volume: 17
  start-page: 849
  year: 2001
  ident: ref_50
  article-title: The HMMTOP transmembrane topology prediction server
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.9.849
  contributor:
    fullname: Tusnady
– volume: 36
  start-page: 179
  year: 2011
  ident: ref_43
  article-title: Analyzing and visualizing residue networks of protein structures
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2011.01.002
  contributor:
    fullname: Doncheva
– volume: 348
  start-page: 55
  year: 2014
  ident: ref_55
  article-title: Residue interaction network analysis of Dronpa and a DNA clamp
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2014.01.023
  contributor:
    fullname: Hu
– volume: 81
  start-page: 961
  year: 2010
  ident: ref_7
  article-title: Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2010.07.010
  contributor:
    fullname: Das
– volume: 44
  start-page: D372
  year: 2016
  ident: ref_23
  article-title: The Transporter Classification Database (TCDB): Recent advances
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1103
  contributor:
    fullname: Saier
– volume: 99
  start-page: 728
  year: 2005
  ident: ref_12
  article-title: A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2005.02682.x
  contributor:
    fullname: Kim
– volume: 41
  start-page: 4378
  year: 2013
  ident: ref_28
  article-title: Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt111
  contributor:
    fullname: Nielsen
– volume: 4
  start-page: 62
  year: 2018
  ident: ref_3
  article-title: Cordycepin induces apoptosis of human ovarian cancer cells by inhibiting CCL5-mediated Akt/NF-κB signaling pathway
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-018-0063-4
  contributor:
    fullname: Cui
– volume: 164
  start-page: 480
  year: 2013
  ident: ref_17
  article-title: A putative alpha-glucoside transporter gene BbAGT1 contributes to carbohydrate utilization, growth, conidiation and virulence of filamentous entomopathogenic fungus Beauveria bassiana
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2013.02.008
  contributor:
    fullname: Wang
– volume: 43
  start-page: W39
  year: 2015
  ident: ref_27
  article-title: The MEME Suite
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv416
  contributor:
    fullname: Bailey
– volume: 102
  start-page: 2685
  year: 2005
  ident: ref_29
  article-title: Uncovering transcriptional regulation of metabolism by using metabolic network topology
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0406811102
  contributor:
    fullname: Patil
– volume: 29
  start-page: 1859
  year: 2008
  ident: ref_35
  article-title: CHARMM-GUI: A web-based graphical user interface for CHARMM
  publication-title: J. Comput. Chem
  doi: 10.1002/jcc.20945
  contributor:
    fullname: Jo
– volume: 47
  start-page: D427
  year: 2019
  ident: ref_20
  article-title: The Pfam protein families database in 2019
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky995
  contributor:
    fullname: Mistry
– volume: 114
  start-page: 7830
  year: 2010
  ident: ref_34
  article-title: Update of the CHARMM all-atom additive force field for lipids: Validation on sixlipid types
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp101759q
  contributor:
    fullname: Klauda
– volume: 111
  start-page: E719
  year: 2014
  ident: ref_58
  article-title: Functional architecture of MFS-glucose transporters
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1400336111
  contributor:
    fullname: Madej
– volume: 103
  start-page: 8577
  year: 1995
  ident: ref_38
  article-title: A Smooth Particle Mesh Ewald Method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
  contributor:
    fullname: Essmann
– volume: 43
  start-page: D204
  year: 2014
  ident: ref_30
  article-title: UniProt: A hub for protein information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku989
  contributor:
    fullname: Consortium
– volume: 35
  start-page: 475
  year: 2015
  ident: ref_1
  article-title: Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2014.900604
  contributor:
    fullname: Cui
– volume: 167
  start-page: 561
  year: 2012
  ident: ref_5
  article-title: Blockade of adipocyte differentiation by cordycepin
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2012.02005.x
  contributor:
    fullname: Takahashi
– ident: ref_42
  doi: 10.1371/journal.pcbi.1002708
– volume: 52
  start-page: 7182
  year: 1981
  ident: ref_40
  article-title: Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
  contributor:
    fullname: Parrinello
– volume: 79
  start-page: 926
  year: 1983
  ident: ref_41
  article-title: Comparison of Simple Potential Functions for Simulating Liquid Water
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
  contributor:
    fullname: Jorgensen
– ident: ref_26
  doi: 10.1093/nar/gky1055
– volume: 10
  start-page: 407
  year: 2019
  ident: ref_51
  article-title: Crystal structure of the plant symporter STP10 illuminates sugar uptake mechanism in monosaccharide transporter superfamily
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08176-9
  contributor:
    fullname: Paulsen
– volume: 77
  start-page: 794
  year: 2009
  ident: ref_4
  article-title: CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2008.11.014
  contributor:
    fullname: Huang
– volume: 154
  start-page: 1549
  year: 2010
  ident: ref_16
  article-title: Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii
  publication-title: Plant. Physiol.
  doi: 10.1104/pp.110.163014
  contributor:
    fullname: Fang
– volume: 27
  start-page: 1241
  year: 2010
  ident: ref_2
  article-title: Secondary metabolites from entomopathogenic Hypocrealean fungi
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/c001459c
  contributor:
    fullname: Gibson
– volume: 9
  start-page: 1045
  year: 2018
  ident: ref_13
  article-title: In silico analysis of putative sugar transporter genes in Aspergillus niger using phylogeny and comparative transcriptomics
  publication-title: Front Microbiol.
  doi: 10.3389/fmicb.2018.01045
  contributor:
    fullname: Peng
– volume: 98
  start-page: 10037
  year: 2001
  ident: ref_45
  article-title: Electrostatics of nanosystems: Application to microtubules and the ribosome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.181342398
  contributor:
    fullname: Baker
– volume: 47
  start-page: D1102
  year: 2019
  ident: ref_33
  article-title: PubChem 2019 update: Improved access to chemical data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1033
  contributor:
    fullname: Kim
– volume: 54
  start-page: 1951
  year: 2014
  ident: ref_44
  article-title: g_ mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations
  publication-title: J. Chem Inf Model.
  doi: 10.1021/ci500020m
  contributor:
    fullname: Kumari
– volume: 9
  start-page: 148
  year: 2016
  ident: ref_49
  article-title: Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0564-4
  contributor:
    fullname: Sloothaak
– volume: 43
  start-page: D261
  year: 2015
  ident: ref_22
  article-title: Expanded microbial genome coverage and improved protein family annotation in the COG database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1223
  contributor:
    fullname: Galperin
– volume: 83
  start-page: e01522-17
  year: 2017
  ident: ref_11
  article-title: Chemical pretreatment-independent saccharifications of xylan and cellulose of rice straw by bacterial weak lignin-binding xylanolytic and cellulolytic enzymes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01522-17
  contributor:
    fullname: Teeravivattanakit
– volume: 116
  start-page: 5613
  year: 2019
  ident: ref_14
  article-title: Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1815994116
  contributor:
    fullname: Milner
– volume: 45
  start-page: D190
  year: 2017
  ident: ref_21
  article-title: InterPro in 2017—beyond protein family and domain annotations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1107
  contributor:
    fullname: Finn
SSID ssj0000816105
Score 2.248636
Snippet Beyond comparative genomics, we identified 85 sugar transporter genes in , clustering into nine subfamilies as sequence- and phylogenetic-based functional...
Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris, clustering into nine subfamilies as sequence- and...
Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris , clustering into nine subfamilies as sequence- and...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 401
SubjectTerms Amino Acid Motifs
Amino Acid Sequence
Biological Transport
Carbon - metabolism
comparative genomics
Cordyceps - genetics
Cordyceps - metabolism
cordyceps militaris
Fungal Proteins - chemistry
Fungal Proteins - metabolism
Gene Regulatory Networks
Membrane Transport Proteins - metabolism
Metabolome
network analysis
Phylogeny
protein structure
sugar transporter
Sugars - metabolism
Thermodynamics
Transcriptome - genetics
Xylose - metabolism
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUMil9JE220dQoT2aaPWwpGO7JIRCQiBZyM3ouVlo5JDdHPbfd8b2LrulkEuulrHFfB7pG6P5PkK-e137oGVdCVO7StbjXFkGeZWMTZYbZpnBfueLy_p8Kn_fqtstqy88E9bLA_eBO_HOWJddVF6PpefM2VhDBttgfOZW-W71ZXarmOrWYANMhqn-pLuAuv4E_4MvLLaCDv4v6z2ok-r_H7_895jk1r5z9oa8Hggj_dlP9C3ZS-UdedVbSK7ek9kVCimVGZ24R98WOl3O_wytlbTNdAK15SqkhwW97-S4IaWpX9Hrp5l7pBth8_Y-UVcivULRhnmh152oLApy0LVoySGZnp3eTM6rwTyhClKxZZU05-PIg4smCyudCDmwoFgAZEz0XLhxhuJQe-AnGSIafMjKCOkUUh4TxAeyX9qSjggFGlDLbL1gTkkXucnAgbTPEapHJmUckR_rcDYPvUZGA7UFhr3ZDvuI_MJYb-5BZevuAuDdDHg3z-E9It_WSDWQCfh8V1L7tGi4QB9l1NkdkY89cptXCY6OfRZG9A6mO3PZHSnzu05tWzPNgaZ9eonJfyYHHOt1NJRhX8g-oJm-AqlZ-uPu-_0L8nP40A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBalY7CXsfuyS9Fge_Sm6GJJD2NsYaUUNgpdoG9G1yzQyl2SwvLvd47thKbrQ18t2zLn-FjfZ3S-j5D3Xtc-aFlXwtSukvU4V5ZBXSVjk-WGWWaw3_nHz_poKo_P1Nke2biNDgFc3krt0E9qujj_-PfP-gsU_GdknEDZP-Ev7qXFLk9s5LrHJXB03MQ3AP3um2wA2TDV73z_76KdNamT7r8Nb97cNnltHTp8RB4OAJJ-7TP-mOyl8oTc7y0l10_J7ASFlcqMTtzCt4VOV_PzodWStplOgGuuQ7pc0otOnhtKnPo1Pb2auQXdCp23F4m6EukJijjMCz3tRGZRoINuREyekenh91-To2owU6iCVGxVJc35OPLgosnCSidCDiwoFiBTJnou3DgDWdQe8EqujQ4-ZGWEdAohkAniOdkvbUkvCQVYUMtsvWBOSRe5yYCJtM8R2CSTMo7Ih004m8teM6MBroFhb66HfUS-Yay356DSdXegXcyaoXBgMTfWZReV12PpOXM2wtPVNhifuVV-RN5tMtVAZeD9XUnt1bLhAn2VUXd3RF70mdtOJTg6-FkY0Ts53XmW3ZEy_92pb2umOcC2V3eY9zV5wJGeo38Me0P2IVnpLWCYlT_oXs9_2fP0Ow
  priority: 102
  providerName: Scholars Portal
Title Probing Carbon Utilization of Cordyceps militaris by Sugar Transportome and Protein Structural Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/32050592
https://search.proquest.com/docview/2354739922
https://pubmed.ncbi.nlm.nih.gov/PMC7072658
https://doaj.org/article/ba89afad5b714b20a9d68769c8bf295b
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZJSqGXkr63aY0K7XFjWY-VdGxMQig4mKaG3BZJu3INsdbYzsH_viPtrrFLT73sYZ9C32jnGzHzDUJfrSysk7zImSpMzouRzzWBdVUrXWuqiCYq1jtP7orbGf_xIB5OkOhrYVLSvrOLy_C4vAyL3ym3crV0wz5PbDidjCWRFDzn8BSdgoEehOjp96uAxBDRJrkzCOmHcQt8o2MVKImNYRiN3ds0PfJESbD_Xyzz72TJA-9zc45edrQRf2-H9wqd1OE1et42kty9QfNplFMKczw2a9sEPNsuHrsCS9x4PIYIc-fq1QYvkyg3LGxsd_j-aW7WeC9v3ixrbEKFp1G6YRHwfZKWjbIcuJcueYtmN9e_xrd510Ihd1yQbV5LSkcVdaZSnmlumPOOOEEc4KMqS5kZeQgRpQWW4gslnXVeKMaNiMRHOfYOnYUm1B8QBjJQcK8tI0ZwU1HlgQlJ6yuIIQnnVYa-9dNZrlqljBIijIhAeYhAhq7iXO_vifrW6USznpcdyuDClTbeVMLKEbeUGF3B6ArtlPVUC5uhLz1SJayH-H4T6uZpU1IWuylHtd0MvW-R23-qRz5D8gjTo7EcXwETTJrbncl9_O8nL9ALGkP12EuGfEJnAGH9GfjM1g7Qs6vru-nPQdoPgOOEq0Gy6T9PBvu6
link.rule.ids 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,33757,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYIL4s3yNBIct3H8WNtHiKgCNFWkNlJvK9trh0iNN0rSQ_49431ECeLEdZ-Wv5mdb1Yz3yD02crCOsmLnKnC5LwYhlwT8CuvtNdUEU1U6neeXBbjGf95I25OkOh7YZqifWcXZ_F2eRYXv5vaytXSDfo6scF0MpJEUoicg3voPvgr4QdJevMBVkBjiGjL3Bkk9YP0E3yjUx8oSaNhGE3z2zQ9ikWNZP-_eObf5ZIH8ef8CXrcEUf8tV3gU3Ti4zP0oB0luXuO5tMkqBTneGTWto54tl3cdi2WuA54BDnmzvnVBi8bWW5wbWx3-OpubtZ4L3BeLz02scLTJN6wiPiqEZdNwhy4Fy95gWbn369H47wbopA7Lsg295LSYUWdqVRgmhvmgiNOEAcIqcpSZoYBkkRpgaeEQklnXRCKcSMS9VGOvUSnsY7-NcJABwoetGXECG4qqgJwIWlDBVkk4bzK0Jd-O8tVq5VRQo6RECgPEcjQt7TX-2uSwnVzoF7Pyw5nCOJKm2AqYeWQW0qMrmB1hXbKBqqFzdCnHqkSPCI930Rf321KytI85aS3m6FXLXL7V_XIZ0geYXq0luMzYISN6nZndG_--86P6OH4enJRXvy4_PUWPaIpcU-TZcg7dApw-vfAbrb2Q2PLfwD43fun
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZgEIgLYiesRoJjJq7txPYRCtWwzKjSUGlukddSaepUbefQf89zlqpFnLhmtfz55X0vev4-hD4YURkreJUzWemcV6OQKwJx5aXyikqiiEz7nc8vqrMZ_35VXh1YfbVN-9YsTuP18jQufre9laulLYY-sWJ6PhZEUMicxcqF4ja6AzFLqoNCvf0IS6AypOxa3RkU9kX6Eb5RaS8oSfYwjCYPN0WP8lEr2_8vrvl3y-RBDpo8RA968og_dYN8hG75-Bjd7ewkd0_QfJpEleIcj_XaNBHPtovrfpslbgIeQ525s361wctWmhvCG5sdvryZ6zXei5w3S491dHiaBBwWEV-2ArNJnAMPAiZP0Wzy9df4LO-NFHLLS7LNvaB05KjVTgamuGY2WGJLYgEl6QxlehSgUBQGuEqopLDGhlIyrstEf6Rlz9BJbKJ_gTBQgooHZRjRJdeOygB8SJjgoJIknLsMfRyms151ehk11BkJgfoQgQx9TnO9vyapXLcHmvW87rGGRC6VDtqVRoy4oUQrB6OrlJUmUFWaDL0fkKohKtLzdfTNzaamLHkqJ83dDD3vkNu_akA-Q-II06OxHJ-Bhdgqb_cL7-V_3_kO3Zt-mdQ_v138eIXu01S7J3MZ8hqdAJr-DRCcrXnbLuU_ifX8ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+Carbon+Utilization+of+Cordyceps+militaris+by+Sugar+Transportome+and+Protein+Structural+Analysis&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Sirithep%2C+Kanokwadee&rft.au=Xiao%2C+Fei&rft.au=Raethong%2C+Nachon&rft.au=Zhang%2C+Yuhan&rft.date=2020-02-10&rft.eissn=2073-4409&rft.volume=9&rft.issue=2&rft_id=info:doi/10.3390%2Fcells9020401&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon