STING-ΔN, a novel splice isoform of STING, modulates innate immunity and autophagy in response to DNA virus infection

Stimulator of interferon (IFN) genes (STING) is a central adaptor protein in the cGAS-STING signaling pathway, orchestrating the production of type I interferons (IFNs) in response to cytosolic DNA detection, a crucial mechanism in antiviral defense. However, further investigation is needed to under...

Full description

Saved in:
Bibliographic Details
Published inCell communication and signaling Vol. 23; no. 1; pp. 299 - 21
Main Authors Deng, Jian, Zheng, Sheng-Nan, Zhang, Jing, Li, Cheng-Hao, Li, Tao, Wang, Pei-Hui
Format Journal Article
LanguageEnglish
Published England BioMed Central 21.06.2025
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stimulator of interferon (IFN) genes (STING) is a central adaptor protein in the cGAS-STING signaling pathway, orchestrating the production of type I interferons (IFNs) in response to cytosolic DNA detection, a crucial mechanism in antiviral defense. However, further investigation is needed to understand how post-transcriptional regulation, particularly alternative splicing, modulates STING activity. We identified a novel alternatively spliced isoform of STING, termed STING-∆N, resulting from exon 3 skipping. We examined STING-∆N expression in various human tissues and cell lines and assessed its role in cGAS-STING signaling using RT-qPCR, luciferase reporter assays, SDD-AGE, immunofluorescence, and immunoblot analysis. We evaluated the influence of STING-∆N on HSV-1 proliferation and STING-induced autophagy by viral plaque assay and immunoblotting. To unravel the mechanistic role of STING-∆N, we further investigated its interaction with STING, TBK1, and 2'3'-cGAMP and its effect on the STING-TBK1 complex using co-immunoprecipitation and 2'3'-cGAMP pull-down assay. STING-∆N shares an identical C-terminal sequence (aa 121-379) with STING but lacks a 120-amino acid N-terminal region encoding three conserved transmembrane (TM) domains. STING-∆N is expressed in various human tissues and cell lines. STING-∆N significantly suppressed IFN activation induced by cGAS, 2'3'-cGAMP, and STING. STING-∆N also reduced type I and III IFN induction in response to double-stranded DNA, HPV, and HSV-1. Additionally, STING-∆N promoted HSV-1 replication and inhibited STING-induced autophagy. Mechanistically, STING-∆N interacts with 2'3'-cGAMP, STING, and TBK1, sequestering their binding and disrupting the formation of the 2'3'-cGAMP-STING and STING-TBK1 complexes. STING-∆N acts as a potent negative regulator of the cGAS-STING pathway, revealing a previously unrecognized regulatory mechanism by which alternative splicing modulates immune responses to DNA viruses. These findings suggest that STING-∆N could be a promising therapeutic target for modulating immune responses in viral infections, autoimmune diseases, and cancer.
AbstractList Stimulator of interferon (IFN) genes (STING) is a central adaptor protein in the cGAS-STING signaling pathway, orchestrating the production of type I interferons (IFNs) in response to cytosolic DNA detection, a crucial mechanism in antiviral defense. However, further investigation is needed to understand how post-transcriptional regulation, particularly alternative splicing, modulates STING activity.BACKGROUNDStimulator of interferon (IFN) genes (STING) is a central adaptor protein in the cGAS-STING signaling pathway, orchestrating the production of type I interferons (IFNs) in response to cytosolic DNA detection, a crucial mechanism in antiviral defense. However, further investigation is needed to understand how post-transcriptional regulation, particularly alternative splicing, modulates STING activity.We identified a novel alternatively spliced isoform of STING, termed STING-∆N, resulting from exon 3 skipping. We examined STING-∆N expression in various human tissues and cell lines and assessed its role in cGAS-STING signaling using RT-qPCR, luciferase reporter assays, SDD-AGE, immunofluorescence, and immunoblot analysis. We evaluated the influence of STING-∆N on HSV-1 proliferation and STING-induced autophagy by viral plaque assay and immunoblotting. To unravel the mechanistic role of STING-∆N, we further investigated its interaction with STING, TBK1, and 2'3'-cGAMP and its effect on the STING-TBK1 complex using co-immunoprecipitation and 2'3'-cGAMP pull-down assay.METHODSWe identified a novel alternatively spliced isoform of STING, termed STING-∆N, resulting from exon 3 skipping. We examined STING-∆N expression in various human tissues and cell lines and assessed its role in cGAS-STING signaling using RT-qPCR, luciferase reporter assays, SDD-AGE, immunofluorescence, and immunoblot analysis. We evaluated the influence of STING-∆N on HSV-1 proliferation and STING-induced autophagy by viral plaque assay and immunoblotting. To unravel the mechanistic role of STING-∆N, we further investigated its interaction with STING, TBK1, and 2'3'-cGAMP and its effect on the STING-TBK1 complex using co-immunoprecipitation and 2'3'-cGAMP pull-down assay.STING-∆N shares an identical C-terminal sequence (aa 121-379) with STING but lacks a 120-amino acid N-terminal region encoding three conserved transmembrane (TM) domains. STING-∆N is expressed in various human tissues and cell lines. STING-∆N significantly suppressed IFN activation induced by cGAS, 2'3'-cGAMP, and STING. STING-∆N also reduced type I and III IFN induction in response to double-stranded DNA, HPV, and HSV-1. Additionally, STING-∆N promoted HSV-1 replication and inhibited STING-induced autophagy. Mechanistically, STING-∆N interacts with 2'3'-cGAMP, STING, and TBK1, sequestering their binding and disrupting the formation of the 2'3'-cGAMP-STING and STING-TBK1 complexes.RESULTSSTING-∆N shares an identical C-terminal sequence (aa 121-379) with STING but lacks a 120-amino acid N-terminal region encoding three conserved transmembrane (TM) domains. STING-∆N is expressed in various human tissues and cell lines. STING-∆N significantly suppressed IFN activation induced by cGAS, 2'3'-cGAMP, and STING. STING-∆N also reduced type I and III IFN induction in response to double-stranded DNA, HPV, and HSV-1. Additionally, STING-∆N promoted HSV-1 replication and inhibited STING-induced autophagy. Mechanistically, STING-∆N interacts with 2'3'-cGAMP, STING, and TBK1, sequestering their binding and disrupting the formation of the 2'3'-cGAMP-STING and STING-TBK1 complexes.STING-∆N acts as a potent negative regulator of the cGAS-STING pathway, revealing a previously unrecognized regulatory mechanism by which alternative splicing modulates immune responses to DNA viruses. These findings suggest that STING-∆N could be a promising therapeutic target for modulating immune responses in viral infections, autoimmune diseases, and cancer.CONCLUSIONSSTING-∆N acts as a potent negative regulator of the cGAS-STING pathway, revealing a previously unrecognized regulatory mechanism by which alternative splicing modulates immune responses to DNA viruses. These findings suggest that STING-∆N could be a promising therapeutic target for modulating immune responses in viral infections, autoimmune diseases, and cancer.
BackgroundStimulator of interferon (IFN) genes (STING) is a central adaptor protein in the cGAS-STING signaling pathway, orchestrating the production of type I interferons (IFNs) in response to cytosolic DNA detection, a crucial mechanism in antiviral defense. However, further investigation is needed to understand how post-transcriptional regulation, particularly alternative splicing, modulates STING activity.MethodsWe identified a novel alternatively spliced isoform of STING, termed STING-∆N, resulting from exon 3 skipping. We examined STING-∆N expression in various human tissues and cell lines and assessed its role in cGAS-STING signaling using RT-qPCR, luciferase reporter assays, SDD-AGE, immunofluorescence, and immunoblot analysis. We evaluated the influence of STING-∆N on HSV-1 proliferation and STING-induced autophagy by viral plaque assay and immunoblotting. To unravel the mechanistic role of STING-∆N, we further investigated its interaction with STING, TBK1, and 2′3′-cGAMP and its effect on the STING-TBK1 complex using co-immunoprecipitation and 2′3′-cGAMP pull-down assay.ResultsSTING-∆N shares an identical C-terminal sequence (aa 121–379) with STING but lacks a 120-amino acid N-terminal region encoding three conserved transmembrane (TM) domains. STING-∆N is expressed in various human tissues and cell lines. STING-∆N significantly suppressed IFN activation induced by cGAS, 2′3′-cGAMP, and STING. STING-∆N also reduced type I and III IFN induction in response to double-stranded DNA, HPV, and HSV-1. Additionally, STING-∆N promoted HSV-1 replication and inhibited STING-induced autophagy. Mechanistically, STING-∆N interacts with 2′3′-cGAMP, STING, and TBK1, sequestering their binding and disrupting the formation of the 2′3′-cGAMP-STING and STING-TBK1 complexes.ConclusionsSTING-∆N acts as a potent negative regulator of the cGAS-STING pathway, revealing a previously unrecognized regulatory mechanism by which alternative splicing modulates immune responses to DNA viruses. These findings suggest that STING-∆N could be a promising therapeutic target for modulating immune responses in viral infections, autoimmune diseases, and cancer.
Abstract Background Stimulator of interferon (IFN) genes (STING) is a central adaptor protein in the cGAS-STING signaling pathway, orchestrating the production of type I interferons (IFNs) in response to cytosolic DNA detection, a crucial mechanism in antiviral defense. However, further investigation is needed to understand how post-transcriptional regulation, particularly alternative splicing, modulates STING activity. Methods We identified a novel alternatively spliced isoform of STING, termed STING-∆N, resulting from exon 3 skipping. We examined STING-∆N expression in various human tissues and cell lines and assessed its role in cGAS-STING signaling using RT-qPCR, luciferase reporter assays, SDD-AGE, immunofluorescence, and immunoblot analysis. We evaluated the influence of STING-∆N on HSV-1 proliferation and STING-induced autophagy by viral plaque assay and immunoblotting. To unravel the mechanistic role of STING-∆N, we further investigated its interaction with STING, TBK1, and 2′3′-cGAMP and its effect on the STING-TBK1 complex using co-immunoprecipitation and 2′3′-cGAMP pull-down assay. Results STING-∆N shares an identical C-terminal sequence (aa 121–379) with STING but lacks a 120-amino acid N-terminal region encoding three conserved transmembrane (TM) domains. STING-∆N is expressed in various human tissues and cell lines. STING-∆N significantly suppressed IFN activation induced by cGAS, 2′3′-cGAMP, and STING. STING-∆N also reduced type I and III IFN induction in response to double-stranded DNA, HPV, and HSV-1. Additionally, STING-∆N promoted HSV-1 replication and inhibited STING-induced autophagy. Mechanistically, STING-∆N interacts with 2′3′-cGAMP, STING, and TBK1, sequestering their binding and disrupting the formation of the 2′3′-cGAMP-STING and STING-TBK1 complexes. Conclusions STING-∆N acts as a potent negative regulator of the cGAS-STING pathway, revealing a previously unrecognized regulatory mechanism by which alternative splicing modulates immune responses to DNA viruses. These findings suggest that STING-∆N could be a promising therapeutic target for modulating immune responses in viral infections, autoimmune diseases, and cancer.
Stimulator of interferon (IFN) genes (STING) is a central adaptor protein in the cGAS-STING signaling pathway, orchestrating the production of type I interferons (IFNs) in response to cytosolic DNA detection, a crucial mechanism in antiviral defense. However, further investigation is needed to understand how post-transcriptional regulation, particularly alternative splicing, modulates STING activity. We identified a novel alternatively spliced isoform of STING, termed STING-∆N, resulting from exon 3 skipping. We examined STING-∆N expression in various human tissues and cell lines and assessed its role in cGAS-STING signaling using RT-qPCR, luciferase reporter assays, SDD-AGE, immunofluorescence, and immunoblot analysis. We evaluated the influence of STING-∆N on HSV-1 proliferation and STING-induced autophagy by viral plaque assay and immunoblotting. To unravel the mechanistic role of STING-∆N, we further investigated its interaction with STING, TBK1, and 2'3'-cGAMP and its effect on the STING-TBK1 complex using co-immunoprecipitation and 2'3'-cGAMP pull-down assay. STING-∆N shares an identical C-terminal sequence (aa 121-379) with STING but lacks a 120-amino acid N-terminal region encoding three conserved transmembrane (TM) domains. STING-∆N is expressed in various human tissues and cell lines. STING-∆N significantly suppressed IFN activation induced by cGAS, 2'3'-cGAMP, and STING. STING-∆N also reduced type I and III IFN induction in response to double-stranded DNA, HPV, and HSV-1. Additionally, STING-∆N promoted HSV-1 replication and inhibited STING-induced autophagy. Mechanistically, STING-∆N interacts with 2'3'-cGAMP, STING, and TBK1, sequestering their binding and disrupting the formation of the 2'3'-cGAMP-STING and STING-TBK1 complexes. STING-∆N acts as a potent negative regulator of the cGAS-STING pathway, revealing a previously unrecognized regulatory mechanism by which alternative splicing modulates immune responses to DNA viruses. These findings suggest that STING-∆N could be a promising therapeutic target for modulating immune responses in viral infections, autoimmune diseases, and cancer.
ArticleNumber 299
Author Zhang, Jing
Deng, Jian
Li, Tao
Wang, Pei-Hui
Zheng, Sheng-Nan
Li, Cheng-Hao
Author_xml – sequence: 1
  givenname: Jian
  surname: Deng
  fullname: Deng, Jian
– sequence: 2
  givenname: Sheng-Nan
  surname: Zheng
  fullname: Zheng, Sheng-Nan
– sequence: 3
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
– sequence: 4
  givenname: Cheng-Hao
  surname: Li
  fullname: Li, Cheng-Hao
– sequence: 5
  givenname: Tao
  surname: Li
  fullname: Li, Tao
– sequence: 6
  givenname: Pei-Hui
  surname: Wang
  fullname: Wang, Pei-Hui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40544261$$D View this record in MEDLINE/PubMed
BookMark eNpdks1u1DAUhSNURH_gBVggS2xYNOC_xM4KVQXKSNWwoEjsrBvHnnqU2IOdTDXvwXPxTDgzpWpZWNfyPf507HtOiyMfvCmK1wS_J0TWHxKhTc1LTKu8GK7Ku2fFCeFClpKQn0eP9sfFaUprjCmvuHhRHHNccU5rclJsv98sllfln9_LcwTIh63pUdr0ThvkUrAhDihYtBedoyF0Uw-jSch5nytywzB5N-4Q-A7BNIbNLax2uYuiSZvgk0FjQJ-WF2jr4jRfs0aPLviXxXMLfTKv7utZ8ePL55vLr-X1t6vF5cV1qXmFx9JUgmguq0a0re4621rSWlpRaThAa5sa1xJT4EzXQIC3lAqRXyiBCaotSHZWLA7cLsBabaIbIO5UAKf2ByGuFMTR6d4oKyhmLWaAG85tLRsKpra8FRY3GWoy6-OBtZnawXTa-DFC_wT6tOPdrVqFrSKUSCKZyIR394QYfk0mjWpwSZu-B2_ClBSjdJ4oE7Pxt_9J12GKPv_VrBI1lxKTrHrz2NKDl3_zzQJ6EOgYUorGPkgIVnOI1CFEKodI7UOk7thfFFq6Qw
Cites_doi 10.1016/j.immuni.2008.09.003
10.1038/s41467-024-47046-5
10.1038/s41586-022-04559-7
10.1016/j.it.2017.07.013
10.1056/NEJMoa1312625
10.1172/JCI144339
10.1038/cmi.2010.55
10.1038/s41586-019-0998-5
10.1084/jem.20220990
10.1073/pnas.0504020102
10.1007/s00018-010-0605-2
10.1038/s41586-019-1000-2
10.4049/jimmunol.2200753
10.1126/science.1240933
10.1038/nri3682
10.15252/embr.201439366
10.3389/fimmu.2024.1356369
10.4049/immunohorizons.1800068
10.1038/nature07317
10.1038/s41586-021-03762-2
10.1038/ng1845
10.4049/jimmunol.1700699
10.1084/jem.20180139
10.1111/bpa.12545
10.1038/s41577-021-00524-z
10.1016/j.virol.2015.03.013
10.1093/nar/gky186
10.1016/j.immuni.2020.05.013
10.1146/annurev-micro-102215-095605
10.1038/s43018-022-00468-w
10.4049/jimmunol.1300798
10.1016/j.it.2006.09.002
10.1038/s41586-019-1006-9
10.3389/fimmu.2018.00084
10.1073/pnas.0900850106
10.1016/j.neuron.2023.10.014
10.1038/ncomms15676
10.1016/j.immuni.2012.03.019
10.1038/s41576-019-0151-1
10.1074/jbc.M109.072231
10.1126/scisignal.abb4752
10.1126/science.1232458
10.3389/fimmu.2022.888147
10.1016/j.coviro.2015.01.004
10.1073/pnas.2216953120
10.1002/jmv.27965
ContentType Journal Article
Copyright 2025. The Author(s).
2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: 2025. The Author(s).
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12964-025-02305-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1478-811X
EndPage 21
ExternalDocumentID oai_doaj_org_article_f7203b03a0944f6892ae6f4b7f09754e
PMC12181837
40544261
10_1186_s12964_025_02305_w
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 82471796
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2020QC085
– fundername: Postdoctoral Fellowship Program of CPSF
  grantid: GZC20231449
– fundername: National Key Research and Development Program of China
  grantid: 2021YFC2701203
– fundername: Taishan Scholar Project of Shandong Province
  grantid: tsqn202211006
GroupedDBID ---
0R~
29B
2WC
53G
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7XB
8FD
8FK
AZQEC
COVID
DWQXO
FR3
GNUQQ
K9.
M48
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c450t-e571c48597bbcddfbf1bf2528e4aabf9606802a43c6a1a4b22775478a372cfa83
IEDL.DBID DOA
ISSN 1478-811X
IngestDate Wed Aug 27 01:31:40 EDT 2025
Thu Aug 21 18:26:44 EDT 2025
Fri Jul 11 17:01:27 EDT 2025
Sat Aug 23 12:30:06 EDT 2025
Thu Jun 26 01:36:53 EDT 2025
Thu Jul 03 08:20:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Alternative splicing
cGAS
STING
STING-∆N
Autophagy
Antiviral immunity
HPV
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-e571c48597bbcddfbf1bf2528e4aabf9606802a43c6a1a4b22775478a372cfa83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f7203b03a0944f6892ae6f4b7f09754e
PMID 40544261
PQID 3227648801
PQPubID 40257
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_f7203b03a0944f6892ae6f4b7f09754e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12181837
proquest_miscellaneous_3222964378
proquest_journals_3227648801
pubmed_primary_40544261
crossref_primary_10_1186_s12964_025_02305_w
PublicationCentury 2000
PublicationDate 2025-06-21
PublicationDateYYYYMMDD 2025-06-21
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Cell communication and signaling
PublicationTitleAlternate Cell Commun Signal
PublicationYear 2025
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References H Chen (2305_CR32) 2014; 192
SL Ergun (2305_CR40) 2019; 178
C Li (2305_CR42) 2011; 8
Y Liu (2305_CR19) 2014; 371
N Qi (2305_CR44) 2017; 8
L Sun (2305_CR8) 2013; 339
D Lu (2305_CR16) 2022; 604
M Schmid (2305_CR37) 2024; 15
YW Hu (2305_CR41) 2018; 9
KJ Han (2305_CR43) 2010; 285
MF Bachmann (2305_CR4) 2023; 210
X Zhang (2305_CR14) 2020; 53
R Fang (2305_CR35) 2017; 199
H Ishikawa (2305_CR17) 2011; 68
H Ishikawa (2305_CR9) 2008; 455
F Guo (2305_CR38) 2018; 28
Q Li (2305_CR24) 2020; 2024
S Ouyang (2305_CR49) 2012; 36
YJ Crow (2305_CR18) 2006; 38
M Motwani (2305_CR6) 2019; 20
K Yang (2305_CR20) 2024; 112
T Li (2305_CR13) 2018; 215
A Decout (2305_CR26) 2021; 21
L Han (2305_CR33) 2022; 94
C Zhang (2305_CR39) 2019; 567
D Gao (2305_CR7) 2013; 341
B Zhong (2305_CR10) 2008; 29
A Dempsey (2305_CR3) 2015; 479–480
G Shang (2305_CR15) 2019; 567
F Hsin (2305_CR48) 2021; 14
KW Ng (2305_CR23) 2018; 39
W Sun (2305_CR11) 2009; 106
YK Chan (2305_CR5) 2015; 12
F Ma (2305_CR45) 2015; 16
BC Zhang (2305_CR47) 2024; 15
PH Wang (2305_CR29) 2018; 46
X Tan (2305_CR2) 2018; 72
N Samson (2305_CR25) 2022; 3
TT Chu (2305_CR21) 2021; 596
D Jeltema (2305_CR12) 2023; 220
S Carpenter (2305_CR28) 2014; 14
X Li (2305_CR30) 2022; 132
C Wang (2305_CR46) 2023; 120
X Gui (2305_CR36) 2019; 567
KJ Ishii (2305_CR1) 2006; 27
D Pyeon (2305_CR34) 2005; 102
E Rodriguez-Garcia (2305_CR31) 2018; 2
MS Woo (2305_CR22) 2024; 187
J Kang (2305_CR27) 2022; 13
References_xml – volume: 29
  start-page: 538
  year: 2008
  ident: 2305_CR10
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.09.003
– volume: 2024
  issue: 5
  year: 2020
  ident: 2305_CR24
  publication-title: MedComm
– volume: 15
  start-page: 2760
  year: 2024
  ident: 2305_CR47
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-47046-5
– volume: 604
  start-page: 557
  year: 2022
  ident: 2305_CR16
  publication-title: Nature
  doi: 10.1038/s41586-022-04559-7
– volume: 39
  start-page: 44
  year: 2018
  ident: 2305_CR23
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2017.07.013
– volume: 371
  start-page: 507
  year: 2014
  ident: 2305_CR19
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1312625
– volume: 132
  start-page: e144339
  issue: 3
  year: 2022
  ident: 2305_CR30
  publication-title: J Clin Invest.
  doi: 10.1172/JCI144339
– volume: 8
  start-page: 67
  year: 2011
  ident: 2305_CR42
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2010.55
– volume: 567
  start-page: 389
  year: 2019
  ident: 2305_CR15
  publication-title: Nature
  doi: 10.1038/s41586-019-0998-5
– volume: 220
  start-page: e20220990
  issue: 3
  year: 2023
  ident: 2305_CR12
  publication-title: J Exp Med.
  doi: 10.1084/jem.20220990
– volume: 102
  start-page: 9311
  year: 2005
  ident: 2305_CR34
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0504020102
– volume: 68
  start-page: 1157
  year: 2011
  ident: 2305_CR17
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-010-0605-2
– volume: 567
  start-page: 394
  year: 2019
  ident: 2305_CR39
  publication-title: Nature
  doi: 10.1038/s41586-019-1000-2
– volume: 210
  start-page: 3
  year: 2023
  ident: 2305_CR4
  publication-title: J Immunol
  doi: 10.4049/jimmunol.2200753
– volume: 341
  start-page: 903
  year: 2013
  ident: 2305_CR7
  publication-title: Science
  doi: 10.1126/science.1240933
– volume: 14
  start-page: 361
  year: 2014
  ident: 2305_CR28
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3682
– volume: 16
  start-page: 202
  year: 2015
  ident: 2305_CR45
  publication-title: EMBO Rep
  doi: 10.15252/embr.201439366
– volume: 15
  start-page: 1356369
  year: 2024
  ident: 2305_CR37
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2024.1356369
– volume: 2
  start-page: 363
  year: 2018
  ident: 2305_CR31
  publication-title: Immunohorizons
  doi: 10.4049/immunohorizons.1800068
– volume: 455
  start-page: 674
  year: 2008
  ident: 2305_CR9
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 596
  start-page: 570
  year: 2021
  ident: 2305_CR21
  publication-title: Nature
  doi: 10.1038/s41586-021-03762-2
– volume: 38
  start-page: 917
  year: 2006
  ident: 2305_CR18
  publication-title: Nat Genet
  doi: 10.1038/ng1845
– volume: 199
  start-page: 3222
  year: 2017
  ident: 2305_CR35
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1700699
– volume: 215
  start-page: 1287
  year: 2018
  ident: 2305_CR13
  publication-title: J Exp Med
  doi: 10.1084/jem.20180139
– volume: 28
  start-page: 3
  year: 2018
  ident: 2305_CR38
  publication-title: Brain Pathol
  doi: 10.1111/bpa.12545
– volume: 21
  start-page: 548
  year: 2021
  ident: 2305_CR26
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-021-00524-z
– volume: 479–480
  start-page: 146
  year: 2015
  ident: 2305_CR3
  publication-title: Virology
  doi: 10.1016/j.virol.2015.03.013
– volume: 46
  start-page: 4054
  year: 2018
  ident: 2305_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky186
– volume: 53
  start-page: 43
  year: 2020
  ident: 2305_CR14
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.05.013
– volume: 72
  start-page: 447
  year: 2018
  ident: 2305_CR2
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-102215-095605
– volume: 3
  start-page: 1452
  year: 2022
  ident: 2305_CR25
  publication-title: Nat Cancer
  doi: 10.1038/s43018-022-00468-w
– volume: 192
  start-page: 1162
  year: 2014
  ident: 2305_CR32
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1300798
– volume: 27
  start-page: 525
  year: 2006
  ident: 2305_CR1
  publication-title: DNA Trends Immunol
  doi: 10.1016/j.it.2006.09.002
– volume: 187
  issue: 4043–4060
  year: 2024
  ident: 2305_CR22
  publication-title: Cell
– volume: 567
  start-page: 262
  year: 2019
  ident: 2305_CR36
  publication-title: Nature
  doi: 10.1038/s41586-019-1006-9
– volume: 9
  start-page: 84
  year: 2018
  ident: 2305_CR41
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00084
– volume: 106
  start-page: 8653
  year: 2009
  ident: 2305_CR11
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0900850106
– volume: 112
  start-page: 539
  year: 2024
  ident: 2305_CR20
  publication-title: Neuron
  doi: 10.1016/j.neuron.2023.10.014
– volume: 8
  start-page: 15676
  year: 2017
  ident: 2305_CR44
  publication-title: Nat Commun
  doi: 10.1038/ncomms15676
– volume: 36
  start-page: 1073
  year: 2012
  ident: 2305_CR49
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.019
– volume: 20
  start-page: 657
  year: 2019
  ident: 2305_CR6
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0151-1
– volume: 285
  start-page: 12543
  year: 2010
  ident: 2305_CR43
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.072231
– volume: 14
  start-page: eabb4752
  issue: 687
  year: 2021
  ident: 2305_CR48
  publication-title: Sci Signal
  doi: 10.1126/scisignal.abb4752
– volume: 339
  start-page: 786
  year: 2013
  ident: 2305_CR8
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 13
  year: 2022
  ident: 2305_CR27
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.888147
– volume: 12
  start-page: 7
  year: 2015
  ident: 2305_CR5
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2015.01.004
– volume: 178
  issue: 290–301
  year: 2019
  ident: 2305_CR40
  publication-title: Cell
– volume: 120
  year: 2023
  ident: 2305_CR46
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2216953120
– volume: 94
  start-page: 5174
  year: 2022
  ident: 2305_CR33
  publication-title: J Med Virol
  doi: 10.1002/jmv.27965
SSID ssj0024547
Score 2.3828611
Snippet Stimulator of interferon (IFN) genes (STING) is a central adaptor protein in the cGAS-STING signaling pathway, orchestrating the production of type I...
BackgroundStimulator of interferon (IFN) genes (STING) is a central adaptor protein in the cGAS-STING signaling pathway, orchestrating the production of type I...
Abstract Background Stimulator of interferon (IFN) genes (STING) is a central adaptor protein in the cGAS-STING signaling pathway, orchestrating the production...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 299
SubjectTerms Adaptor proteins
Alternative Splicing
Amino acid sequence
Animals
Antibodies
Antiviral immunity
Autoimmune diseases
Autophagy
cGAS
Cytokines
Deoxyribonucleic acid
DNA
DNA Virus Infections - genetics
DNA Virus Infections - immunology
DNA Viruses
Gene regulation
HEK293 Cells
Herpes viruses
Herpesvirus 1, Human - physiology
HPV
Humans
Immune response
Immunity (Disease)
Immunity, Innate
Immunoblotting
Immunofluorescence
Immunoprecipitation
Infections
Innate immunity
Interferon
Medical research
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Nucleotidyltransferases - metabolism
Penicillin
Phosphorylation
Plaque assay
Plasmids
Post-transcription
Protein Isoforms - genetics
Protein Isoforms - metabolism
Protein Serine-Threonine Kinases - metabolism
Proteins
Reagents
Signal Transduction
STING
STING-∆N
Therapeutic targets
Thymus gland
Viral infections
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagCIkL4r-BgozEjVqNE8f2nlALlILEXmilvVl2bJdI1Cmb7Fb7HjwXz1SPk92yCHGKFDvSKDNjz-cZf4PQG2HyiZdWEGHqgjDL8-hzFLq5s9zE_dwbCneHv075yRn7Mqtm44FbN5ZVrtfEtFDbtoYz8oNoeIKDtdF3lz8JdI2C7OrYQuM2ugPUZWDVYnYDuICsan1RRvKDjkKOkUADV4i8K3K1tRklzv5_BZp_10v-sQEdP0D3x8gRHw6qfohuufAI3R16Sa4eo-W308_TT-T3r-k-1ji0S_cDd5CcdrjpWghNcetxmrSPL1oLbbtch5sQ4hM36ZpIv8I6WKwXwDagz1dxFM-HIlqH-xZ_mB7iZTNfwGdDDVd4gs6OP56-PyFjUwVSsyrviasErZmMOMKY2lpvPDW-qArpmNbGA6CReaFZWXNNNTPxtwvg_NKlKGqvZfkU7YQ2uF2EnZeO2py6CGFYzWtpJ0ZbVgqvy9xzm6G367-rLgfuDJUwh-Rq0IWKulBJF-oqQ0eggM1M4L1OL9r5uRrdSHnIGpu81BGVMs_lpNCOe2aEzydRTJehvbX61OiMnboxnQy93gxHN4LciA6uXaQ5IFApZIaeDdreSBJjWgZIM0Nyyw62RN0eCc33RNVNIYKSpXj-f7leoHtFMktOCrqHdvr5wr2MwU5vXiWLvgY7Zv9o
  priority: 102
  providerName: ProQuest
Title STING-ΔN, a novel splice isoform of STING, modulates innate immunity and autophagy in response to DNA virus infection
URI https://www.ncbi.nlm.nih.gov/pubmed/40544261
https://www.proquest.com/docview/3227648801
https://www.proquest.com/docview/3222964378
https://pubmed.ncbi.nlm.nih.gov/PMC12181837
https://doaj.org/article/f7203b03a0944f6892ae6f4b7f09754e
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEA96Ivgi_rd6LhF888o1aZpkH2_1zlOwyHkHiy8haZOzoKlsu3vs9_Bz-ZnMpNvlVgRffGmhSSHtzGTmx0x-g9ArYbKpk7VIhaloymqeBZsj0M2dZSb4c2cInB3-WPLTC_ZhXsyvtfqCmrCBHnj4cYcO8oQmy3XAIcxxOaXacseMcNlUFMzC7ht83gimRpa9gonxiIzkhx2B7GIKrVsh5i7Sqx03FNn6_xZi_lkpec31nNxDdzcxIz4a1nof3bD-Abo9dJFcP0Srz-fvy3fpr5_lAdbYtyv7DXeQlra46VoISnHrcJx0gL-3NTTssh1uvA933MQDIv0aa19jvQSeAX25DqN4MZTPWty3-G15hFfNYgmvDdVb_hG6ODk-f3OabtoppBUrsj61hSAVkwFBGFPVtTOOGEcLKi3T2jiAMjKjmuUV10QzQymw4wmpc0Erp2X-GO351tunCFsnLakzYgN4YRWvZD01uma5cDrPHK8T9Hr8u-rHwJqhItqQXA2yUEEWKspCXSVoBgLYzgTG6_gg6IHa6IH6lx4kaH8Un9qYYafCbiU4bFEkQS-3w8GAICuivW2XcQ4sKBcyQU8GaW9XEqJZBhgzQXJHD3aWujvim6-RpJtA7BTQ_7P_8XHP0R0alZenlOyjvX6xtC9CMNSbCbop5mKCbs2Oy09nk2gF4Xo2-_IbBGwK7w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGEIIbxD-BAUaCKxYtThzbvUBoMEbLtt7QSb0zdmyPSpCMJm3V9-A5eBSeCR-n6ShC3O0qUuwkRz7n2N_J-UPoBddJzwnDY66LNKaGJV7nCHRzp4n257nTBHKHT4asf0o_jvPxFvrZ5cJAWGW3J4aN2lQF_CPf84LHGUgbeXP-PYauUeBd7VpotGJxZJcLb7LVrwcHnr8v0_Tw_ehdP151FYgLmidNbHNOCio8kNa6MMZpR7RL81RYqpR2gOhFkiqaFUwRRbX_LoeiVyrjaeGUyPx7r6Cr_uBNwNjj4wsDD4pjdYk5gu3VBHyaMTSMBaSfx4uNwy_0CPgXsP07PvOPA-_wFrq5Qqp4vxWt22jLlnfQtbZ35fIumn8aDYYf4l8_hrtY4bKa26-4Bme4xZO6AiiMK4fDpF38rTLQJszWeFKW_oonIS2lWWJVGqxmUN1AnS39KJ62QbsWNxU-GO7j-WQ6g8famLHyHjq9lOW-j7bLqrQPEbZOWGISYr3JRAtWCNPTytCMO5UljpkIvepWV563tTpksHEEky0vpOeFDLyQiwi9BQasZ0Kd7XCjmp7JldpKB15qnWTKW8HUMdFLlWWOau6SnifTRminY59cKX8tL0Q1Qs_Xw15twRejSlvNwhwgKOMiQg9abq8p8RiagmUbIbEhBxukbo6Uky-hNDgBxCYy_uj_dD1D1_ujk2N5PBgePUY30iCiLE7JDtpupjP7xAOtRj8N0o3R58tWp9_ZsDzK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STING-%CE%94N%2C+a+novel+splice+isoform+of+STING%2C+modulates+innate+immunity+and+autophagy+in+response+to+DNA+virus+infection&rft.jtitle=Cell+communication+and+signaling&rft.au=Deng%2C+Jian&rft.au=Zheng%2C+Sheng-Nan&rft.au=Zhang%2C+Jing&rft.au=Li%2C+Cheng-Hao&rft.date=2025-06-21&rft.pub=BioMed+Central&rft.eissn=1478-811X&rft.volume=23&rft_id=info:doi/10.1186%2Fs12964-025-02305-w&rft.externalDocID=PMC12181837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-811X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-811X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-811X&client=summon