A Novel Artificial Bee Colony Algorithm Based on Modified Search Equation and Orthogonal Learning
The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To addres...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 43; no. 3; pp. 1011 - 1024 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions. |
---|---|
AbstractList | The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions. The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions.The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions. |
Author | Wei-feng Gao San-yang Liu Ling-ling Huang |
Author_xml | – sequence: 1 givenname: Wei-feng surname: Gao fullname: Gao, Wei-feng email: gaoweifeng2004@126.com organization: Xidian University, Xi'an 710071, China. gaoweifeng2004@126.com – sequence: 2 givenname: San-yang surname: Liu fullname: Liu, San-yang – sequence: 3 givenname: Ling-ling surname: Huang fullname: Huang, Ling-ling |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23086528$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P4zAQhi3Eavn8A6y0srQXLi3-iBPn2FZ8SWU5wJ6tSTJpjVIb7ASp_35dWjhwgLl45Hne0cy8R2TfeYeEnHE25pyVF48Pd7PpWDAuxiKFLOQeORQ81yMhCrX_kefFATmN8Yml0Omr1D_JgZBM50roQwIT-te_YkcnobetrS10dIpIZ77zbk0n3cIH2y9XdAoRG-odvfNNAlP-gBDqJb18GaC3qQCuofehX_qFd6nLPJWddYsT8qOFLuLp7j0m_64uH2c3o_n99e1sMh_VmWL9CLls61xklS7btA0yCUUBTLISMoBKKlFmDUDNuKxU1m4waKSEpioapctKHpPzbd_n4F8GjL1Z2Vhj14FDP0TDMylyXmqlv0dlIXLBOS8T-ucT-uSHkPbbUIppxdNAifq9o4ZqhY15DnYFYW3e75wAvQXq4GMM2Jra9m9n6wPYznBmNq6aN1fNxlWzczVJxSfpe_cvRb-2IouIH4JcSqGkkv8BOUCq1A |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1049_iet_est_2013_0047 crossref_primary_10_1016_j_ins_2018_02_025 crossref_primary_10_1016_j_eswa_2019_113113 crossref_primary_10_1016_j_geog_2024_05_004 crossref_primary_10_1007_s11071_021_06983_2 crossref_primary_10_1007_s11227_019_02786_w crossref_primary_10_1016_j_swevo_2019_06_006 crossref_primary_10_1016_j_knosys_2019_105169 crossref_primary_10_1016_j_ifacol_2015_12_369 crossref_primary_10_1016_j_eswa_2014_11_045 crossref_primary_10_12677_CSA_2020_1011215 crossref_primary_10_1007_s00521_015_1826_y crossref_primary_10_1016_j_asoc_2017_05_005 crossref_primary_10_1016_j_ins_2018_06_032 crossref_primary_10_1109_TFUZZ_2018_2856120 crossref_primary_10_1007_s00500_017_2485_y crossref_primary_10_1142_S0219622020500078 crossref_primary_10_1016_j_apm_2020_12_023 crossref_primary_10_1016_j_future_2018_06_054 crossref_primary_10_1155_2019_6523435 crossref_primary_10_1016_j_energy_2017_12_052 crossref_primary_10_1016_j_swevo_2016_04_002 crossref_primary_10_1016_j_egyr_2022_08_010 crossref_primary_10_1016_j_ins_2017_07_011 crossref_primary_10_3390_math13030472 crossref_primary_10_1016_j_ins_2022_07_016 crossref_primary_10_3233_JIFS_182706 crossref_primary_10_1007_s00607_023_01168_8 crossref_primary_10_1155_2016_2749035 crossref_primary_10_1016_j_compbiomed_2023_107293 crossref_primary_10_1016_j_irbm_2020_07_005 crossref_primary_10_1541_ieejjia_21005358 crossref_primary_10_1155_2018_6906295 crossref_primary_10_1109_TSMC_2016_2558045 crossref_primary_10_1016_j_engappai_2019_103457 crossref_primary_10_2139_ssrn_4155123 crossref_primary_10_1016_j_amc_2014_11_104 crossref_primary_10_1016_j_eswa_2018_11_032 crossref_primary_10_1109_TEM_2020_2971109 crossref_primary_10_1007_s10845_015_1092_y crossref_primary_10_1016_j_ins_2017_11_007 crossref_primary_10_1016_j_rser_2018_11_012 crossref_primary_10_1016_j_eswa_2019_112921 crossref_primary_10_1016_j_knosys_2020_106729 crossref_primary_10_1016_j_ins_2015_04_006 crossref_primary_10_1109_ACCESS_2018_2880814 crossref_primary_10_1007_s11071_015_2251_6 crossref_primary_10_1007_s00500_019_03964_x crossref_primary_10_1016_j_cor_2013_07_021 crossref_primary_10_1016_j_eswa_2024_125495 crossref_primary_10_1016_j_cie_2023_109111 crossref_primary_10_1007_s00521_014_1636_7 crossref_primary_10_3390_a11060078 crossref_primary_10_1016_j_engappai_2014_10_022 crossref_primary_10_1007_s00521_018_3587_x crossref_primary_10_3390_axioms11100523 crossref_primary_10_1007_s43236_020_00041_7 crossref_primary_10_1109_ACCESS_2016_2601167 crossref_primary_10_1109_ACCESS_2017_2723538 crossref_primary_10_1016_j_ins_2014_03_031 crossref_primary_10_1016_j_knosys_2022_108664 crossref_primary_10_32604_cmc_2021_014404 crossref_primary_10_1007_s10586_024_04382_x crossref_primary_10_1016_j_bspc_2017_06_015 crossref_primary_10_1016_j_jnca_2017_01_031 crossref_primary_10_1007_s11045_015_0352_5 crossref_primary_10_1016_j_asoc_2023_110906 crossref_primary_10_1007_s11045_021_00798_5 crossref_primary_10_1007_s00500_017_2689_1 crossref_primary_10_1002_cpe_6216 crossref_primary_10_1007_s13042_018_0878_6 crossref_primary_10_1016_j_asoc_2022_109649 crossref_primary_10_1016_j_engappai_2017_04_021 crossref_primary_10_1016_j_engappai_2021_104309 crossref_primary_10_1155_2014_961069 crossref_primary_10_1007_s40747_020_00171_2 crossref_primary_10_1016_j_compeleceng_2017_10_021 crossref_primary_10_1007_s00500_016_2334_4 crossref_primary_10_1016_j_asoc_2015_05_041 crossref_primary_10_1016_j_eswa_2018_03_009 crossref_primary_10_1016_j_swevo_2018_05_002 crossref_primary_10_1109_TEVC_2022_3160196 crossref_primary_10_1016_j_engappai_2013_09_011 crossref_primary_10_1016_j_engappai_2022_105620 crossref_primary_10_1016_j_neucom_2019_04_086 crossref_primary_10_1007_s00500_019_03939_y crossref_primary_10_1016_j_swevo_2019_100582 crossref_primary_10_1007_s12293_020_00298_2 crossref_primary_10_1080_08839514_2021_2008147 crossref_primary_10_3390_app10103352 crossref_primary_10_1016_j_engappai_2017_10_024 crossref_primary_10_1016_j_eswa_2021_114887 crossref_primary_10_1111_exsy_13621 crossref_primary_10_1016_j_asoc_2018_11_047 crossref_primary_10_1016_j_compeleceng_2017_12_037 crossref_primary_10_1049_iet_smt_2016_0444 crossref_primary_10_1016_j_eswa_2021_116332 crossref_primary_10_1080_02726343_2019_1675443 crossref_primary_10_1155_2016_6204728 crossref_primary_10_1016_j_eswax_2020_100032 crossref_primary_10_1017_S1759078718000247 crossref_primary_10_1007_s00521_015_1851_x crossref_primary_10_1016_j_jhydrol_2021_127348 crossref_primary_10_1155_2015_674595 crossref_primary_10_1109_ACCESS_2018_2864324 crossref_primary_10_1016_j_cie_2023_109428 crossref_primary_10_59324_ejaset_2025_3_2__10 crossref_primary_10_1016_j_asoc_2016_12_017 crossref_primary_10_1109_ACCESS_2020_3015473 crossref_primary_10_1080_23311916_2020_1855741 crossref_primary_10_1016_j_engappai_2019_06_013 crossref_primary_10_1109_TMTT_2016_2586055 crossref_primary_10_1016_j_asoc_2017_04_059 crossref_primary_10_1016_j_matcom_2022_11_021 crossref_primary_10_17341_gazimmfd_986747 crossref_primary_10_1016_j_cor_2015_02_008 crossref_primary_10_1007_s10462_021_10015_1 crossref_primary_10_1016_j_conbuildmat_2024_138084 crossref_primary_10_1109_ACCESS_2023_3244792 crossref_primary_10_1016_j_heliyon_2023_e16086 crossref_primary_10_3390_math10234509 crossref_primary_10_1016_j_knosys_2021_107636 crossref_primary_10_1007_s00500_018_3515_0 crossref_primary_10_1007_s40747_023_01085_5 crossref_primary_10_1080_15325008_2016_1201874 crossref_primary_10_3390_s24216794 crossref_primary_10_1016_j_asoc_2019_106037 crossref_primary_10_1007_s00500_019_03785_y crossref_primary_10_1016_j_dsp_2013_10_019 crossref_primary_10_1016_j_ins_2020_07_037 crossref_primary_10_1109_ACCESS_2019_2941247 crossref_primary_10_1142_S0218126620501558 crossref_primary_10_1038_s41598_023_38855_7 crossref_primary_10_3390_app131810445 crossref_primary_10_1016_j_ins_2014_12_015 crossref_primary_10_1109_TCYB_2020_3026716 crossref_primary_10_1007_s00500_015_1774_6 crossref_primary_10_1016_j_energy_2020_116946 crossref_primary_10_1109_ACCESS_2019_2934994 crossref_primary_10_1016_j_oceaneng_2024_119155 crossref_primary_10_1016_j_jsv_2020_115315 crossref_primary_10_1016_j_asoc_2018_10_024 crossref_primary_10_1080_03081060_2023_2246959 crossref_primary_10_1109_TCYB_2015_2444383 crossref_primary_10_1007_s00500_023_08491_4 crossref_primary_10_1016_j_swevo_2016_06_001 crossref_primary_10_1088_1402_4896_ad67b4 crossref_primary_10_1109_TCSII_2019_2909965 crossref_primary_10_1016_j_apacoust_2020_107234 crossref_primary_10_3390_s22228916 crossref_primary_10_1049_gtd2_12031 crossref_primary_10_1007_s13042_020_01094_7 crossref_primary_10_1007_s00500_021_06062_z crossref_primary_10_1109_ACCESS_2017_2705019 crossref_primary_10_1007_s00500_019_04502_5 crossref_primary_10_1016_j_asoc_2024_112601 crossref_primary_10_1109_ACCESS_2018_2886629 crossref_primary_10_1016_j_asoc_2019_106053 crossref_primary_10_1109_TSMC_2020_2963943 crossref_primary_10_1007_s00500_019_03858_y crossref_primary_10_1080_13682199_2020_1827814 crossref_primary_10_1016_j_swevo_2017_12_004 crossref_primary_10_1515_cait_2017_0027 crossref_primary_10_1016_j_ins_2022_08_001 crossref_primary_10_1016_j_asoc_2019_03_010 crossref_primary_10_1016_j_neucom_2016_08_003 crossref_primary_10_1109_ACCESS_2019_2915343 crossref_primary_10_1007_s00500_017_2815_0 crossref_primary_10_1007_s13369_021_06178_2 crossref_primary_10_4316_AECE_2017_03011 crossref_primary_10_1007_s10462_017_9564_4 crossref_primary_10_1109_ACCESS_2023_3264966 crossref_primary_10_1007_s00500_014_1549_5 crossref_primary_10_1016_j_ins_2023_119340 crossref_primary_10_1155_2015_138930 crossref_primary_10_4316_AECE_2017_03012 crossref_primary_10_1142_S0218001422590108 crossref_primary_10_1109_ACCESS_2023_3269066 crossref_primary_10_1016_j_ins_2019_02_014 crossref_primary_10_1016_j_asoc_2018_06_034 crossref_primary_10_1007_s00500_015_1977_x crossref_primary_10_1007_s00500_018_03683_9 crossref_primary_10_1109_TII_2018_2857198 crossref_primary_10_3390_rs15174296 crossref_primary_10_1007_s12530_019_09294_5 crossref_primary_10_1016_j_matcom_2023_11_019 crossref_primary_10_1016_j_compbiomed_2021_105137 crossref_primary_10_1155_2014_695637 crossref_primary_10_1109_ACCESS_2019_2905666 crossref_primary_10_1109_TSTE_2014_2363521 crossref_primary_10_1016_j_asoc_2023_110627 crossref_primary_10_1109_ACCESS_2021_3050752 crossref_primary_10_1016_j_swevo_2024_101686 crossref_primary_10_1007_s12065_021_00688_6 crossref_primary_10_1007_s00500_017_2685_5 crossref_primary_10_1007_s11277_018_5341_1 crossref_primary_10_1016_j_asoc_2020_106656 crossref_primary_10_1016_j_engappai_2023_107816 crossref_primary_10_1016_j_patcog_2017_09_033 crossref_primary_10_1016_j_jii_2021_100293 crossref_primary_10_1016_j_asoc_2014_08_013 crossref_primary_10_1016_j_ins_2023_119609 crossref_primary_10_1016_j_conengprac_2017_02_010 crossref_primary_10_1016_j_knosys_2019_105002 crossref_primary_10_1016_j_engappai_2016_10_014 crossref_primary_10_1016_j_apm_2020_05_019 crossref_primary_10_1109_ACCESS_2020_2981656 crossref_primary_10_1007_s11227_023_05618_0 crossref_primary_10_1016_j_eswa_2020_113617 crossref_primary_10_1016_j_enconman_2013_12_052 crossref_primary_10_1007_s00500_018_3473_6 crossref_primary_10_1007_s00521_019_04465_6 crossref_primary_10_1016_j_asoc_2018_06_013 crossref_primary_10_1109_ACCESS_2023_3253796 crossref_primary_10_1016_j_adhoc_2023_103284 crossref_primary_10_1016_j_ins_2014_02_104 crossref_primary_10_1016_j_asoc_2015_10_070 crossref_primary_10_1007_s11432_016_0089_7 crossref_primary_10_1515_jisys_2016_0060 crossref_primary_10_1016_j_ins_2014_04_050 crossref_primary_10_3390_app12115707 crossref_primary_10_1109_ACCESS_2015_2397701 crossref_primary_10_1109_TCYB_2019_2943606 crossref_primary_10_1016_j_compbiomed_2024_109175 crossref_primary_10_1109_ACCESS_2018_2840512 crossref_primary_10_1016_j_asoc_2017_11_012 crossref_primary_10_1007_s00521_016_2687_8 crossref_primary_10_1007_s42107_020_00299_z crossref_primary_10_1016_j_ins_2016_07_022 crossref_primary_10_1155_2017_4851493 crossref_primary_10_3390_app14020846 crossref_primary_10_1016_j_asoc_2018_02_019 crossref_primary_10_1038_s41598_023_37895_3 crossref_primary_10_1109_ACCESS_2019_2910813 crossref_primary_10_1109_TCYB_2014_2387067 crossref_primary_10_1109_ACCESS_2019_2926155 crossref_primary_10_1016_j_swevo_2019_01_003 crossref_primary_10_3390_e17020692 crossref_primary_10_1007_s10489_021_02711_w crossref_primary_10_1007_s11042_023_14510_1 crossref_primary_10_1016_j_heliyon_2023_e20867 crossref_primary_10_1007_s00521_016_2348_y crossref_primary_10_1016_j_sjbs_2017_01_044 crossref_primary_10_1016_j_compbiomed_2023_107838 crossref_primary_10_1016_j_ins_2017_05_044 crossref_primary_10_1007_s11227_022_04930_5 crossref_primary_10_1155_2015_375902 crossref_primary_10_1155_2018_3102628 crossref_primary_10_1177_0954406218776680 crossref_primary_10_3390_math9182250 crossref_primary_10_1109_TIV_2023_3319110 crossref_primary_10_1016_j_asoc_2017_01_031 crossref_primary_10_1109_ACCESS_2019_2894718 |
Cites_doi | 10.1109/TEVC.2008.919004 10.1007/b99492 10.1109/TSMCA.2007.914796 10.1142/S012906571000222X 10.1109/ICNC.2010.5583169 10.1016/j.ins.2011.04.024 10.3390/s110606056 10.1016/j.ins.2011.04.018 10.1108/02644400410511864 10.1109/4235.910464 10.1016/j.compstruc.2009.03.001 10.1016/j.amc.2010.08.049 10.1016/j.asoc.2011.08.040 10.1016/j.asoc.2009.12.025 10.1109/79.543973 10.1109/TEVC.2006.872133 10.1109/ICCITECHN.2010.5723831 10.1016/j.asoc.2010.11.025 10.1162/evco.2006.14.1.119 10.1109/MWSCAS.2011.6026558 10.1109/TEVC.2008.927706 10.1109/TMAG.2010.2087317 10.1016/j.eswa.2010.02.042 10.1016/j.ins.2010.07.015 10.1109/TEVC.2004.826074 10.1109/TEVC.2010.2052054 10.1109/ICNN.1995.488968 10.1109/TEVC.2004.826895 10.1023/A:1008202821328 10.1109/TEVC.2003.816583 10.1016/j.amc.2009.03.090 10.1109/4235.735431 10.1016/j.ins.2011.09.001 10.1109/4235.771163 10.1109/4235.752920 10.1109/TEVC.2004.826071 10.1016/j.ins.2009.12.025 10.1109/TSMCB.2010.2056367 10.4249/scholarpedia.6915 10.1016/j.asoc.2007.05.007 10.1109/TEVC.2009.2014613 10.1109/TEVC.2005.857610 10.1007/978-3-642-13495-1_68 10.1016/j.ipl.2011.06.002 10.1016/j.ins.2011.02.023 10.1007/s10898-007-9149-x 10.1109/TEVC.2006.886802 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TSMCB.2012.2222373 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE Aerospace Database Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Sciences (General) |
EISSN | 2168-2275 |
EndPage | 1024 |
ExternalDocumentID | 2969850591 23086528 10_1109_TSMCB_2012_2222373 6332535 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c450t-e13fc624b89f237e03a77a0309a4aab35294daac013b54fb89fad33adb7d589b3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 06:48:11 EDT 2025 Fri Jul 11 00:10:09 EDT 2025 Sun Jun 29 13:54:46 EDT 2025 Mon Jul 21 06:02:14 EDT 2025 Tue Jul 01 04:35:03 EDT 2025 Thu Apr 24 22:50:53 EDT 2025 Tue Aug 26 16:43:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-e13fc624b89f237e03a77a0309a4aab35294daac013b54fb89fad33adb7d589b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 23086528 |
PQID | 1350851013 |
PQPubID | 85422 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1372621119 proquest_journals_1350851013 crossref_citationtrail_10_1109_TSMCB_2012_2222373 crossref_primary_10_1109_TSMCB_2012_2222373 proquest_miscellaneous_1432619858 ieee_primary_6332535 pubmed_primary_23086528 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-June 2013-6-00 2013-Jun 20130601 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-June |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2013 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref10 ref17 ref16 ref19 ref18 (ref37) 1975 dorigo (ref4) 2004 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 karaboga (ref11) 2009; 19 ref44 ref43 ref49 karaboga (ref6) 2005 ref8 ref7 ref9 ref3 ref5 ref40 ozturk (ref13) 2011; 11 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 tsai (ref20) 2009; 5 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref5 doi: 10.1109/TEVC.2008.919004 – year: 2004 ident: ref4 publication-title: Ant Colony Optimization doi: 10.1007/b99492 – ident: ref33 doi: 10.1109/TSMCA.2007.914796 – ident: ref29 doi: 10.1142/S012906571000222X – ident: ref30 doi: 10.1109/ICNC.2010.5583169 – ident: ref26 doi: 10.1016/j.ins.2011.04.024 – volume: 11 start-page: 6056 year: 2011 ident: ref13 article-title: Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm publication-title: SENSORS doi: 10.3390/s110606056 – ident: ref14 doi: 10.1016/j.ins.2011.04.018 – ident: ref43 doi: 10.1108/02644400410511864 – ident: ref36 doi: 10.1109/4235.910464 – ident: ref25 doi: 10.1016/j.compstruc.2009.03.001 – ident: ref17 doi: 10.1016/j.amc.2010.08.049 – ident: ref19 doi: 10.1016/j.asoc.2011.08.040 – ident: ref12 doi: 10.1016/j.asoc.2009.12.025 – ident: ref1 doi: 10.1109/79.543973 – ident: ref45 doi: 10.1109/TEVC.2006.872133 – ident: ref23 doi: 10.1109/ICCITECHN.2010.5723831 – ident: ref18 doi: 10.1016/j.asoc.2010.11.025 – ident: ref40 doi: 10.1162/evco.2006.14.1.119 – year: 1975 ident: ref37 publication-title: Orthogonal Design – ident: ref31 doi: 10.1109/MWSCAS.2011.6026558 – ident: ref46 doi: 10.1109/TEVC.2008.927706 – ident: ref21 doi: 10.1109/TMAG.2010.2087317 – ident: ref27 doi: 10.1016/j.eswa.2010.02.042 – ident: ref24 doi: 10.1016/j.ins.2010.07.015 – ident: ref49 doi: 10.1109/TEVC.2004.826074 – ident: ref32 doi: 10.1109/TEVC.2010.2052054 – ident: ref2 doi: 10.1109/ICNN.1995.488968 – ident: ref39 doi: 10.1109/TEVC.2004.826895 – year: 2005 ident: ref6 publication-title: An Idea Based on Honey Bee Swarm for Numerical Optimization – ident: ref3 doi: 10.1023/A:1008202821328 – ident: ref41 doi: 10.1109/TEVC.2003.816583 – ident: ref9 doi: 10.1016/j.amc.2009.03.090 – volume: 19 start-page: 279 year: 2009 ident: ref11 article-title: Neural networks training by artificial bee colony algorithm on pattern classification publication-title: Neural Netw World – ident: ref44 doi: 10.1109/4235.735431 – ident: ref35 doi: 10.1016/j.ins.2011.09.001 – ident: ref42 doi: 10.1109/4235.771163 – ident: ref34 doi: 10.1109/4235.752920 – ident: ref50 doi: 10.1109/TEVC.2004.826071 – ident: ref15 doi: 10.1016/j.ins.2009.12.025 – ident: ref48 doi: 10.1109/TSMCB.2010.2056367 – ident: ref10 doi: 10.4249/scholarpedia.6915 – ident: ref8 doi: 10.1016/j.asoc.2007.05.007 – ident: ref47 doi: 10.1109/TEVC.2009.2014613 – ident: ref51 doi: 10.1109/TEVC.2005.857610 – ident: ref28 doi: 10.1007/978-3-642-13495-1_68 – ident: ref22 doi: 10.1016/j.ipl.2011.06.002 – ident: ref16 doi: 10.1016/j.ins.2011.02.023 – volume: 5 start-page: 1 year: 2009 ident: ref20 article-title: Enhanced artificial bee colony optimization publication-title: Int J Innovative Comput Inf Control – ident: ref7 doi: 10.1007/s10898-007-9149-x – ident: ref38 doi: 10.1109/TEVC.2006.886802 |
SSID | ssj0000816898 |
Score | 2.4903436 |
Snippet | The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1011 |
SubjectTerms | Algorithms Animals Artificial bee colony (ABC) algorithm Artificial Intelligence Bees - physiology Behavior, Animal - physiology Biomimetics - methods Colonies Convergence Equations Exploitation Humans Learning Mathematical analysis Mathematical model Optimization orthogonal experimental design (OED) orthogonal learning (OL) Oscillators Pattern Recognition, Automated - methods Sampling search equation Searching Sociology Statistics Strategy Studies |
Title | A Novel Artificial Bee Colony Algorithm Based on Modified Search Equation and Orthogonal Learning |
URI | https://ieeexplore.ieee.org/document/6332535 https://www.ncbi.nlm.nih.gov/pubmed/23086528 https://www.proquest.com/docview/1350851013 https://www.proquest.com/docview/1372621119 https://www.proquest.com/docview/1432619858 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PfUCffBIKchIHECQbWI7r-PuqlWFtOVAK_UW2bGzRbRJ2WaR6K_vTOxECEHFzVLGiq3xeL6xx_MBvBOZjXDr1WGh0jSUPNJhnuRVWFdxXJuIKAvpgfPiLD29kJ8vk8sN-DS-hbHW9slndkLN_i7ftNWajsqOUiF4IpJN2MTAzb3VGs9TegKJnvqWYyNEVJENb2Si4uj862I-o0QuPuHkETPiz0H0nacJ8bD_5pJ6jpV_w83e7Zw8hcUwYJdt8n2y7vSkuv-jluP_zmgHnnj8yaZuwezChm32YNdb-B1778tQf9iDbcKhrozzPqgpO2t_WtfRFZ1gM2vZHPfO5hebXi_b1bfu6obN0Csa1jZs0RoUxLZLaGbHP1xRcaYaw76suqt2SUEA8wVel8_g4uT4fH4aenaGsJJJ1IU2FnWVcqlRm5xULlSWKbqxUVIpjcCukEapCjGmTmRNYsoIoYzOTJIXWjyHraZt7EtgRVHldW4RTIlUGq4017lGLCRNZhUCqgDiQUFl5UuXE4PGddmHMFFR9votSb-l128AH8c-t65wx6PS-6ScUdLrJYDDYR2U3rbvylgkhFNxXgG8HT-jVdJVi2psuyaZjKcYW8fFIzJSUPiKphHAC7fGxv8PS_Pg7-N6Bdvc0XKEUXwIW91qbV8jOOr0m94qHgD2awZO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcqAXoC2PQAEjcQBBtontvI67q1YLdJcDW6m3yI6dLWqbwDaLBL-emTiJEIKKm6WMFVvj8Xxjj-cDeCUSG-DWq_1MxbEveaD9NEoLvyzCsDQBURbSA-f5Ip6dyg9n0dkWvBvewlhr2-QzO6Jme5dv6mJDR2WHsRA8EtEtuI1-Pwrda63hRKWlkGjJbzk2fMQVSf9KJsgOl5_n0wmlcvERJ5-YEIMO4u80joiJ_Ten1LKs_Btwto7n-B7M-yG7fJOL0abRo-LnH9Uc_3dO9-Fuh0DZ2C2ZXdiy1R7sdjZ-zV53hajf7MEOIVFXyHkf1Jgt6u_WdXRlJ9jEWjbF3bP6wcaXq3r9pTm_YhP0i4bVFZvXBgWx7VKa2dE3V1acqcqwT-vmvF5RGMC6Eq-rB3B6fLSczvyOn8EvZBQ0vg1FWcRcatQnJ6ULlSSK7myUVEojtMukUapAlKkjWZKYMkIooxMTpZkWD2G7qiv7GFiWFWmZWoRTIpaGK811qhENSZNYhZDKg7BXUF50xcuJQ-Myb4OYIMtb_eak37zTrwdvhz5fXemOG6X3STmDZKcXDw76dZB31n2dhyIipIrz8uDl8Bntki5bVGXrDckkPMboOsxukJGCAlg0Dg8euTU2_L9fmk_-Pq4XcGe2nJ_kJ-8XH5_CDnckHX4QHsB2s97YZwiVGv28tZBfyTUJlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Artificial+Bee+Colony+Algorithm+Based+on+Modified+Search+Equation+and+Orthogonal+Learning&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Gao%2C+Wei-feng&rft.au=Liu%2C+San-yang&rft.au=Huang%2C+Ling-ling&rft.date=2013-06-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=43&rft.issue=3&rft.spage=1011&rft.epage=1024&rft_id=info:doi/10.1109%2FTSMCB.2012.2222373&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |