A Novel Artificial Bee Colony Algorithm Based on Modified Search Equation and Orthogonal Learning

The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To addres...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 43; no. 3; pp. 1011 - 1024
Main Authors Gao, Wei-feng, Liu, San-yang, Huang, Ling-ling
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions.
AbstractList The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions.
The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions.The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions.
Author Wei-feng Gao
San-yang Liu
Ling-ling Huang
Author_xml – sequence: 1
  givenname: Wei-feng
  surname: Gao
  fullname: Gao, Wei-feng
  email: gaoweifeng2004@126.com
  organization: Xidian University, Xi'an 710071, China. gaoweifeng2004@126.com
– sequence: 2
  givenname: San-yang
  surname: Liu
  fullname: Liu, San-yang
– sequence: 3
  givenname: Ling-ling
  surname: Huang
  fullname: Huang, Ling-ling
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23086528$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P4zAQhi3Eavn8A6y0srQXLi3-iBPn2FZ8SWU5wJ6tSTJpjVIb7ASp_35dWjhwgLl45Hne0cy8R2TfeYeEnHE25pyVF48Pd7PpWDAuxiKFLOQeORQ81yMhCrX_kefFATmN8Yml0Omr1D_JgZBM50roQwIT-te_YkcnobetrS10dIpIZ77zbk0n3cIH2y9XdAoRG-odvfNNAlP-gBDqJb18GaC3qQCuofehX_qFd6nLPJWddYsT8qOFLuLp7j0m_64uH2c3o_n99e1sMh_VmWL9CLls61xklS7btA0yCUUBTLISMoBKKlFmDUDNuKxU1m4waKSEpioapctKHpPzbd_n4F8GjL1Z2Vhj14FDP0TDMylyXmqlv0dlIXLBOS8T-ucT-uSHkPbbUIppxdNAifq9o4ZqhY15DnYFYW3e75wAvQXq4GMM2Jra9m9n6wPYznBmNq6aN1fNxlWzczVJxSfpe_cvRb-2IouIH4JcSqGkkv8BOUCq1A
CODEN ITCEB8
CitedBy_id crossref_primary_10_1049_iet_est_2013_0047
crossref_primary_10_1016_j_ins_2018_02_025
crossref_primary_10_1016_j_eswa_2019_113113
crossref_primary_10_1016_j_geog_2024_05_004
crossref_primary_10_1007_s11071_021_06983_2
crossref_primary_10_1007_s11227_019_02786_w
crossref_primary_10_1016_j_swevo_2019_06_006
crossref_primary_10_1016_j_knosys_2019_105169
crossref_primary_10_1016_j_ifacol_2015_12_369
crossref_primary_10_1016_j_eswa_2014_11_045
crossref_primary_10_12677_CSA_2020_1011215
crossref_primary_10_1007_s00521_015_1826_y
crossref_primary_10_1016_j_asoc_2017_05_005
crossref_primary_10_1016_j_ins_2018_06_032
crossref_primary_10_1109_TFUZZ_2018_2856120
crossref_primary_10_1007_s00500_017_2485_y
crossref_primary_10_1142_S0219622020500078
crossref_primary_10_1016_j_apm_2020_12_023
crossref_primary_10_1016_j_future_2018_06_054
crossref_primary_10_1155_2019_6523435
crossref_primary_10_1016_j_energy_2017_12_052
crossref_primary_10_1016_j_swevo_2016_04_002
crossref_primary_10_1016_j_egyr_2022_08_010
crossref_primary_10_1016_j_ins_2017_07_011
crossref_primary_10_3390_math13030472
crossref_primary_10_1016_j_ins_2022_07_016
crossref_primary_10_3233_JIFS_182706
crossref_primary_10_1007_s00607_023_01168_8
crossref_primary_10_1155_2016_2749035
crossref_primary_10_1016_j_compbiomed_2023_107293
crossref_primary_10_1016_j_irbm_2020_07_005
crossref_primary_10_1541_ieejjia_21005358
crossref_primary_10_1155_2018_6906295
crossref_primary_10_1109_TSMC_2016_2558045
crossref_primary_10_1016_j_engappai_2019_103457
crossref_primary_10_2139_ssrn_4155123
crossref_primary_10_1016_j_amc_2014_11_104
crossref_primary_10_1016_j_eswa_2018_11_032
crossref_primary_10_1109_TEM_2020_2971109
crossref_primary_10_1007_s10845_015_1092_y
crossref_primary_10_1016_j_ins_2017_11_007
crossref_primary_10_1016_j_rser_2018_11_012
crossref_primary_10_1016_j_eswa_2019_112921
crossref_primary_10_1016_j_knosys_2020_106729
crossref_primary_10_1016_j_ins_2015_04_006
crossref_primary_10_1109_ACCESS_2018_2880814
crossref_primary_10_1007_s11071_015_2251_6
crossref_primary_10_1007_s00500_019_03964_x
crossref_primary_10_1016_j_cor_2013_07_021
crossref_primary_10_1016_j_eswa_2024_125495
crossref_primary_10_1016_j_cie_2023_109111
crossref_primary_10_1007_s00521_014_1636_7
crossref_primary_10_3390_a11060078
crossref_primary_10_1016_j_engappai_2014_10_022
crossref_primary_10_1007_s00521_018_3587_x
crossref_primary_10_3390_axioms11100523
crossref_primary_10_1007_s43236_020_00041_7
crossref_primary_10_1109_ACCESS_2016_2601167
crossref_primary_10_1109_ACCESS_2017_2723538
crossref_primary_10_1016_j_ins_2014_03_031
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_32604_cmc_2021_014404
crossref_primary_10_1007_s10586_024_04382_x
crossref_primary_10_1016_j_bspc_2017_06_015
crossref_primary_10_1016_j_jnca_2017_01_031
crossref_primary_10_1007_s11045_015_0352_5
crossref_primary_10_1016_j_asoc_2023_110906
crossref_primary_10_1007_s11045_021_00798_5
crossref_primary_10_1007_s00500_017_2689_1
crossref_primary_10_1002_cpe_6216
crossref_primary_10_1007_s13042_018_0878_6
crossref_primary_10_1016_j_asoc_2022_109649
crossref_primary_10_1016_j_engappai_2017_04_021
crossref_primary_10_1016_j_engappai_2021_104309
crossref_primary_10_1155_2014_961069
crossref_primary_10_1007_s40747_020_00171_2
crossref_primary_10_1016_j_compeleceng_2017_10_021
crossref_primary_10_1007_s00500_016_2334_4
crossref_primary_10_1016_j_asoc_2015_05_041
crossref_primary_10_1016_j_eswa_2018_03_009
crossref_primary_10_1016_j_swevo_2018_05_002
crossref_primary_10_1109_TEVC_2022_3160196
crossref_primary_10_1016_j_engappai_2013_09_011
crossref_primary_10_1016_j_engappai_2022_105620
crossref_primary_10_1016_j_neucom_2019_04_086
crossref_primary_10_1007_s00500_019_03939_y
crossref_primary_10_1016_j_swevo_2019_100582
crossref_primary_10_1007_s12293_020_00298_2
crossref_primary_10_1080_08839514_2021_2008147
crossref_primary_10_3390_app10103352
crossref_primary_10_1016_j_engappai_2017_10_024
crossref_primary_10_1016_j_eswa_2021_114887
crossref_primary_10_1111_exsy_13621
crossref_primary_10_1016_j_asoc_2018_11_047
crossref_primary_10_1016_j_compeleceng_2017_12_037
crossref_primary_10_1049_iet_smt_2016_0444
crossref_primary_10_1016_j_eswa_2021_116332
crossref_primary_10_1080_02726343_2019_1675443
crossref_primary_10_1155_2016_6204728
crossref_primary_10_1016_j_eswax_2020_100032
crossref_primary_10_1017_S1759078718000247
crossref_primary_10_1007_s00521_015_1851_x
crossref_primary_10_1016_j_jhydrol_2021_127348
crossref_primary_10_1155_2015_674595
crossref_primary_10_1109_ACCESS_2018_2864324
crossref_primary_10_1016_j_cie_2023_109428
crossref_primary_10_59324_ejaset_2025_3_2__10
crossref_primary_10_1016_j_asoc_2016_12_017
crossref_primary_10_1109_ACCESS_2020_3015473
crossref_primary_10_1080_23311916_2020_1855741
crossref_primary_10_1016_j_engappai_2019_06_013
crossref_primary_10_1109_TMTT_2016_2586055
crossref_primary_10_1016_j_asoc_2017_04_059
crossref_primary_10_1016_j_matcom_2022_11_021
crossref_primary_10_17341_gazimmfd_986747
crossref_primary_10_1016_j_cor_2015_02_008
crossref_primary_10_1007_s10462_021_10015_1
crossref_primary_10_1016_j_conbuildmat_2024_138084
crossref_primary_10_1109_ACCESS_2023_3244792
crossref_primary_10_1016_j_heliyon_2023_e16086
crossref_primary_10_3390_math10234509
crossref_primary_10_1016_j_knosys_2021_107636
crossref_primary_10_1007_s00500_018_3515_0
crossref_primary_10_1007_s40747_023_01085_5
crossref_primary_10_1080_15325008_2016_1201874
crossref_primary_10_3390_s24216794
crossref_primary_10_1016_j_asoc_2019_106037
crossref_primary_10_1007_s00500_019_03785_y
crossref_primary_10_1016_j_dsp_2013_10_019
crossref_primary_10_1016_j_ins_2020_07_037
crossref_primary_10_1109_ACCESS_2019_2941247
crossref_primary_10_1142_S0218126620501558
crossref_primary_10_1038_s41598_023_38855_7
crossref_primary_10_3390_app131810445
crossref_primary_10_1016_j_ins_2014_12_015
crossref_primary_10_1109_TCYB_2020_3026716
crossref_primary_10_1007_s00500_015_1774_6
crossref_primary_10_1016_j_energy_2020_116946
crossref_primary_10_1109_ACCESS_2019_2934994
crossref_primary_10_1016_j_oceaneng_2024_119155
crossref_primary_10_1016_j_jsv_2020_115315
crossref_primary_10_1016_j_asoc_2018_10_024
crossref_primary_10_1080_03081060_2023_2246959
crossref_primary_10_1109_TCYB_2015_2444383
crossref_primary_10_1007_s00500_023_08491_4
crossref_primary_10_1016_j_swevo_2016_06_001
crossref_primary_10_1088_1402_4896_ad67b4
crossref_primary_10_1109_TCSII_2019_2909965
crossref_primary_10_1016_j_apacoust_2020_107234
crossref_primary_10_3390_s22228916
crossref_primary_10_1049_gtd2_12031
crossref_primary_10_1007_s13042_020_01094_7
crossref_primary_10_1007_s00500_021_06062_z
crossref_primary_10_1109_ACCESS_2017_2705019
crossref_primary_10_1007_s00500_019_04502_5
crossref_primary_10_1016_j_asoc_2024_112601
crossref_primary_10_1109_ACCESS_2018_2886629
crossref_primary_10_1016_j_asoc_2019_106053
crossref_primary_10_1109_TSMC_2020_2963943
crossref_primary_10_1007_s00500_019_03858_y
crossref_primary_10_1080_13682199_2020_1827814
crossref_primary_10_1016_j_swevo_2017_12_004
crossref_primary_10_1515_cait_2017_0027
crossref_primary_10_1016_j_ins_2022_08_001
crossref_primary_10_1016_j_asoc_2019_03_010
crossref_primary_10_1016_j_neucom_2016_08_003
crossref_primary_10_1109_ACCESS_2019_2915343
crossref_primary_10_1007_s00500_017_2815_0
crossref_primary_10_1007_s13369_021_06178_2
crossref_primary_10_4316_AECE_2017_03011
crossref_primary_10_1007_s10462_017_9564_4
crossref_primary_10_1109_ACCESS_2023_3264966
crossref_primary_10_1007_s00500_014_1549_5
crossref_primary_10_1016_j_ins_2023_119340
crossref_primary_10_1155_2015_138930
crossref_primary_10_4316_AECE_2017_03012
crossref_primary_10_1142_S0218001422590108
crossref_primary_10_1109_ACCESS_2023_3269066
crossref_primary_10_1016_j_ins_2019_02_014
crossref_primary_10_1016_j_asoc_2018_06_034
crossref_primary_10_1007_s00500_015_1977_x
crossref_primary_10_1007_s00500_018_03683_9
crossref_primary_10_1109_TII_2018_2857198
crossref_primary_10_3390_rs15174296
crossref_primary_10_1007_s12530_019_09294_5
crossref_primary_10_1016_j_matcom_2023_11_019
crossref_primary_10_1016_j_compbiomed_2021_105137
crossref_primary_10_1155_2014_695637
crossref_primary_10_1109_ACCESS_2019_2905666
crossref_primary_10_1109_TSTE_2014_2363521
crossref_primary_10_1016_j_asoc_2023_110627
crossref_primary_10_1109_ACCESS_2021_3050752
crossref_primary_10_1016_j_swevo_2024_101686
crossref_primary_10_1007_s12065_021_00688_6
crossref_primary_10_1007_s00500_017_2685_5
crossref_primary_10_1007_s11277_018_5341_1
crossref_primary_10_1016_j_asoc_2020_106656
crossref_primary_10_1016_j_engappai_2023_107816
crossref_primary_10_1016_j_patcog_2017_09_033
crossref_primary_10_1016_j_jii_2021_100293
crossref_primary_10_1016_j_asoc_2014_08_013
crossref_primary_10_1016_j_ins_2023_119609
crossref_primary_10_1016_j_conengprac_2017_02_010
crossref_primary_10_1016_j_knosys_2019_105002
crossref_primary_10_1016_j_engappai_2016_10_014
crossref_primary_10_1016_j_apm_2020_05_019
crossref_primary_10_1109_ACCESS_2020_2981656
crossref_primary_10_1007_s11227_023_05618_0
crossref_primary_10_1016_j_eswa_2020_113617
crossref_primary_10_1016_j_enconman_2013_12_052
crossref_primary_10_1007_s00500_018_3473_6
crossref_primary_10_1007_s00521_019_04465_6
crossref_primary_10_1016_j_asoc_2018_06_013
crossref_primary_10_1109_ACCESS_2023_3253796
crossref_primary_10_1016_j_adhoc_2023_103284
crossref_primary_10_1016_j_ins_2014_02_104
crossref_primary_10_1016_j_asoc_2015_10_070
crossref_primary_10_1007_s11432_016_0089_7
crossref_primary_10_1515_jisys_2016_0060
crossref_primary_10_1016_j_ins_2014_04_050
crossref_primary_10_3390_app12115707
crossref_primary_10_1109_ACCESS_2015_2397701
crossref_primary_10_1109_TCYB_2019_2943606
crossref_primary_10_1016_j_compbiomed_2024_109175
crossref_primary_10_1109_ACCESS_2018_2840512
crossref_primary_10_1016_j_asoc_2017_11_012
crossref_primary_10_1007_s00521_016_2687_8
crossref_primary_10_1007_s42107_020_00299_z
crossref_primary_10_1016_j_ins_2016_07_022
crossref_primary_10_1155_2017_4851493
crossref_primary_10_3390_app14020846
crossref_primary_10_1016_j_asoc_2018_02_019
crossref_primary_10_1038_s41598_023_37895_3
crossref_primary_10_1109_ACCESS_2019_2910813
crossref_primary_10_1109_TCYB_2014_2387067
crossref_primary_10_1109_ACCESS_2019_2926155
crossref_primary_10_1016_j_swevo_2019_01_003
crossref_primary_10_3390_e17020692
crossref_primary_10_1007_s10489_021_02711_w
crossref_primary_10_1007_s11042_023_14510_1
crossref_primary_10_1016_j_heliyon_2023_e20867
crossref_primary_10_1007_s00521_016_2348_y
crossref_primary_10_1016_j_sjbs_2017_01_044
crossref_primary_10_1016_j_compbiomed_2023_107838
crossref_primary_10_1016_j_ins_2017_05_044
crossref_primary_10_1007_s11227_022_04930_5
crossref_primary_10_1155_2015_375902
crossref_primary_10_1155_2018_3102628
crossref_primary_10_1177_0954406218776680
crossref_primary_10_3390_math9182250
crossref_primary_10_1109_TIV_2023_3319110
crossref_primary_10_1016_j_asoc_2017_01_031
crossref_primary_10_1109_ACCESS_2019_2894718
Cites_doi 10.1109/TEVC.2008.919004
10.1007/b99492
10.1109/TSMCA.2007.914796
10.1142/S012906571000222X
10.1109/ICNC.2010.5583169
10.1016/j.ins.2011.04.024
10.3390/s110606056
10.1016/j.ins.2011.04.018
10.1108/02644400410511864
10.1109/4235.910464
10.1016/j.compstruc.2009.03.001
10.1016/j.amc.2010.08.049
10.1016/j.asoc.2011.08.040
10.1016/j.asoc.2009.12.025
10.1109/79.543973
10.1109/TEVC.2006.872133
10.1109/ICCITECHN.2010.5723831
10.1016/j.asoc.2010.11.025
10.1162/evco.2006.14.1.119
10.1109/MWSCAS.2011.6026558
10.1109/TEVC.2008.927706
10.1109/TMAG.2010.2087317
10.1016/j.eswa.2010.02.042
10.1016/j.ins.2010.07.015
10.1109/TEVC.2004.826074
10.1109/TEVC.2010.2052054
10.1109/ICNN.1995.488968
10.1109/TEVC.2004.826895
10.1023/A:1008202821328
10.1109/TEVC.2003.816583
10.1016/j.amc.2009.03.090
10.1109/4235.735431
10.1016/j.ins.2011.09.001
10.1109/4235.771163
10.1109/4235.752920
10.1109/TEVC.2004.826071
10.1016/j.ins.2009.12.025
10.1109/TSMCB.2010.2056367
10.4249/scholarpedia.6915
10.1016/j.asoc.2007.05.007
10.1109/TEVC.2009.2014613
10.1109/TEVC.2005.857610
10.1007/978-3-642-13495-1_68
10.1016/j.ipl.2011.06.002
10.1016/j.ins.2011.02.023
10.1007/s10898-007-9149-x
10.1109/TEVC.2006.886802
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TSMCB.2012.2222373
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
Aerospace Database
Aerospace Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2168-2275
EndPage 1024
ExternalDocumentID 2969850591
23086528
10_1109_TSMCB_2012_2222373
6332535
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c450t-e13fc624b89f237e03a77a0309a4aab35294daac013b54fb89fad33adb7d589b3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 06:48:11 EDT 2025
Fri Jul 11 00:10:09 EDT 2025
Sun Jun 29 13:54:46 EDT 2025
Mon Jul 21 06:02:14 EDT 2025
Tue Jul 01 04:35:03 EDT 2025
Thu Apr 24 22:50:53 EDT 2025
Tue Aug 26 16:43:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-e13fc624b89f237e03a77a0309a4aab35294daac013b54fb89fad33adb7d589b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 23086528
PQID 1350851013
PQPubID 85422
PageCount 14
ParticipantIDs proquest_miscellaneous_1372621119
proquest_journals_1350851013
crossref_citationtrail_10_1109_TSMCB_2012_2222373
crossref_primary_10_1109_TSMCB_2012_2222373
proquest_miscellaneous_1432619858
ieee_primary_6332535
pubmed_primary_23086528
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-June
2013-6-00
2013-Jun
20130601
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref10
ref17
ref16
ref19
ref18
(ref37) 1975
dorigo (ref4) 2004
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
karaboga (ref11) 2009; 19
ref44
ref43
ref49
karaboga (ref6) 2005
ref8
ref7
ref9
ref3
ref5
ref40
ozturk (ref13) 2011; 11
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
tsai (ref20) 2009; 5
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref5
  doi: 10.1109/TEVC.2008.919004
– year: 2004
  ident: ref4
  publication-title: Ant Colony Optimization
  doi: 10.1007/b99492
– ident: ref33
  doi: 10.1109/TSMCA.2007.914796
– ident: ref29
  doi: 10.1142/S012906571000222X
– ident: ref30
  doi: 10.1109/ICNC.2010.5583169
– ident: ref26
  doi: 10.1016/j.ins.2011.04.024
– volume: 11
  start-page: 6056
  year: 2011
  ident: ref13
  article-title: Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm
  publication-title: SENSORS
  doi: 10.3390/s110606056
– ident: ref14
  doi: 10.1016/j.ins.2011.04.018
– ident: ref43
  doi: 10.1108/02644400410511864
– ident: ref36
  doi: 10.1109/4235.910464
– ident: ref25
  doi: 10.1016/j.compstruc.2009.03.001
– ident: ref17
  doi: 10.1016/j.amc.2010.08.049
– ident: ref19
  doi: 10.1016/j.asoc.2011.08.040
– ident: ref12
  doi: 10.1016/j.asoc.2009.12.025
– ident: ref1
  doi: 10.1109/79.543973
– ident: ref45
  doi: 10.1109/TEVC.2006.872133
– ident: ref23
  doi: 10.1109/ICCITECHN.2010.5723831
– ident: ref18
  doi: 10.1016/j.asoc.2010.11.025
– ident: ref40
  doi: 10.1162/evco.2006.14.1.119
– year: 1975
  ident: ref37
  publication-title: Orthogonal Design
– ident: ref31
  doi: 10.1109/MWSCAS.2011.6026558
– ident: ref46
  doi: 10.1109/TEVC.2008.927706
– ident: ref21
  doi: 10.1109/TMAG.2010.2087317
– ident: ref27
  doi: 10.1016/j.eswa.2010.02.042
– ident: ref24
  doi: 10.1016/j.ins.2010.07.015
– ident: ref49
  doi: 10.1109/TEVC.2004.826074
– ident: ref32
  doi: 10.1109/TEVC.2010.2052054
– ident: ref2
  doi: 10.1109/ICNN.1995.488968
– ident: ref39
  doi: 10.1109/TEVC.2004.826895
– year: 2005
  ident: ref6
  publication-title: An Idea Based on Honey Bee Swarm for Numerical Optimization
– ident: ref3
  doi: 10.1023/A:1008202821328
– ident: ref41
  doi: 10.1109/TEVC.2003.816583
– ident: ref9
  doi: 10.1016/j.amc.2009.03.090
– volume: 19
  start-page: 279
  year: 2009
  ident: ref11
  article-title: Neural networks training by artificial bee colony algorithm on pattern classification
  publication-title: Neural Netw World
– ident: ref44
  doi: 10.1109/4235.735431
– ident: ref35
  doi: 10.1016/j.ins.2011.09.001
– ident: ref42
  doi: 10.1109/4235.771163
– ident: ref34
  doi: 10.1109/4235.752920
– ident: ref50
  doi: 10.1109/TEVC.2004.826071
– ident: ref15
  doi: 10.1016/j.ins.2009.12.025
– ident: ref48
  doi: 10.1109/TSMCB.2010.2056367
– ident: ref10
  doi: 10.4249/scholarpedia.6915
– ident: ref8
  doi: 10.1016/j.asoc.2007.05.007
– ident: ref47
  doi: 10.1109/TEVC.2009.2014613
– ident: ref51
  doi: 10.1109/TEVC.2005.857610
– ident: ref28
  doi: 10.1007/978-3-642-13495-1_68
– ident: ref22
  doi: 10.1016/j.ipl.2011.06.002
– ident: ref16
  doi: 10.1016/j.ins.2011.02.023
– volume: 5
  start-page: 1
  year: 2009
  ident: ref20
  article-title: Enhanced artificial bee colony optimization
  publication-title: Int J Innovative Comput Inf Control
– ident: ref7
  doi: 10.1007/s10898-007-9149-x
– ident: ref38
  doi: 10.1109/TEVC.2006.886802
SSID ssj0000816898
Score 2.4903436
Snippet The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1011
SubjectTerms Algorithms
Animals
Artificial bee colony (ABC) algorithm
Artificial Intelligence
Bees - physiology
Behavior, Animal - physiology
Biomimetics - methods
Colonies
Convergence
Equations
Exploitation
Humans
Learning
Mathematical analysis
Mathematical model
Optimization
orthogonal experimental design (OED)
orthogonal learning (OL)
Oscillators
Pattern Recognition, Automated - methods
Sampling
search equation
Searching
Sociology
Statistics
Strategy
Studies
Title A Novel Artificial Bee Colony Algorithm Based on Modified Search Equation and Orthogonal Learning
URI https://ieeexplore.ieee.org/document/6332535
https://www.ncbi.nlm.nih.gov/pubmed/23086528
https://www.proquest.com/docview/1350851013
https://www.proquest.com/docview/1372621119
https://www.proquest.com/docview/1432619858
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PfUCffBIKchIHECQbWI7r-PuqlWFtOVAK_UW2bGzRbRJ2WaR6K_vTOxECEHFzVLGiq3xeL6xx_MBvBOZjXDr1WGh0jSUPNJhnuRVWFdxXJuIKAvpgfPiLD29kJ8vk8sN-DS-hbHW9slndkLN_i7ftNWajsqOUiF4IpJN2MTAzb3VGs9TegKJnvqWYyNEVJENb2Si4uj862I-o0QuPuHkETPiz0H0nacJ8bD_5pJ6jpV_w83e7Zw8hcUwYJdt8n2y7vSkuv-jluP_zmgHnnj8yaZuwezChm32YNdb-B1778tQf9iDbcKhrozzPqgpO2t_WtfRFZ1gM2vZHPfO5hebXi_b1bfu6obN0Csa1jZs0RoUxLZLaGbHP1xRcaYaw76suqt2SUEA8wVel8_g4uT4fH4aenaGsJJJ1IU2FnWVcqlRm5xULlSWKbqxUVIpjcCukEapCjGmTmRNYsoIoYzOTJIXWjyHraZt7EtgRVHldW4RTIlUGq4017lGLCRNZhUCqgDiQUFl5UuXE4PGddmHMFFR9votSb-l128AH8c-t65wx6PS-6ScUdLrJYDDYR2U3rbvylgkhFNxXgG8HT-jVdJVi2psuyaZjKcYW8fFIzJSUPiKphHAC7fGxv8PS_Pg7-N6Bdvc0XKEUXwIW91qbV8jOOr0m94qHgD2awZO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcqAXoC2PQAEjcQBBtontvI67q1YLdJcDW6m3yI6dLWqbwDaLBL-emTiJEIKKm6WMFVvj8Xxjj-cDeCUSG-DWq_1MxbEveaD9NEoLvyzCsDQBURbSA-f5Ip6dyg9n0dkWvBvewlhr2-QzO6Jme5dv6mJDR2WHsRA8EtEtuI1-Pwrda63hRKWlkGjJbzk2fMQVSf9KJsgOl5_n0wmlcvERJ5-YEIMO4u80joiJ_Ten1LKs_Btwto7n-B7M-yG7fJOL0abRo-LnH9Uc_3dO9-Fuh0DZ2C2ZXdiy1R7sdjZ-zV53hajf7MEOIVFXyHkf1Jgt6u_WdXRlJ9jEWjbF3bP6wcaXq3r9pTm_YhP0i4bVFZvXBgWx7VKa2dE3V1acqcqwT-vmvF5RGMC6Eq-rB3B6fLSczvyOn8EvZBQ0vg1FWcRcatQnJ6ULlSSK7myUVEojtMukUapAlKkjWZKYMkIooxMTpZkWD2G7qiv7GFiWFWmZWoRTIpaGK811qhENSZNYhZDKg7BXUF50xcuJQ-Myb4OYIMtb_eak37zTrwdvhz5fXemOG6X3STmDZKcXDw76dZB31n2dhyIipIrz8uDl8Bntki5bVGXrDckkPMboOsxukJGCAlg0Dg8euTU2_L9fmk_-Pq4XcGe2nJ_kJ-8XH5_CDnckHX4QHsB2s97YZwiVGv28tZBfyTUJlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Artificial+Bee+Colony+Algorithm+Based+on+Modified+Search+Equation+and+Orthogonal+Learning&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Gao%2C+Wei-feng&rft.au=Liu%2C+San-yang&rft.au=Huang%2C+Ling-ling&rft.date=2013-06-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=43&rft.issue=3&rft.spage=1011&rft.epage=1024&rft_id=info:doi/10.1109%2FTSMCB.2012.2222373&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon