Characterizing the Retinal Phenotype in the High-Fat Diet and Western Diet Mouse Models of Prediabetes
We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured....
Saved in:
Published in | Cells (Basel, Switzerland) Vol. 9; no. 2; p. 464 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
18.02.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes. |
---|---|
AbstractList | We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g,
< 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01,
= 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes. We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes. We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes. We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes. |
Author | Athmanathan, Baskaran Chakraborty, Dibyendu Wang, Xiaoxin Levi, Moshe Asare-Bediako, Bright Dupont, Mariana Adu-Agyeiwaah, Yvonne Nagareddy, Prabhakara Noothi, Sunil Li Calzi, Sergio Vieira, Cristiano Jones, Bryce Grant, Maria |
AuthorAffiliation | 3 Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; baskaran.athmanathan@osumc.edu (B.A.); prabhakara.nagareddy@osumc.edu (P.R.N.) 4 Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA; baj46@georgetown.edu 5 Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; xiaoxin.wang@georgetown.edu (X.X.W.); moshe.levi@georgetown.edu (M.L.) 1 Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA; basareb@uab.edu (B.A.-B.); yvonnad@uab.edu (Y.A.-A.); mdupont@uab.edu (M.D.) 2 Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; sunilnooti@uabmc.edu (S.K.N.); scalzi@uabmc.edu (S.L.C.); cvieira@uabmc.edu (C.P.V.); dchakraborty@uabmc.edu (D.C.) |
AuthorAffiliation_xml | – name: 2 Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; sunilnooti@uabmc.edu (S.K.N.); scalzi@uabmc.edu (S.L.C.); cvieira@uabmc.edu (C.P.V.); dchakraborty@uabmc.edu (D.C.) – name: 5 Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; xiaoxin.wang@georgetown.edu (X.X.W.); moshe.levi@georgetown.edu (M.L.) – name: 4 Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA; baj46@georgetown.edu – name: 3 Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; baskaran.athmanathan@osumc.edu (B.A.); prabhakara.nagareddy@osumc.edu (P.R.N.) – name: 1 Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA; basareb@uab.edu (B.A.-B.); yvonnad@uab.edu (Y.A.-A.); mdupont@uab.edu (M.D.) |
Author_xml | – sequence: 1 givenname: Bright surname: Asare-Bediako fullname: Asare-Bediako, Bright – sequence: 2 givenname: Sunil surname: Noothi fullname: Noothi, Sunil – sequence: 3 givenname: Sergio surname: Li Calzi fullname: Li Calzi, Sergio – sequence: 4 givenname: Baskaran surname: Athmanathan fullname: Athmanathan, Baskaran – sequence: 5 givenname: Cristiano surname: Vieira fullname: Vieira, Cristiano – sequence: 6 givenname: Yvonne surname: Adu-Agyeiwaah fullname: Adu-Agyeiwaah, Yvonne – sequence: 7 givenname: Mariana orcidid: 0000-0001-7986-3383 surname: Dupont fullname: Dupont, Mariana – sequence: 8 givenname: Bryce orcidid: 0000-0002-6950-8414 surname: Jones fullname: Jones, Bryce – sequence: 9 givenname: Xiaoxin surname: Wang fullname: Wang, Xiaoxin – sequence: 10 givenname: Dibyendu surname: Chakraborty fullname: Chakraborty, Dibyendu – sequence: 11 givenname: Moshe orcidid: 0000-0001-6403-2261 surname: Levi fullname: Levi, Moshe – sequence: 12 givenname: Prabhakara orcidid: 0000-0002-0294-641X surname: Nagareddy fullname: Nagareddy, Prabhakara – sequence: 13 givenname: Maria surname: Grant fullname: Grant, Maria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32085589$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNURD_ojTPKkQMBf8WOL0hoS2mlIioE4mhNnMnGVdZebC9S-fX1dlu0RfhgWzPv-4w0M8fVgQ8eq-oVJe841-S9xXlOmjAipHhWHTGieCME0Qd7_8PqNKUbUk5HJSXti-qQM9K1baePqnExQQSbMbo_zi_rPGH9DbPzMNfXE_qQb9dYO3-fuHDLqTmHXJ85zDX4of6JqVj9LvAlbBKWe8A51WGsryMODnrMmF5Wz0eYE54-vCfVj_NP3xcXzdXXz5eLj1eNFS3JzYCU6U5SagmMSvIBWxCyZ60dWglUMSuh162wnFM9aqW6nvVWMMUIcCV6flJd7rhDgBuzjm4F8dYEcOY-EOLSQMzOzmiAdtwShIKhQmsJCHIgmo5DJ61UqrA-7FjrTb_CwaLPEeYn0KcZ7yazDL-NIop1XBbAmwdADL82pVNm5dJ2YuCxtMowLrdD6hgt0tf7tf4WeRxUEbCdwMaQUsTRWJchu7At7WZDidkuhNlfiGJ6-4_pkftf-R18CLeJ |
CitedBy_id | crossref_primary_10_3390_biomedicines9091135 crossref_primary_10_2337_dc21_1569 crossref_primary_10_1146_annurev_vision_100419_114940 crossref_primary_10_3390_cells12030477 crossref_primary_10_1167_iovs_63_1_5 crossref_primary_10_3390_cells10082119 crossref_primary_10_1007_s11892_021_01428_x crossref_primary_10_1007_s43032_024_01629_1 crossref_primary_10_1007_s00125_021_05431_5 crossref_primary_10_3390_antiox13050594 crossref_primary_10_1002_mnfr_202100823 crossref_primary_10_1371_journal_pone_0278388 crossref_primary_10_1167_tvst_12_4_20 crossref_primary_10_1167_iovs_63_11_25 crossref_primary_10_1016_j_ymthe_2021_03_014 crossref_primary_10_3390_biology13070477 crossref_primary_10_2147_DDDT_S420178 crossref_primary_10_3389_fnut_2022_913016 crossref_primary_10_1007_s00125_022_05655_z crossref_primary_10_1186_s13023_022_02557_6 crossref_primary_10_1186_s12886_023_03155_1 crossref_primary_10_3390_jcm12051771 crossref_primary_10_1016_j_exer_2021_108440 crossref_primary_10_1155_2022_5318245 crossref_primary_10_1038_s41598_020_75576_7 crossref_primary_10_1177_11206721221150064 crossref_primary_10_3390_nu16183074 crossref_primary_10_1016_j_exer_2021_108700 crossref_primary_10_3390_cells11203207 crossref_primary_10_3390_cells12151933 crossref_primary_10_1007_s00394_024_03498_5 crossref_primary_10_4239_wjd_v15_i3_361 crossref_primary_10_1159_000528503 crossref_primary_10_1167_tvst_13_8_8 crossref_primary_10_1055_a_1730_5091 crossref_primary_10_3389_fimmu_2020_583687 |
Cites_doi | 10.3390/cells8050447 10.1517/14728222.2013.806490 10.1006/exer.2002.1170 10.2337/db10-0019 10.1002/jcb.28734 10.1161/ATVBAHA.119.312889 10.1167/iovs.15-16504 10.1096/fj.01-0125com 10.1016/S0140-6736(17)30058-2 10.1002/9780470942390.mo140190 10.1038/39335 10.2337/db18-0158 10.1016/j.physbeh.2004.02.006 10.1002/jsfa.10230 10.1016/S0140-6736(12)60283-9 10.1096/fj.07-102723 10.2337/db15-1255 10.1016/j.ebiom.2017.07.008 10.1038/sj.ijo.0801209 10.2337/db19-1009 10.3791/59683-v 10.1016/j.ajo.2018.08.053 10.1084/jem.20090889 10.2337/db11-1596 10.1016/S2213-8587(15)00367-8 10.1017/S0952523800010427 10.1371/journal.pone.0051007 10.1371/journal.pone.0055177 10.1016/j.jdiacomp.2014.02.008 10.1152/ajpregu.00240.2018 10.1016/j.ajpath.2018.10.013 10.1111/j.1582-4934.2010.01128.x 10.3390/nu10101361 10.1101/gad.180406.111 10.1155/2019/8724818 10.1210/en.2011-0029 10.3390/nu11061436 10.1016/j.diabres.2018.02.023 10.1007/s00125-004-1605-2 10.1126/science.283.5407.1544 10.1016/j.tem.2011.12.004 10.2337/diabetes.54.5.1559 10.1038/s41433-018-0268-z 10.2337/diacare.22.9.1462 10.2337/diab.38.10.1203 10.1097/IAE.0000000000002262 10.3390/nu11050962 10.1001/jama.281.21.2005 10.1007/s00125-007-0791-0 10.1016/0026-0495(95)90123-X 10.2337/diab.37.9.1163 10.2217/clp.12.68 10.1016/j.visres.2017.04.010 10.1007/s00394-018-1713-2 10.1194/jlr.M053439 10.1016/j.jnutbio.2019.108317 10.1161/ATVBAHA.109.191197 10.1194/jlr.M088690 10.1017/S2040174419000709 10.1080/02713683.2019.1653927 10.1007/s001250051594 10.1136/bjophthalmol-2018-313582 10.1172/JCI27883 10.1371/journal.pone.0047713 10.1002/stem.2235 10.1016/0014-4835(79)90106-4 10.2337/diabetes.53.suppl_3.S215 10.1016/S0278-5846(03)00023-X 10.1016/j.exer.2019.107742 10.1016/j.exer.2014.06.009 10.1016/j.preteyeres.2011.05.002 10.1161/CIR.0000000000000510 10.1097/RLI.0b013e3181ec9b02 10.1016/j.biopha.2018.11.120 10.1046/j.1442-9071.2000.00222.x 10.2337/dc08-9025 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/cells9020464 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4409 |
ExternalDocumentID | oai_doaj_org_article_a183c0eaf9714996aea6d091fd86c677 PMC7072836 32085589 10_3390_cells9020464 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY028037 – fundername: NIDDK NIH HHS grantid: R01 DK116567 – fundername: NIDDK NIH HHS grantid: P30 DK079626 – fundername: NHLBI NIH HHS grantid: K99 HL122505 – fundername: NHLBI NIH HHS grantid: R01 HL137799 – fundername: NHLBI NIH HHS grantid: R00 HL122505 – fundername: NEI NIH HHS grantid: P30 EY003039 – fundername: NEI NIH HHS grantid: R01 EY028858 – fundername: NCATS NIH HHS grantid: TL1 TR001431 – fundername: NEI NIH HHS grantid: R01 EY012601 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD ESX GROUPED_DOAJ HCIFZ HYE IAO IHR KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM CGR CUY CVF ECM EIF NPM 7X8 PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-c450t-de1298611c0af763de5a46b25cd56a172c6ab954c3319f9778b2bc42720a374b3 |
IEDL.DBID | M48 |
ISSN | 2073-4409 |
IngestDate | Wed Aug 27 01:31:47 EDT 2025 Thu Aug 21 13:53:33 EDT 2025 Fri Jul 11 06:41:35 EDT 2025 Mon Apr 28 11:35:34 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Tue Jul 01 01:05:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | vascular leakage retinal phenotype neural infarcts |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-de1298611c0af763de5a46b25cd56a172c6ab954c3319f9778b2bc42720a374b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7986-3383 0000-0001-6403-2261 0000-0002-0294-641X 0000-0002-6950-8414 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cells9020464 |
PMID | 32085589 |
PQID | 2362073821 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a183c0eaf9714996aea6d091fd86c677 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7072836 proquest_miscellaneous_2362073821 pubmed_primary_32085589 crossref_citationtrail_10_3390_cells9020464 crossref_primary_10_3390_cells9020464 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200218 |
PublicationDateYYYYMMDD | 2020-02-18 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200218 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Cells (Basel, Switzerland) |
PublicationTitleAlternate | Cells |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Penn (ref_21) 1988; 29 Chatterjee (ref_2) 2017; 389 Surwit (ref_48) 1995; 44 Bhatwadekar (ref_33) 2016; 34 Kim (ref_58) 2012; 23 ref_14 Surwit (ref_47) 1988; 37 Andraski (ref_70) 2019; 39 Rajagopal (ref_6) 2016; 65 Mathew (ref_11) 2019; 60 Nathan (ref_55) 2009; 32 Barber (ref_40) 2003; 27 Winzell (ref_7) 2004; 53 Veenstra (ref_32) 2015; 5 Tobias (ref_73) 2015; 3 Lieth (ref_39) 2000; 28 Cho (ref_1) 2018; 138 Uysal (ref_53) 1997; 389 Prasad (ref_82) 2010; 45 Krady (ref_18) 2005; 54 Stratton (ref_41) 2001; 44 Membrez (ref_51) 2008; 22 Krishnan (ref_80) 2012; 26 Steffensen (ref_67) 2013; 17 Kim (ref_57) 2011; 152 ref_62 Hazra (ref_12) 2012; 61 Zheng (ref_15) 2015; 56 Beli (ref_29) 2018; 67 Busik (ref_63) 2012; 7 McAnany (ref_44) 2019; 39 Elchebly (ref_54) 1999; 283 Turner (ref_4) 1999; 281 Cani (ref_49) 2007; 50 ref_71 ref_35 ref_34 ref_78 ref_77 Bahr (ref_24) 2019; 186 ref_75 Gu (ref_25) 2019; 33 ref_30 Lin (ref_50) 2000; 24 ref_74 Tang (ref_42) 2011; 30 Lamparter (ref_61) 2014; 28 Han (ref_27) 2019; 120 Eisenfeld (ref_38) 1984; 25 Lee (ref_79) 2015; 56 Das (ref_59) 2019; 67 Illesca (ref_10) 2019; 109 Busik (ref_3) 2009; 206 Yao (ref_5) 2019; 58 Tanaka (ref_22) 2019; 2019 Zeng (ref_45) 2019; 103 Osborne (ref_20) 1991; 7 Collins (ref_9) 2004; 81 Li (ref_17) 2002; 74 Stroka (ref_81) 2001; 15 Rabot (ref_52) 2010; 24 Kim (ref_56) 2018; 196 Durrer (ref_76) 2018; 315 Matsuda (ref_31) 1999; 22 Herder (ref_60) 2012; 379 Carabelli (ref_28) 2011; 15 Fortune (ref_43) 1999; 40 Gomes (ref_72) 2019; 77 Dahl (ref_19) 1979; 28 Fan (ref_23) 2020; 45 Engerman (ref_36) 1989; 38 Kumar (ref_37) 2014; 125 Saadane (ref_68) 2019; 189 Sone (ref_46) 2005; 48 ref_8 Zelcer (ref_66) 2006; 116 Sacks (ref_69) 2017; 136 Wang (ref_13) 2010; 59 Hammer (ref_16) 2017; 22 Hammer (ref_64) 2017; 139 Chen (ref_26) 2019; 317 Calkin (ref_65) 2010; 30 |
References_xml | – ident: ref_8 doi: 10.3390/cells8050447 – volume: 17 start-page: 977 year: 2013 ident: ref_67 article-title: Targeting liver X receptors in inflammation publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728222.2013.806490 – volume: 74 start-page: 615 year: 2002 ident: ref_17 article-title: Early Retinal Damage in Experimental Diabetes: Electroretinographical and Morphological Observations publication-title: Exp. Eye Res. doi: 10.1006/exer.2002.1170 – volume: 59 start-page: 2916 year: 2010 ident: ref_13 article-title: Diabetic Nephropathy Is Accelerated by Farnesoid X Receptor Deficiency and Inhibited by Farnesoid X Receptor Activation in a Type 1 Diabetes Model publication-title: Diabetes doi: 10.2337/db10-0019 – volume: 120 start-page: 14735 year: 2019 ident: ref_27 article-title: Hypoxia inducible factor-1 promotes liver fibrosis in nonalcoholic fatty liver disease by activating PTEN/p65 signaling pathway publication-title: J. Cell. Biochem. doi: 10.1002/jcb.28734 – volume: 39 start-page: 2411 year: 2019 ident: ref_70 article-title: Effects of Replacing Dietary Monounsaturated Fat With Carbohydrate on HDL (High-Density Lipoprotein) Protein Metabolism and Proteome Composition in Humans publication-title: Arter. Thromb. Vasc. Boil. doi: 10.1161/ATVBAHA.119.312889 – volume: 56 start-page: 3041 year: 2015 ident: ref_79 article-title: High-Fat Diet Induces Toll-Like Receptor 4-Dependent Macrophage/Microglial Cell Activation and Retinal Impairment publication-title: Investig. Opthalmol. Vis. Sci. doi: 10.1167/iovs.15-16504 – volume: 40 start-page: 2638 year: 1999 ident: ref_43 article-title: Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 15 start-page: 2445 year: 2001 ident: ref_81 article-title: Hif-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia publication-title: FASEB J. doi: 10.1096/fj.01-0125com – volume: 389 start-page: 2239 year: 2017 ident: ref_2 article-title: Type 2 diabetes publication-title: Lancet doi: 10.1016/S0140-6736(17)30058-2 – volume: 5 start-page: 247 year: 2015 ident: ref_32 article-title: Diabetic Retinopathy: Retina-Specific Methods for Maintenance of Diabetic Rodents and Evaluation of Vascular Histopathology and Molecular Abnormalities publication-title: Curr. Protoc. Mouse Boil. doi: 10.1002/9780470942390.mo140190 – volume: 389 start-page: 610 year: 1997 ident: ref_53 article-title: Protection from obesity-induced insulin resistance in mice lacking TNF-α function publication-title: Nature doi: 10.1038/39335 – volume: 67 start-page: 1867 year: 2018 ident: ref_29 article-title: Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice publication-title: Diabetes doi: 10.2337/db18-0158 – volume: 81 start-page: 243 year: 2004 ident: ref_9 article-title: Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: Physiological and molecular characteristics publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2004.02.006 – ident: ref_14 doi: 10.1002/jsfa.10230 – volume: 379 start-page: 2279 year: 2012 ident: ref_60 article-title: Prediabetes: A high-risk state for diabetes development publication-title: Lancet doi: 10.1016/S0140-6736(12)60283-9 – volume: 22 start-page: 2416 year: 2008 ident: ref_51 article-title: Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice publication-title: FASEB J. doi: 10.1096/fj.07-102723 – volume: 65 start-page: 1072 year: 2016 ident: ref_6 article-title: Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet–Induced Diabetic Retinopathy publication-title: Diabetes doi: 10.2337/db15-1255 – volume: 22 start-page: 181 year: 2017 ident: ref_16 article-title: The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.07.008 – volume: 67 start-page: 65 year: 2019 ident: ref_59 article-title: Expert Group Consensus Opinion: Role of Anti-inflammatory Agents in the Management of Type-2 Diabetes (T2D) publication-title: J. Assoc. Physicians India – volume: 24 start-page: 639 year: 2000 ident: ref_50 article-title: Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice publication-title: Int. J. Obes. doi: 10.1038/sj.ijo.0801209 – ident: ref_77 doi: 10.2337/db19-1009 – ident: ref_34 doi: 10.3791/59683-v – volume: 196 start-page: 165 year: 2018 ident: ref_56 article-title: Longitudinal Relationship Between Retinal Diabetic Neurodegeneration and Progression of Diabetic Retinopathy in Patients With Type 2 Diabetes publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2018.08.053 – volume: 206 start-page: 2897 year: 2009 ident: ref_3 article-title: Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock publication-title: J. Exp. Med. doi: 10.1084/jem.20090889 – volume: 61 start-page: 3270 year: 2012 ident: ref_12 article-title: Liver X Receptor Modulates Diabetic Retinopathy Outcome in a Mouse Model of Streptozotocin-Induced Diabetes publication-title: Diabetes doi: 10.2337/db11-1596 – volume: 317 start-page: E710 year: 2019 ident: ref_26 article-title: Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway publication-title: Am. J. Physiol. Metab. – volume: 3 start-page: 968 year: 2015 ident: ref_73 article-title: Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: A systematic review and meta-analysis publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(15)00367-8 – volume: 7 start-page: 637 year: 1991 ident: ref_20 article-title: Reduction of ocular blood flow results in glial fibrillary acidic protein (GFAP) expression in rat retinal Müller cells publication-title: Vis. Neurosci. doi: 10.1017/S0952523800010427 – ident: ref_35 doi: 10.1371/journal.pone.0051007 – ident: ref_62 doi: 10.1371/journal.pone.0055177 – volume: 28 start-page: 482 year: 2014 ident: ref_61 article-title: Prevalence and associations of diabetic retinopathy in a large cohort of prediabetic subjects: The Gutenberg Health Study publication-title: J. Diabetes its Complicat. doi: 10.1016/j.jdiacomp.2014.02.008 – volume: 315 start-page: R1210 year: 2018 ident: ref_76 article-title: The effect of a short-term low-carbohydrate, high-fat diet with or without postmeal walks on glycemic control and inflammation in type 2 diabetes: A randomized trial publication-title: Am. J. Physiol. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00240.2018 – volume: 189 start-page: 405 year: 2019 ident: ref_68 article-title: Retinal Vascular Abnormalities and Microglia Activation in Mice with Deficiency in Cytochrome P450 46A1–Mediated Cholesterol Removal publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2018.10.013 – volume: 15 start-page: 1329 year: 2011 ident: ref_28 article-title: High fat diet-induced liver steatosis promotes an increase in liver mitochondrial biogenesis in response to hypoxia publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2010.01128.x – ident: ref_74 doi: 10.3390/nu10101361 – volume: 26 start-page: 259 year: 2012 ident: ref_80 article-title: Dietary obesity-associated hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the sirt2-nad+ system publication-title: Genes Dev. doi: 10.1101/gad.180406.111 – volume: 2019 start-page: 8724818 year: 2019 ident: ref_22 article-title: Pathological Features of Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats publication-title: J. Diabetes Res. doi: 10.1155/2019/8724818 – volume: 152 start-page: 3638 year: 2011 ident: ref_57 article-title: Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons publication-title: Endocrinology doi: 10.1210/en.2011-0029 – ident: ref_75 doi: 10.3390/nu11061436 – volume: 138 start-page: 271 year: 2018 ident: ref_1 article-title: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 publication-title: Diabetes Res. Clin. Pr. doi: 10.1016/j.diabres.2018.02.023 – volume: 48 start-page: 58 year: 2005 ident: ref_46 article-title: Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice publication-title: Diabetologia doi: 10.1007/s00125-004-1605-2 – volume: 283 start-page: 1544 year: 1999 ident: ref_54 article-title: Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-1B Gene publication-title: Sci. doi: 10.1126/science.283.5407.1544 – volume: 23 start-page: 133 year: 2012 ident: ref_58 article-title: Insulin resistance in the nervous system publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2011.12.004 – volume: 54 start-page: 1559 year: 2005 ident: ref_18 article-title: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy publication-title: Diabetes doi: 10.2337/diabetes.54.5.1559 – volume: 33 start-page: 600 year: 2019 ident: ref_25 article-title: Time-dependent changes in hypoxia-and gliosis-related factors in experimental diabetic retinopathy publication-title: Eye doi: 10.1038/s41433-018-0268-z – volume: 22 start-page: 1462 year: 1999 ident: ref_31 article-title: Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp publication-title: Diabetes Care doi: 10.2337/diacare.22.9.1462 – volume: 38 start-page: 1203 year: 1989 ident: ref_36 article-title: Pathogenesis of diabetic retinopathy publication-title: Diabetes doi: 10.2337/diab.38.10.1203 – volume: 39 start-page: 2032 year: 2019 ident: ref_44 article-title: Amplitude loss of the high-frequency flicker electroretinogram in early diabetic retinopathy publication-title: Retin. doi: 10.1097/IAE.0000000000002262 – ident: ref_71 doi: 10.3390/nu11050962 – volume: 281 start-page: 2005 year: 1999 ident: ref_4 article-title: Glycemic Control With Diet Sulfonylurea, Metformin, or Insulin in Patients with Type 2 Diabetes MellitusProgressive Requirement for Multiple Therapies (UKPDS 49) publication-title: JAMA doi: 10.1001/jama.281.21.2005 – volume: 50 start-page: 2374 year: 2007 ident: ref_49 article-title: Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia publication-title: Diabetologia doi: 10.1007/s00125-007-0791-0 – volume: 44 start-page: 645 year: 1995 ident: ref_48 article-title: Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice publication-title: Metabolism doi: 10.1016/0026-0495(95)90123-X – volume: 37 start-page: 1163 year: 1988 ident: ref_47 article-title: Diet-induced type II diabetes in C57BL/6J mice publication-title: Diabetes doi: 10.2337/diab.37.9.1163 – volume: 7 start-page: 661 year: 2012 ident: ref_63 article-title: Examining the role of lipid mediators in diabetic retinopathy publication-title: Clin. Lipidol. doi: 10.2217/clp.12.68 – volume: 139 start-page: 228 year: 2017 ident: ref_64 article-title: The role of dyslipidemia in diabetic retinopathy publication-title: Vis. Res. doi: 10.1016/j.visres.2017.04.010 – volume: 58 start-page: 819 year: 2019 ident: ref_5 article-title: Estimated daily quercetin intake and association with the prevalence of type 2 diabetes mellitus in chinese adults publication-title: Eur. J. Nutr. doi: 10.1007/s00394-018-1713-2 – volume: 56 start-page: 81 year: 2015 ident: ref_15 article-title: Pathways of cholesterol homeostasis in mouse retina responsive to dietary and pharmacologic treatments publication-title: J. Lipid Res. doi: 10.1194/jlr.M053439 – volume: 25 start-page: 1321 year: 1984 ident: ref_38 article-title: Müller cell expression of glial fibrillary acidic protein after genetic and experimental photoreceptor degeneration in the rat retina publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 77 start-page: 108317 year: 2019 ident: ref_72 article-title: High-refined carbohydrate diet consumption induces neuroinflammation and anxiety-like behavior in mice publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2019.108317 – volume: 30 start-page: 1513 year: 2010 ident: ref_65 article-title: Liver x receptor signaling pathways and atherosclerosis publication-title: Arter. Thromb. Vasc. Boil. doi: 10.1161/ATVBAHA.109.191197 – volume: 60 start-page: 937 year: 2019 ident: ref_11 article-title: AMP-activated protein kinase activation ameliorates eicosanoid dysregulation in high-fat-induced kidney disease in mice publication-title: J. Lipid Res. doi: 10.1194/jlr.M088690 – ident: ref_30 doi: 10.1017/S2040174419000709 – volume: 45 start-page: 52 year: 2020 ident: ref_23 article-title: Taurine protects retinal cells and improves synaptic connections in early diabetic rats publication-title: Curr. Eye Res. doi: 10.1080/02713683.2019.1653927 – volume: 44 start-page: 156 year: 2001 ident: ref_41 article-title: Risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis publication-title: Diabetologia doi: 10.1007/s001250051594 – volume: 103 start-page: 1747 year: 2019 ident: ref_45 article-title: Early retinal neurovascular impairment in patients with diabetes without clinically detectable retinopathy publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2018-313582 – volume: 116 start-page: 607 year: 2006 ident: ref_66 article-title: Liver X receptors as integrators of metabolic and inflammatory signaling publication-title: J. Clin. Investig. doi: 10.1172/JCI27883 – ident: ref_78 doi: 10.1371/journal.pone.0047713 – volume: 34 start-page: 405 year: 2016 ident: ref_33 article-title: Ataxia telangiectasia mutated dysregulation results in diabetic retinopathy publication-title: Stem Cells doi: 10.1002/stem.2235 – volume: 28 start-page: 63 year: 1979 ident: ref_19 article-title: The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein publication-title: Exp. Eye Res. doi: 10.1016/0014-4835(79)90106-4 – volume: 24 start-page: 4948 year: 2010 ident: ref_52 article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism publication-title: FASEB J. – volume: 29 start-page: 1623 year: 1988 ident: ref_21 article-title: Effects of oxygen rearing on the electroretinogram and GFA-protein in the rat publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 53 start-page: S215 year: 2004 ident: ref_7 article-title: The high-fat diet-fed mouse: A model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.53.suppl_3.S215 – volume: 27 start-page: 283 year: 2003 ident: ref_40 article-title: A new view of diabetic retinopathy: A neurodegenerative disease of the eye publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry doi: 10.1016/S0278-5846(03)00023-X – volume: 186 start-page: 107742 year: 2019 ident: ref_24 article-title: Duloxetine protects against experimental diabetic retinopathy in mice through retinal GFAP downregulation and modulation of neurotrophic factors publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2019.107742 – volume: 125 start-page: 193 year: 2014 ident: ref_37 article-title: Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2014.06.009 – volume: 30 start-page: 343 year: 2011 ident: ref_42 article-title: Inflammation in diabetic retinopathy publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2011.05.002 – volume: 136 start-page: e1 year: 2017 ident: ref_69 article-title: Dietary Fats and Cardiovascular Disease: A Presidential Advisory from the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0000000000000510 – volume: 45 start-page: 819 year: 2010 ident: ref_82 article-title: Evaluation of renal hypoxia in diabetic mice by BOLD MRI publication-title: Investig. Radiol. doi: 10.1097/RLI.0b013e3181ec9b02 – volume: 109 start-page: 2472 year: 2019 ident: ref_10 article-title: Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors nrf2, srebp-1c, ppar-γ and nf-κb publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.11.120 – volume: 28 start-page: 3 year: 2000 ident: ref_39 article-title: Retinal neurodegeneration: Early pathology in diabetes publication-title: Clin. Exp. Ophthalmol. Viewpoint doi: 10.1046/j.1442-9071.2000.00222.x – volume: 32 start-page: 193 year: 2009 ident: ref_55 article-title: Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes publication-title: Diabetes Care doi: 10.2337/dc08-9025 |
SSID | ssj0000816105 |
Score | 2.312505 |
Snippet | We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 464 |
SubjectTerms | Animals Body Weight Diabetes Mellitus, Type 2 - physiopathology Diabetic Retinopathy - physiopathology Diet, Fat-Restricted Diet, High-Fat Diet, Western Disease Models, Animal Electroretinography Insulin Resistance Mice Mice, Inbred C57BL neural infarcts Obesity - physiopathology Phenotype Prediabetic State - physiopathology Retina - physiopathology retinal phenotype vascular leakage |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFBD1JsdvmefS1iKCIKHorkzTBBenKbj3or3fS7C67onjx2DRtw2SS-SZNvo-Qww63XmYWUqe9SZkBkerMFSkgWlBQiIq1kiw3t-LqkV0_8-cpqa-wJyzSA0fDnQD6nM0ceC0RzGsBDkSFQc5XSlgh23PkeDmVTLVzsEIkk_G4073AvP4krIMPdTgKKthMDGqp-n_Cl9-3SU7Fne4yWRoBRnoaG7pC5ly9ShaihOTHGvHnE8blT4xCFPEcvQ_HmPGZuxdX98MaK-3V7Y2wqSPtQkMveq6hUFf0KRIlxIKb_vvQ0aCO9jqkfU_vBm68NLtOHruXD-dX6Ug7IbWMZ01aOQzkSnQ6NgOPc0jlODBhcm4rLgBRixVgNGe2wDGItpXK5May8FcWCslMsUHm637ttgitWGHBG59nRjFMcLQziCqkZxq8wGCWkOOxNUs7IhYP-havJSYYwfbltO0TcjSp_RYJNX6pdxY6ZlIn0GC3Begc5cg5yr-cIyEH424tcdiE90Pt0JhljoEbZzeVdxKyGbt58qki6JZypRMiZxxgpi2zd-reS0vNLTOJeE1s_0fjd8hiHpL7oD6jdsl8M3h3e4iAGrPfOvsXzxcFzQ priority: 102 providerName: Directory of Open Access Journals |
Title | Characterizing the Retinal Phenotype in the High-Fat Diet and Western Diet Mouse Models of Prediabetes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32085589 https://www.proquest.com/docview/2362073821 https://pubmed.ncbi.nlm.nih.gov/PMC7072836 https://doaj.org/article/a183c0eaf9714996aea6d091fd86c677 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swED-6lo2-lH3P3RY02J6GN8fWh_0wxto1lEFKKAvrm5FkqQ0Eu01caPvX784fIdnaV33Z1unufidL9wP4OBTWq8jq0GXehNxoGWaRS0KNaCHViSx4Q8kyPpHHU_7rTJxtQc822k3g8t7Qjvikpov5l5ur2--o8N8o4sSQ_SttcS8zuuUp-SPYQZ-kiMtg3AH9xianiGwi0Z58_6_TLjxJiKtSENn7mntqsvjfBz3_PUG55pJGT2Gvw5LsRyv8Z7DlyufwuGWXvH0B_nCVjPkOHRRDqMdO6YYz9plcuLKi7Vc2K5sKOu8RjnTNfs5czXRZsD9tDoW2YFxdLx0j4rT5klWeTRau37V9CdPR0e_D47CjVQgtF1EdFg59fCqHQxtpj-alcEJzaWJhCyE1zp2V2mSC2wTV0yM-TE1sLKcftjpR3CSvYLusSvcGWMETq73xcWRSjrFP5gwCDuV5pr1EPxfA5342c9vlHCfqi3mOsQeJIV8XQwCfVq0v21wbD7Q7IMGs2lCG7KagWpznncLlGm2VjZzGD8AgMJPaaVkgOPJFKq1UKoAPvVhz1CgaX5cOJzOP0aej4UvjYQCvWzGvHtUvkwDUxgLYeJfNmnJ20WTtVpFCKCf3HxzzLezGFMwT20z6DrbrxbV7j4inNgPYOTg6mZwOmh2DQbO0_wLmTAJe |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+the+Retinal+Phenotype+in+the+High-Fat+Diet+and+Western+Diet+Mouse+Models+of+Prediabetes&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Asare-Bediako%2C+Bright&rft.au=Noothi%2C+Sunil+K&rft.au=Li+Calzi%2C+Sergio&rft.au=Athmanathan%2C+Baskaran&rft.date=2020-02-18&rft.eissn=2073-4409&rft.volume=9&rft.issue=2&rft_id=info:doi/10.3390%2Fcells9020464&rft_id=info%3Apmid%2F32085589&rft.externalDocID=32085589 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |