Characterizing the Retinal Phenotype in the High-Fat Diet and Western Diet Mouse Models of Prediabetes

We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured....

Full description

Saved in:
Bibliographic Details
Published inCells (Basel, Switzerland) Vol. 9; no. 2; p. 464
Main Authors Asare-Bediako, Bright, Noothi, Sunil, Li Calzi, Sergio, Athmanathan, Baskaran, Vieira, Cristiano, Adu-Agyeiwaah, Yvonne, Dupont, Mariana, Jones, Bryce, Wang, Xiaoxin, Chakraborty, Dibyendu, Levi, Moshe, Nagareddy, Prabhakara, Grant, Maria
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 18.02.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.
AbstractList We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.
We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.
We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.
We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.
Author Athmanathan, Baskaran
Chakraborty, Dibyendu
Wang, Xiaoxin
Levi, Moshe
Asare-Bediako, Bright
Dupont, Mariana
Adu-Agyeiwaah, Yvonne
Nagareddy, Prabhakara
Noothi, Sunil
Li Calzi, Sergio
Vieira, Cristiano
Jones, Bryce
Grant, Maria
AuthorAffiliation 3 Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; baskaran.athmanathan@osumc.edu (B.A.); prabhakara.nagareddy@osumc.edu (P.R.N.)
4 Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA; baj46@georgetown.edu
5 Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; xiaoxin.wang@georgetown.edu (X.X.W.); moshe.levi@georgetown.edu (M.L.)
1 Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA; basareb@uab.edu (B.A.-B.); yvonnad@uab.edu (Y.A.-A.); mdupont@uab.edu (M.D.)
2 Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; sunilnooti@uabmc.edu (S.K.N.); scalzi@uabmc.edu (S.L.C.); cvieira@uabmc.edu (C.P.V.); dchakraborty@uabmc.edu (D.C.)
AuthorAffiliation_xml – name: 2 Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; sunilnooti@uabmc.edu (S.K.N.); scalzi@uabmc.edu (S.L.C.); cvieira@uabmc.edu (C.P.V.); dchakraborty@uabmc.edu (D.C.)
– name: 5 Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; xiaoxin.wang@georgetown.edu (X.X.W.); moshe.levi@georgetown.edu (M.L.)
– name: 4 Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA; baj46@georgetown.edu
– name: 3 Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; baskaran.athmanathan@osumc.edu (B.A.); prabhakara.nagareddy@osumc.edu (P.R.N.)
– name: 1 Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA; basareb@uab.edu (B.A.-B.); yvonnad@uab.edu (Y.A.-A.); mdupont@uab.edu (M.D.)
Author_xml – sequence: 1
  givenname: Bright
  surname: Asare-Bediako
  fullname: Asare-Bediako, Bright
– sequence: 2
  givenname: Sunil
  surname: Noothi
  fullname: Noothi, Sunil
– sequence: 3
  givenname: Sergio
  surname: Li Calzi
  fullname: Li Calzi, Sergio
– sequence: 4
  givenname: Baskaran
  surname: Athmanathan
  fullname: Athmanathan, Baskaran
– sequence: 5
  givenname: Cristiano
  surname: Vieira
  fullname: Vieira, Cristiano
– sequence: 6
  givenname: Yvonne
  surname: Adu-Agyeiwaah
  fullname: Adu-Agyeiwaah, Yvonne
– sequence: 7
  givenname: Mariana
  orcidid: 0000-0001-7986-3383
  surname: Dupont
  fullname: Dupont, Mariana
– sequence: 8
  givenname: Bryce
  orcidid: 0000-0002-6950-8414
  surname: Jones
  fullname: Jones, Bryce
– sequence: 9
  givenname: Xiaoxin
  surname: Wang
  fullname: Wang, Xiaoxin
– sequence: 10
  givenname: Dibyendu
  surname: Chakraborty
  fullname: Chakraborty, Dibyendu
– sequence: 11
  givenname: Moshe
  orcidid: 0000-0001-6403-2261
  surname: Levi
  fullname: Levi, Moshe
– sequence: 12
  givenname: Prabhakara
  orcidid: 0000-0002-0294-641X
  surname: Nagareddy
  fullname: Nagareddy, Prabhakara
– sequence: 13
  givenname: Maria
  surname: Grant
  fullname: Grant, Maria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32085589$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_ojTPKkQMBf8WOL0hoS2mlIioE4mhNnMnGVdZebC9S-fX1dlu0RfhgWzPv-4w0M8fVgQ8eq-oVJe841-S9xXlOmjAipHhWHTGieCME0Qd7_8PqNKUbUk5HJSXti-qQM9K1baePqnExQQSbMbo_zi_rPGH9DbPzMNfXE_qQb9dYO3-fuHDLqTmHXJ85zDX4of6JqVj9LvAlbBKWe8A51WGsryMODnrMmF5Wz0eYE54-vCfVj_NP3xcXzdXXz5eLj1eNFS3JzYCU6U5SagmMSvIBWxCyZ60dWglUMSuh162wnFM9aqW6nvVWMMUIcCV6flJd7rhDgBuzjm4F8dYEcOY-EOLSQMzOzmiAdtwShIKhQmsJCHIgmo5DJ61UqrA-7FjrTb_CwaLPEeYn0KcZ7yazDL-NIop1XBbAmwdADL82pVNm5dJ2YuCxtMowLrdD6hgt0tf7tf4WeRxUEbCdwMaQUsTRWJchu7At7WZDidkuhNlfiGJ6-4_pkftf-R18CLeJ
CitedBy_id crossref_primary_10_3390_biomedicines9091135
crossref_primary_10_2337_dc21_1569
crossref_primary_10_1146_annurev_vision_100419_114940
crossref_primary_10_3390_cells12030477
crossref_primary_10_1167_iovs_63_1_5
crossref_primary_10_3390_cells10082119
crossref_primary_10_1007_s11892_021_01428_x
crossref_primary_10_1007_s43032_024_01629_1
crossref_primary_10_1007_s00125_021_05431_5
crossref_primary_10_3390_antiox13050594
crossref_primary_10_1002_mnfr_202100823
crossref_primary_10_1371_journal_pone_0278388
crossref_primary_10_1167_tvst_12_4_20
crossref_primary_10_1167_iovs_63_11_25
crossref_primary_10_1016_j_ymthe_2021_03_014
crossref_primary_10_3390_biology13070477
crossref_primary_10_2147_DDDT_S420178
crossref_primary_10_3389_fnut_2022_913016
crossref_primary_10_1007_s00125_022_05655_z
crossref_primary_10_1186_s13023_022_02557_6
crossref_primary_10_1186_s12886_023_03155_1
crossref_primary_10_3390_jcm12051771
crossref_primary_10_1016_j_exer_2021_108440
crossref_primary_10_1155_2022_5318245
crossref_primary_10_1038_s41598_020_75576_7
crossref_primary_10_1177_11206721221150064
crossref_primary_10_3390_nu16183074
crossref_primary_10_1016_j_exer_2021_108700
crossref_primary_10_3390_cells11203207
crossref_primary_10_3390_cells12151933
crossref_primary_10_1007_s00394_024_03498_5
crossref_primary_10_4239_wjd_v15_i3_361
crossref_primary_10_1159_000528503
crossref_primary_10_1167_tvst_13_8_8
crossref_primary_10_1055_a_1730_5091
crossref_primary_10_3389_fimmu_2020_583687
Cites_doi 10.3390/cells8050447
10.1517/14728222.2013.806490
10.1006/exer.2002.1170
10.2337/db10-0019
10.1002/jcb.28734
10.1161/ATVBAHA.119.312889
10.1167/iovs.15-16504
10.1096/fj.01-0125com
10.1016/S0140-6736(17)30058-2
10.1002/9780470942390.mo140190
10.1038/39335
10.2337/db18-0158
10.1016/j.physbeh.2004.02.006
10.1002/jsfa.10230
10.1016/S0140-6736(12)60283-9
10.1096/fj.07-102723
10.2337/db15-1255
10.1016/j.ebiom.2017.07.008
10.1038/sj.ijo.0801209
10.2337/db19-1009
10.3791/59683-v
10.1016/j.ajo.2018.08.053
10.1084/jem.20090889
10.2337/db11-1596
10.1016/S2213-8587(15)00367-8
10.1017/S0952523800010427
10.1371/journal.pone.0051007
10.1371/journal.pone.0055177
10.1016/j.jdiacomp.2014.02.008
10.1152/ajpregu.00240.2018
10.1016/j.ajpath.2018.10.013
10.1111/j.1582-4934.2010.01128.x
10.3390/nu10101361
10.1101/gad.180406.111
10.1155/2019/8724818
10.1210/en.2011-0029
10.3390/nu11061436
10.1016/j.diabres.2018.02.023
10.1007/s00125-004-1605-2
10.1126/science.283.5407.1544
10.1016/j.tem.2011.12.004
10.2337/diabetes.54.5.1559
10.1038/s41433-018-0268-z
10.2337/diacare.22.9.1462
10.2337/diab.38.10.1203
10.1097/IAE.0000000000002262
10.3390/nu11050962
10.1001/jama.281.21.2005
10.1007/s00125-007-0791-0
10.1016/0026-0495(95)90123-X
10.2337/diab.37.9.1163
10.2217/clp.12.68
10.1016/j.visres.2017.04.010
10.1007/s00394-018-1713-2
10.1194/jlr.M053439
10.1016/j.jnutbio.2019.108317
10.1161/ATVBAHA.109.191197
10.1194/jlr.M088690
10.1017/S2040174419000709
10.1080/02713683.2019.1653927
10.1007/s001250051594
10.1136/bjophthalmol-2018-313582
10.1172/JCI27883
10.1371/journal.pone.0047713
10.1002/stem.2235
10.1016/0014-4835(79)90106-4
10.2337/diabetes.53.suppl_3.S215
10.1016/S0278-5846(03)00023-X
10.1016/j.exer.2019.107742
10.1016/j.exer.2014.06.009
10.1016/j.preteyeres.2011.05.002
10.1161/CIR.0000000000000510
10.1097/RLI.0b013e3181ec9b02
10.1016/j.biopha.2018.11.120
10.1046/j.1442-9071.2000.00222.x
10.2337/dc08-9025
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/cells9020464
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2073-4409
ExternalDocumentID oai_doaj_org_article_a183c0eaf9714996aea6d091fd86c677
PMC7072836
32085589
10_3390_cells9020464
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY028037
– fundername: NIDDK NIH HHS
  grantid: R01 DK116567
– fundername: NIDDK NIH HHS
  grantid: P30 DK079626
– fundername: NHLBI NIH HHS
  grantid: K99 HL122505
– fundername: NHLBI NIH HHS
  grantid: R01 HL137799
– fundername: NHLBI NIH HHS
  grantid: R00 HL122505
– fundername: NEI NIH HHS
  grantid: P30 EY003039
– fundername: NEI NIH HHS
  grantid: R01 EY028858
– fundername: NCATS NIH HHS
  grantid: TL1 TR001431
– fundername: NEI NIH HHS
  grantid: R01 EY012601
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EBD
ESX
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c450t-de1298611c0af763de5a46b25cd56a172c6ab954c3319f9778b2bc42720a374b3
IEDL.DBID M48
ISSN 2073-4409
IngestDate Wed Aug 27 01:31:47 EDT 2025
Thu Aug 21 13:53:33 EDT 2025
Fri Jul 11 06:41:35 EDT 2025
Mon Apr 28 11:35:34 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Tue Jul 01 01:05:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords vascular leakage
retinal phenotype
neural infarcts
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-de1298611c0af763de5a46b25cd56a172c6ab954c3319f9778b2bc42720a374b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7986-3383
0000-0001-6403-2261
0000-0002-0294-641X
0000-0002-6950-8414
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cells9020464
PMID 32085589
PQID 2362073821
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a183c0eaf9714996aea6d091fd86c677
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7072836
proquest_miscellaneous_2362073821
pubmed_primary_32085589
crossref_citationtrail_10_3390_cells9020464
crossref_primary_10_3390_cells9020464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200218
PublicationDateYYYYMMDD 2020-02-18
PublicationDate_xml – month: 2
  year: 2020
  text: 20200218
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Cells (Basel, Switzerland)
PublicationTitleAlternate Cells
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Penn (ref_21) 1988; 29
Chatterjee (ref_2) 2017; 389
Surwit (ref_48) 1995; 44
Bhatwadekar (ref_33) 2016; 34
Kim (ref_58) 2012; 23
ref_14
Surwit (ref_47) 1988; 37
Andraski (ref_70) 2019; 39
Rajagopal (ref_6) 2016; 65
Mathew (ref_11) 2019; 60
Nathan (ref_55) 2009; 32
Barber (ref_40) 2003; 27
Winzell (ref_7) 2004; 53
Veenstra (ref_32) 2015; 5
Tobias (ref_73) 2015; 3
Lieth (ref_39) 2000; 28
Cho (ref_1) 2018; 138
Uysal (ref_53) 1997; 389
Prasad (ref_82) 2010; 45
Krady (ref_18) 2005; 54
Stratton (ref_41) 2001; 44
Membrez (ref_51) 2008; 22
Krishnan (ref_80) 2012; 26
Steffensen (ref_67) 2013; 17
Kim (ref_57) 2011; 152
ref_62
Hazra (ref_12) 2012; 61
Zheng (ref_15) 2015; 56
Beli (ref_29) 2018; 67
Busik (ref_63) 2012; 7
McAnany (ref_44) 2019; 39
Elchebly (ref_54) 1999; 283
Turner (ref_4) 1999; 281
Cani (ref_49) 2007; 50
ref_71
ref_35
ref_34
ref_78
ref_77
Bahr (ref_24) 2019; 186
ref_75
Gu (ref_25) 2019; 33
ref_30
Lin (ref_50) 2000; 24
ref_74
Tang (ref_42) 2011; 30
Lamparter (ref_61) 2014; 28
Han (ref_27) 2019; 120
Eisenfeld (ref_38) 1984; 25
Lee (ref_79) 2015; 56
Das (ref_59) 2019; 67
Illesca (ref_10) 2019; 109
Busik (ref_3) 2009; 206
Yao (ref_5) 2019; 58
Tanaka (ref_22) 2019; 2019
Zeng (ref_45) 2019; 103
Osborne (ref_20) 1991; 7
Collins (ref_9) 2004; 81
Li (ref_17) 2002; 74
Stroka (ref_81) 2001; 15
Rabot (ref_52) 2010; 24
Kim (ref_56) 2018; 196
Durrer (ref_76) 2018; 315
Matsuda (ref_31) 1999; 22
Herder (ref_60) 2012; 379
Carabelli (ref_28) 2011; 15
Fortune (ref_43) 1999; 40
Gomes (ref_72) 2019; 77
Dahl (ref_19) 1979; 28
Fan (ref_23) 2020; 45
Engerman (ref_36) 1989; 38
Kumar (ref_37) 2014; 125
Saadane (ref_68) 2019; 189
Sone (ref_46) 2005; 48
ref_8
Zelcer (ref_66) 2006; 116
Sacks (ref_69) 2017; 136
Wang (ref_13) 2010; 59
Hammer (ref_16) 2017; 22
Hammer (ref_64) 2017; 139
Chen (ref_26) 2019; 317
Calkin (ref_65) 2010; 30
References_xml – ident: ref_8
  doi: 10.3390/cells8050447
– volume: 17
  start-page: 977
  year: 2013
  ident: ref_67
  article-title: Targeting liver X receptors in inflammation
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1517/14728222.2013.806490
– volume: 74
  start-page: 615
  year: 2002
  ident: ref_17
  article-title: Early Retinal Damage in Experimental Diabetes: Electroretinographical and Morphological Observations
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.2002.1170
– volume: 59
  start-page: 2916
  year: 2010
  ident: ref_13
  article-title: Diabetic Nephropathy Is Accelerated by Farnesoid X Receptor Deficiency and Inhibited by Farnesoid X Receptor Activation in a Type 1 Diabetes Model
  publication-title: Diabetes
  doi: 10.2337/db10-0019
– volume: 120
  start-page: 14735
  year: 2019
  ident: ref_27
  article-title: Hypoxia inducible factor-1 promotes liver fibrosis in nonalcoholic fatty liver disease by activating PTEN/p65 signaling pathway
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.28734
– volume: 39
  start-page: 2411
  year: 2019
  ident: ref_70
  article-title: Effects of Replacing Dietary Monounsaturated Fat With Carbohydrate on HDL (High-Density Lipoprotein) Protein Metabolism and Proteome Composition in Humans
  publication-title: Arter. Thromb. Vasc. Boil.
  doi: 10.1161/ATVBAHA.119.312889
– volume: 56
  start-page: 3041
  year: 2015
  ident: ref_79
  article-title: High-Fat Diet Induces Toll-Like Receptor 4-Dependent Macrophage/Microglial Cell Activation and Retinal Impairment
  publication-title: Investig. Opthalmol. Vis. Sci.
  doi: 10.1167/iovs.15-16504
– volume: 40
  start-page: 2638
  year: 1999
  ident: ref_43
  article-title: Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 15
  start-page: 2445
  year: 2001
  ident: ref_81
  article-title: Hif-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia
  publication-title: FASEB J.
  doi: 10.1096/fj.01-0125com
– volume: 389
  start-page: 2239
  year: 2017
  ident: ref_2
  article-title: Type 2 diabetes
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)30058-2
– volume: 5
  start-page: 247
  year: 2015
  ident: ref_32
  article-title: Diabetic Retinopathy: Retina-Specific Methods for Maintenance of Diabetic Rodents and Evaluation of Vascular Histopathology and Molecular Abnormalities
  publication-title: Curr. Protoc. Mouse Boil.
  doi: 10.1002/9780470942390.mo140190
– volume: 389
  start-page: 610
  year: 1997
  ident: ref_53
  article-title: Protection from obesity-induced insulin resistance in mice lacking TNF-α function
  publication-title: Nature
  doi: 10.1038/39335
– volume: 67
  start-page: 1867
  year: 2018
  ident: ref_29
  article-title: Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice
  publication-title: Diabetes
  doi: 10.2337/db18-0158
– volume: 81
  start-page: 243
  year: 2004
  ident: ref_9
  article-title: Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: Physiological and molecular characteristics
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2004.02.006
– ident: ref_14
  doi: 10.1002/jsfa.10230
– volume: 379
  start-page: 2279
  year: 2012
  ident: ref_60
  article-title: Prediabetes: A high-risk state for diabetes development
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60283-9
– volume: 22
  start-page: 2416
  year: 2008
  ident: ref_51
  article-title: Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice
  publication-title: FASEB J.
  doi: 10.1096/fj.07-102723
– volume: 65
  start-page: 1072
  year: 2016
  ident: ref_6
  article-title: Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet–Induced Diabetic Retinopathy
  publication-title: Diabetes
  doi: 10.2337/db15-1255
– volume: 22
  start-page: 181
  year: 2017
  ident: ref_16
  article-title: The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.07.008
– volume: 67
  start-page: 65
  year: 2019
  ident: ref_59
  article-title: Expert Group Consensus Opinion: Role of Anti-inflammatory Agents in the Management of Type-2 Diabetes (T2D)
  publication-title: J. Assoc. Physicians India
– volume: 24
  start-page: 639
  year: 2000
  ident: ref_50
  article-title: Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice
  publication-title: Int. J. Obes.
  doi: 10.1038/sj.ijo.0801209
– ident: ref_77
  doi: 10.2337/db19-1009
– ident: ref_34
  doi: 10.3791/59683-v
– volume: 196
  start-page: 165
  year: 2018
  ident: ref_56
  article-title: Longitudinal Relationship Between Retinal Diabetic Neurodegeneration and Progression of Diabetic Retinopathy in Patients With Type 2 Diabetes
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2018.08.053
– volume: 206
  start-page: 2897
  year: 2009
  ident: ref_3
  article-title: Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20090889
– volume: 61
  start-page: 3270
  year: 2012
  ident: ref_12
  article-title: Liver X Receptor Modulates Diabetic Retinopathy Outcome in a Mouse Model of Streptozotocin-Induced Diabetes
  publication-title: Diabetes
  doi: 10.2337/db11-1596
– volume: 317
  start-page: E710
  year: 2019
  ident: ref_26
  article-title: Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway
  publication-title: Am. J. Physiol. Metab.
– volume: 3
  start-page: 968
  year: 2015
  ident: ref_73
  article-title: Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: A systematic review and meta-analysis
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(15)00367-8
– volume: 7
  start-page: 637
  year: 1991
  ident: ref_20
  article-title: Reduction of ocular blood flow results in glial fibrillary acidic protein (GFAP) expression in rat retinal Müller cells
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523800010427
– ident: ref_35
  doi: 10.1371/journal.pone.0051007
– ident: ref_62
  doi: 10.1371/journal.pone.0055177
– volume: 28
  start-page: 482
  year: 2014
  ident: ref_61
  article-title: Prevalence and associations of diabetic retinopathy in a large cohort of prediabetic subjects: The Gutenberg Health Study
  publication-title: J. Diabetes its Complicat.
  doi: 10.1016/j.jdiacomp.2014.02.008
– volume: 315
  start-page: R1210
  year: 2018
  ident: ref_76
  article-title: The effect of a short-term low-carbohydrate, high-fat diet with or without postmeal walks on glycemic control and inflammation in type 2 diabetes: A randomized trial
  publication-title: Am. J. Physiol. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00240.2018
– volume: 189
  start-page: 405
  year: 2019
  ident: ref_68
  article-title: Retinal Vascular Abnormalities and Microglia Activation in Mice with Deficiency in Cytochrome P450 46A1–Mediated Cholesterol Removal
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2018.10.013
– volume: 15
  start-page: 1329
  year: 2011
  ident: ref_28
  article-title: High fat diet-induced liver steatosis promotes an increase in liver mitochondrial biogenesis in response to hypoxia
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2010.01128.x
– ident: ref_74
  doi: 10.3390/nu10101361
– volume: 26
  start-page: 259
  year: 2012
  ident: ref_80
  article-title: Dietary obesity-associated hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the sirt2-nad+ system
  publication-title: Genes Dev.
  doi: 10.1101/gad.180406.111
– volume: 2019
  start-page: 8724818
  year: 2019
  ident: ref_22
  article-title: Pathological Features of Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats
  publication-title: J. Diabetes Res.
  doi: 10.1155/2019/8724818
– volume: 152
  start-page: 3638
  year: 2011
  ident: ref_57
  article-title: Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons
  publication-title: Endocrinology
  doi: 10.1210/en.2011-0029
– ident: ref_75
  doi: 10.3390/nu11061436
– volume: 138
  start-page: 271
  year: 2018
  ident: ref_1
  article-title: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045
  publication-title: Diabetes Res. Clin. Pr.
  doi: 10.1016/j.diabres.2018.02.023
– volume: 48
  start-page: 58
  year: 2005
  ident: ref_46
  article-title: Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-004-1605-2
– volume: 283
  start-page: 1544
  year: 1999
  ident: ref_54
  article-title: Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-1B Gene
  publication-title: Sci.
  doi: 10.1126/science.283.5407.1544
– volume: 23
  start-page: 133
  year: 2012
  ident: ref_58
  article-title: Insulin resistance in the nervous system
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2011.12.004
– volume: 54
  start-page: 1559
  year: 2005
  ident: ref_18
  article-title: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.5.1559
– volume: 33
  start-page: 600
  year: 2019
  ident: ref_25
  article-title: Time-dependent changes in hypoxia-and gliosis-related factors in experimental diabetic retinopathy
  publication-title: Eye
  doi: 10.1038/s41433-018-0268-z
– volume: 22
  start-page: 1462
  year: 1999
  ident: ref_31
  article-title: Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp
  publication-title: Diabetes Care
  doi: 10.2337/diacare.22.9.1462
– volume: 38
  start-page: 1203
  year: 1989
  ident: ref_36
  article-title: Pathogenesis of diabetic retinopathy
  publication-title: Diabetes
  doi: 10.2337/diab.38.10.1203
– volume: 39
  start-page: 2032
  year: 2019
  ident: ref_44
  article-title: Amplitude loss of the high-frequency flicker electroretinogram in early diabetic retinopathy
  publication-title: Retin.
  doi: 10.1097/IAE.0000000000002262
– ident: ref_71
  doi: 10.3390/nu11050962
– volume: 281
  start-page: 2005
  year: 1999
  ident: ref_4
  article-title: Glycemic Control With Diet Sulfonylurea, Metformin, or Insulin in Patients with Type 2 Diabetes MellitusProgressive Requirement for Multiple Therapies (UKPDS 49)
  publication-title: JAMA
  doi: 10.1001/jama.281.21.2005
– volume: 50
  start-page: 2374
  year: 2007
  ident: ref_49
  article-title: Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0791-0
– volume: 44
  start-page: 645
  year: 1995
  ident: ref_48
  article-title: Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice
  publication-title: Metabolism
  doi: 10.1016/0026-0495(95)90123-X
– volume: 37
  start-page: 1163
  year: 1988
  ident: ref_47
  article-title: Diet-induced type II diabetes in C57BL/6J mice
  publication-title: Diabetes
  doi: 10.2337/diab.37.9.1163
– volume: 7
  start-page: 661
  year: 2012
  ident: ref_63
  article-title: Examining the role of lipid mediators in diabetic retinopathy
  publication-title: Clin. Lipidol.
  doi: 10.2217/clp.12.68
– volume: 139
  start-page: 228
  year: 2017
  ident: ref_64
  article-title: The role of dyslipidemia in diabetic retinopathy
  publication-title: Vis. Res.
  doi: 10.1016/j.visres.2017.04.010
– volume: 58
  start-page: 819
  year: 2019
  ident: ref_5
  article-title: Estimated daily quercetin intake and association with the prevalence of type 2 diabetes mellitus in chinese adults
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-018-1713-2
– volume: 56
  start-page: 81
  year: 2015
  ident: ref_15
  article-title: Pathways of cholesterol homeostasis in mouse retina responsive to dietary and pharmacologic treatments
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M053439
– volume: 25
  start-page: 1321
  year: 1984
  ident: ref_38
  article-title: Müller cell expression of glial fibrillary acidic protein after genetic and experimental photoreceptor degeneration in the rat retina
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 77
  start-page: 108317
  year: 2019
  ident: ref_72
  article-title: High-refined carbohydrate diet consumption induces neuroinflammation and anxiety-like behavior in mice
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2019.108317
– volume: 30
  start-page: 1513
  year: 2010
  ident: ref_65
  article-title: Liver x receptor signaling pathways and atherosclerosis
  publication-title: Arter. Thromb. Vasc. Boil.
  doi: 10.1161/ATVBAHA.109.191197
– volume: 60
  start-page: 937
  year: 2019
  ident: ref_11
  article-title: AMP-activated protein kinase activation ameliorates eicosanoid dysregulation in high-fat-induced kidney disease in mice
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M088690
– ident: ref_30
  doi: 10.1017/S2040174419000709
– volume: 45
  start-page: 52
  year: 2020
  ident: ref_23
  article-title: Taurine protects retinal cells and improves synaptic connections in early diabetic rats
  publication-title: Curr. Eye Res.
  doi: 10.1080/02713683.2019.1653927
– volume: 44
  start-page: 156
  year: 2001
  ident: ref_41
  article-title: Risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis
  publication-title: Diabetologia
  doi: 10.1007/s001250051594
– volume: 103
  start-page: 1747
  year: 2019
  ident: ref_45
  article-title: Early retinal neurovascular impairment in patients with diabetes without clinically detectable retinopathy
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2018-313582
– volume: 116
  start-page: 607
  year: 2006
  ident: ref_66
  article-title: Liver X receptors as integrators of metabolic and inflammatory signaling
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI27883
– ident: ref_78
  doi: 10.1371/journal.pone.0047713
– volume: 34
  start-page: 405
  year: 2016
  ident: ref_33
  article-title: Ataxia telangiectasia mutated dysregulation results in diabetic retinopathy
  publication-title: Stem Cells
  doi: 10.1002/stem.2235
– volume: 28
  start-page: 63
  year: 1979
  ident: ref_19
  article-title: The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein
  publication-title: Exp. Eye Res.
  doi: 10.1016/0014-4835(79)90106-4
– volume: 24
  start-page: 4948
  year: 2010
  ident: ref_52
  article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism
  publication-title: FASEB J.
– volume: 29
  start-page: 1623
  year: 1988
  ident: ref_21
  article-title: Effects of oxygen rearing on the electroretinogram and GFA-protein in the rat
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 53
  start-page: S215
  year: 2004
  ident: ref_7
  article-title: The high-fat diet-fed mouse: A model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.suppl_3.S215
– volume: 27
  start-page: 283
  year: 2003
  ident: ref_40
  article-title: A new view of diabetic retinopathy: A neurodegenerative disease of the eye
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/S0278-5846(03)00023-X
– volume: 186
  start-page: 107742
  year: 2019
  ident: ref_24
  article-title: Duloxetine protects against experimental diabetic retinopathy in mice through retinal GFAP downregulation and modulation of neurotrophic factors
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2019.107742
– volume: 125
  start-page: 193
  year: 2014
  ident: ref_37
  article-title: Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2014.06.009
– volume: 30
  start-page: 343
  year: 2011
  ident: ref_42
  article-title: Inflammation in diabetic retinopathy
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2011.05.002
– volume: 136
  start-page: e1
  year: 2017
  ident: ref_69
  article-title: Dietary Fats and Cardiovascular Disease: A Presidential Advisory from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000510
– volume: 45
  start-page: 819
  year: 2010
  ident: ref_82
  article-title: Evaluation of renal hypoxia in diabetic mice by BOLD MRI
  publication-title: Investig. Radiol.
  doi: 10.1097/RLI.0b013e3181ec9b02
– volume: 109
  start-page: 2472
  year: 2019
  ident: ref_10
  article-title: Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors nrf2, srebp-1c, ppar-γ and nf-κb
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.11.120
– volume: 28
  start-page: 3
  year: 2000
  ident: ref_39
  article-title: Retinal neurodegeneration: Early pathology in diabetes
  publication-title: Clin. Exp. Ophthalmol. Viewpoint
  doi: 10.1046/j.1442-9071.2000.00222.x
– volume: 32
  start-page: 193
  year: 2009
  ident: ref_55
  article-title: Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc08-9025
SSID ssj0000816105
Score 2.312505
Snippet We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 464
SubjectTerms Animals
Body Weight
Diabetes Mellitus, Type 2 - physiopathology
Diabetic Retinopathy - physiopathology
Diet, Fat-Restricted
Diet, High-Fat
Diet, Western
Disease Models, Animal
Electroretinography
Insulin Resistance
Mice
Mice, Inbred C57BL
neural infarcts
Obesity - physiopathology
Phenotype
Prediabetic State - physiopathology
Retina - physiopathology
retinal phenotype
vascular leakage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFBD1JsdvmefS1iKCIKHorkzTBBenKbj3or3fS7C67onjx2DRtw2SS-SZNvo-Qww63XmYWUqe9SZkBkerMFSkgWlBQiIq1kiw3t-LqkV0_8-cpqa-wJyzSA0fDnQD6nM0ceC0RzGsBDkSFQc5XSlgh23PkeDmVTLVzsEIkk_G4073AvP4krIMPdTgKKthMDGqp-n_Cl9-3SU7Fne4yWRoBRnoaG7pC5ly9ShaihOTHGvHnE8blT4xCFPEcvQ_HmPGZuxdX98MaK-3V7Y2wqSPtQkMveq6hUFf0KRIlxIKb_vvQ0aCO9jqkfU_vBm68NLtOHruXD-dX6Ug7IbWMZ01aOQzkSnQ6NgOPc0jlODBhcm4rLgBRixVgNGe2wDGItpXK5May8FcWCslMsUHm637ttgitWGHBG59nRjFMcLQziCqkZxq8wGCWkOOxNUs7IhYP-havJSYYwfbltO0TcjSp_RYJNX6pdxY6ZlIn0GC3Begc5cg5yr-cIyEH424tcdiE90Pt0JhljoEbZzeVdxKyGbt58qki6JZypRMiZxxgpi2zd-reS0vNLTOJeE1s_0fjd8hiHpL7oD6jdsl8M3h3e4iAGrPfOvsXzxcFzQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Characterizing the Retinal Phenotype in the High-Fat Diet and Western Diet Mouse Models of Prediabetes
URI https://www.ncbi.nlm.nih.gov/pubmed/32085589
https://www.proquest.com/docview/2362073821
https://pubmed.ncbi.nlm.nih.gov/PMC7072836
https://doaj.org/article/a183c0eaf9714996aea6d091fd86c677
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swED-6lo2-lH3P3RY02J6GN8fWh_0wxto1lEFKKAvrm5FkqQ0Eu01caPvX784fIdnaV33Z1unufidL9wP4OBTWq8jq0GXehNxoGWaRS0KNaCHViSx4Q8kyPpHHU_7rTJxtQc822k3g8t7Qjvikpov5l5ur2--o8N8o4sSQ_SttcS8zuuUp-SPYQZ-kiMtg3AH9xianiGwi0Z58_6_TLjxJiKtSENn7mntqsvjfBz3_PUG55pJGT2Gvw5LsRyv8Z7DlyufwuGWXvH0B_nCVjPkOHRRDqMdO6YYz9plcuLKi7Vc2K5sKOu8RjnTNfs5czXRZsD9tDoW2YFxdLx0j4rT5klWeTRau37V9CdPR0e_D47CjVQgtF1EdFg59fCqHQxtpj-alcEJzaWJhCyE1zp2V2mSC2wTV0yM-TE1sLKcftjpR3CSvYLusSvcGWMETq73xcWRSjrFP5gwCDuV5pr1EPxfA5342c9vlHCfqi3mOsQeJIV8XQwCfVq0v21wbD7Q7IMGs2lCG7KagWpznncLlGm2VjZzGD8AgMJPaaVkgOPJFKq1UKoAPvVhz1CgaX5cOJzOP0aej4UvjYQCvWzGvHtUvkwDUxgLYeJfNmnJ20WTtVpFCKCf3HxzzLezGFMwT20z6DrbrxbV7j4inNgPYOTg6mZwOmh2DQbO0_wLmTAJe
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+the+Retinal+Phenotype+in+the+High-Fat+Diet+and+Western+Diet+Mouse+Models+of+Prediabetes&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Asare-Bediako%2C+Bright&rft.au=Noothi%2C+Sunil+K&rft.au=Li+Calzi%2C+Sergio&rft.au=Athmanathan%2C+Baskaran&rft.date=2020-02-18&rft.eissn=2073-4409&rft.volume=9&rft.issue=2&rft_id=info:doi/10.3390%2Fcells9020464&rft_id=info%3Apmid%2F32085589&rft.externalDocID=32085589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon