Design Principles for Compact, Backdrivable Actuation in Partial-Assist Powered Knee Orthoses

This article presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdr...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 26; no. 6; pp. 3104 - 3115
Main Authors Zhu, Hanqi, Nesler, Christopher, Divekar, Nikhil, Peddinti, Vamsi, Gregg, Robert D.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom brushless dc motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m peak torque and 12.78-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m continuous torque, yet has less than 2.68-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m backdrive torque during walking conditions. Able-bodied human subject experiments (<inline-formula><tex-math notation="LaTeX">N=3</tex-math></inline-formula>) demonstrate reduced quadricep activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise.
AbstractList This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor’s thermal environment, motivating our design of a custom Brushless DC motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9 Nm peak torque and 12.78 Nm continuous torque, yet has less than 2.68 Nm backdrive torque during walking conditions. Able-bodied human subjects experiments (N=3) demonstrate reduced quadriceps activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise.
This article presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom brushless dc motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m peak torque and 12.78-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m continuous torque, yet has less than 2.68-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m backdrive torque during walking conditions. Able-bodied human subject experiments (<inline-formula><tex-math notation="LaTeX">N=3</tex-math></inline-formula>) demonstrate reduced quadricep activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise.
This article presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor’s thermal environment, motivating our design of a custom brushless dc motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9-N[Formula Omitted]m peak torque and 12.78-N[Formula Omitted]m continuous torque, yet has less than 2.68-N[Formula Omitted]m backdrive torque during walking conditions. Able-bodied human subject experiments ([Formula Omitted]) demonstrate reduced quadricep activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise.
This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom Brushless DC motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9 Nm peak torque and 12.78 Nm continuous torque, yet has less than 2.68 Nm backdrive torque during walking conditions. Able-bodied human subjects experiments (N=3) demonstrate reduced quadriceps activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise.This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom Brushless DC motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9 Nm peak torque and 12.78 Nm continuous torque, yet has less than 2.68 Nm backdrive torque during walking conditions. Able-bodied human subjects experiments (N=3) demonstrate reduced quadriceps activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise.
Author Peddinti, Vamsi
Zhu, Hanqi
Divekar, Nikhil
Gregg, Robert D.
Nesler, Christopher
AuthorAffiliation 2 Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA
3 Robotics, University of Michigan, Ann Arbor, MI 48109, USA
1 Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
AuthorAffiliation_xml – name: 2 Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA
– name: 1 Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
– name: 3 Robotics, University of Michigan, Ann Arbor, MI 48109, USA
Author_xml – sequence: 1
  givenname: Hanqi
  surname: Zhu
  fullname: Zhu, Hanqi
  email: hanqi.zhu@utdallas.edu
  organization: Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX, USA
– sequence: 2
  givenname: Christopher
  surname: Nesler
  fullname: Nesler, Christopher
  email: neslerc@umich.edu
  organization: Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 3
  givenname: Nikhil
  surname: Divekar
  fullname: Divekar, Nikhil
  email: ndivekar@umich.edu
  organization: Robotics Institute, University of Michigan, Ann Arbor, MI, USA
– sequence: 4
  givenname: Vamsi
  surname: Peddinti
  fullname: Peddinti, Vamsi
  email: svkp@umich.edu
  organization: Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 5
  givenname: Robert D.
  orcidid: 0000-0002-0729-2857
  surname: Gregg
  fullname: Gregg, Robert D.
  email: rdgregg@umich.edu
  organization: Department of Electrical and Computer Engineering and the Robotics Institute, University of Michigan, Ann Arbor, MI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34916771$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi3Uin7AHwAJrcSFAxs8tvfrghRCoYii9lAkLsiyvbOty8YOtreIf4_TpBH0wMm25nnfmfF7RPacd0jIM6AzANq9ufxysjidMcpgxmnFGasfkUPoBJQUxLe9fKctL4Xg1QE5ivGGUiqAwmNywEUHddPAIfn-HqO9csVFsM7Y1YixGHwoFn65Uia9Lt4p86MP9lbpEYu5SZNK1rvCZoUKyaqxnMdoYyou_C8M2BefHWJxHtK1jxifkP1BjRGfbs9j8vXDyeXitDw7__hpMT8rjahoKnvDeyXaVneIw0BZ3Q5aaNqalsHQmqbWqGswuq-gYaxS-dFzQ7XoGNdN0_Bj8nbju5r0EnuDLgU1ylWwSxV-S6-s_Lfi7LW88reyrRuaLbPBq61B8D8njEkubTQ4jsqhn6JkNUBdCQFdRl8-QG_8FFxeb01RaAAEZOrF3xPtRrn_-QywDWCCjzHgsEOAynW88i5euY5XbuPNovaByNh0l0jeyo7_lz7fSC0i7np1nHW0A_4HQjKzFA
CODEN IATEFW
CitedBy_id crossref_primary_10_1109_TRO_2023_3235584
crossref_primary_10_1109_TMECH_2022_3159506
crossref_primary_10_1109_TMECH_2024_3365045
crossref_primary_10_1108_IR_02_2024_0064
crossref_primary_10_1109_ACCESS_2021_3110595
crossref_primary_10_1109_LRA_2024_3414259
crossref_primary_10_1007_s10439_025_03696_0
crossref_primary_10_1109_TCST_2024_3429908
crossref_primary_10_1109_LRA_2022_3183790
crossref_primary_10_1109_TMECH_2022_3201255
crossref_primary_10_1126_scirobotics_abj3487
crossref_primary_10_1186_s12984_022_01002_w
crossref_primary_10_1017_wtc_2021_13
crossref_primary_10_1109_LRA_2022_3145580
crossref_primary_10_1109_TMRB_2024_3421547
crossref_primary_10_1109_OJCSYS_2022_3165733
crossref_primary_10_3390_s21196545
crossref_primary_10_1109_LRA_2025_3527307
crossref_primary_10_3390_robotics13110168
crossref_primary_10_1109_TNSRE_2022_3201383
crossref_primary_10_1115_1_4056919
crossref_primary_10_1186_s12984_023_01144_5
crossref_primary_10_1109_TMECH_2023_3334795
crossref_primary_10_3390_bioengineering11070683
crossref_primary_10_1088_1361_665X_ad469e
crossref_primary_10_1109_TMECH_2022_3204921
crossref_primary_10_1109_TMECH_2023_3245810
crossref_primary_10_1007_s42235_024_00490_x
crossref_primary_10_1126_scirobotics_adr8282
crossref_primary_10_3389_fnhum_2022_1018160
crossref_primary_10_1109_TIE_2024_3429609
crossref_primary_10_3390_s24082645
crossref_primary_10_1109_TRO_2022_3197088
crossref_primary_10_1016_j_heliyon_2024_e26060
crossref_primary_10_1109_TRO_2022_3170287
crossref_primary_10_1109_ACCESS_2024_3472116
Cites_doi 10.1109/ROBOT.2008.4543506
10.1109/IROS.2017.8202275
10.1109/MCS.2018.2866605
10.1177/1941738112445726
10.1109/TNSRE.2011.2163083
10.1002/jor.20496
10.1109/IROS.2010.5650671
10.1016/j.autcon.2017.07.007
10.1109/BIOROB.2014.6913824
10.1109/ICRA.2017.7989063
10.1109/TNSRE.2014.2346193
10.1109/ICRA.2019.8793865
10.1109/IAS.1992.244455
10.1115/97-GT-114
10.1109/BioRob49111.2020.9224341
10.1109/AIM.2019.8868596
10.1115/1.4043460
10.1016/0169-8141(95)00086-0
10.1109/ICRA.2011.5979940
10.3390/act4030182
10.1016/j.apmr.2010.01.015
10.1109/TCST.2016.2646319
10.1109/IROS.2017.8202172
10.1109/TIE.2009.2030211
10.1109/TMECH.2017.2704521
10.1002/art.24182
10.1109/TMECH.2018.2790358
10.1109/ICRA.2012.6224739
10.1109/TBME.2014.2307698
10.1109/ICORR.2019.8779479
10.1109/TMECH.2008.2004561
10.1109/IROS.2012.6386252
10.1109/TRO.2020.3005533
10.1109/TIA.2016.2641396
10.2519/jospt.1999.29.2.116
10.1109/TMECH.2014.2339013
10.1002/9780470549148
10.1109/ANDESCON.2018.8564692
10.1109/TMECH.2018.2854416
10.1109/LRA.2018.2864352
10.1109/LCSYS.2020.3043838
10.1016/j.jelekin.2006.12.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/TMECH.2021.3053226
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

Technology Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 3115
ExternalDocumentID PMC8670722
34916771
10_1109_TMECH_2021_3053226
9329091
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Institute of Child Health and Human Development
  funderid: 10.13039/100000071
– fundername: National Institutes of Health
  grantid: DP2HD080349
  funderid: 10.13039/100000002
– fundername: Eugene McDermott Graduate Fellowship
– fundername: National Science Foundation
  grantid: 1652514; 1949869
  funderid: 10.13039/501100008982
– fundername: NICHD NIH HHS
  grantid: DP2 HD080349
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
RIG
0B8
NPM
PKN
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c450t-dc3da488b9eeff0268fb4b08c821f8c76beb61cbd517225ab61d3c0b4923b7773
IEDL.DBID RIE
ISSN 1083-4435
IngestDate Thu Aug 21 18:38:56 EDT 2025
Thu Jul 10 18:11:54 EDT 2025
Mon Jun 30 02:58:38 EDT 2025
Wed Feb 19 02:27:41 EST 2025
Thu Apr 24 23:02:13 EDT 2025
Tue Jul 01 04:23:20 EDT 2025
Wed Aug 27 04:55:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-dc3da488b9eeff0268fb4b08c821f8c76beb61cbd517225ab61d3c0b4923b7773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0729-2857
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8670722
PMID 34916771
PQID 2610171141
PQPubID 85420
PageCount 12
ParticipantIDs pubmed_primary_34916771
proquest_miscellaneous_2611654419
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8670722
crossref_primary_10_1109_TMECH_2021_3053226
proquest_journals_2610171141
ieee_primary_9329091
crossref_citationtrail_10_1109_TMECH_2021_3053226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationTitleAlternate IEEE ASME Trans Mechatron
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
yang (ref40) 1984; 65
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
(ref4) 2014
ref46
t-motor (ref21) 2020
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref44
ref43
ref28
ref27
ref29
ref8
ref7
ref9
franklin (ref39) 2014
(ref3) 2014
ref6
ref5
molian (ref34) 1982
References_xml – ident: ref42
  doi: 10.1109/ROBOT.2008.4543506
– ident: ref23
  doi: 10.1109/IROS.2017.8202275
– ident: ref18
  doi: 10.1109/MCS.2018.2866605
– year: 1982
  ident: ref34
  publication-title: Mechanism Design An Introductory Text
– ident: ref6
  doi: 10.1177/1941738112445726
– ident: ref1
  doi: 10.1109/TNSRE.2011.2163083
– ident: ref28
  doi: 10.1002/jor.20496
– ident: ref8
  doi: 10.1109/IROS.2010.5650671
– ident: ref29
  doi: 10.1016/j.autcon.2017.07.007
– ident: ref46
  doi: 10.1109/BIOROB.2014.6913824
– ident: ref17
  doi: 10.1109/ICRA.2017.7989063
– ident: ref2
  doi: 10.1109/TNSRE.2014.2346193
– ident: ref20
  doi: 10.1109/ICRA.2019.8793865
– ident: ref31
  doi: 10.1109/IAS.1992.244455
– ident: ref32
  doi: 10.1115/97-GT-114
– ident: ref36
  doi: 10.1109/BioRob49111.2020.9224341
– ident: ref16
  doi: 10.1109/AIM.2019.8868596
– volume: 65
  start-page: 517
  year: 1984
  ident: ref40
  article-title: Electromyographic amplitude normalization methods: Improving their sensitivity as diagnostic tools in gait analysis
  publication-title: Arch Phys Med Rehabil
– year: 2014
  ident: ref39
  publication-title: Feedback Control of Dynamic Systems
– ident: ref24
  doi: 10.1115/1.4043460
– ident: ref7
  doi: 10.1016/0169-8141(95)00086-0
– year: 2014
  ident: ref4
  publication-title: The Burden of Musculoskeletal Diseases in the United States
– ident: ref26
  doi: 10.1109/ICRA.2011.5979940
– ident: ref15
  doi: 10.3390/act4030182
– ident: ref47
  doi: 10.1016/j.apmr.2010.01.015
– ident: ref35
  doi: 10.1109/TCST.2016.2646319
– ident: ref13
  doi: 10.1109/IROS.2017.8202172
– ident: ref33
  doi: 10.1109/TIE.2009.2030211
– ident: ref10
  doi: 10.1109/TMECH.2017.2704521
– ident: ref5
  doi: 10.1002/art.24182
– ident: ref43
  doi: 10.1109/TMECH.2018.2790358
– ident: ref27
  doi: 10.1109/ICRA.2012.6224739
– ident: ref37
  doi: 10.1109/TBME.2014.2307698
– year: 2014
  ident: ref3
  article-title: Mobility is Most Common Disability Among Older Americans, Census Bureau Reports
– ident: ref22
  doi: 10.1109/ICORR.2019.8779479
– ident: ref9
  doi: 10.1109/TMECH.2008.2004561
– ident: ref11
  doi: 10.1109/IROS.2012.6386252
– ident: ref14
  doi: 10.1109/TRO.2020.3005533
– ident: ref25
  doi: 10.1109/TIA.2016.2641396
– ident: ref30
  doi: 10.2519/jospt.1999.29.2.116
– ident: ref12
  doi: 10.1109/TMECH.2014.2339013
– ident: ref45
  doi: 10.1002/9780470549148
– ident: ref44
  doi: 10.1109/ANDESCON.2018.8564692
– ident: ref41
  doi: 10.1109/TMECH.2018.2854416
– ident: ref19
  doi: 10.1109/LRA.2018.2864352
– ident: ref38
  doi: 10.1109/LCSYS.2020.3043838
– ident: ref48
  doi: 10.1016/j.jelekin.2006.12.008
– year: 2020
  ident: ref21
SSID ssj0004101
Score 2.550756
Snippet This article presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to...
This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3104
SubjectTerms Acoustic noise
Actuation
Actuator design
Actuators
Brushless motors
Coils (windings)
exoskeletons
Gear ratios
Gear trains
Gears
Knee
Medical robotics
Orthoses
Patient rehabilitation
Permanent magnet motors
Principles
rehabilitation robotics
Rotors
Stator windings
Thermal environments
Torque
Title Design Principles for Compact, Backdrivable Actuation in Partial-Assist Powered Knee Orthoses
URI https://ieeexplore.ieee.org/document/9329091
https://www.ncbi.nlm.nih.gov/pubmed/34916771
https://www.proquest.com/docview/2610171141
https://www.proquest.com/docview/2611654419
https://pubmed.ncbi.nlm.nih.gov/PMC8670722
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZKT3DgVaALBQ0SNzrbJDPZJMdSWq1ACz20Ui8omoejrlpl0W6WQ3997cmDbVUhbonGEyWxnfk8sT8DfFLMWxZplGjQS11UKA0mSqKn5YTgq89DFf_sx2R6rr9dpBdbsD_UwiBiSD7DMR-Gf_l-4da8VXZAWKOIuFT9EQVuba3W3xrIOLQ6jglSSE0YoC-QiYqDs9nx0ZRCwSQeK26EwEQKG4tQ6KryEMC8nye5sfCcPINZf8ttvsnVeN3Ysbu5x-b4v8_0HJ52CFQctibzArawfglPNngJd-DX15DXIU77nfiVIGwrwrfDNfvii3FXfjn_w2VX4pBLUFi9Yk4z2BLNtSStk_2IU-7Bhl58p0uLn8vmcrHC1Ss4Pzk-O5rKrg-DdDqNGumd8oYc3RaIVUVBW15ZbaPc5Ulc5S6bWLST2FmfEhpKUkMnXrnIMvebzbJMvYbtelHjLohKKeMRlbK20ilJVJrc1CVGWVd4pUcQ94opXUdSzr0yrssQrERFGZRZsjLLTpkj-DzM-d1SdPxTeoeVMEh2738Ee73-y86LVyVFl0wnFGsa_jgMk__xTxVT42IdZLggTMfFCN605jJcW2kC31lGs7M7hjQIMLf33ZF6fhk4vvNJFtHLfPvw3b6Dx_xMbVrNHmw3yzW-J3DU2A_BK24BtjwMXQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB1V5QAcKFA-UgosEje6qe1dx_axlFaBNqWHVOoFWd7dsRq1clDicODXM7P-IK0qxC3Wzlq2Zyb71p73BuCjYt2yQKPEAp3UWYmywEhJdLScEHx1qWfxT85G4wv97TK-3IC9nguDiL74DIf803_Ld3O74ldl-4Q1soCp6g9o3Y-jhq31lwUZ-mbHIYEKqQkFdBSZINufTo4Ox7QZjMKh4lYILKWwtgz5vir3Qcy7lZJrS8_xFky6i24qTq6Hq9oM7e87eo7_e1dP4UmLQcVBEzTPYAOr5_B4TZlwG3588ZUd4rx7F78UhG6F__ew9Z74XNhrt5j9YuKVOGASCjtYzGgGx2JxI8nvFEHinLuwoRMndGrxfVFfzZe4fAEXx0fTw7FsOzFIq-Ogls4qV1CqmwyxLGnblpZGmyC1aRSWqU1GBs0otMbFhIeiuKADp2xgWP3NJEmiXsJmNa_wNYhSqcIhKmVMqWOyKDUlqo0KZWzmlB5A2Dkmt61MOXfLuMn9diXIcu_MnJ2Zt84cwKd-zs9GpOOf1tvshN6yff4D2O38n7d5vMxpf8mCQqGm4Q_9MGUgf1YpKpyvvA1TwnSYDeBVEy79uZUm-J0kNDu5FUi9Aat73x6pZlde5TsdJQE9zJ37r_Y9PBxPJ6f56dezkzfwiO-vKbLZhc16scK3BJVq885nyB_Ulw-n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Principles+for+Compact%2C+Backdrivable+Actuation+in+Partial-Assist+Powered+Knee+Orthoses&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Zhu%2C+Hanqi&rft.au=Nesler%2C+Christopher&rft.au=Divekar%2C+Nikhil&rft.au=Peddinti%2C+Vamsi&rft.date=2021-12-01&rft.pub=IEEE&rft.issn=1083-4435&rft.volume=26&rft.issue=6&rft.spage=3104&rft.epage=3115&rft_id=info:doi/10.1109%2FTMECH.2021.3053226&rft.externalDocID=9329091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon