Design Principles for Compact, Backdrivable Actuation in Partial-Assist Powered Knee Orthoses
This article presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdr...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 26; no. 6; pp. 3104 - 3115 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom brushless dc motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m peak torque and 12.78-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m continuous torque, yet has less than 2.68-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m backdrive torque during walking conditions. Able-bodied human subject experiments (<inline-formula><tex-math notation="LaTeX">N=3</tex-math></inline-formula>) demonstrate reduced quadricep activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise. |
---|---|
AbstractList | This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor’s thermal environment, motivating our design of a custom Brushless DC motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9 Nm peak torque and 12.78 Nm continuous torque, yet has less than 2.68 Nm backdrive torque during walking conditions. Able-bodied human subjects experiments (N=3) demonstrate reduced quadriceps activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise. This article presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom brushless dc motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m peak torque and 12.78-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m continuous torque, yet has less than 2.68-N<inline-formula><tex-math notation="LaTeX">\,\cdot\,</tex-math></inline-formula>m backdrive torque during walking conditions. Able-bodied human subject experiments (<inline-formula><tex-math notation="LaTeX">N=3</tex-math></inline-formula>) demonstrate reduced quadricep activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise. This article presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor’s thermal environment, motivating our design of a custom brushless dc motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9-N[Formula Omitted]m peak torque and 12.78-N[Formula Omitted]m continuous torque, yet has less than 2.68-N[Formula Omitted]m backdrive torque during walking conditions. Able-bodied human subject experiments ([Formula Omitted]) demonstrate reduced quadricep activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise. This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom Brushless DC motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9 Nm peak torque and 12.78 Nm continuous torque, yet has less than 2.68 Nm backdrive torque during walking conditions. Able-bodied human subjects experiments (N=3) demonstrate reduced quadriceps activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise.This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom Brushless DC motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9 Nm peak torque and 12.78 Nm continuous torque, yet has less than 2.68 Nm backdrive torque during walking conditions. Able-bodied human subjects experiments (N=3) demonstrate reduced quadriceps activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise. |
Author | Peddinti, Vamsi Zhu, Hanqi Divekar, Nikhil Gregg, Robert D. Nesler, Christopher |
AuthorAffiliation | 2 Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA 3 Robotics, University of Michigan, Ann Arbor, MI 48109, USA 1 Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080, USA |
AuthorAffiliation_xml | – name: 2 Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA – name: 1 Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080, USA – name: 3 Robotics, University of Michigan, Ann Arbor, MI 48109, USA |
Author_xml | – sequence: 1 givenname: Hanqi surname: Zhu fullname: Zhu, Hanqi email: hanqi.zhu@utdallas.edu organization: Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX, USA – sequence: 2 givenname: Christopher surname: Nesler fullname: Nesler, Christopher email: neslerc@umich.edu organization: Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 3 givenname: Nikhil surname: Divekar fullname: Divekar, Nikhil email: ndivekar@umich.edu organization: Robotics Institute, University of Michigan, Ann Arbor, MI, USA – sequence: 4 givenname: Vamsi surname: Peddinti fullname: Peddinti, Vamsi email: svkp@umich.edu organization: Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 5 givenname: Robert D. orcidid: 0000-0002-0729-2857 surname: Gregg fullname: Gregg, Robert D. email: rdgregg@umich.edu organization: Department of Electrical and Computer Engineering and the Robotics Institute, University of Michigan, Ann Arbor, MI, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34916771$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vEzEQhi3Uin7AHwAJrcSFAxs8tvfrghRCoYii9lAkLsiyvbOty8YOtreIf4_TpBH0wMm25nnfmfF7RPacd0jIM6AzANq9ufxysjidMcpgxmnFGasfkUPoBJQUxLe9fKctL4Xg1QE5ivGGUiqAwmNywEUHddPAIfn-HqO9csVFsM7Y1YixGHwoFn65Uia9Lt4p86MP9lbpEYu5SZNK1rvCZoUKyaqxnMdoYyou_C8M2BefHWJxHtK1jxifkP1BjRGfbs9j8vXDyeXitDw7__hpMT8rjahoKnvDeyXaVneIw0BZ3Q5aaNqalsHQmqbWqGswuq-gYaxS-dFzQ7XoGNdN0_Bj8nbju5r0EnuDLgU1ylWwSxV-S6-s_Lfi7LW88reyrRuaLbPBq61B8D8njEkubTQ4jsqhn6JkNUBdCQFdRl8-QG_8FFxeb01RaAAEZOrF3xPtRrn_-QywDWCCjzHgsEOAynW88i5euY5XbuPNovaByNh0l0jeyo7_lz7fSC0i7np1nHW0A_4HQjKzFA |
CODEN | IATEFW |
CitedBy_id | crossref_primary_10_1109_TRO_2023_3235584 crossref_primary_10_1109_TMECH_2022_3159506 crossref_primary_10_1109_TMECH_2024_3365045 crossref_primary_10_1108_IR_02_2024_0064 crossref_primary_10_1109_ACCESS_2021_3110595 crossref_primary_10_1109_LRA_2024_3414259 crossref_primary_10_1007_s10439_025_03696_0 crossref_primary_10_1109_TCST_2024_3429908 crossref_primary_10_1109_LRA_2022_3183790 crossref_primary_10_1109_TMECH_2022_3201255 crossref_primary_10_1126_scirobotics_abj3487 crossref_primary_10_1186_s12984_022_01002_w crossref_primary_10_1017_wtc_2021_13 crossref_primary_10_1109_LRA_2022_3145580 crossref_primary_10_1109_TMRB_2024_3421547 crossref_primary_10_1109_OJCSYS_2022_3165733 crossref_primary_10_3390_s21196545 crossref_primary_10_1109_LRA_2025_3527307 crossref_primary_10_3390_robotics13110168 crossref_primary_10_1109_TNSRE_2022_3201383 crossref_primary_10_1115_1_4056919 crossref_primary_10_1186_s12984_023_01144_5 crossref_primary_10_1109_TMECH_2023_3334795 crossref_primary_10_3390_bioengineering11070683 crossref_primary_10_1088_1361_665X_ad469e crossref_primary_10_1109_TMECH_2022_3204921 crossref_primary_10_1109_TMECH_2023_3245810 crossref_primary_10_1007_s42235_024_00490_x crossref_primary_10_1126_scirobotics_adr8282 crossref_primary_10_3389_fnhum_2022_1018160 crossref_primary_10_1109_TIE_2024_3429609 crossref_primary_10_3390_s24082645 crossref_primary_10_1109_TRO_2022_3197088 crossref_primary_10_1016_j_heliyon_2024_e26060 crossref_primary_10_1109_TRO_2022_3170287 crossref_primary_10_1109_ACCESS_2024_3472116 |
Cites_doi | 10.1109/ROBOT.2008.4543506 10.1109/IROS.2017.8202275 10.1109/MCS.2018.2866605 10.1177/1941738112445726 10.1109/TNSRE.2011.2163083 10.1002/jor.20496 10.1109/IROS.2010.5650671 10.1016/j.autcon.2017.07.007 10.1109/BIOROB.2014.6913824 10.1109/ICRA.2017.7989063 10.1109/TNSRE.2014.2346193 10.1109/ICRA.2019.8793865 10.1109/IAS.1992.244455 10.1115/97-GT-114 10.1109/BioRob49111.2020.9224341 10.1109/AIM.2019.8868596 10.1115/1.4043460 10.1016/0169-8141(95)00086-0 10.1109/ICRA.2011.5979940 10.3390/act4030182 10.1016/j.apmr.2010.01.015 10.1109/TCST.2016.2646319 10.1109/IROS.2017.8202172 10.1109/TIE.2009.2030211 10.1109/TMECH.2017.2704521 10.1002/art.24182 10.1109/TMECH.2018.2790358 10.1109/ICRA.2012.6224739 10.1109/TBME.2014.2307698 10.1109/ICORR.2019.8779479 10.1109/TMECH.2008.2004561 10.1109/IROS.2012.6386252 10.1109/TRO.2020.3005533 10.1109/TIA.2016.2641396 10.2519/jospt.1999.29.2.116 10.1109/TMECH.2014.2339013 10.1002/9780470549148 10.1109/ANDESCON.2018.8564692 10.1109/TMECH.2018.2854416 10.1109/LRA.2018.2864352 10.1109/LCSYS.2020.3043838 10.1016/j.jelekin.2006.12.008 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1109/TMECH.2021.3053226 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-014X |
EndPage | 3115 |
ExternalDocumentID | PMC8670722 34916771 10_1109_TMECH_2021_3053226 9329091 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Institute of Child Health and Human Development funderid: 10.13039/100000071 – fundername: National Institutes of Health grantid: DP2HD080349 funderid: 10.13039/100000002 – fundername: Eugene McDermott Graduate Fellowship – fundername: National Science Foundation grantid: 1652514; 1949869 funderid: 10.13039/501100008982 – fundername: NICHD NIH HHS grantid: DP2 HD080349 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 OCL RIA RIE RNS TN5 VH1 AAYXX CITATION RIG 0B8 NPM PKN 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c450t-dc3da488b9eeff0268fb4b08c821f8c76beb61cbd517225ab61d3c0b4923b7773 |
IEDL.DBID | RIE |
ISSN | 1083-4435 |
IngestDate | Thu Aug 21 18:38:56 EDT 2025 Thu Jul 10 18:11:54 EDT 2025 Mon Jun 30 02:58:38 EDT 2025 Wed Feb 19 02:27:41 EST 2025 Thu Apr 24 23:02:13 EDT 2025 Tue Jul 01 04:23:20 EDT 2025 Wed Aug 27 04:55:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-dc3da488b9eeff0268fb4b08c821f8c76beb61cbd517225ab61d3c0b4923b7773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0729-2857 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8670722 |
PMID | 34916771 |
PQID | 2610171141 |
PQPubID | 85420 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_34916771 proquest_miscellaneous_2611654419 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8670722 crossref_primary_10_1109_TMECH_2021_3053226 proquest_journals_2610171141 ieee_primary_9329091 crossref_citationtrail_10_1109_TMECH_2021_3053226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE/ASME transactions on mechatronics |
PublicationTitleAbbrev | TMECH |
PublicationTitleAlternate | IEEE ASME Trans Mechatron |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 yang (ref40) 1984; 65 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref18 (ref4) 2014 ref46 t-motor (ref21) 2020 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref44 ref43 ref28 ref27 ref29 ref8 ref7 ref9 franklin (ref39) 2014 (ref3) 2014 ref6 ref5 molian (ref34) 1982 |
References_xml | – ident: ref42 doi: 10.1109/ROBOT.2008.4543506 – ident: ref23 doi: 10.1109/IROS.2017.8202275 – ident: ref18 doi: 10.1109/MCS.2018.2866605 – year: 1982 ident: ref34 publication-title: Mechanism Design An Introductory Text – ident: ref6 doi: 10.1177/1941738112445726 – ident: ref1 doi: 10.1109/TNSRE.2011.2163083 – ident: ref28 doi: 10.1002/jor.20496 – ident: ref8 doi: 10.1109/IROS.2010.5650671 – ident: ref29 doi: 10.1016/j.autcon.2017.07.007 – ident: ref46 doi: 10.1109/BIOROB.2014.6913824 – ident: ref17 doi: 10.1109/ICRA.2017.7989063 – ident: ref2 doi: 10.1109/TNSRE.2014.2346193 – ident: ref20 doi: 10.1109/ICRA.2019.8793865 – ident: ref31 doi: 10.1109/IAS.1992.244455 – ident: ref32 doi: 10.1115/97-GT-114 – ident: ref36 doi: 10.1109/BioRob49111.2020.9224341 – ident: ref16 doi: 10.1109/AIM.2019.8868596 – volume: 65 start-page: 517 year: 1984 ident: ref40 article-title: Electromyographic amplitude normalization methods: Improving their sensitivity as diagnostic tools in gait analysis publication-title: Arch Phys Med Rehabil – year: 2014 ident: ref39 publication-title: Feedback Control of Dynamic Systems – ident: ref24 doi: 10.1115/1.4043460 – ident: ref7 doi: 10.1016/0169-8141(95)00086-0 – year: 2014 ident: ref4 publication-title: The Burden of Musculoskeletal Diseases in the United States – ident: ref26 doi: 10.1109/ICRA.2011.5979940 – ident: ref15 doi: 10.3390/act4030182 – ident: ref47 doi: 10.1016/j.apmr.2010.01.015 – ident: ref35 doi: 10.1109/TCST.2016.2646319 – ident: ref13 doi: 10.1109/IROS.2017.8202172 – ident: ref33 doi: 10.1109/TIE.2009.2030211 – ident: ref10 doi: 10.1109/TMECH.2017.2704521 – ident: ref5 doi: 10.1002/art.24182 – ident: ref43 doi: 10.1109/TMECH.2018.2790358 – ident: ref27 doi: 10.1109/ICRA.2012.6224739 – ident: ref37 doi: 10.1109/TBME.2014.2307698 – year: 2014 ident: ref3 article-title: Mobility is Most Common Disability Among Older Americans, Census Bureau Reports – ident: ref22 doi: 10.1109/ICORR.2019.8779479 – ident: ref9 doi: 10.1109/TMECH.2008.2004561 – ident: ref11 doi: 10.1109/IROS.2012.6386252 – ident: ref14 doi: 10.1109/TRO.2020.3005533 – ident: ref25 doi: 10.1109/TIA.2016.2641396 – ident: ref30 doi: 10.2519/jospt.1999.29.2.116 – ident: ref12 doi: 10.1109/TMECH.2014.2339013 – ident: ref45 doi: 10.1002/9780470549148 – ident: ref44 doi: 10.1109/ANDESCON.2018.8564692 – ident: ref41 doi: 10.1109/TMECH.2018.2854416 – ident: ref19 doi: 10.1109/LRA.2018.2864352 – ident: ref38 doi: 10.1109/LCSYS.2020.3043838 – ident: ref48 doi: 10.1016/j.jelekin.2006.12.008 – year: 2020 ident: ref21 |
SSID | ssj0004101 |
Score | 2.550756 |
Snippet | This article presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to... This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3104 |
SubjectTerms | Acoustic noise Actuation Actuator design Actuators Brushless motors Coils (windings) exoskeletons Gear ratios Gear trains Gears Knee Medical robotics Orthoses Patient rehabilitation Permanent magnet motors Principles rehabilitation robotics Rotors Stator windings Thermal environments Torque |
Title | Design Principles for Compact, Backdrivable Actuation in Partial-Assist Powered Knee Orthoses |
URI | https://ieeexplore.ieee.org/document/9329091 https://www.ncbi.nlm.nih.gov/pubmed/34916771 https://www.proquest.com/docview/2610171141 https://www.proquest.com/docview/2611654419 https://pubmed.ncbi.nlm.nih.gov/PMC8670722 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZKT3DgVaALBQ0SNzrbJDPZJMdSWq1ACz20Ui8omoejrlpl0W6WQ3997cmDbVUhbonGEyWxnfk8sT8DfFLMWxZplGjQS11UKA0mSqKn5YTgq89DFf_sx2R6rr9dpBdbsD_UwiBiSD7DMR-Gf_l-4da8VXZAWKOIuFT9EQVuba3W3xrIOLQ6jglSSE0YoC-QiYqDs9nx0ZRCwSQeK26EwEQKG4tQ6KryEMC8nye5sfCcPINZf8ttvsnVeN3Ysbu5x-b4v8_0HJ52CFQctibzArawfglPNngJd-DX15DXIU77nfiVIGwrwrfDNfvii3FXfjn_w2VX4pBLUFi9Yk4z2BLNtSStk_2IU-7Bhl58p0uLn8vmcrHC1Ss4Pzk-O5rKrg-DdDqNGumd8oYc3RaIVUVBW15ZbaPc5Ulc5S6bWLST2FmfEhpKUkMnXrnIMvebzbJMvYbtelHjLohKKeMRlbK20ilJVJrc1CVGWVd4pUcQ94opXUdSzr0yrssQrERFGZRZsjLLTpkj-DzM-d1SdPxTeoeVMEh2738Ee73-y86LVyVFl0wnFGsa_jgMk__xTxVT42IdZLggTMfFCN605jJcW2kC31lGs7M7hjQIMLf33ZF6fhk4vvNJFtHLfPvw3b6Dx_xMbVrNHmw3yzW-J3DU2A_BK24BtjwMXQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB1V5QAcKFA-UgosEje6qe1dx_axlFaBNqWHVOoFWd7dsRq1clDicODXM7P-IK0qxC3Wzlq2Zyb71p73BuCjYt2yQKPEAp3UWYmywEhJdLScEHx1qWfxT85G4wv97TK-3IC9nguDiL74DIf803_Ld3O74ldl-4Q1soCp6g9o3Y-jhq31lwUZ-mbHIYEKqQkFdBSZINufTo4Ox7QZjMKh4lYILKWwtgz5vir3Qcy7lZJrS8_xFky6i24qTq6Hq9oM7e87eo7_e1dP4UmLQcVBEzTPYAOr5_B4TZlwG3588ZUd4rx7F78UhG6F__ew9Z74XNhrt5j9YuKVOGASCjtYzGgGx2JxI8nvFEHinLuwoRMndGrxfVFfzZe4fAEXx0fTw7FsOzFIq-Ogls4qV1CqmwyxLGnblpZGmyC1aRSWqU1GBs0otMbFhIeiuKADp2xgWP3NJEmiXsJmNa_wNYhSqcIhKmVMqWOyKDUlqo0KZWzmlB5A2Dkmt61MOXfLuMn9diXIcu_MnJ2Zt84cwKd-zs9GpOOf1tvshN6yff4D2O38n7d5vMxpf8mCQqGm4Q_9MGUgf1YpKpyvvA1TwnSYDeBVEy79uZUm-J0kNDu5FUi9Aat73x6pZlde5TsdJQE9zJ37r_Y9PBxPJ6f56dezkzfwiO-vKbLZhc16scK3BJVq885nyB_Ulw-n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Principles+for+Compact%2C+Backdrivable+Actuation+in+Partial-Assist+Powered+Knee+Orthoses&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Zhu%2C+Hanqi&rft.au=Nesler%2C+Christopher&rft.au=Divekar%2C+Nikhil&rft.au=Peddinti%2C+Vamsi&rft.date=2021-12-01&rft.pub=IEEE&rft.issn=1083-4435&rft.volume=26&rft.issue=6&rft.spage=3104&rft.epage=3115&rft_id=info:doi/10.1109%2FTMECH.2021.3053226&rft.externalDocID=9329091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |