An alternative thermal approach to evaluate the wettability of solder alloys

[Display omitted] •A thermal approach is proposed to qualitatively evaluate the wettability of solders.•The approach is based on experimental results of solder/substrate thermal conductance.•High temperature Zn-Sn solders are experimentally investigated.•The approach is validated against experimenta...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 107; pp. 431 - 440
Main Authors Santos, Washington L.R., Silva, Bismarck L., Bertelli, Felipe, Spinelli, José E., Cheung, Noé, Garcia, Amauri
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 25.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A thermal approach is proposed to qualitatively evaluate the wettability of solders.•The approach is based on experimental results of solder/substrate thermal conductance.•High temperature Zn-Sn solders are experimentally investigated.•The approach is validated against experimental contact angles of wetting tests.•The results indicate increase in wettability with decrease in alloy Sn content. The aim of the work is to propose an alternative method to qualitatively evaluate the wettability of different alloys of a particular alloy system. The technique is based on a thermal approach supported by experimental/theoretical methodologies involving a directional solidification procedure and numerical simulations based on the solution of the inverse heat conduction problem (IHCP). The wettability strongly affects the heat ability to flow across the alloy/substrate interface during solidification, which is construed as a heat transfer coefficient (hg). Particularly, for the alloys used in soldering processes, the wettability plays an important role in the integrity of solder junctions, being a fundamental parameter for selecting the most appropriate solder composition. The experiments were carried out with high temperature Zn-Sn solder alloys (10, 20, 30 and 40wt%Sn) in a solidification device in which heat is extracted only through a water-cooled steel bottom. Experimental thermal profiles collected during solidification are used as input data to solve the IHCP and determine expressions hg vs. time for each alloy examined, permitting a tendency of wettability to be established. In order to validate the wetting behavior indicated by the hg values, alloy/substrate contact angles (θ) were measured on a steel substrate using a goniometer. It is shown that both hg and θ indicate improvements in wettability with the decrease in the alloy Sn content.
AbstractList [Display omitted] •A thermal approach is proposed to qualitatively evaluate the wettability of solders.•The approach is based on experimental results of solder/substrate thermal conductance.•High temperature Zn-Sn solders are experimentally investigated.•The approach is validated against experimental contact angles of wetting tests.•The results indicate increase in wettability with decrease in alloy Sn content. The aim of the work is to propose an alternative method to qualitatively evaluate the wettability of different alloys of a particular alloy system. The technique is based on a thermal approach supported by experimental/theoretical methodologies involving a directional solidification procedure and numerical simulations based on the solution of the inverse heat conduction problem (IHCP). The wettability strongly affects the heat ability to flow across the alloy/substrate interface during solidification, which is construed as a heat transfer coefficient (hg). Particularly, for the alloys used in soldering processes, the wettability plays an important role in the integrity of solder junctions, being a fundamental parameter for selecting the most appropriate solder composition. The experiments were carried out with high temperature Zn-Sn solder alloys (10, 20, 30 and 40wt%Sn) in a solidification device in which heat is extracted only through a water-cooled steel bottom. Experimental thermal profiles collected during solidification are used as input data to solve the IHCP and determine expressions hg vs. time for each alloy examined, permitting a tendency of wettability to be established. In order to validate the wetting behavior indicated by the hg values, alloy/substrate contact angles (θ) were measured on a steel substrate using a goniometer. It is shown that both hg and θ indicate improvements in wettability with the decrease in the alloy Sn content.
Author Bertelli, Felipe
Cheung, Noé
Spinelli, José E.
Garcia, Amauri
Santos, Washington L.R.
Silva, Bismarck L.
Author_xml – sequence: 1
  givenname: Washington L.R.
  surname: Santos
  fullname: Santos, Washington L.R.
  organization: Department of Manufacturing and Materials Engineering, University of Campinas – UNICAMP, 13083-860 Campinas, SP, Brazil
– sequence: 2
  givenname: Bismarck L.
  surname: Silva
  fullname: Silva, Bismarck L.
  organization: Department of Materials Engineering, Federal University of São Carlos – UFSCar, 13565-905 São Carlos, SP, Brazil
– sequence: 3
  givenname: Felipe
  surname: Bertelli
  fullname: Bertelli, Felipe
  organization: Department of Mechanical Engineering and Postgraduate Program of Mechanical Engineering, Santa Cecília University – UNISANTA, 11045-907 Santos, SP, Brazil
– sequence: 4
  givenname: José E.
  surname: Spinelli
  fullname: Spinelli, José E.
  organization: Department of Materials Engineering, Federal University of São Carlos – UFSCar, 13565-905 São Carlos, SP, Brazil
– sequence: 5
  givenname: Noé
  surname: Cheung
  fullname: Cheung, Noé
  email: cheung@fem.unicamp.br
  organization: Department of Manufacturing and Materials Engineering, University of Campinas – UNICAMP, 13083-860 Campinas, SP, Brazil
– sequence: 6
  givenname: Amauri
  surname: Garcia
  fullname: Garcia, Amauri
  organization: Department of Manufacturing and Materials Engineering, University of Campinas – UNICAMP, 13083-860 Campinas, SP, Brazil
BookMark eNqNkLFOwzAQhj0UibbwDh5YE-zEsROJpVQUkCqxwGw59oW6cuPKNkV5e1LaBaZOJ_2n_9PdN0OT3veA0B0lOSWU329ztd-7tIGwUw76z7wY05zwnAoxQVNaVk3GSkqv0SzGLSG0qAWbovWix8olCL1K9gD4DMAjLHilNzh5DAflvlT6XeJvSEm11tk0YN_h6J2BMCKcH-INuuqUi3B7nnP0sXp6X75k67fn1-VinWlWkZQZ3hrWMG5qw0pTCFqUzDSgueK1KVvR0aJtW8OBNIJ1NeFQiVIIXVUtp9qQco4eT1wdfIwBOqltGu_3fQrKOkmJPDqRW_nXiTw6kYTL0ckIefgH2Qe7U2G4tL461WF89GAhyKgt9BqMDaCTNN5eBvoBCr2OJQ
CitedBy_id crossref_primary_10_1007_s11664_019_07286_4
crossref_primary_10_1016_j_microrel_2025_115624
crossref_primary_10_2320_matertrans_MT_M2019369
crossref_primary_10_1016_j_jmapro_2019_10_029
crossref_primary_10_1016_j_csite_2021_101144
crossref_primary_10_1016_j_jmrt_2018_06_016
crossref_primary_10_1016_j_jallcom_2017_06_329
crossref_primary_10_1007_s10845_022_01935_y
crossref_primary_10_1007_s11664_017_5837_6
crossref_primary_10_1016_j_jallcom_2020_158553
crossref_primary_10_1016_j_microrel_2022_114593
crossref_primary_10_3390_met11071019
crossref_primary_10_1007_s11664_019_07454_6
crossref_primary_10_1016_j_advengsoft_2018_04_012
crossref_primary_10_1021_acsomega_4c08359
crossref_primary_10_1016_j_microrel_2017_08_007
crossref_primary_10_1016_j_msea_2022_142680
crossref_primary_10_1016_j_matchar_2023_113416
crossref_primary_10_1007_s10973_021_10755_w
Cites_doi 10.1016/j.jallcom.2015.01.140
10.1016/j.surfcoat.2014.12.054
10.1016/j.applthermaleng.2015.01.018
10.1016/j.enconman.2005.03.021
10.1007/s11664-013-2653-5
10.1080/10407799108944962
10.1016/j.matlet.2014.11.088
10.1016/j.jmatprotec.2012.04.001
10.1016/j.tca.2007.01.009
10.1007/s12239-015-0030-5
10.1016/j.applthermaleng.2015.11.121
10.2320/matertrans.MRA2007209
10.1007/s11664-010-1233-1
10.2320/matertrans.47.2547
10.1007/s00161-012-0263-8
10.1016/S0017-9310(01)00307-6
10.1016/j.jmatprotec.2011.07.012
10.1007/s11661-008-9536-z
10.1016/j.applthermaleng.2014.11.046
10.1016/j.ijthermalsci.2011.08.014
10.1007/s11664-012-2263-7
10.1016/j.jmst.2016.02.003
10.1016/S0927-796X(00)00010-3
10.1016/j.jmatprotec.2013.07.017
10.1080/10426914.2014.952038
10.1016/j.jmatprotec.2006.03.086
10.1016/j.applthermaleng.2013.08.034
10.1016/j.jallcom.2015.05.195
10.1016/j.matdes.2009.02.025
10.1016/j.microrel.2012.02.018
10.1016/j.mee.2010.12.072
10.1016/j.matchemphys.2012.07.024
10.1007/s11664-008-0550-0
10.1016/j.jmatprotec.2013.03.010
10.4028/www.scientific.net/AMR.795.518
10.1016/j.ijheatmasstransfer.2008.07.003
10.1016/j.mseb.2013.11.016
10.1016/j.ijheatmasstransfer.2005.10.045
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2016.06.177
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 440
ExternalDocumentID 10_1016_j_applthermaleng_2016_06_177
S1359431116310912
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
ID FETCH-LOGICAL-c450t-d6bd4946d8d43d271234d9ec6a68d3b7f12bbbd6e0974f806e57377c55b61cd03
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Tue Jul 01 02:27:19 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Mon Oct 07 06:11:41 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Zn-Sn solder alloys
Wettability
Interfacial heat transfer coefficient
Solidification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-d6bd4946d8d43d271234d9ec6a68d3b7f12bbbd6e0974f806e57377c55b61cd03
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S1359431116310912-fx1_lrg.jpg
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_applthermaleng_2016_06_177
crossref_primary_10_1016_j_applthermaleng_2016_06_177
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_06_177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-25
PublicationDateYYYYMMDD 2016-08-25
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-25
  day: 25
PublicationDecade 2010
PublicationTitle Applied thermal engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Santos, Brito, Bertelli, Spinelli, Garcia (b0035) 2015; 647
Shibli, Meena, Remya (b0230) 2015; 262
Şahin, Kocatepe, Kayıkcı, Akara (b0130) 2006; 47
Santos, Brito, Quaresma, Spinelli, Garcia (b0240) 2014; 182
Silva, Cheung, Garcia, Spinelli (b0060) 2015; 142
Musa, Salleh, Saud (b0010) 2013; 795
Kuo, Weng, Hwang (b0180) 2006; 47
Voller, Swaminathan (b0200) 1991; 19
Song, Lin, Hsieh, Pai, Lai, Chiu (b0025) 2013; 42
Dong, Bu, Dou, Zhang (b0100) 2011; 211
Ruddle (b0205) 1957
Bertelli, Silva-Santos, Bezerra, Cheung, Garcia (b0170) 2015; 30
Zhang, Yuan, Zhao, Zang, Li (b0235) 2010; 55
Spinelli, Cheung, Goulart, Quaresma, Garcia (b0105) 2012; 51
Hu, Ying, Li, Liao (b0085) 2013; 213
Zhao, Wang, Chang, Tang, Yan (b0095) 2015; 79
Beck, Blackwell, Clair (b0190) 1985
Thermo Calc software, Stockholm, Sweden, 2011.
Meydaneri, Saatçi, Gündüz, Özdemir (b0225) 2013; 25
Zeng, McDonald, Nogita (b0005) 2012; 52
Mahmudi, Eslami (b0020) 2011; 22
Cheung, Ferreira, Pariona, Quaresma, Garcia (b0140) 2009; 30
Wang, Yao, Wang, Zhang, Yang, Lu, Wang (b0110) 2014; 214
Silva, Cheung, Garcia, Spinelli (b0145) 2013; 42
Wang, Qiu (b0155) 2002; 45
Wang, Tang, Zang, Yao (b0165) 2012; 212
Incropera, Dewitt (b0075) 1990
Bertelli, Faria, Goulart, Brito, Cheung, Garcia (b0120) 2016; 96
Silva, Cheung, Garcia, Spinelli (b0150) 2015; 632
Saatçi, Maraşlı, Gündüz (b0215) 2007; 454
Bertelli, Cheung, Garcia (b0055) 2013; 61
Dour, Dargusch, Davidson (b0125) 2006; 49
Cheung, Santos, Quaresma, Dulikravich, Garcia (b0050) 2009; 52
Kurz, Fisher (b0065) 1992
Brimacombe, Samarasekera, Lait (b0160) 1984
W. Yu, Y. Cao, X. Li, Z. Guo, S. Xiong, Determination of interfacial heat transfer behavior at the metal/shot sleeve of high pressure die casting process of AZ91D alloy, J. Mater. Sci. Technol. (in press).
Kim, Kim, Kim, Suganuma (b0040) 2009; 38
Bertelli, Brito, Meza, Cheung, Garcia (b0185) 2012; 136
Takahashi, Komatsu, Nishikawa, Takemoto (b0015) 2010; 39
Chidambaram, Hattel, Hald (b0030) 2011; 88
Duong, Ariga, Hussain, Ismail (b0135) 2008; 49
Brandes, Brook (b0210) 1992
Abtew, Selvaduray (b0045) 2000; 27
Carvalho, Lima e Silva, Machado, Guimarães (b0080) 2006; 179
Snyman (b0195) 2005
Palumbo, Piglionico, Piccininni, Guglielmi, Sorgente, Tricarico (b0115) 2015; 78
Canté, Spinelli, Ferreira, Cheung, Garcia (b0070) 2008; 39
Kim, Kim, Lee, Kim (b0090) 2015; 16
Silva (10.1016/j.applthermaleng.2016.06.177_b0145) 2013; 42
Kuo (10.1016/j.applthermaleng.2016.06.177_b0180) 2006; 47
Meydaneri (10.1016/j.applthermaleng.2016.06.177_b0225) 2013; 25
Kim (10.1016/j.applthermaleng.2016.06.177_b0040) 2009; 38
Canté (10.1016/j.applthermaleng.2016.06.177_b0070) 2008; 39
Mahmudi (10.1016/j.applthermaleng.2016.06.177_b0020) 2011; 22
Zhao (10.1016/j.applthermaleng.2016.06.177_b0095) 2015; 79
Silva (10.1016/j.applthermaleng.2016.06.177_b0150) 2015; 632
Zeng (10.1016/j.applthermaleng.2016.06.177_b0005) 2012; 52
Kim (10.1016/j.applthermaleng.2016.06.177_b0090) 2015; 16
Bertelli (10.1016/j.applthermaleng.2016.06.177_b0170) 2015; 30
Brandes (10.1016/j.applthermaleng.2016.06.177_b0210) 1992
Santos (10.1016/j.applthermaleng.2016.06.177_b0240) 2014; 182
Carvalho (10.1016/j.applthermaleng.2016.06.177_b0080) 2006; 179
Palumbo (10.1016/j.applthermaleng.2016.06.177_b0115) 2015; 78
Brimacombe (10.1016/j.applthermaleng.2016.06.177_b0160) 1984
Chidambaram (10.1016/j.applthermaleng.2016.06.177_b0030) 2011; 88
10.1016/j.applthermaleng.2016.06.177_b0175
Abtew (10.1016/j.applthermaleng.2016.06.177_b0045) 2000; 27
Silva (10.1016/j.applthermaleng.2016.06.177_b0060) 2015; 142
Musa (10.1016/j.applthermaleng.2016.06.177_b0010) 2013; 795
Dong (10.1016/j.applthermaleng.2016.06.177_b0100) 2011; 211
Song (10.1016/j.applthermaleng.2016.06.177_b0025) 2013; 42
Santos (10.1016/j.applthermaleng.2016.06.177_b0035) 2015; 647
Cheung (10.1016/j.applthermaleng.2016.06.177_b0140) 2009; 30
Voller (10.1016/j.applthermaleng.2016.06.177_b0200) 1991; 19
Bertelli (10.1016/j.applthermaleng.2016.06.177_b0055) 2013; 61
Duong (10.1016/j.applthermaleng.2016.06.177_b0135) 2008; 49
Ruddle (10.1016/j.applthermaleng.2016.06.177_b0205) 1957
Wang (10.1016/j.applthermaleng.2016.06.177_b0110) 2014; 214
Snyman (10.1016/j.applthermaleng.2016.06.177_b0195) 2005
Hu (10.1016/j.applthermaleng.2016.06.177_b0085) 2013; 213
Dour (10.1016/j.applthermaleng.2016.06.177_b0125) 2006; 49
Cheung (10.1016/j.applthermaleng.2016.06.177_b0050) 2009; 52
Beck (10.1016/j.applthermaleng.2016.06.177_b0190) 1985
Spinelli (10.1016/j.applthermaleng.2016.06.177_b0105) 2012; 51
Saatçi (10.1016/j.applthermaleng.2016.06.177_b0215) 2007; 454
Takahashi (10.1016/j.applthermaleng.2016.06.177_b0015) 2010; 39
Shibli (10.1016/j.applthermaleng.2016.06.177_b0230) 2015; 262
Zhang (10.1016/j.applthermaleng.2016.06.177_b0235) 2010; 55
10.1016/j.applthermaleng.2016.06.177_b0220
Kurz (10.1016/j.applthermaleng.2016.06.177_b0065) 1992
Bertelli (10.1016/j.applthermaleng.2016.06.177_b0120) 2016; 96
Şahin (10.1016/j.applthermaleng.2016.06.177_b0130) 2006; 47
Wang (10.1016/j.applthermaleng.2016.06.177_b0155) 2002; 45
Bertelli (10.1016/j.applthermaleng.2016.06.177_b0185) 2012; 136
Incropera (10.1016/j.applthermaleng.2016.06.177_b0075) 1990
Wang (10.1016/j.applthermaleng.2016.06.177_b0165) 2012; 212
References_xml – volume: 27
  start-page: 95
  year: 2000
  end-page: 141
  ident: b0045
  article-title: Lead-free solder in microelectronics
  publication-title: Mater. Sci. Eng. R
– volume: 49
  start-page: 1462
  year: 2008
  end-page: 1466
  ident: b0135
  article-title: Wettability of lead-free solders on gold-plated copper substrates
  publication-title: Mater. Trans.
– year: 1957
  ident: b0205
  article-title: The Solidification of Castings
– volume: 52
  start-page: 1306
  year: 2012
  end-page: 1322
  ident: b0005
  article-title: Development of high-temperature solders: review
  publication-title: Microelectron. Reliab.
– volume: 214
  start-page: 44
  year: 2014
  end-page: 49
  ident: b0110
  article-title: Inverse problem-coupled heat transfer model for steel continuous casting
  publication-title: J. Mater. Process. Technol.
– volume: 795
  start-page: 518
  year: 2013
  end-page: 521
  ident: b0010
  article-title: Zn-based high temperature solder – a short review
  publication-title: Adv. Mater. Res.
– reference: W. Yu, Y. Cao, X. Li, Z. Guo, S. Xiong, Determination of interfacial heat transfer behavior at the metal/shot sleeve of high pressure die casting process of AZ91D alloy, J. Mater. Sci. Technol. (in press).
– volume: 262
  start-page: 210
  year: 2015
  end-page: 215
  ident: b0230
  article-title: A review on recent approaches in the field of hot dip zinc galvanizing process
  publication-title: Surf. Coat. Technol.
– volume: 42
  start-page: 179
  year: 2013
  end-page: 191
  ident: b0145
  article-title: Thermal parameters, microstructure, and mechanical properties of directionally solidified Sn-0.7
  publication-title: J. Electron. Mater.
– volume: 213
  start-page: 1475
  year: 2013
  end-page: 1483
  ident: b0085
  article-title: Effect of oxide scale on temperature-dependent interfacial heat transfer in hot stamping process
  publication-title: J. Mater. Process. Technol.
– volume: 136
  start-page: 545
  year: 2012
  end-page: 554
  ident: b0185
  article-title: Inward and outward solidification of cylindrical castings: the role of the metal/mold heat transfer coefficient
  publication-title: Mater. Chem. Phys.
– volume: 647
  start-page: 989
  year: 2015
  end-page: 996
  ident: b0035
  article-title: Microstructural development of hypoeutectic Zn-(10–40)
  publication-title: J. Alloys Compd.
– volume: 16
  start-page: 285
  year: 2015
  end-page: 292
  ident: b0090
  article-title: Life estimation of hot press forming die by using interface heat transfer coefficient obtained from inverse analysis
  publication-title: Int. J. Autom. Technnol.
– volume: 38
  start-page: 266
  year: 2009
  end-page: 272
  ident: b0040
  article-title: Interfacial reaction and die attach properties of Zn–Sn high-temperature solders
  publication-title: J. Electron. Mater.
– volume: 25
  start-page: 691
  year: 2013
  end-page: 704
  ident: b0225
  article-title: Determination of thermal conductivities of Sn–Zn lead-free solder alloys with radial heat flow and Bridgman-type apparatus
  publication-title: Continuum Mech. Thermodyn.
– volume: 55
  start-page: 797
  year: 2010
  end-page: 801
  ident: b0235
  article-title: Wetting behavior and interfacial characteristic of Sn-Ag-Cu solder alloy on Cu substrate
  publication-title: Phys. Chem.
– volume: 61
  start-page: 577
  year: 2013
  end-page: 582
  ident: b0055
  article-title: Inward solidification of cylinders: reversal in the growth rate and microstructure evolution
  publication-title: Appl. Therm. Eng.
– volume: 182
  start-page: 29
  year: 2014
  end-page: 36
  ident: b0240
  article-title: Plate-like cell growth during directional solidification of a Zn-20
  publication-title: Mater. Sci. Eng. B
– volume: 39
  start-page: 1712
  year: 2008
  end-page: 1726
  ident: b0070
  article-title: Microstructural development in Al-Ni alloys directionally solidified under unsteady-state conditions
  publication-title: Metall. Mater. Trans. A
– volume: 42
  start-page: 2813
  year: 2013
  end-page: 2821
  ident: b0025
  article-title: Ball impact reliability of Zn-Sn high-temperature solder joints bonded with different substrates
  publication-title: J. Electron. Mater.
– start-page: 29
  year: 1984
  end-page: 31
  ident: b0160
  article-title: The continuous-casting mould
  publication-title: Continuous Casting – Heat Flow, Solidification and Crack Formation
– volume: 47
  start-page: 2547
  year: 2006
  end-page: 2554
  ident: b0180
  article-title: Effects of solid fraction on the heat transfer coefficient at the casting/mold interface for permanent mold casting of AZ91D magnesium alloy
  publication-title: Mater. Trans.
– volume: 96
  start-page: 454
  year: 2016
  end-page: 462
  ident: b0120
  article-title: Numerical and experimental modelling of two-dimensional unsteady heat transfer during inward solidification of square billets
  publication-title: Appl. Therm. Eng.
– volume: 632
  start-page: 274
  year: 2015
  end-page: 285
  ident: b0150
  article-title: Sn–0.7
  publication-title: J. Alloys Compd.
– volume: 30
  start-page: 414
  year: 2015
  end-page: 424
  ident: b0170
  article-title: An effective inverse heat transfer procedure based on evolutionary algorithms to determine cooling conditions of a steel continuous casting machine
  publication-title: Mater. Manuf. Process.
– volume: 78
  start-page: 682
  year: 2015
  end-page: 694
  ident: b0115
  article-title: Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis
  publication-title: Appl. Therm. Eng.
– year: 1985
  ident: b0190
  article-title: Inverse Heat Conduction: Ill – Posed Problems
– volume: 39
  start-page: 1241
  year: 2010
  end-page: 1247
  ident: b0015
  article-title: Improvement of high-temperature performance of Zn-Sn solder joint
  publication-title: J. Electron. Mater.
– volume: 211
  start-page: 2123
  year: 2011
  end-page: 2131
  ident: b0100
  article-title: Determination of interfacial heat-transfer coefficient during investment-casting process of single-crystal blades
  publication-title: J. Mater. Process. Technol.
– volume: 51
  start-page: 145
  year: 2012
  end-page: 154
  ident: b0105
  article-title: Design of mechanical properties of Al-alloys chill castings based on the metal/mold interfacial heat transfer coefficient
  publication-title: Int. J. Therm. Sci.
– year: 1990
  ident: b0075
  article-title: Fundamentals of Heat and Mass Transfer
– year: 1992
  ident: b0065
  article-title: Fundamentals of Solidification
– volume: 22
  start-page: 1168
  year: 2011
  end-page: 1172
  ident: b0020
  article-title: Shear strength of the Zn-Sn high-temperature lead-free solders
  publication-title: J. Mater. Sci: Mater. Electron.
– volume: 142
  start-page: 163
  year: 2015
  end-page: 167
  ident: b0060
  article-title: Evaluation of solder/substrate thermal conductance and wetting angle of Sn–0.7
  publication-title: Mater. Lett.
– volume: 79
  start-page: 17
  year: 2015
  end-page: 26
  ident: b0095
  article-title: Comparison of the methods for calculating the interfacial heat transfer coefficient in hot stamping
  publication-title: Appl. Therm. Eng.
– volume: 52
  start-page: 451
  year: 2009
  end-page: 459
  ident: b0050
  article-title: Interfacial heat transfer coefficients and solidification of an aluminum alloy in a rotary continuous caster
  publication-title: Int. J. Heat Mass Transf.
– volume: 30
  start-page: 3592
  year: 2009
  end-page: 3601
  ident: b0140
  article-title: Melt characteristics and solidification growth direction with respect to gravity affecting the interfacial heat transfer coefficient of chill castings
  publication-title: Mater. Des.
– year: 2005
  ident: b0195
  article-title: Practical Mathematical Optimization – An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms
– year: 1992
  ident: b0210
  article-title: Smithells Metals Reference Book
– volume: 212
  start-page: 1811
  year: 2012
  end-page: 1818
  ident: b0165
  article-title: Mold transient heat transfer behavior based on measurement and inverse analysis of slab continuous casting
  publication-title: J. Mater. Process. Technol.
– volume: 45
  start-page: 2043
  year: 2002
  end-page: 2053
  ident: b0155
  article-title: Interfacial thermal conductance in rapid contact solidification process
  publication-title: Int. J. Heat Mass Transf.
– volume: 49
  start-page: 1773
  year: 2006
  end-page: 1789
  ident: b0125
  article-title: Recommendations and guidelines for the performance of accurate heat transfer measurements in rapid forming processes
  publication-title: Int. J. Heat Mass Transf.
– volume: 19
  start-page: 175
  year: 1991
  end-page: 189
  ident: b0200
  article-title: General source-based method for solidification phase change
  publication-title: Numer. Heat Transf. B – Fund.
– volume: 454
  start-page: 128
  year: 2007
  end-page: 134
  ident: b0215
  article-title: Thermal conductivities of solid and liquid phases in Pb–Cd and Sn–Zn binary eutectic alloys
  publication-title: Thermochim. Acta
– volume: 88
  start-page: 981
  year: 2011
  end-page: 989
  ident: b0030
  article-title: High temperature lead-free solder alternatives
  publication-title: Microelectron. Eng.
– volume: 179
  start-page: 97
  year: 2006
  end-page: 104
  ident: b0080
  article-title: Temperature determination at the chip–tool interface using an inverse thermal model considering the tool and tool holder
  publication-title: J. Mater. Process. Technol.
– volume: 47
  start-page: 19
  year: 2006
  end-page: 34
  ident: b0130
  article-title: Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting–chill interface
  publication-title: Energy Convers. Manage.
– reference: Thermo Calc software, Stockholm, Sweden, 2011.
– year: 1990
  ident: 10.1016/j.applthermaleng.2016.06.177_b0075
– volume: 632
  start-page: 274
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.06.177_b0150
  article-title: Sn–0.7wt%Cu–(xNi) alloys: microstructure–mechanical properties correlations with solder/substrate interfacial heat transfer coefficient
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.01.140
– volume: 262
  start-page: 210
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.06.177_b0230
  article-title: A review on recent approaches in the field of hot dip zinc galvanizing process
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.12.054
– volume: 79
  start-page: 17
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.06.177_b0095
  article-title: Comparison of the methods for calculating the interfacial heat transfer coefficient in hot stamping
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.01.018
– volume: 47
  start-page: 19
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.06.177_b0130
  article-title: Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting–chill interface
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2005.03.021
– volume: 42
  start-page: 2813
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.06.177_b0025
  article-title: Ball impact reliability of Zn-Sn high-temperature solder joints bonded with different substrates
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-013-2653-5
– volume: 19
  start-page: 175
  year: 1991
  ident: 10.1016/j.applthermaleng.2016.06.177_b0200
  article-title: General source-based method for solidification phase change
  publication-title: Numer. Heat Transf. B – Fund.
  doi: 10.1080/10407799108944962
– volume: 142
  start-page: 163
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.06.177_b0060
  article-title: Evaluation of solder/substrate thermal conductance and wetting angle of Sn–0.7wt%Cu–(0–0.1wt%Ni) solder alloys
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.11.088
– volume: 212
  start-page: 1811
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.06.177_b0165
  article-title: Mold transient heat transfer behavior based on measurement and inverse analysis of slab continuous casting
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2012.04.001
– volume: 454
  start-page: 128
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.06.177_b0215
  article-title: Thermal conductivities of solid and liquid phases in Pb–Cd and Sn–Zn binary eutectic alloys
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2007.01.009
– volume: 16
  start-page: 285
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.06.177_b0090
  article-title: Life estimation of hot press forming die by using interface heat transfer coefficient obtained from inverse analysis
  publication-title: Int. J. Autom. Technnol.
  doi: 10.1007/s12239-015-0030-5
– year: 1985
  ident: 10.1016/j.applthermaleng.2016.06.177_b0190
– volume: 96
  start-page: 454
  year: 2016
  ident: 10.1016/j.applthermaleng.2016.06.177_b0120
  article-title: Numerical and experimental modelling of two-dimensional unsteady heat transfer during inward solidification of square billets
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.11.121
– volume: 49
  start-page: 1462
  year: 2008
  ident: 10.1016/j.applthermaleng.2016.06.177_b0135
  article-title: Wettability of lead-free solders on gold-plated copper substrates
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MRA2007209
– volume: 39
  start-page: 1241
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.06.177_b0015
  article-title: Improvement of high-temperature performance of Zn-Sn solder joint
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-010-1233-1
– volume: 47
  start-page: 2547
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.06.177_b0180
  article-title: Effects of solid fraction on the heat transfer coefficient at the casting/mold interface for permanent mold casting of AZ91D magnesium alloy
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.47.2547
– volume: 25
  start-page: 691
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.06.177_b0225
  article-title: Determination of thermal conductivities of Sn–Zn lead-free solder alloys with radial heat flow and Bridgman-type apparatus
  publication-title: Continuum Mech. Thermodyn.
  doi: 10.1007/s00161-012-0263-8
– volume: 45
  start-page: 2043
  year: 2002
  ident: 10.1016/j.applthermaleng.2016.06.177_b0155
  article-title: Interfacial thermal conductance in rapid contact solidification process
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(01)00307-6
– volume: 211
  start-page: 2123
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.06.177_b0100
  article-title: Determination of interfacial heat-transfer coefficient during investment-casting process of single-crystal blades
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2011.07.012
– volume: 39
  start-page: 1712
  year: 2008
  ident: 10.1016/j.applthermaleng.2016.06.177_b0070
  article-title: Microstructural development in Al-Ni alloys directionally solidified under unsteady-state conditions
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-008-9536-z
– volume: 78
  start-page: 682
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.06.177_b0115
  article-title: Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.11.046
– year: 2005
  ident: 10.1016/j.applthermaleng.2016.06.177_b0195
– volume: 51
  start-page: 145
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.06.177_b0105
  article-title: Design of mechanical properties of Al-alloys chill castings based on the metal/mold interfacial heat transfer coefficient
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.08.014
– volume: 42
  start-page: 179
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.06.177_b0145
  article-title: Thermal parameters, microstructure, and mechanical properties of directionally solidified Sn-0.7wt.%Cu solder alloys containing 0ppm to 1000ppm Ni
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-012-2263-7
– ident: 10.1016/j.applthermaleng.2016.06.177_b0175
  doi: 10.1016/j.jmst.2016.02.003
– year: 1992
  ident: 10.1016/j.applthermaleng.2016.06.177_b0065
– volume: 27
  start-page: 95
  year: 2000
  ident: 10.1016/j.applthermaleng.2016.06.177_b0045
  article-title: Lead-free solder in microelectronics
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/S0927-796X(00)00010-3
– volume: 214
  start-page: 44
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.177_b0110
  article-title: Inverse problem-coupled heat transfer model for steel continuous casting
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2013.07.017
– year: 1957
  ident: 10.1016/j.applthermaleng.2016.06.177_b0205
– volume: 22
  start-page: 1168
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.06.177_b0020
  article-title: Shear strength of the Zn-Sn high-temperature lead-free solders
  publication-title: J. Mater. Sci: Mater. Electron.
– year: 1992
  ident: 10.1016/j.applthermaleng.2016.06.177_b0210
– volume: 30
  start-page: 414
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.06.177_b0170
  article-title: An effective inverse heat transfer procedure based on evolutionary algorithms to determine cooling conditions of a steel continuous casting machine
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2014.952038
– ident: 10.1016/j.applthermaleng.2016.06.177_b0220
– volume: 179
  start-page: 97
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.06.177_b0080
  article-title: Temperature determination at the chip–tool interface using an inverse thermal model considering the tool and tool holder
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2006.03.086
– start-page: 29
  year: 1984
  ident: 10.1016/j.applthermaleng.2016.06.177_b0160
  article-title: The continuous-casting mould
– volume: 61
  start-page: 577
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.06.177_b0055
  article-title: Inward solidification of cylinders: reversal in the growth rate and microstructure evolution
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.08.034
– volume: 647
  start-page: 989
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.06.177_b0035
  article-title: Microstructural development of hypoeutectic Zn-(10–40)wt%Sn solder alloys and impacts of interphase spacing and macrosegregation pattern on hardness
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.05.195
– volume: 30
  start-page: 3592
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.06.177_b0140
  article-title: Melt characteristics and solidification growth direction with respect to gravity affecting the interfacial heat transfer coefficient of chill castings
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.02.025
– volume: 52
  start-page: 1306
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.06.177_b0005
  article-title: Development of high-temperature solders: review
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.02.018
– volume: 88
  start-page: 981
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.06.177_b0030
  article-title: High temperature lead-free solder alternatives
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2010.12.072
– volume: 136
  start-page: 545
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.06.177_b0185
  article-title: Inward and outward solidification of cylindrical castings: the role of the metal/mold heat transfer coefficient
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2012.07.024
– volume: 38
  start-page: 266
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.06.177_b0040
  article-title: Interfacial reaction and die attach properties of Zn–Sn high-temperature solders
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-008-0550-0
– volume: 213
  start-page: 1475
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.06.177_b0085
  article-title: Effect of oxide scale on temperature-dependent interfacial heat transfer in hot stamping process
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2013.03.010
– volume: 55
  start-page: 797
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.06.177_b0235
  article-title: Wetting behavior and interfacial characteristic of Sn-Ag-Cu solder alloy on Cu substrate
  publication-title: Phys. Chem.
– volume: 795
  start-page: 518
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.06.177_b0010
  article-title: Zn-based high temperature solder – a short review
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.795.518
– volume: 52
  start-page: 451
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.06.177_b0050
  article-title: Interfacial heat transfer coefficients and solidification of an aluminum alloy in a rotary continuous caster
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.07.003
– volume: 182
  start-page: 29
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.177_b0240
  article-title: Plate-like cell growth during directional solidification of a Zn-20wt%Sn high-temperature lead-free solder alloy
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2013.11.016
– volume: 49
  start-page: 1773
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.06.177_b0125
  article-title: Recommendations and guidelines for the performance of accurate heat transfer measurements in rapid forming processes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2005.10.045
SSID ssj0012874
Score 2.2706037
Snippet [Display omitted] •A thermal approach is proposed to qualitatively evaluate the wettability of solders.•The approach is based on experimental results of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 431
SubjectTerms Interfacial heat transfer coefficient
Solidification
Wettability
Zn-Sn solder alloys
Title An alternative thermal approach to evaluate the wettability of solder alloys
URI https://dx.doi.org/10.1016/j.applthermaleng.2016.06.177
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KHvoNTaPfSR4kFIs9dWLFnpb9hWoaFpqRHrxt7uTJrUFDwWP2WQ3YXYy801m8g1CrTg0MqQ69rgx0nOQ2nhSuShFu5eLU8vTWEKg-DRg_SG5H9FRDXWrf2GgrLK0_QubXljrcqRdSrM9HY_bz0FEE-f-AocogN0S7DAhHLT86ntZ5hEAn3sRdNHEg6u3Ueu3xguSxICz3iW0LYFCLwZsngHnf7upFdfT20d7JWbEncVjHaCazQ7R7gqT4BF67GS4SHxnBZE3Lm-HK8pwnE9wSexdnMRfNs8XFN1zPEmx00BjZxiy8POPYzTs3b50-17ZKMHThPq5Z5gyJCHMxIZEJuTOGxGTWM0ki02keBqESinDrO-ihzT2maU84lxTqligjR-doHo2yewpwkxJq5VKdJRa56qsdPFfJLnDdUHoa6Ia6LqSi9Alizg0s3gTVbnYq1iXqgCpCp8JJ9UGosvZ0wWbxobzbqotEGvaIZzh32iFs3-vcI524Ai-J4f0AtXz2ae9dIAkV81C45poq3P30B_8AL6_5Po
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KCz4O4hPrcw-9hua1uwkepBSltY-LFnpb9hVQNC01Iv337qabWsGD4DXLbMLsZOabzOQbgFYSKh5imXhUKe4ZSK08LkyWIs3LRbGmWcJtojgak94kfpjiaQ261b8wtq3S-f6VTy-9tbvSdtpsz5-f249BhFMT_gKDKCy7pfHDDctOhevQ6PQHvfG6mGAp3cu8C6eeFdiC1nebl60TW6j1xu3kEtvrRSyhZ0Dp75FqI_rc78Oeg42os3qyA6jp_BB2N8gEj2DYyVFZ-85LLm_kbocq1nBUzJDj9i4X0acuihVL9xLNMmSMUOkFsoX45fsxTO7vnro9z81K8GSM_cJTRKg4jYlKVBypkJqAFKtUS8JJoiJBsyAUQiiifZNAZIlPNKYRpRJjQQKp_OgE6vks16eAiOBaCpHKKNMmWmluUsCIUwPtgtCXsWjCTaUXJh2RuJ1n8cqqjrEX9lOrzGqV-YQZrTYBr6XnK0KNP8rdVkfAfhgIM77_Tzuc_XuHa9juPY2GbNgfD85hx67Yz8shvoB6sfjQlwafFOLK2d8Xkwfnqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+alternative+thermal+approach+to+evaluate+the+wettability+of+solder+alloys&rft.jtitle=Applied+thermal+engineering&rft.au=Santos%2C+Washington+L.R.&rft.au=Silva%2C+Bismarck+L.&rft.au=Bertelli%2C+Felipe&rft.au=Spinelli%2C+Jos%C3%A9+E.&rft.date=2016-08-25&rft.issn=1359-4311&rft.volume=107&rft.spage=431&rft.epage=440&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.06.177&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2016_06_177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon