An alternative thermal approach to evaluate the wettability of solder alloys
[Display omitted] •A thermal approach is proposed to qualitatively evaluate the wettability of solders.•The approach is based on experimental results of solder/substrate thermal conductance.•High temperature Zn-Sn solders are experimentally investigated.•The approach is validated against experimenta...
Saved in:
Published in | Applied thermal engineering Vol. 107; pp. 431 - 440 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
25.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A thermal approach is proposed to qualitatively evaluate the wettability of solders.•The approach is based on experimental results of solder/substrate thermal conductance.•High temperature Zn-Sn solders are experimentally investigated.•The approach is validated against experimental contact angles of wetting tests.•The results indicate increase in wettability with decrease in alloy Sn content.
The aim of the work is to propose an alternative method to qualitatively evaluate the wettability of different alloys of a particular alloy system. The technique is based on a thermal approach supported by experimental/theoretical methodologies involving a directional solidification procedure and numerical simulations based on the solution of the inverse heat conduction problem (IHCP). The wettability strongly affects the heat ability to flow across the alloy/substrate interface during solidification, which is construed as a heat transfer coefficient (hg). Particularly, for the alloys used in soldering processes, the wettability plays an important role in the integrity of solder junctions, being a fundamental parameter for selecting the most appropriate solder composition. The experiments were carried out with high temperature Zn-Sn solder alloys (10, 20, 30 and 40wt%Sn) in a solidification device in which heat is extracted only through a water-cooled steel bottom. Experimental thermal profiles collected during solidification are used as input data to solve the IHCP and determine expressions hg vs. time for each alloy examined, permitting a tendency of wettability to be established. In order to validate the wetting behavior indicated by the hg values, alloy/substrate contact angles (θ) were measured on a steel substrate using a goniometer. It is shown that both hg and θ indicate improvements in wettability with the decrease in the alloy Sn content. |
---|---|
AbstractList | [Display omitted]
•A thermal approach is proposed to qualitatively evaluate the wettability of solders.•The approach is based on experimental results of solder/substrate thermal conductance.•High temperature Zn-Sn solders are experimentally investigated.•The approach is validated against experimental contact angles of wetting tests.•The results indicate increase in wettability with decrease in alloy Sn content.
The aim of the work is to propose an alternative method to qualitatively evaluate the wettability of different alloys of a particular alloy system. The technique is based on a thermal approach supported by experimental/theoretical methodologies involving a directional solidification procedure and numerical simulations based on the solution of the inverse heat conduction problem (IHCP). The wettability strongly affects the heat ability to flow across the alloy/substrate interface during solidification, which is construed as a heat transfer coefficient (hg). Particularly, for the alloys used in soldering processes, the wettability plays an important role in the integrity of solder junctions, being a fundamental parameter for selecting the most appropriate solder composition. The experiments were carried out with high temperature Zn-Sn solder alloys (10, 20, 30 and 40wt%Sn) in a solidification device in which heat is extracted only through a water-cooled steel bottom. Experimental thermal profiles collected during solidification are used as input data to solve the IHCP and determine expressions hg vs. time for each alloy examined, permitting a tendency of wettability to be established. In order to validate the wetting behavior indicated by the hg values, alloy/substrate contact angles (θ) were measured on a steel substrate using a goniometer. It is shown that both hg and θ indicate improvements in wettability with the decrease in the alloy Sn content. |
Author | Bertelli, Felipe Cheung, Noé Spinelli, José E. Garcia, Amauri Santos, Washington L.R. Silva, Bismarck L. |
Author_xml | – sequence: 1 givenname: Washington L.R. surname: Santos fullname: Santos, Washington L.R. organization: Department of Manufacturing and Materials Engineering, University of Campinas – UNICAMP, 13083-860 Campinas, SP, Brazil – sequence: 2 givenname: Bismarck L. surname: Silva fullname: Silva, Bismarck L. organization: Department of Materials Engineering, Federal University of São Carlos – UFSCar, 13565-905 São Carlos, SP, Brazil – sequence: 3 givenname: Felipe surname: Bertelli fullname: Bertelli, Felipe organization: Department of Mechanical Engineering and Postgraduate Program of Mechanical Engineering, Santa Cecília University – UNISANTA, 11045-907 Santos, SP, Brazil – sequence: 4 givenname: José E. surname: Spinelli fullname: Spinelli, José E. organization: Department of Materials Engineering, Federal University of São Carlos – UFSCar, 13565-905 São Carlos, SP, Brazil – sequence: 5 givenname: Noé surname: Cheung fullname: Cheung, Noé email: cheung@fem.unicamp.br organization: Department of Manufacturing and Materials Engineering, University of Campinas – UNICAMP, 13083-860 Campinas, SP, Brazil – sequence: 6 givenname: Amauri surname: Garcia fullname: Garcia, Amauri organization: Department of Manufacturing and Materials Engineering, University of Campinas – UNICAMP, 13083-860 Campinas, SP, Brazil |
BookMark | eNqNkLFOwzAQhj0UibbwDh5YE-zEsROJpVQUkCqxwGw59oW6cuPKNkV5e1LaBaZOJ_2n_9PdN0OT3veA0B0lOSWU329ztd-7tIGwUw76z7wY05zwnAoxQVNaVk3GSkqv0SzGLSG0qAWbovWix8olCL1K9gD4DMAjLHilNzh5DAflvlT6XeJvSEm11tk0YN_h6J2BMCKcH-INuuqUi3B7nnP0sXp6X75k67fn1-VinWlWkZQZ3hrWMG5qw0pTCFqUzDSgueK1KVvR0aJtW8OBNIJ1NeFQiVIIXVUtp9qQco4eT1wdfIwBOqltGu_3fQrKOkmJPDqRW_nXiTw6kYTL0ckIefgH2Qe7U2G4tL461WF89GAhyKgt9BqMDaCTNN5eBvoBCr2OJQ |
CitedBy_id | crossref_primary_10_1007_s11664_019_07286_4 crossref_primary_10_1016_j_microrel_2025_115624 crossref_primary_10_2320_matertrans_MT_M2019369 crossref_primary_10_1016_j_jmapro_2019_10_029 crossref_primary_10_1016_j_csite_2021_101144 crossref_primary_10_1016_j_jmrt_2018_06_016 crossref_primary_10_1016_j_jallcom_2017_06_329 crossref_primary_10_1007_s10845_022_01935_y crossref_primary_10_1007_s11664_017_5837_6 crossref_primary_10_1016_j_jallcom_2020_158553 crossref_primary_10_1016_j_microrel_2022_114593 crossref_primary_10_3390_met11071019 crossref_primary_10_1007_s11664_019_07454_6 crossref_primary_10_1016_j_advengsoft_2018_04_012 crossref_primary_10_1021_acsomega_4c08359 crossref_primary_10_1016_j_microrel_2017_08_007 crossref_primary_10_1016_j_msea_2022_142680 crossref_primary_10_1016_j_matchar_2023_113416 crossref_primary_10_1007_s10973_021_10755_w |
Cites_doi | 10.1016/j.jallcom.2015.01.140 10.1016/j.surfcoat.2014.12.054 10.1016/j.applthermaleng.2015.01.018 10.1016/j.enconman.2005.03.021 10.1007/s11664-013-2653-5 10.1080/10407799108944962 10.1016/j.matlet.2014.11.088 10.1016/j.jmatprotec.2012.04.001 10.1016/j.tca.2007.01.009 10.1007/s12239-015-0030-5 10.1016/j.applthermaleng.2015.11.121 10.2320/matertrans.MRA2007209 10.1007/s11664-010-1233-1 10.2320/matertrans.47.2547 10.1007/s00161-012-0263-8 10.1016/S0017-9310(01)00307-6 10.1016/j.jmatprotec.2011.07.012 10.1007/s11661-008-9536-z 10.1016/j.applthermaleng.2014.11.046 10.1016/j.ijthermalsci.2011.08.014 10.1007/s11664-012-2263-7 10.1016/j.jmst.2016.02.003 10.1016/S0927-796X(00)00010-3 10.1016/j.jmatprotec.2013.07.017 10.1080/10426914.2014.952038 10.1016/j.jmatprotec.2006.03.086 10.1016/j.applthermaleng.2013.08.034 10.1016/j.jallcom.2015.05.195 10.1016/j.matdes.2009.02.025 10.1016/j.microrel.2012.02.018 10.1016/j.mee.2010.12.072 10.1016/j.matchemphys.2012.07.024 10.1007/s11664-008-0550-0 10.1016/j.jmatprotec.2013.03.010 10.4028/www.scientific.net/AMR.795.518 10.1016/j.ijheatmasstransfer.2008.07.003 10.1016/j.mseb.2013.11.016 10.1016/j.ijheatmasstransfer.2005.10.045 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2016.06.177 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 440 |
ExternalDocumentID | 10_1016_j_applthermaleng_2016_06_177 S1359431116310912 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH |
ID | FETCH-LOGICAL-c450t-d6bd4946d8d43d271234d9ec6a68d3b7f12bbbd6e0974f806e57377c55b61cd03 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Tue Jul 01 02:27:19 EDT 2025 Thu Apr 24 23:10:29 EDT 2025 Mon Oct 07 06:11:41 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Zn-Sn solder alloys Wettability Interfacial heat transfer coefficient Solidification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-d6bd4946d8d43d271234d9ec6a68d3b7f12bbbd6e0974f806e57377c55b61cd03 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S1359431116310912-fx1_lrg.jpg |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_applthermaleng_2016_06_177 crossref_primary_10_1016_j_applthermaleng_2016_06_177 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_06_177 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-25 |
PublicationDateYYYYMMDD | 2016-08-25 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-25 day: 25 |
PublicationDecade | 2010 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Santos, Brito, Bertelli, Spinelli, Garcia (b0035) 2015; 647 Shibli, Meena, Remya (b0230) 2015; 262 Şahin, Kocatepe, Kayıkcı, Akara (b0130) 2006; 47 Santos, Brito, Quaresma, Spinelli, Garcia (b0240) 2014; 182 Silva, Cheung, Garcia, Spinelli (b0060) 2015; 142 Musa, Salleh, Saud (b0010) 2013; 795 Kuo, Weng, Hwang (b0180) 2006; 47 Voller, Swaminathan (b0200) 1991; 19 Song, Lin, Hsieh, Pai, Lai, Chiu (b0025) 2013; 42 Dong, Bu, Dou, Zhang (b0100) 2011; 211 Ruddle (b0205) 1957 Bertelli, Silva-Santos, Bezerra, Cheung, Garcia (b0170) 2015; 30 Zhang, Yuan, Zhao, Zang, Li (b0235) 2010; 55 Spinelli, Cheung, Goulart, Quaresma, Garcia (b0105) 2012; 51 Hu, Ying, Li, Liao (b0085) 2013; 213 Zhao, Wang, Chang, Tang, Yan (b0095) 2015; 79 Beck, Blackwell, Clair (b0190) 1985 Thermo Calc software, Stockholm, Sweden, 2011. Meydaneri, Saatçi, Gündüz, Özdemir (b0225) 2013; 25 Zeng, McDonald, Nogita (b0005) 2012; 52 Mahmudi, Eslami (b0020) 2011; 22 Cheung, Ferreira, Pariona, Quaresma, Garcia (b0140) 2009; 30 Wang, Yao, Wang, Zhang, Yang, Lu, Wang (b0110) 2014; 214 Silva, Cheung, Garcia, Spinelli (b0145) 2013; 42 Wang, Qiu (b0155) 2002; 45 Wang, Tang, Zang, Yao (b0165) 2012; 212 Incropera, Dewitt (b0075) 1990 Bertelli, Faria, Goulart, Brito, Cheung, Garcia (b0120) 2016; 96 Silva, Cheung, Garcia, Spinelli (b0150) 2015; 632 Saatçi, Maraşlı, Gündüz (b0215) 2007; 454 Bertelli, Cheung, Garcia (b0055) 2013; 61 Dour, Dargusch, Davidson (b0125) 2006; 49 Cheung, Santos, Quaresma, Dulikravich, Garcia (b0050) 2009; 52 Kurz, Fisher (b0065) 1992 Brimacombe, Samarasekera, Lait (b0160) 1984 W. Yu, Y. Cao, X. Li, Z. Guo, S. Xiong, Determination of interfacial heat transfer behavior at the metal/shot sleeve of high pressure die casting process of AZ91D alloy, J. Mater. Sci. Technol. (in press). Kim, Kim, Kim, Suganuma (b0040) 2009; 38 Bertelli, Brito, Meza, Cheung, Garcia (b0185) 2012; 136 Takahashi, Komatsu, Nishikawa, Takemoto (b0015) 2010; 39 Chidambaram, Hattel, Hald (b0030) 2011; 88 Duong, Ariga, Hussain, Ismail (b0135) 2008; 49 Brandes, Brook (b0210) 1992 Abtew, Selvaduray (b0045) 2000; 27 Carvalho, Lima e Silva, Machado, Guimarães (b0080) 2006; 179 Snyman (b0195) 2005 Palumbo, Piglionico, Piccininni, Guglielmi, Sorgente, Tricarico (b0115) 2015; 78 Canté, Spinelli, Ferreira, Cheung, Garcia (b0070) 2008; 39 Kim, Kim, Lee, Kim (b0090) 2015; 16 Silva (10.1016/j.applthermaleng.2016.06.177_b0145) 2013; 42 Kuo (10.1016/j.applthermaleng.2016.06.177_b0180) 2006; 47 Meydaneri (10.1016/j.applthermaleng.2016.06.177_b0225) 2013; 25 Kim (10.1016/j.applthermaleng.2016.06.177_b0040) 2009; 38 Canté (10.1016/j.applthermaleng.2016.06.177_b0070) 2008; 39 Mahmudi (10.1016/j.applthermaleng.2016.06.177_b0020) 2011; 22 Zhao (10.1016/j.applthermaleng.2016.06.177_b0095) 2015; 79 Silva (10.1016/j.applthermaleng.2016.06.177_b0150) 2015; 632 Zeng (10.1016/j.applthermaleng.2016.06.177_b0005) 2012; 52 Kim (10.1016/j.applthermaleng.2016.06.177_b0090) 2015; 16 Bertelli (10.1016/j.applthermaleng.2016.06.177_b0170) 2015; 30 Brandes (10.1016/j.applthermaleng.2016.06.177_b0210) 1992 Santos (10.1016/j.applthermaleng.2016.06.177_b0240) 2014; 182 Carvalho (10.1016/j.applthermaleng.2016.06.177_b0080) 2006; 179 Palumbo (10.1016/j.applthermaleng.2016.06.177_b0115) 2015; 78 Brimacombe (10.1016/j.applthermaleng.2016.06.177_b0160) 1984 Chidambaram (10.1016/j.applthermaleng.2016.06.177_b0030) 2011; 88 10.1016/j.applthermaleng.2016.06.177_b0175 Abtew (10.1016/j.applthermaleng.2016.06.177_b0045) 2000; 27 Silva (10.1016/j.applthermaleng.2016.06.177_b0060) 2015; 142 Musa (10.1016/j.applthermaleng.2016.06.177_b0010) 2013; 795 Dong (10.1016/j.applthermaleng.2016.06.177_b0100) 2011; 211 Song (10.1016/j.applthermaleng.2016.06.177_b0025) 2013; 42 Santos (10.1016/j.applthermaleng.2016.06.177_b0035) 2015; 647 Cheung (10.1016/j.applthermaleng.2016.06.177_b0140) 2009; 30 Voller (10.1016/j.applthermaleng.2016.06.177_b0200) 1991; 19 Bertelli (10.1016/j.applthermaleng.2016.06.177_b0055) 2013; 61 Duong (10.1016/j.applthermaleng.2016.06.177_b0135) 2008; 49 Ruddle (10.1016/j.applthermaleng.2016.06.177_b0205) 1957 Wang (10.1016/j.applthermaleng.2016.06.177_b0110) 2014; 214 Snyman (10.1016/j.applthermaleng.2016.06.177_b0195) 2005 Hu (10.1016/j.applthermaleng.2016.06.177_b0085) 2013; 213 Dour (10.1016/j.applthermaleng.2016.06.177_b0125) 2006; 49 Cheung (10.1016/j.applthermaleng.2016.06.177_b0050) 2009; 52 Beck (10.1016/j.applthermaleng.2016.06.177_b0190) 1985 Spinelli (10.1016/j.applthermaleng.2016.06.177_b0105) 2012; 51 Saatçi (10.1016/j.applthermaleng.2016.06.177_b0215) 2007; 454 Takahashi (10.1016/j.applthermaleng.2016.06.177_b0015) 2010; 39 Shibli (10.1016/j.applthermaleng.2016.06.177_b0230) 2015; 262 Zhang (10.1016/j.applthermaleng.2016.06.177_b0235) 2010; 55 10.1016/j.applthermaleng.2016.06.177_b0220 Kurz (10.1016/j.applthermaleng.2016.06.177_b0065) 1992 Bertelli (10.1016/j.applthermaleng.2016.06.177_b0120) 2016; 96 Şahin (10.1016/j.applthermaleng.2016.06.177_b0130) 2006; 47 Wang (10.1016/j.applthermaleng.2016.06.177_b0155) 2002; 45 Bertelli (10.1016/j.applthermaleng.2016.06.177_b0185) 2012; 136 Incropera (10.1016/j.applthermaleng.2016.06.177_b0075) 1990 Wang (10.1016/j.applthermaleng.2016.06.177_b0165) 2012; 212 |
References_xml | – volume: 27 start-page: 95 year: 2000 end-page: 141 ident: b0045 article-title: Lead-free solder in microelectronics publication-title: Mater. Sci. Eng. R – volume: 49 start-page: 1462 year: 2008 end-page: 1466 ident: b0135 article-title: Wettability of lead-free solders on gold-plated copper substrates publication-title: Mater. Trans. – year: 1957 ident: b0205 article-title: The Solidification of Castings – volume: 52 start-page: 1306 year: 2012 end-page: 1322 ident: b0005 article-title: Development of high-temperature solders: review publication-title: Microelectron. Reliab. – volume: 214 start-page: 44 year: 2014 end-page: 49 ident: b0110 article-title: Inverse problem-coupled heat transfer model for steel continuous casting publication-title: J. Mater. Process. Technol. – volume: 795 start-page: 518 year: 2013 end-page: 521 ident: b0010 article-title: Zn-based high temperature solder – a short review publication-title: Adv. Mater. Res. – reference: W. Yu, Y. Cao, X. Li, Z. Guo, S. Xiong, Determination of interfacial heat transfer behavior at the metal/shot sleeve of high pressure die casting process of AZ91D alloy, J. Mater. Sci. Technol. (in press). – volume: 262 start-page: 210 year: 2015 end-page: 215 ident: b0230 article-title: A review on recent approaches in the field of hot dip zinc galvanizing process publication-title: Surf. Coat. Technol. – volume: 42 start-page: 179 year: 2013 end-page: 191 ident: b0145 article-title: Thermal parameters, microstructure, and mechanical properties of directionally solidified Sn-0.7 publication-title: J. Electron. Mater. – volume: 213 start-page: 1475 year: 2013 end-page: 1483 ident: b0085 article-title: Effect of oxide scale on temperature-dependent interfacial heat transfer in hot stamping process publication-title: J. Mater. Process. Technol. – volume: 136 start-page: 545 year: 2012 end-page: 554 ident: b0185 article-title: Inward and outward solidification of cylindrical castings: the role of the metal/mold heat transfer coefficient publication-title: Mater. Chem. Phys. – volume: 647 start-page: 989 year: 2015 end-page: 996 ident: b0035 article-title: Microstructural development of hypoeutectic Zn-(10–40) publication-title: J. Alloys Compd. – volume: 16 start-page: 285 year: 2015 end-page: 292 ident: b0090 article-title: Life estimation of hot press forming die by using interface heat transfer coefficient obtained from inverse analysis publication-title: Int. J. Autom. Technnol. – volume: 38 start-page: 266 year: 2009 end-page: 272 ident: b0040 article-title: Interfacial reaction and die attach properties of Zn–Sn high-temperature solders publication-title: J. Electron. Mater. – volume: 25 start-page: 691 year: 2013 end-page: 704 ident: b0225 article-title: Determination of thermal conductivities of Sn–Zn lead-free solder alloys with radial heat flow and Bridgman-type apparatus publication-title: Continuum Mech. Thermodyn. – volume: 55 start-page: 797 year: 2010 end-page: 801 ident: b0235 article-title: Wetting behavior and interfacial characteristic of Sn-Ag-Cu solder alloy on Cu substrate publication-title: Phys. Chem. – volume: 61 start-page: 577 year: 2013 end-page: 582 ident: b0055 article-title: Inward solidification of cylinders: reversal in the growth rate and microstructure evolution publication-title: Appl. Therm. Eng. – volume: 182 start-page: 29 year: 2014 end-page: 36 ident: b0240 article-title: Plate-like cell growth during directional solidification of a Zn-20 publication-title: Mater. Sci. Eng. B – volume: 39 start-page: 1712 year: 2008 end-page: 1726 ident: b0070 article-title: Microstructural development in Al-Ni alloys directionally solidified under unsteady-state conditions publication-title: Metall. Mater. Trans. A – volume: 42 start-page: 2813 year: 2013 end-page: 2821 ident: b0025 article-title: Ball impact reliability of Zn-Sn high-temperature solder joints bonded with different substrates publication-title: J. Electron. Mater. – start-page: 29 year: 1984 end-page: 31 ident: b0160 article-title: The continuous-casting mould publication-title: Continuous Casting – Heat Flow, Solidification and Crack Formation – volume: 47 start-page: 2547 year: 2006 end-page: 2554 ident: b0180 article-title: Effects of solid fraction on the heat transfer coefficient at the casting/mold interface for permanent mold casting of AZ91D magnesium alloy publication-title: Mater. Trans. – volume: 96 start-page: 454 year: 2016 end-page: 462 ident: b0120 article-title: Numerical and experimental modelling of two-dimensional unsteady heat transfer during inward solidification of square billets publication-title: Appl. Therm. Eng. – volume: 632 start-page: 274 year: 2015 end-page: 285 ident: b0150 article-title: Sn–0.7 publication-title: J. Alloys Compd. – volume: 30 start-page: 414 year: 2015 end-page: 424 ident: b0170 article-title: An effective inverse heat transfer procedure based on evolutionary algorithms to determine cooling conditions of a steel continuous casting machine publication-title: Mater. Manuf. Process. – volume: 78 start-page: 682 year: 2015 end-page: 694 ident: b0115 article-title: Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis publication-title: Appl. Therm. Eng. – year: 1985 ident: b0190 article-title: Inverse Heat Conduction: Ill – Posed Problems – volume: 39 start-page: 1241 year: 2010 end-page: 1247 ident: b0015 article-title: Improvement of high-temperature performance of Zn-Sn solder joint publication-title: J. Electron. Mater. – volume: 211 start-page: 2123 year: 2011 end-page: 2131 ident: b0100 article-title: Determination of interfacial heat-transfer coefficient during investment-casting process of single-crystal blades publication-title: J. Mater. Process. Technol. – volume: 51 start-page: 145 year: 2012 end-page: 154 ident: b0105 article-title: Design of mechanical properties of Al-alloys chill castings based on the metal/mold interfacial heat transfer coefficient publication-title: Int. J. Therm. Sci. – year: 1990 ident: b0075 article-title: Fundamentals of Heat and Mass Transfer – year: 1992 ident: b0065 article-title: Fundamentals of Solidification – volume: 22 start-page: 1168 year: 2011 end-page: 1172 ident: b0020 article-title: Shear strength of the Zn-Sn high-temperature lead-free solders publication-title: J. Mater. Sci: Mater. Electron. – volume: 142 start-page: 163 year: 2015 end-page: 167 ident: b0060 article-title: Evaluation of solder/substrate thermal conductance and wetting angle of Sn–0.7 publication-title: Mater. Lett. – volume: 79 start-page: 17 year: 2015 end-page: 26 ident: b0095 article-title: Comparison of the methods for calculating the interfacial heat transfer coefficient in hot stamping publication-title: Appl. Therm. Eng. – volume: 52 start-page: 451 year: 2009 end-page: 459 ident: b0050 article-title: Interfacial heat transfer coefficients and solidification of an aluminum alloy in a rotary continuous caster publication-title: Int. J. Heat Mass Transf. – volume: 30 start-page: 3592 year: 2009 end-page: 3601 ident: b0140 article-title: Melt characteristics and solidification growth direction with respect to gravity affecting the interfacial heat transfer coefficient of chill castings publication-title: Mater. Des. – year: 2005 ident: b0195 article-title: Practical Mathematical Optimization – An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms – year: 1992 ident: b0210 article-title: Smithells Metals Reference Book – volume: 212 start-page: 1811 year: 2012 end-page: 1818 ident: b0165 article-title: Mold transient heat transfer behavior based on measurement and inverse analysis of slab continuous casting publication-title: J. Mater. Process. Technol. – volume: 45 start-page: 2043 year: 2002 end-page: 2053 ident: b0155 article-title: Interfacial thermal conductance in rapid contact solidification process publication-title: Int. J. Heat Mass Transf. – volume: 49 start-page: 1773 year: 2006 end-page: 1789 ident: b0125 article-title: Recommendations and guidelines for the performance of accurate heat transfer measurements in rapid forming processes publication-title: Int. J. Heat Mass Transf. – volume: 19 start-page: 175 year: 1991 end-page: 189 ident: b0200 article-title: General source-based method for solidification phase change publication-title: Numer. Heat Transf. B – Fund. – volume: 454 start-page: 128 year: 2007 end-page: 134 ident: b0215 article-title: Thermal conductivities of solid and liquid phases in Pb–Cd and Sn–Zn binary eutectic alloys publication-title: Thermochim. Acta – volume: 88 start-page: 981 year: 2011 end-page: 989 ident: b0030 article-title: High temperature lead-free solder alternatives publication-title: Microelectron. Eng. – volume: 179 start-page: 97 year: 2006 end-page: 104 ident: b0080 article-title: Temperature determination at the chip–tool interface using an inverse thermal model considering the tool and tool holder publication-title: J. Mater. Process. Technol. – volume: 47 start-page: 19 year: 2006 end-page: 34 ident: b0130 article-title: Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting–chill interface publication-title: Energy Convers. Manage. – reference: Thermo Calc software, Stockholm, Sweden, 2011. – year: 1990 ident: 10.1016/j.applthermaleng.2016.06.177_b0075 – volume: 632 start-page: 274 year: 2015 ident: 10.1016/j.applthermaleng.2016.06.177_b0150 article-title: Sn–0.7wt%Cu–(xNi) alloys: microstructure–mechanical properties correlations with solder/substrate interfacial heat transfer coefficient publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.01.140 – volume: 262 start-page: 210 year: 2015 ident: 10.1016/j.applthermaleng.2016.06.177_b0230 article-title: A review on recent approaches in the field of hot dip zinc galvanizing process publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.12.054 – volume: 79 start-page: 17 year: 2015 ident: 10.1016/j.applthermaleng.2016.06.177_b0095 article-title: Comparison of the methods for calculating the interfacial heat transfer coefficient in hot stamping publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.01.018 – volume: 47 start-page: 19 year: 2006 ident: 10.1016/j.applthermaleng.2016.06.177_b0130 article-title: Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting–chill interface publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2005.03.021 – volume: 42 start-page: 2813 year: 2013 ident: 10.1016/j.applthermaleng.2016.06.177_b0025 article-title: Ball impact reliability of Zn-Sn high-temperature solder joints bonded with different substrates publication-title: J. Electron. Mater. doi: 10.1007/s11664-013-2653-5 – volume: 19 start-page: 175 year: 1991 ident: 10.1016/j.applthermaleng.2016.06.177_b0200 article-title: General source-based method for solidification phase change publication-title: Numer. Heat Transf. B – Fund. doi: 10.1080/10407799108944962 – volume: 142 start-page: 163 year: 2015 ident: 10.1016/j.applthermaleng.2016.06.177_b0060 article-title: Evaluation of solder/substrate thermal conductance and wetting angle of Sn–0.7wt%Cu–(0–0.1wt%Ni) solder alloys publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.11.088 – volume: 212 start-page: 1811 year: 2012 ident: 10.1016/j.applthermaleng.2016.06.177_b0165 article-title: Mold transient heat transfer behavior based on measurement and inverse analysis of slab continuous casting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2012.04.001 – volume: 454 start-page: 128 year: 2007 ident: 10.1016/j.applthermaleng.2016.06.177_b0215 article-title: Thermal conductivities of solid and liquid phases in Pb–Cd and Sn–Zn binary eutectic alloys publication-title: Thermochim. Acta doi: 10.1016/j.tca.2007.01.009 – volume: 16 start-page: 285 year: 2015 ident: 10.1016/j.applthermaleng.2016.06.177_b0090 article-title: Life estimation of hot press forming die by using interface heat transfer coefficient obtained from inverse analysis publication-title: Int. J. Autom. Technnol. doi: 10.1007/s12239-015-0030-5 – year: 1985 ident: 10.1016/j.applthermaleng.2016.06.177_b0190 – volume: 96 start-page: 454 year: 2016 ident: 10.1016/j.applthermaleng.2016.06.177_b0120 article-title: Numerical and experimental modelling of two-dimensional unsteady heat transfer during inward solidification of square billets publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.11.121 – volume: 49 start-page: 1462 year: 2008 ident: 10.1016/j.applthermaleng.2016.06.177_b0135 article-title: Wettability of lead-free solders on gold-plated copper substrates publication-title: Mater. Trans. doi: 10.2320/matertrans.MRA2007209 – volume: 39 start-page: 1241 year: 2010 ident: 10.1016/j.applthermaleng.2016.06.177_b0015 article-title: Improvement of high-temperature performance of Zn-Sn solder joint publication-title: J. Electron. Mater. doi: 10.1007/s11664-010-1233-1 – volume: 47 start-page: 2547 year: 2006 ident: 10.1016/j.applthermaleng.2016.06.177_b0180 article-title: Effects of solid fraction on the heat transfer coefficient at the casting/mold interface for permanent mold casting of AZ91D magnesium alloy publication-title: Mater. Trans. doi: 10.2320/matertrans.47.2547 – volume: 25 start-page: 691 year: 2013 ident: 10.1016/j.applthermaleng.2016.06.177_b0225 article-title: Determination of thermal conductivities of Sn–Zn lead-free solder alloys with radial heat flow and Bridgman-type apparatus publication-title: Continuum Mech. Thermodyn. doi: 10.1007/s00161-012-0263-8 – volume: 45 start-page: 2043 year: 2002 ident: 10.1016/j.applthermaleng.2016.06.177_b0155 article-title: Interfacial thermal conductance in rapid contact solidification process publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(01)00307-6 – volume: 211 start-page: 2123 year: 2011 ident: 10.1016/j.applthermaleng.2016.06.177_b0100 article-title: Determination of interfacial heat-transfer coefficient during investment-casting process of single-crystal blades publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2011.07.012 – volume: 39 start-page: 1712 year: 2008 ident: 10.1016/j.applthermaleng.2016.06.177_b0070 article-title: Microstructural development in Al-Ni alloys directionally solidified under unsteady-state conditions publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-008-9536-z – volume: 78 start-page: 682 year: 2015 ident: 10.1016/j.applthermaleng.2016.06.177_b0115 article-title: Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.11.046 – year: 2005 ident: 10.1016/j.applthermaleng.2016.06.177_b0195 – volume: 51 start-page: 145 year: 2012 ident: 10.1016/j.applthermaleng.2016.06.177_b0105 article-title: Design of mechanical properties of Al-alloys chill castings based on the metal/mold interfacial heat transfer coefficient publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.08.014 – volume: 42 start-page: 179 year: 2013 ident: 10.1016/j.applthermaleng.2016.06.177_b0145 article-title: Thermal parameters, microstructure, and mechanical properties of directionally solidified Sn-0.7wt.%Cu solder alloys containing 0ppm to 1000ppm Ni publication-title: J. Electron. Mater. doi: 10.1007/s11664-012-2263-7 – ident: 10.1016/j.applthermaleng.2016.06.177_b0175 doi: 10.1016/j.jmst.2016.02.003 – year: 1992 ident: 10.1016/j.applthermaleng.2016.06.177_b0065 – volume: 27 start-page: 95 year: 2000 ident: 10.1016/j.applthermaleng.2016.06.177_b0045 article-title: Lead-free solder in microelectronics publication-title: Mater. Sci. Eng. R doi: 10.1016/S0927-796X(00)00010-3 – volume: 214 start-page: 44 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.177_b0110 article-title: Inverse problem-coupled heat transfer model for steel continuous casting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2013.07.017 – year: 1957 ident: 10.1016/j.applthermaleng.2016.06.177_b0205 – volume: 22 start-page: 1168 year: 2011 ident: 10.1016/j.applthermaleng.2016.06.177_b0020 article-title: Shear strength of the Zn-Sn high-temperature lead-free solders publication-title: J. Mater. Sci: Mater. Electron. – year: 1992 ident: 10.1016/j.applthermaleng.2016.06.177_b0210 – volume: 30 start-page: 414 year: 2015 ident: 10.1016/j.applthermaleng.2016.06.177_b0170 article-title: An effective inverse heat transfer procedure based on evolutionary algorithms to determine cooling conditions of a steel continuous casting machine publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2014.952038 – ident: 10.1016/j.applthermaleng.2016.06.177_b0220 – volume: 179 start-page: 97 year: 2006 ident: 10.1016/j.applthermaleng.2016.06.177_b0080 article-title: Temperature determination at the chip–tool interface using an inverse thermal model considering the tool and tool holder publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.03.086 – start-page: 29 year: 1984 ident: 10.1016/j.applthermaleng.2016.06.177_b0160 article-title: The continuous-casting mould – volume: 61 start-page: 577 year: 2013 ident: 10.1016/j.applthermaleng.2016.06.177_b0055 article-title: Inward solidification of cylinders: reversal in the growth rate and microstructure evolution publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.08.034 – volume: 647 start-page: 989 year: 2015 ident: 10.1016/j.applthermaleng.2016.06.177_b0035 article-title: Microstructural development of hypoeutectic Zn-(10–40)wt%Sn solder alloys and impacts of interphase spacing and macrosegregation pattern on hardness publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.05.195 – volume: 30 start-page: 3592 year: 2009 ident: 10.1016/j.applthermaleng.2016.06.177_b0140 article-title: Melt characteristics and solidification growth direction with respect to gravity affecting the interfacial heat transfer coefficient of chill castings publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.02.025 – volume: 52 start-page: 1306 year: 2012 ident: 10.1016/j.applthermaleng.2016.06.177_b0005 article-title: Development of high-temperature solders: review publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.02.018 – volume: 88 start-page: 981 year: 2011 ident: 10.1016/j.applthermaleng.2016.06.177_b0030 article-title: High temperature lead-free solder alternatives publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2010.12.072 – volume: 136 start-page: 545 year: 2012 ident: 10.1016/j.applthermaleng.2016.06.177_b0185 article-title: Inward and outward solidification of cylindrical castings: the role of the metal/mold heat transfer coefficient publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2012.07.024 – volume: 38 start-page: 266 year: 2009 ident: 10.1016/j.applthermaleng.2016.06.177_b0040 article-title: Interfacial reaction and die attach properties of Zn–Sn high-temperature solders publication-title: J. Electron. Mater. doi: 10.1007/s11664-008-0550-0 – volume: 213 start-page: 1475 year: 2013 ident: 10.1016/j.applthermaleng.2016.06.177_b0085 article-title: Effect of oxide scale on temperature-dependent interfacial heat transfer in hot stamping process publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2013.03.010 – volume: 55 start-page: 797 year: 2010 ident: 10.1016/j.applthermaleng.2016.06.177_b0235 article-title: Wetting behavior and interfacial characteristic of Sn-Ag-Cu solder alloy on Cu substrate publication-title: Phys. Chem. – volume: 795 start-page: 518 year: 2013 ident: 10.1016/j.applthermaleng.2016.06.177_b0010 article-title: Zn-based high temperature solder – a short review publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.795.518 – volume: 52 start-page: 451 year: 2009 ident: 10.1016/j.applthermaleng.2016.06.177_b0050 article-title: Interfacial heat transfer coefficients and solidification of an aluminum alloy in a rotary continuous caster publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.07.003 – volume: 182 start-page: 29 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.177_b0240 article-title: Plate-like cell growth during directional solidification of a Zn-20wt%Sn high-temperature lead-free solder alloy publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2013.11.016 – volume: 49 start-page: 1773 year: 2006 ident: 10.1016/j.applthermaleng.2016.06.177_b0125 article-title: Recommendations and guidelines for the performance of accurate heat transfer measurements in rapid forming processes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2005.10.045 |
SSID | ssj0012874 |
Score | 2.2706037 |
Snippet | [Display omitted]
•A thermal approach is proposed to qualitatively evaluate the wettability of solders.•The approach is based on experimental results of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 431 |
SubjectTerms | Interfacial heat transfer coefficient Solidification Wettability Zn-Sn solder alloys |
Title | An alternative thermal approach to evaluate the wettability of solder alloys |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2016.06.177 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KHvoNTaPfSR4kFIs9dWLFnpb9hWoaFpqRHrxt7uTJrUFDwWP2WQ3YXYy801m8g1CrTg0MqQ69rgx0nOQ2nhSuShFu5eLU8vTWEKg-DRg_SG5H9FRDXWrf2GgrLK0_QubXljrcqRdSrM9HY_bz0FEE-f-AocogN0S7DAhHLT86ntZ5hEAn3sRdNHEg6u3Ueu3xguSxICz3iW0LYFCLwZsngHnf7upFdfT20d7JWbEncVjHaCazQ7R7gqT4BF67GS4SHxnBZE3Lm-HK8pwnE9wSexdnMRfNs8XFN1zPEmx00BjZxiy8POPYzTs3b50-17ZKMHThPq5Z5gyJCHMxIZEJuTOGxGTWM0ki02keBqESinDrO-ihzT2maU84lxTqligjR-doHo2yewpwkxJq5VKdJRa56qsdPFfJLnDdUHoa6Ia6LqSi9Alizg0s3gTVbnYq1iXqgCpCp8JJ9UGosvZ0wWbxobzbqotEGvaIZzh32iFs3-vcI524Ai-J4f0AtXz2ae9dIAkV81C45poq3P30B_8AL6_5Po |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KCz4O4hPrcw-9hua1uwkepBSltY-LFnpb9hVQNC01Iv337qabWsGD4DXLbMLsZOabzOQbgFYSKh5imXhUKe4ZSK08LkyWIs3LRbGmWcJtojgak94kfpjiaQ261b8wtq3S-f6VTy-9tbvSdtpsz5-f249BhFMT_gKDKCy7pfHDDctOhevQ6PQHvfG6mGAp3cu8C6eeFdiC1nebl60TW6j1xu3kEtvrRSyhZ0Dp75FqI_rc78Oeg42os3qyA6jp_BB2N8gEj2DYyVFZ-85LLm_kbocq1nBUzJDj9i4X0acuihVL9xLNMmSMUOkFsoX45fsxTO7vnro9z81K8GSM_cJTRKg4jYlKVBypkJqAFKtUS8JJoiJBsyAUQiiifZNAZIlPNKYRpRJjQQKp_OgE6vks16eAiOBaCpHKKNMmWmluUsCIUwPtgtCXsWjCTaUXJh2RuJ1n8cqqjrEX9lOrzGqV-YQZrTYBr6XnK0KNP8rdVkfAfhgIM77_Tzuc_XuHa9juPY2GbNgfD85hx67Yz8shvoB6sfjQlwafFOLK2d8Xkwfnqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+alternative+thermal+approach+to+evaluate+the+wettability+of+solder+alloys&rft.jtitle=Applied+thermal+engineering&rft.au=Santos%2C+Washington+L.R.&rft.au=Silva%2C+Bismarck+L.&rft.au=Bertelli%2C+Felipe&rft.au=Spinelli%2C+Jos%C3%A9+E.&rft.date=2016-08-25&rft.issn=1359-4311&rft.volume=107&rft.spage=431&rft.epage=440&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.06.177&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2016_06_177 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |