Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems

It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the development of optimization algorithms which attempt to exploit this smoothness. Many of these algorithms follow the same two-step pattern: f...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 55; no. 5-6; pp. 481 - 503
Main Authors Daniilidis, Aris, Hare, Warren, Malick, Jérôme
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Group 01.10.2006
Taylor & Francis LLC
Taylor & Francis
Subjects
Online AccessGet full text
ISSN0233-1934
1029-4945
DOI10.1080/02331930600815884

Cover

Loading…
Abstract It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the development of optimization algorithms which attempt to exploit this smoothness. Many of these algorithms follow the same two-step pattern: first to predict a direction of decrease, and second to make a correction step to return to the manifold. In this article, we examine some of the theoretical components used in such predictor-corrector methods. We begin our examination under the minimal assumption that the restriction of the function to the manifold is smooth. At the second stage, we add the condition of 'partial smoothness' relative to the manifold. Finally, we examine the case when the function is both 'prox-regular' and partly smooth. In this final setting, we show that the proximal point mapping can be used to return to the manifold, and argue that returning in this manner is preferable to returning via the projection mapping. We finish by developing sufficient conditions for quadratic convergence of predictor-corrector methods using a proximal point correction step. ¶Dedicated to Professor D. Pallaschke for the occasion of his 65th birthday.
AbstractList It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the development of optimization algorithms which attempt to exploit this smoothness. Many of these algorithms follow the same two-step pattern: first to predict a direction of decrease, and second to make a correction step to return to the manifold. In this article, we examine some of the theoretical components used in such predictor-corrector methods. We begin our examination under the minimal assumption that the restriction of the function to the manifold is smooth. At the second stage, we add the condition of 'partial smoothness' relative to the manifold. Finally, we examine the case when the function is both 'prox-regular' and partly smooth. In this final setting, we show that the proximal point mapping can be used to return to the manifold, and argue that returning in this manner is preferable to returning via the projection mapping. We finish by developing sufficient conditions for quadratic convergence of predictor-corrector methods using a proximal point correction step. [PUBLICATION ABSTRACT]
It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the development of optimization algorithms which attempt to exploit this smoothness. Many of these algorithms follow the same two-step pattern: first to predict a direction of decrease, and second to make a correction step to return to the manifold. In this article, we examine some of the theoretical components used in such predictor-corrector methods. We begin our examination under the minimal assumption that the restriction of the function to the manifold is smooth. At the second stage, we add the condition of 'partial smoothness' relative to the manifold. Finally, we examine the case when the function is both 'prox-regular' and partly smooth. In this final setting, we show that the proximal point mapping can be used to return to the manifold, and argue that returning in this manner is preferable to returning via the projection mapping. We finish by developing sufficient conditions for quadratic convergence of predictor-corrector methods using a proximal point correction step. ¶Dedicated to Professor D. Pallaschke for the occasion of his 65th birthday.
It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the development of optimization algorithms which attempt to exploit this smoothness. Many of these algorithms follow the same two-step pattern: first to predict a direction of decrease, and second to make a correction step to return to the manifold. In this article, we examine some of the theoretical components used in such predictor-corrector methods. We begin our examination under the minimal assumption that the restriction of the function to the manifold is smooth. At the second stage, we add the condition of 'partial smoothness' relative to the manifold. Finally, we examine the case when the function is both 'prox-regular' and partly smooth. In this final setting, we show that the proximal point mapping can be used to return to the manifold, and argue that returning in this manner is preferable to returning via the projection mapping. We finish by developing sufficient conditions for quadratic convergence of predictor-corrector methods using a proximal point correction step.
Author Hare, Warren
Daniilidis, Aris
Malick, Jérôme
Author_xml – sequence: 1
  givenname: Aris
  surname: Daniilidis
  fullname: Daniilidis, Aris
  email: adaniilidis@idea.uab.es
  organization: Departament de Matemàtiques , Universitat Autònoma de Barcelona
– sequence: 2
  givenname: Warren
  surname: Hare
  fullname: Hare, Warren
  organization: IMPA - Instituto Nacional de Matemática Pura e Aplicada
– sequence: 3
  givenname: Jérôme
  surname: Malick
  fullname: Malick, Jérôme
  organization: INRIA, Rhône-Alpes
BackLink https://hal.science/hal-00319239$$DView record in HAL
BookMark eNqFkcFu1DAQhi1UJLaFB-AWceMQsB3HjiUuVQUt0kpc4Gw5zoR1lcRhPAssT49XgQuVysnWzPeNfs1csoslLcDYS8HfCN7xt1w2jbAN15x3ou069YTtBJe2Vla1F2x37tcFUM_YZc73nEuhpdqxeAtpBsIY_FTFhQBXBPIU01KlsaIDVKUwxEAJ65AQ4fyr6LRC5aevCSMd5lzMKhMeAx0LXKWV4hx_bVNWTP0Ec37Ono5-yvDiz3vFvnx4__nmrt5_uv14c72vg2o51YNUgQ-qkwIGbYI0fd-DVN5oHeTQD7bUrDK6UXIE3VmwXILpWy617szYN1fs9Tb34Ce3Ypw9nlzy0d1d7925xnnZlGzsd1HYVxtbQn47QiZ3n464lHhOCqukaKUpkNmggClnhNGFuG2I0MfJCe7OJ3APTlBM8Y_5N89jzrvNicuYcPY_Ek6DI3-aEo7olxCzax7TzX_1B5ajn9T8BkVysHs
CODEN OPTZDQ
CitedBy_id crossref_primary_10_1137_22M1520025
crossref_primary_10_1137_22M1505827
crossref_primary_10_1007_s11228_020_00561_1
crossref_primary_10_1137_16M1080240
crossref_primary_10_1007_s10107_015_0943_9
crossref_primary_10_1007_s10589_020_00218_7
crossref_primary_10_1109_TSP_2024_3404250
crossref_primary_10_1137_060670080
crossref_primary_10_1007_s10208_017_9366_8
crossref_primary_10_1137_080729864
crossref_primary_10_1137_100802529
crossref_primary_10_1007_s10107_022_01873_w
crossref_primary_10_1080_10556788_2011_638923
crossref_primary_10_1137_16M106340X
Cites_doi 10.1007/BF00940629
10.1137/0331048
10.1007/BF00934767
10.1287/moor.28.4.677.20512
10.1137/0725068
10.1137/S1052623401387623
10.1007/978-1-4757-3226-9_12
10.1137/S1052623494279316
10.1007/s10107-005-0631-2
10.1090/S0002-9947-99-02243-6
10.1007/s10107-005-0630-3
10.1007/978-3-642-02431-3
10.1007/978-1-4757-2201-7
10.1007/978-3-642-45780-7_11
10.1137/S1052623499350967
10.1137/S1052623496311776
10.1007/BF02592073
10.1070/RM1971v026n02ABEH003827
10.1093/imanum/23.3.395
10.1137/0727064
10.1090/S0002-9947-96-01544-9
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2006
Copyright Taylor & Francis Group Oct-Dec 2006
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2006
– notice: Copyright Taylor & Francis Group Oct-Dec 2006
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1080/02331930600815884
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1029-4945
EndPage 503
ExternalDocumentID oai_HAL_hal_00319239v1
1163625311
10_1080_02331930600815884
181530
Genre Feature
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DKSSO
DMQIW
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TOXWX
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ACGEE
ADYSH
AEUMN
AFRVT
AGCQS
AGLEN
AIYEW
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
HF~
IVXBP
LJTGL
NUSFT
TAQ
TFMCV
UB9
UU8
V3K
V4Q
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
TASJS
1XC
VOOES
ID FETCH-LOGICAL-c450t-d24c0d4821ed67c27bbbe24a766c2dbd97c29476342fe689e902e7b5026687fb3
ISSN 0233-1934
IngestDate Fri May 09 12:22:50 EDT 2025
Wed Aug 13 04:26:32 EDT 2025
Tue Jul 01 03:52:06 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Wed Dec 25 09:05:08 EST 2024
Mon May 13 12:09:11 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5-6
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-d24c0d4821ed67c27bbbe24a766c2dbd97c29476342fe689e902e7b5026687fb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ORCID 0000-0003-0371-0457
0000-0003-4837-694X
OpenAccessLink https://hal.science/hal-00319239
PQID 219421527
PQPubID 27961
PageCount 23
ParticipantIDs informaworld_taylorfrancis_310_1080_02331930600815884
crossref_primary_10_1080_02331930600815884
hal_primary_oai_HAL_hal_00319239v1
crossref_citationtrail_10_1080_02331930600815884
proquest_journals_219421527
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-10-01
PublicationDateYYYYMMDD 2006-10-01
PublicationDate_xml – month: 10
  year: 2006
  text: 2006-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2006
Publisher Taylor & Francis Group
Taylor & Francis LLC
Taylor & Francis
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis LLC
– name: Taylor & Francis
References Rockafellar RT (CIT0025) 1982
CIT0030
Hare WL (CIT0012) 2004; 11
Wolfe P (CIT0029) 1975; 3
do Carmo MP (CIT0007) 1992
Smith ST (CIT0028) 1994; 3
Hare WL (CIT0011) 2006; 33
Arias T (CIT0001) 1999; 20
Mifflin R (CIT0020) 2004; 19
CIT0014
CIT0013
CIT0015
CIT0018
Mifflin R (CIT0017) 2000
Mifflin R (CIT0019) 2002; 9
CIT0021
CIT0023
CIT0022
Hare WL (CIT0010) 2004
CIT0003
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0006
CIT0009
Mifflin R (CIT0016) 1999
CIT0008
References_xml – volume: 33
  year: 2006
  ident: CIT0011
  publication-title: J. Comput. Optim. Appl.
– volume: 20
  start-page: 303
  year: 1999
  ident: CIT0001
  publication-title: SIAM Journal on Matrix Analysis and Applications
– ident: CIT0002
  doi: 10.1007/BF00940629
– ident: CIT0030
  doi: 10.1137/0331048
– ident: CIT0009
  doi: 10.1007/BF00934767
– ident: CIT0027
  doi: 10.1287/moor.28.4.677.20512
– ident: CIT0004
  doi: 10.1137/0725068
– ident: CIT0013
  doi: 10.1137/S1052623401387623
– start-page: 219
  volume-title: Nonlinear Optimization and Related Topics (Erice, 1998)
  year: 2000
  ident: CIT0017
  doi: 10.1007/978-1-4757-3226-9_12
– ident: CIT0023
  doi: 10.1137/S1052623494279316
– ident: CIT0015
  doi: 10.1007/s10107-005-0631-2
– volume-title: Nonsmooth Optimization with Smooth Substructure
  year: 2004
  ident: CIT0010
– ident: CIT0014
  doi: 10.1090/S0002-9947-99-02243-6
– ident: CIT0021
  doi: 10.1007/s10107-005-0630-3
– volume: 3
  start-page: 145
  year: 1975
  ident: CIT0029
  publication-title: Mathematical Programming
– volume: 9
  start-page: 563
  year: 2002
  ident: CIT0019
  publication-title: Journal of Convex Analysis
– ident: CIT0026
  doi: 10.1007/978-3-642-02431-3
– volume: 11
  start-page: 251
  year: 2004
  ident: CIT0012
  publication-title: Journal of Convex Analysis
– volume-title: Riemannian Geometry
  year: 1992
  ident: CIT0007
  doi: 10.1007/978-1-4757-2201-7
– start-page: 167
  volume-title: Ill-Posed Variational Problems and Regularization Techniques (Trier, 1998)
  year: 1999
  ident: CIT0016
  doi: 10.1007/978-3-642-45780-7_11
– ident: CIT0018
  doi: 10.1137/S1052623499350967
– ident: CIT0022
  doi: 10.1137/S1052623496311776
– ident: CIT0006
  doi: 10.1007/BF02592073
– volume: 3
  start-page: 113
  year: 1994
  ident: CIT0028
  publication-title: Fields Institute Communications
– ident: CIT0003
  doi: 10.1070/RM1971v026n02ABEH003827
– ident: CIT0008
  doi: 10.1093/imanum/23.3.395
– volume: 19
  start-page: 463
  year: 2004
  ident: CIT0020
  publication-title: Optimization Methods & Software
– ident: CIT0005
  doi: 10.1137/0727064
– ident: CIT0024
  doi: 10.1090/S0002-9947-96-01544-9
– start-page: 125
  volume-title: Progress in Nondifferentiable Optimization
  year: 1982
  ident: CIT0025
SSID ssj0021624
Score 1.8223983
Snippet It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the...
SourceID hal
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 481
SubjectTerms Algorithms
Mathematics
Mathematics Subject Classification 2000: Primary: 49J52
Newton-type methods
Optimization
Optimization algorithms
Optimization and Control
partly smooth function
Proximal algorithm
Riemannian gradient
Secondary: 90C26
Studies
Topological manifolds
U-Lagrangian
Title Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems
URI https://www.tandfonline.com/doi/abs/10.1080/02331930600815884
https://www.proquest.com/docview/219421527
https://hal.science/hal-00319239
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdoEDGr9EGSALIQ6gINdx4uawQ8cYYWwDiU6buES146yR2gat2TTx9-wP5Tl2EnetqsHFSl0ncfs-Pz8_P38PobeM80CMiO9lMoAFSl9KD9Yq0oN6GIAq1XtFOtriOIxP2MFZcNbp3DhRS5el-Cj_rDxX8j9ShTqQqz4l-w-SbR4KFXAN8oUSJAzlnWT8RRVTnRFLVswZC9GDdusfKtJc--U9qdNw6CvjdR1NzouLvBxPq3hYwyJ7qWPRC9AhU3s484NNNzN3TdjvToPWzz3L80me2tzGF_m81WzGyX2qQ4Kb9kdg_Rs9fGB26qsN-11mmRNaL0Qdz2ZwM1xKCOLoMer7HtiJxm-gjJ7VUTcsMkyStSI2fL0WcMG7cMdRrMwkdrFzdFDxIiyrfxsvCS-E95FQ2zv6IG4719X7-_HgZ_Jjbz85_Hr8bfHbhnM7HhwmY4CEVntgBUdXsMbepJzrYIDNQbz367RZ2PfCKnly80Pr3XPN4X67Lwv2z71xFX3rcuQu2QSVoTPcQg_tCgUPDNweoY6aPUYPHN5K-HTUkP3On6DcgSFehCEuMgwt8QoYYg1D3MIQ7sQtDLELQ1zD8Ck62f88_BR7NoOHJ1lASi-lTJKU9WkPRj2XlAshFGUjHoaSpiKNoC5iMMUxmqmwH6mIUMVFQMBs7PNM-M_QxqyYqecIMyaI8hUVoERYxnuCCD8UEhb4RBesi0j9vybS0tvrLCuTpFez4N4WRRe9b275bbhd1jV-o9FQt1uNEOiEK8ukrIZFZkbE8jOT8rrsomDNLf6a_mzXOEmsSponYH6wKlH1i7v0dhvdb4fyS7QBMlavwMQuxWuL8L_36s4c
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6KUh4WYkAJO4iTNiBBQoHQCic2qHYdW0AbRgBC_njsnqcpDHViiyDpbTny-l8_fARyKKApUl_tOqgN0UJpaO-iraAfbcQOahM6KKNuiE7buxfVD8FAG3EZlWiX50GkBFGFlNW1uCkZXKXEnqGeQc9DYJYVGNy1nYS5Au5043OedscPlhraoLZE7SC-qU82_hviml2Z7NityErv0l6y2CuhiGWQ19SLv5On4LVfH-vMHquP_v20FlkrblJ0WzLQKM2a4BosTiIXr0L802YCKcOHSsv63hEWWpQytSYYNSZ-OAhxNlT_ojVGgl3WfH7PXft4bjLAnK4Br35CYZSi2BuV9UFZWuBltwP3F-d1ZyymrNThaBDx3Ek9onoim5-IKR9qLlFLGE90oDLWXqCTGtligOBNeasJmbGLumUgF6ASGzShV_ibUhtnQbAETQnHjG08hw4g0chVXfqg0OnOcHqIOvForqUsoc6qo8SzdCvH051-sw9G4y0uB4zGN-AAZYExHCNyt07akNhKCaBPH7y5OYpI_ZG4jLGlRDuX3mDL_yOsQTOniT5lPo-I9WYqYkURVI2xR4u1_jroP862727ZsX3VuGrBgY0s2S3EHasgCZhetrVzt2S31BeC5HLU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5uguiDd3HOSxCfhM60TW-Pos55YfjgYG9lSVMtulVsFfHXe07ajulkD3spJZyEtjk5l-T0-wg54Z7niAGzjVg6kKD4UhqQq0gD2mEBqgjPirDaout2evy27_TL2pysLKvEHDougCK0rcbF_RbFVUXcGbgZUByIddGf4Y-WNbLoQmiCFX02647zLdPVnLYoboA8rw41_xvil1uqPeuiyEno0ilTrf1Pe60gWc00bCGWnby0PnLRkt9_QB3nfrV1slpGpvS8UKUNsqBGm2RlAq9wiyTXKh0iBRdMLE1-lSvSNKYQS1JoiBI8CDAk8n7gHcVtXjp4fUrfk_x5mEFPWsDWfoAwTcFoDcu_QWnJb5Ntk1776vGiY5RcDYbkDsuNyOKSRdy3TJhfT1qeEEJZfOC5rrQiEQXQFnAwZtyKlesHKmCW8oQDKaDre7Gwd0h9lI7ULqGcC6ZsZQlQFx57pmDCdoWEVI7hhTcIq6YqlCWQOfJpvIZmhXf69ys2yOm4y1uB4jFL-BjmfyyH-Nud8_sQ29AEQkQcfJrwEJPqEeZ6fyUuyFCmxwzzr7xBnBld7BnP06xULywNTBaCo-GaknhvzlGPyNLDZTu8v-neNcmy3ljSJYr7pA4aoA4g1MrFoV5QP0GIG1k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometrical+interpretation+of+the+predictor-corrector+type+algorithms+in+structured+optimization+problems&rft.jtitle=Optimization&rft.au=Daniilidis%2C+Aris&rft.au=Hare%2C+Warren&rft.au=Malick%2C+J%C3%A9r%C3%B4me&rft.date=2006-10-01&rft.pub=Taylor+%26+Francis&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=55&rft.issue=5&6=&rft.spage=481&rft.epage=503&rft_id=info:doi/10.1080%2F02331930600815884&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00319239v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon