Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems
It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the development of optimization algorithms which attempt to exploit this smoothness. Many of these algorithms follow the same two-step pattern: f...
Saved in:
Published in | Optimization Vol. 55; no. 5-6; pp. 481 - 503 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis Group
01.10.2006
Taylor & Francis LLC Taylor & Francis |
Subjects | |
Online Access | Get full text |
ISSN | 0233-1934 1029-4945 |
DOI | 10.1080/02331930600815884 |
Cover
Loading…
Abstract | It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the development of optimization algorithms which attempt to exploit this smoothness. Many of these algorithms follow the same two-step pattern: first to predict a direction of decrease, and second to make a correction step to return to the manifold. In this article, we examine some of the theoretical components used in such predictor-corrector methods. We begin our examination under the minimal assumption that the restriction of the function to the manifold is smooth. At the second stage, we add the condition of 'partial smoothness' relative to the manifold. Finally, we examine the case when the function is both 'prox-regular' and partly smooth. In this final setting, we show that the proximal point mapping can be used to return to the manifold, and argue that returning in this manner is preferable to returning via the projection mapping. We finish by developing sufficient conditions for quadratic convergence of predictor-corrector methods using a proximal point correction step.
¶Dedicated to Professor D. Pallaschke for the occasion of his 65th birthday. |
---|---|
AbstractList | It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the development of optimization algorithms which attempt to exploit this smoothness. Many of these algorithms follow the same two-step pattern: first to predict a direction of decrease, and second to make a correction step to return to the manifold. In this article, we examine some of the theoretical components used in such predictor-corrector methods. We begin our examination under the minimal assumption that the restriction of the function to the manifold is smooth. At the second stage, we add the condition of 'partial smoothness' relative to the manifold. Finally, we examine the case when the function is both 'prox-regular' and partly smooth. In this final setting, we show that the proximal point mapping can be used to return to the manifold, and argue that returning in this manner is preferable to returning via the projection mapping. We finish by developing sufficient conditions for quadratic convergence of predictor-corrector methods using a proximal point correction step. [PUBLICATION ABSTRACT] It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the development of optimization algorithms which attempt to exploit this smoothness. Many of these algorithms follow the same two-step pattern: first to predict a direction of decrease, and second to make a correction step to return to the manifold. In this article, we examine some of the theoretical components used in such predictor-corrector methods. We begin our examination under the minimal assumption that the restriction of the function to the manifold is smooth. At the second stage, we add the condition of 'partial smoothness' relative to the manifold. Finally, we examine the case when the function is both 'prox-regular' and partly smooth. In this final setting, we show that the proximal point mapping can be used to return to the manifold, and argue that returning in this manner is preferable to returning via the projection mapping. We finish by developing sufficient conditions for quadratic convergence of predictor-corrector methods using a proximal point correction step. ¶Dedicated to Professor D. Pallaschke for the occasion of his 65th birthday. It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the development of optimization algorithms which attempt to exploit this smoothness. Many of these algorithms follow the same two-step pattern: first to predict a direction of decrease, and second to make a correction step to return to the manifold. In this article, we examine some of the theoretical components used in such predictor-corrector methods. We begin our examination under the minimal assumption that the restriction of the function to the manifold is smooth. At the second stage, we add the condition of 'partial smoothness' relative to the manifold. Finally, we examine the case when the function is both 'prox-regular' and partly smooth. In this final setting, we show that the proximal point mapping can be used to return to the manifold, and argue that returning in this manner is preferable to returning via the projection mapping. We finish by developing sufficient conditions for quadratic convergence of predictor-corrector methods using a proximal point correction step. |
Author | Hare, Warren Daniilidis, Aris Malick, Jérôme |
Author_xml | – sequence: 1 givenname: Aris surname: Daniilidis fullname: Daniilidis, Aris email: adaniilidis@idea.uab.es organization: Departament de Matemàtiques , Universitat Autònoma de Barcelona – sequence: 2 givenname: Warren surname: Hare fullname: Hare, Warren organization: IMPA - Instituto Nacional de Matemática Pura e Aplicada – sequence: 3 givenname: Jérôme surname: Malick fullname: Malick, Jérôme organization: INRIA, Rhône-Alpes |
BackLink | https://hal.science/hal-00319239$$DView record in HAL |
BookMark | eNqFkcFu1DAQhi1UJLaFB-AWceMQsB3HjiUuVQUt0kpc4Gw5zoR1lcRhPAssT49XgQuVysnWzPeNfs1csoslLcDYS8HfCN7xt1w2jbAN15x3ou069YTtBJe2Vla1F2x37tcFUM_YZc73nEuhpdqxeAtpBsIY_FTFhQBXBPIU01KlsaIDVKUwxEAJ65AQ4fyr6LRC5aevCSMd5lzMKhMeAx0LXKWV4hx_bVNWTP0Ec37Ono5-yvDiz3vFvnx4__nmrt5_uv14c72vg2o51YNUgQ-qkwIGbYI0fd-DVN5oHeTQD7bUrDK6UXIE3VmwXILpWy617szYN1fs9Tb34Ce3Ypw9nlzy0d1d7925xnnZlGzsd1HYVxtbQn47QiZ3n464lHhOCqukaKUpkNmggClnhNGFuG2I0MfJCe7OJ3APTlBM8Y_5N89jzrvNicuYcPY_Ek6DI3-aEo7olxCzax7TzX_1B5ajn9T8BkVysHs |
CODEN | OPTZDQ |
CitedBy_id | crossref_primary_10_1137_22M1520025 crossref_primary_10_1137_22M1505827 crossref_primary_10_1007_s11228_020_00561_1 crossref_primary_10_1137_16M1080240 crossref_primary_10_1007_s10107_015_0943_9 crossref_primary_10_1007_s10589_020_00218_7 crossref_primary_10_1109_TSP_2024_3404250 crossref_primary_10_1137_060670080 crossref_primary_10_1007_s10208_017_9366_8 crossref_primary_10_1137_080729864 crossref_primary_10_1137_100802529 crossref_primary_10_1007_s10107_022_01873_w crossref_primary_10_1080_10556788_2011_638923 crossref_primary_10_1137_16M106340X |
Cites_doi | 10.1007/BF00940629 10.1137/0331048 10.1007/BF00934767 10.1287/moor.28.4.677.20512 10.1137/0725068 10.1137/S1052623401387623 10.1007/978-1-4757-3226-9_12 10.1137/S1052623494279316 10.1007/s10107-005-0631-2 10.1090/S0002-9947-99-02243-6 10.1007/s10107-005-0630-3 10.1007/978-3-642-02431-3 10.1007/978-1-4757-2201-7 10.1007/978-3-642-45780-7_11 10.1137/S1052623499350967 10.1137/S1052623496311776 10.1007/BF02592073 10.1070/RM1971v026n02ABEH003827 10.1093/imanum/23.3.395 10.1137/0727064 10.1090/S0002-9947-96-01544-9 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2006 Copyright Taylor & Francis Group Oct-Dec 2006 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2006 – notice: Copyright Taylor & Francis Group Oct-Dec 2006 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1080/02331930600815884 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1029-4945 |
EndPage | 503 |
ExternalDocumentID | oai_HAL_hal_00319239v1 1163625311 10_1080_02331930600815884 181530 |
Genre | Feature |
GroupedDBID | .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DKSSO DMQIW DU5 EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 O9- P2P PQQKQ QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TOXWX TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ACGEE ADYSH AEUMN AFRVT AGCQS AGLEN AIYEW AMPGV AMVHM AMXXU BCCOT BPLKW C06 CITATION DWIFK HF~ IVXBP LJTGL NUSFT TAQ TFMCV UB9 UU8 V3K V4Q 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D TASJS 1XC VOOES |
ID | FETCH-LOGICAL-c450t-d24c0d4821ed67c27bbbe24a766c2dbd97c29476342fe689e902e7b5026687fb3 |
ISSN | 0233-1934 |
IngestDate | Fri May 09 12:22:50 EDT 2025 Wed Aug 13 04:26:32 EDT 2025 Tue Jul 01 03:52:06 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Dec 25 09:05:08 EST 2024 Mon May 13 12:09:11 EDT 2019 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-d24c0d4821ed67c27bbbe24a766c2dbd97c29476342fe689e902e7b5026687fb3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ORCID | 0000-0003-0371-0457 0000-0003-4837-694X |
OpenAccessLink | https://hal.science/hal-00319239 |
PQID | 219421527 |
PQPubID | 27961 |
PageCount | 23 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_02331930600815884 crossref_primary_10_1080_02331930600815884 hal_primary_oai_HAL_hal_00319239v1 crossref_citationtrail_10_1080_02331930600815884 proquest_journals_219421527 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-10-01 |
PublicationDateYYYYMMDD | 2006-10-01 |
PublicationDate_xml | – month: 10 year: 2006 text: 2006-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Optimization |
PublicationYear | 2006 |
Publisher | Taylor & Francis Group Taylor & Francis LLC Taylor & Francis |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis LLC – name: Taylor & Francis |
References | Rockafellar RT (CIT0025) 1982 CIT0030 Hare WL (CIT0012) 2004; 11 Wolfe P (CIT0029) 1975; 3 do Carmo MP (CIT0007) 1992 Smith ST (CIT0028) 1994; 3 Hare WL (CIT0011) 2006; 33 Arias T (CIT0001) 1999; 20 Mifflin R (CIT0020) 2004; 19 CIT0014 CIT0013 CIT0015 CIT0018 Mifflin R (CIT0017) 2000 Mifflin R (CIT0019) 2002; 9 CIT0021 CIT0023 CIT0022 Hare WL (CIT0010) 2004 CIT0003 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0006 CIT0009 Mifflin R (CIT0016) 1999 CIT0008 |
References_xml | – volume: 33 year: 2006 ident: CIT0011 publication-title: J. Comput. Optim. Appl. – volume: 20 start-page: 303 year: 1999 ident: CIT0001 publication-title: SIAM Journal on Matrix Analysis and Applications – ident: CIT0002 doi: 10.1007/BF00940629 – ident: CIT0030 doi: 10.1137/0331048 – ident: CIT0009 doi: 10.1007/BF00934767 – ident: CIT0027 doi: 10.1287/moor.28.4.677.20512 – ident: CIT0004 doi: 10.1137/0725068 – ident: CIT0013 doi: 10.1137/S1052623401387623 – start-page: 219 volume-title: Nonlinear Optimization and Related Topics (Erice, 1998) year: 2000 ident: CIT0017 doi: 10.1007/978-1-4757-3226-9_12 – ident: CIT0023 doi: 10.1137/S1052623494279316 – ident: CIT0015 doi: 10.1007/s10107-005-0631-2 – volume-title: Nonsmooth Optimization with Smooth Substructure year: 2004 ident: CIT0010 – ident: CIT0014 doi: 10.1090/S0002-9947-99-02243-6 – ident: CIT0021 doi: 10.1007/s10107-005-0630-3 – volume: 3 start-page: 145 year: 1975 ident: CIT0029 publication-title: Mathematical Programming – volume: 9 start-page: 563 year: 2002 ident: CIT0019 publication-title: Journal of Convex Analysis – ident: CIT0026 doi: 10.1007/978-3-642-02431-3 – volume: 11 start-page: 251 year: 2004 ident: CIT0012 publication-title: Journal of Convex Analysis – volume-title: Riemannian Geometry year: 1992 ident: CIT0007 doi: 10.1007/978-1-4757-2201-7 – start-page: 167 volume-title: Ill-Posed Variational Problems and Regularization Techniques (Trier, 1998) year: 1999 ident: CIT0016 doi: 10.1007/978-3-642-45780-7_11 – ident: CIT0018 doi: 10.1137/S1052623499350967 – ident: CIT0022 doi: 10.1137/S1052623496311776 – ident: CIT0006 doi: 10.1007/BF02592073 – volume: 3 start-page: 113 year: 1994 ident: CIT0028 publication-title: Fields Institute Communications – ident: CIT0003 doi: 10.1070/RM1971v026n02ABEH003827 – ident: CIT0008 doi: 10.1093/imanum/23.3.395 – volume: 19 start-page: 463 year: 2004 ident: CIT0020 publication-title: Optimization Methods & Software – ident: CIT0005 doi: 10.1137/0727064 – ident: CIT0024 doi: 10.1090/S0002-9947-96-01544-9 – start-page: 125 volume-title: Progress in Nondifferentiable Optimization year: 1982 ident: CIT0025 |
SSID | ssj0021624 |
Score | 1.8223983 |
Snippet | It has been observed that in many optimization problems, nonsmooth objective functions often appear smooth on naturally arising manifolds. This has led to the... |
SourceID | hal proquest crossref informaworld |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 481 |
SubjectTerms | Algorithms Mathematics Mathematics Subject Classification 2000: Primary: 49J52 Newton-type methods Optimization Optimization algorithms Optimization and Control partly smooth function Proximal algorithm Riemannian gradient Secondary: 90C26 Studies Topological manifolds U-Lagrangian |
Title | Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331930600815884 https://www.proquest.com/docview/219421527 https://hal.science/hal-00319239 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdoEDGr9EGSALIQ6gINdx4uawQ8cYYWwDiU6buES146yR2gat2TTx9-wP5Tl2EnetqsHFSl0ncfs-Pz8_P38PobeM80CMiO9lMoAFSl9KD9Yq0oN6GIAq1XtFOtriOIxP2MFZcNbp3DhRS5el-Cj_rDxX8j9ShTqQqz4l-w-SbR4KFXAN8oUSJAzlnWT8RRVTnRFLVswZC9GDdusfKtJc--U9qdNw6CvjdR1NzouLvBxPq3hYwyJ7qWPRC9AhU3s484NNNzN3TdjvToPWzz3L80me2tzGF_m81WzGyX2qQ4Kb9kdg_Rs9fGB26qsN-11mmRNaL0Qdz2ZwM1xKCOLoMer7HtiJxm-gjJ7VUTcsMkyStSI2fL0WcMG7cMdRrMwkdrFzdFDxIiyrfxsvCS-E95FQ2zv6IG4719X7-_HgZ_Jjbz85_Hr8bfHbhnM7HhwmY4CEVntgBUdXsMbepJzrYIDNQbz367RZ2PfCKnly80Pr3XPN4X67Lwv2z71xFX3rcuQu2QSVoTPcQg_tCgUPDNweoY6aPUYPHN5K-HTUkP3On6DcgSFehCEuMgwt8QoYYg1D3MIQ7sQtDLELQ1zD8Ck62f88_BR7NoOHJ1lASi-lTJKU9WkPRj2XlAshFGUjHoaSpiKNoC5iMMUxmqmwH6mIUMVFQMBs7PNM-M_QxqyYqecIMyaI8hUVoERYxnuCCD8UEhb4RBesi0j9vybS0tvrLCuTpFez4N4WRRe9b275bbhd1jV-o9FQt1uNEOiEK8ukrIZFZkbE8jOT8rrsomDNLf6a_mzXOEmsSponYH6wKlH1i7v0dhvdb4fyS7QBMlavwMQuxWuL8L_36s4c |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6KUh4WYkAJO4iTNiBBQoHQCic2qHYdW0AbRgBC_njsnqcpDHViiyDpbTny-l8_fARyKKApUl_tOqgN0UJpaO-iraAfbcQOahM6KKNuiE7buxfVD8FAG3EZlWiX50GkBFGFlNW1uCkZXKXEnqGeQc9DYJYVGNy1nYS5Au5043OedscPlhraoLZE7SC-qU82_hviml2Z7NityErv0l6y2CuhiGWQ19SLv5On4LVfH-vMHquP_v20FlkrblJ0WzLQKM2a4BosTiIXr0L802YCKcOHSsv63hEWWpQytSYYNSZ-OAhxNlT_ojVGgl3WfH7PXft4bjLAnK4Br35CYZSi2BuV9UFZWuBltwP3F-d1ZyymrNThaBDx3Ek9onoim5-IKR9qLlFLGE90oDLWXqCTGtligOBNeasJmbGLumUgF6ASGzShV_ibUhtnQbAETQnHjG08hw4g0chVXfqg0OnOcHqIOvForqUsoc6qo8SzdCvH051-sw9G4y0uB4zGN-AAZYExHCNyt07akNhKCaBPH7y5OYpI_ZG4jLGlRDuX3mDL_yOsQTOniT5lPo-I9WYqYkURVI2xR4u1_jroP862727ZsX3VuGrBgY0s2S3EHasgCZhetrVzt2S31BeC5HLU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5uguiDd3HOSxCfhM60TW-Pos55YfjgYG9lSVMtulVsFfHXe07ajulkD3spJZyEtjk5l-T0-wg54Z7niAGzjVg6kKD4UhqQq0gD2mEBqgjPirDaout2evy27_TL2pysLKvEHDougCK0rcbF_RbFVUXcGbgZUByIddGf4Y-WNbLoQmiCFX02647zLdPVnLYoboA8rw41_xvil1uqPeuiyEno0ilTrf1Pe60gWc00bCGWnby0PnLRkt9_QB3nfrV1slpGpvS8UKUNsqBGm2RlAq9wiyTXKh0iBRdMLE1-lSvSNKYQS1JoiBI8CDAk8n7gHcVtXjp4fUrfk_x5mEFPWsDWfoAwTcFoDcu_QWnJb5Ntk1776vGiY5RcDYbkDsuNyOKSRdy3TJhfT1qeEEJZfOC5rrQiEQXQFnAwZtyKlesHKmCW8oQDKaDre7Gwd0h9lI7ULqGcC6ZsZQlQFx57pmDCdoWEVI7hhTcIq6YqlCWQOfJpvIZmhXf69ys2yOm4y1uB4jFL-BjmfyyH-Nud8_sQ29AEQkQcfJrwEJPqEeZ6fyUuyFCmxwzzr7xBnBld7BnP06xULywNTBaCo-GaknhvzlGPyNLDZTu8v-neNcmy3ljSJYr7pA4aoA4g1MrFoV5QP0GIG1k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometrical+interpretation+of+the+predictor-corrector+type+algorithms+in+structured+optimization+problems&rft.jtitle=Optimization&rft.au=Daniilidis%2C+Aris&rft.au=Hare%2C+Warren&rft.au=Malick%2C+J%C3%A9r%C3%B4me&rft.date=2006-10-01&rft.pub=Taylor+%26+Francis&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=55&rft.issue=5&6=&rft.spage=481&rft.epage=503&rft_id=info:doi/10.1080%2F02331930600815884&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00319239v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |