Analysis of macular OCT images using deformable registration
Optical coherence tomography (OCT) of the macula has become increasingly important in the investigation of retinal pathology. However, deformable image registration, which is used for aligning subjects for pairwise comparisons, population averaging, and atlas label transfer, has not been well-develo...
Saved in:
Published in | Biomedical optics express Vol. 5; no. 7; pp. 2196 - 2214 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Optical Society of America
01.07.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 2156-7085 2156-7085 |
DOI | 10.1364/BOE.5.002196 |
Cover
Loading…
Abstract | Optical coherence tomography (OCT) of the macula has become increasingly important in the investigation of retinal pathology. However, deformable image registration, which is used for aligning subjects for pairwise comparisons, population averaging, and atlas label transfer, has not been well-developed and demonstrated on OCT images. In this paper, we present a deformable image registration approach designed specifically for macular OCT images. The approach begins with an initial translation to align the fovea of each subject, followed by a linear rescaling to align the top and bottom retinal boundaries. Finally, the layers within the retina are aligned by a deformable registration using one-dimensional radial basis functions. The algorithm was validated using manual delineations of retinal layers in OCT images from a cohort consisting of healthy controls and patients diagnosed with multiple sclerosis (MS). We show that the algorithm overcomes the shortcomings of existing generic registration methods, which cannot be readily applied to OCT images. A successful deformable image registration algorithm for macular OCT opens up a variety of population based analysis techniques that are regularly used in other imaging modalities, such as spatial normalization, statistical atlas creation, and voxel based morphometry. Examples of these applications are provided to demonstrate the potential benefits such techniques can have on our understanding of retinal disease. In particular, included is a pilot study of localized volumetric changes between healthy controls and MS patients using the proposed registration algorithm. |
---|---|
AbstractList | Optical coherence tomography (OCT) of the macula has become increasingly important in the investigation of retinal pathology. However, deformable image registration, which is used for aligning subjects for pairwise comparisons, population averaging, and atlas label transfer, has not been well-developed and demonstrated on OCT images. In this paper, we present a deformable image registration approach designed specifically for macular OCT images. The approach begins with an initial translation to align the fovea of each subject, followed by a linear rescaling to align the top and bottom retinal boundaries. Finally, the layers within the retina are aligned by a deformable registration using one-dimensional radial basis functions. The algorithm was validated using manual delineations of retinal layers in OCT images from a cohort consisting of healthy controls and patients diagnosed with multiple sclerosis (MS). We show that the algorithm overcomes the shortcomings of existing generic registration methods, which cannot be readily applied to OCT images. A successful deformable image registration algorithm for macular OCT opens up a variety of population based analysis techniques that are regularly used in other imaging modalities, such as spatial normalization, statistical atlas creation, and voxel based morphometry. Examples of these applications are provided to demonstrate the potential benefits such techniques can have on our understanding of retinal disease. In particular, included is a pilot study of localized volumetric changes between healthy controls and MS patients using the proposed registration algorithm.Optical coherence tomography (OCT) of the macula has become increasingly important in the investigation of retinal pathology. However, deformable image registration, which is used for aligning subjects for pairwise comparisons, population averaging, and atlas label transfer, has not been well-developed and demonstrated on OCT images. In this paper, we present a deformable image registration approach designed specifically for macular OCT images. The approach begins with an initial translation to align the fovea of each subject, followed by a linear rescaling to align the top and bottom retinal boundaries. Finally, the layers within the retina are aligned by a deformable registration using one-dimensional radial basis functions. The algorithm was validated using manual delineations of retinal layers in OCT images from a cohort consisting of healthy controls and patients diagnosed with multiple sclerosis (MS). We show that the algorithm overcomes the shortcomings of existing generic registration methods, which cannot be readily applied to OCT images. A successful deformable image registration algorithm for macular OCT opens up a variety of population based analysis techniques that are regularly used in other imaging modalities, such as spatial normalization, statistical atlas creation, and voxel based morphometry. Examples of these applications are provided to demonstrate the potential benefits such techniques can have on our understanding of retinal disease. In particular, included is a pilot study of localized volumetric changes between healthy controls and MS patients using the proposed registration algorithm. Optical coherence tomography (OCT) of the macula has become increasingly important in the investigation of retinal pathology. However, deformable image registration, which is used for aligning subjects for pairwise comparisons, population averaging, and atlas label transfer, has not been well–developed and demonstrated on OCT images. In this paper, we present a deformable image registration approach designed specifically for macular OCT images. The approach begins with an initial translation to align the fovea of each subject, followed by a linear rescaling to align the top and bottom retinal boundaries. Finally, the layers within the retina are aligned by a deformable registration using one-dimensional radial basis functions. The algorithm was validated using manual delineations of retinal layers in OCT images from a cohort consisting of healthy controls and patients diagnosed with multiple sclerosis (MS). We show that the algorithm overcomes the shortcomings of existing generic registration methods, which cannot be readily applied to OCT images. A successful deformable image registration algorithm for macular OCT opens up a variety of population based analysis techniques that are regularly used in other imaging modalities, such as spatial normalization, statistical atlas creation, and voxel based morphometry. Examples of these applications are provided to demonstrate the potential benefits such techniques can have on our understanding of retinal disease. In particular, included is a pilot study of localized volumetric changes between healthy controls and MS patients using the proposed registration algorithm. |
Author | Lang, Andrew Chen, Min Carass, Aaron Prince, Jerry L. Ying, Howard S. Calabresi, Peter A. |
Author_xml | – sequence: 1 givenname: Min surname: Chen fullname: Chen, Min – sequence: 2 givenname: Andrew surname: Lang fullname: Lang, Andrew – sequence: 3 givenname: Howard S. surname: Ying fullname: Ying, Howard S. – sequence: 4 givenname: Peter A. surname: Calabresi fullname: Calabresi, Peter A. – sequence: 5 givenname: Jerry L. surname: Prince fullname: Prince, Jerry L. – sequence: 6 givenname: Aaron surname: Carass fullname: Carass, Aaron |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25071959$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLAzEUhYNUbK3duZZZurA1j0kyAyLUUh9Q6KauQyZNamRmUpMZof_e1NZSxWwSuF_OOdxzDjq1qzUAlwiOEGHp7cN8OqIjCDHK2QnoYUTZkMOMdo7eXTAI4R3Gk6YckuwMdDGFHOU074G7cS3LTbAhcSappGpL6ZP5ZJHYSq50SNpg61Wy1Mb5ShalTrxe2dB42VhXX4BTI8ugB_u7D14fp4vJ83A2f3qZjGdDlVLYDFVmoGS8SLmkhiiOl4yighUaF5ATAg1TOWFcYV5wYjhXJsVYKx5duVLLnPTB_U533RaVXipdxwClWPsY0m-Ek1b8ntT2Tazcp0gRxIRuBa73At59tDo0orJB6bKUtXZtEIimOSM4y2BEr469DiY_K4vAzQ5Q3oXgtTkgCIptKSKWIqjYlRJx_AdXtvneXkxqy_8_fQGB6o9d |
CitedBy_id | crossref_primary_10_1364_BOE_493047 crossref_primary_10_1117_1_JBO_20_3_036013 crossref_primary_10_1109_TIP_2020_2967589 crossref_primary_10_1109_ACCESS_2019_2943172 crossref_primary_10_1016_j_media_2016_08_012 crossref_primary_10_3390_app9132700 crossref_primary_10_1364_BOE_508123 crossref_primary_10_1016_j_preteyeres_2020_100938 crossref_primary_10_1109_RBME_2021_3110958 crossref_primary_10_1186_s40942_023_00497_2 crossref_primary_10_1007_s11263_024_02047_1 crossref_primary_10_1364_BOE_487518 crossref_primary_10_1109_TMI_2019_2924452 crossref_primary_10_1007_s00417_018_4183_6 crossref_primary_10_1093_braincomms_fcad249 crossref_primary_10_1364_BOE_393178 crossref_primary_10_3389_fnins_2017_00381 crossref_primary_10_1016_j_neucom_2020_04_122 crossref_primary_10_1109_TBME_2014_2361778 crossref_primary_10_1016_j_neuroimage_2020_117022 crossref_primary_10_1016_j_media_2017_09_008 |
Cites_doi | 10.1006/nimg.2001.0937 10.1016/j.media.2010.07.002 10.1167/iovs.10-5946 10.1073/pnas.90.24.11944 10.1097/00004728-199809000-00030 10.1109/TMI.2013.2265603 10.1001/archophthalmol.2009.106 10.1167/iovs.12-9692 10.3389/fnsys.2011.00093 10.1109/TBME.2010.2060337 10.1001/jamaneurol.2013.573 10.1016/S0161-6420(02)01564-6 10.1109/TIP.2005.843756 10.1117/1.2772879 10.1016/j.neuroimage.2004.07.010 10.1093/brain/awq080 10.1364/BOE.3.001774 10.1073/pnas.070039597 10.1212/WNL.0b013e31827b1a1c 10.1016/j.media.2007.06.004 10.1109/TMI.2010.2078514 10.1118/1.1915012 10.1364/BOE.4.001133 10.1006/nimg.2001.0786 10.1007/s12021-009-9061-2 10.1109/TMI.2011.2182618 10.2307/1932409 10.1016/j.survophthal.2012.01.006 10.1523/JNEUROSCI.23-08-03295.2003 10.1364/OE.17.003978 10.1109/TMI.2009.2016958 10.1016/j.media.2010.05.008 10.1364/OE.18.019413 10.1016/S1474-4422(12)70213-2 10.1109/42.952728 10.1006/cviu.1999.0815 10.1097/00006982-199414050-00010 10.1016/j.neuroimage.2010.01.091 10.1038/ncpneuro0950 10.1167/iovs.04-0335 10.1016/j.neulet.2010.06.006 10.1167/iovs.12-10047 10.1016/j.ajo.2013.03.012 10.1109/TMI.2003.819299 10.1016/j.neuroimage.2010.09.025 10.1006/nimg.2000.0582 10.1016/j.neuroimage.2008.02.043 10.1364/BOE.2.002403 10.1109/TMI.2003.815865 |
ContentType | Journal Article |
Copyright | 2014 Optical Society of America 2014 Optical Society of America |
Copyright_xml | – notice: 2014 Optical Society of America 2014 Optical Society of America |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1364/BOE.5.002196 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 2156-7085 |
EndPage | 2214 |
ExternalDocumentID | PMC4102359 25071959 10_1364_BOE_5_002196 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS082347 – fundername: NEI NIH HHS grantid: R21 EY022150 – fundername: NEI NIH HHS grantid: R01 EY024655 – fundername: National Institute of Neurological Disorders and Stroke (NINDS) grantid: R01-NS082347 – fundername: National Eye Institute (NEI) grantid: R21-EY022150 |
GroupedDBID | 4.4 53G 8SL AAFWJ AAWJZ AAYXX ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS AOIJS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION DIK DSZJF E3Z EBS EJD GROUPED_DOAJ GX1 HYE KQ8 LPK M~E O5R O5S OFLFD OK1 OPJBK ROL ROS RPM TR6 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c450t-c8f0a67b47a5f3c72d651b6be2b07330f6c9367c27b73f77cf422ec7def7ccd93 |
ISSN | 2156-7085 |
IngestDate | Thu Aug 21 14:33:41 EDT 2025 Fri Jul 11 16:56:01 EDT 2025 Mon Jun 09 02:52:08 EDT 2025 Tue Jul 01 01:36:08 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | (100.0100) Image processing (170.4470) Ophthalmology (170.4500) Optical coherence tomography |
Language | English |
License | https://opg.optica.org/policies/opg-tdm-policy.json https://doi.org/10.1364/OA_License_v1#VOR-OA |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-c8f0a67b47a5f3c72d651b6be2b07330f6c9367c27b73f77cf422ec7def7ccd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1364/boe.5.002196 |
PMID | 25071959 |
PQID | 1549632880 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4102359 proquest_miscellaneous_1549632880 pubmed_primary_25071959 crossref_primary_10_1364_BOE_5_002196 crossref_citationtrail_10_1364_BOE_5_002196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomedical optics express |
PublicationTitleAlternate | Biomed Opt Express |
PublicationYear | 2014 |
Publisher | Optical Society of America |
Publisher_xml | – name: Optical Society of America |
References | Fan (boe-5-7-2196-R41) 2008; 41 Kerrison (boe-5-7-2196-R46) 1994; 14 Jørgensen (boe-5-7-2196-R22) 2007; 12 Chiu (boe-5-7-2196-R13) 2010; 18 Liew (boe-5-7-2196-R24) 2012; 3 Maguire (boe-5-7-2196-R26) 2000; 97 Bai (boe-5-7-2196-R21) 2011; 30 Lu (boe-5-7-2196-R7) 2010; 480 Koozekanani (boe-5-7-2196-R10) 2001; 20 Hajee (boe-5-7-2196-R8) 2009; 127 Kuo (boe-5-7-2196-R34) 2013; 156 Dice (boe-5-7-2196-R45) 1945; 26 Green (boe-5-7-2196-R47) 2010; 133 Frohman (boe-5-7-2196-R2) 2008; 4 Rohde (boe-5-7-2196-R35) 2003; 22 Rueckert (boe-5-7-2196-R39) 2003; 22 Ashburner (boe-5-7-2196-R17) 2000; 11 Sotiras (boe-5-7-2196-R15) 2013; 32 Gerber (boe-5-7-2196-R40) 2010; 14 Gibson (boe-5-7-2196-R31) 2010; 57 Lucas (boe-5-7-2196-R49) 2010; 8 Resnick (boe-5-7-2196-R30) 2003; 23 Antony (boe-5-7-2196-R32) 2011; 2 Guedes (boe-5-7-2196-R9) 2003; 110 Saidha (boe-5-7-2196-R42) 2012; 11 Good (boe-5-7-2196-R27) 2001; 14 Avants (boe-5-7-2196-R44) 2011; 54 Klein (boe-5-7-2196-R43) 2010; 51 Auer (boe-5-7-2196-R19) 2005; 14 Ratchford (boe-5-7-2196-R3) 2013; 80 Avants (boe-5-7-2196-R37) 2004; 23 Davatzikos (boe-5-7-2196-R29) 2001; 14 Giani (boe-5-7-2196-R25) 2012; 53 Lang (boe-5-7-2196-R14) 2013; 4 Goldszal (boe-5-7-2196-R28) 1998; 22 Brock (boe-5-7-2196-R20) 2005; 32 Xu (boe-5-7-2196-R23) 2012; 31 Guimond (boe-5-7-2196-R36) 2000; 77 Ishikawa (boe-5-7-2196-R11) 2005; 46 Miller (boe-5-7-2196-R16) 1993; 90 Saidha (boe-5-7-2196-R4) 2013; 70 Avants (boe-5-7-2196-R18) 2008; 12 Khullar (boe-5-7-2196-R38) 2011; 5 Keane (boe-5-7-2196-R5) 2012; 57 Lujan (boe-5-7-2196-R48) 2011; 52 Querques (boe-5-7-2196-R6) 2012; 53 Garvin (boe-5-7-2196-R12) 2009; 28 Fujimoto (boe-5-7-2196-R1) 2009; 17 Ou (boe-5-7-2196-R33) 2011; 15 |
References_xml | – volume: 14 start-page: 1361 year: 2001 ident: boe-5-7-2196-R29 publication-title: NeuroImage doi: 10.1006/nimg.2001.0937 – volume: 15 start-page: 622 year: 2011 ident: boe-5-7-2196-R33 publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.07.002 – volume: 52 start-page: 1486 year: 2011 ident: boe-5-7-2196-R48 publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.10-5946 – volume: 90 start-page: 11944 year: 1993 ident: boe-5-7-2196-R16 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.90.24.11944 – volume: 22 start-page: 827 year: 1998 ident: boe-5-7-2196-R28 publication-title: J. Computer Assisted Tomography doi: 10.1097/00004728-199809000-00030 – volume: 32 start-page: 1153 year: 2013 ident: boe-5-7-2196-R15 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2013.2265603 – volume: 127 start-page: 737 year: 2009 ident: boe-5-7-2196-R8 publication-title: Arch. Ophthalmol. doi: 10.1001/archophthalmol.2009.106 – volume: 53 start-page: 6017 year: 2012 ident: boe-5-7-2196-R6 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.12-9692 – volume: 5 start-page: 93 year: 2011 ident: boe-5-7-2196-R38 publication-title: Front. Syst. Neurosci doi: 10.3389/fnsys.2011.00093 – volume: 57 start-page: 2592 year: 2010 ident: boe-5-7-2196-R31 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2060337 – volume: 70 start-page: 34 year: 2013 ident: boe-5-7-2196-R4 publication-title: JAMA Neurology doi: 10.1001/jamaneurol.2013.573 – volume: 110 start-page: 177 year: 2003 ident: boe-5-7-2196-R9 publication-title: Ophthalmology doi: 10.1016/S0161-6420(02)01564-6 – volume: 14 start-page: 475 year: 2005 ident: boe-5-7-2196-R19 publication-title: IEEE Trans. Imag. Proc. doi: 10.1109/TIP.2005.843756 – volume: 12 start-page: 041208 year: 2007 ident: boe-5-7-2196-R22 publication-title: J. Biomed. Opt. doi: 10.1117/1.2772879 – volume: 23 start-page: S139 year: 2004 ident: boe-5-7-2196-R37 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.010 – volume: 133 start-page: 1591 year: 2010 ident: boe-5-7-2196-R47 publication-title: Brain doi: 10.1093/brain/awq080 – volume: 3 start-page: 1774 year: 2012 ident: boe-5-7-2196-R24 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.3.001774 – volume: 97 start-page: 4398 year: 2000 ident: boe-5-7-2196-R26 publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.070039597 – volume: 80 start-page: 47 year: 2013 ident: boe-5-7-2196-R3 publication-title: Neurology doi: 10.1212/WNL.0b013e31827b1a1c – volume: 12 start-page: 26 year: 2008 ident: boe-5-7-2196-R18 publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – volume: 30 start-page: 351 year: 2011 ident: boe-5-7-2196-R21 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2010.2078514 – volume: 32 start-page: 1647 year: 2005 ident: boe-5-7-2196-R20 publication-title: Med. Phys. doi: 10.1118/1.1915012 – volume: 4 start-page: 1133 year: 2013 ident: boe-5-7-2196-R14 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.4.001133 – volume: 14 start-page: 21 year: 2001 ident: boe-5-7-2196-R27 publication-title: NeuroImage doi: 10.1006/nimg.2001.0786 – volume: 8 start-page: 5 year: 2010 ident: boe-5-7-2196-R49 publication-title: Neuroinformatics doi: 10.1007/s12021-009-9061-2 – volume: 31 start-page: 1337 year: 2012 ident: boe-5-7-2196-R23 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2011.2182618 – volume: 26 start-page: 297 year: 1945 ident: boe-5-7-2196-R45 publication-title: Ecology doi: 10.2307/1932409 – volume: 57 start-page: 389 year: 2012 ident: boe-5-7-2196-R5 publication-title: Surv. Ophthalmol. doi: 10.1016/j.survophthal.2012.01.006 – volume: 23 start-page: 3295 year: 2003 ident: boe-5-7-2196-R30 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-08-03295.2003 – volume: 17 start-page: 3978 year: 2009 ident: boe-5-7-2196-R1 publication-title: Opt. Express doi: 10.1364/OE.17.003978 – volume: 28 start-page: 1436 year: 2009 ident: boe-5-7-2196-R12 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2009.2016958 – volume: 14 start-page: 643 year: 2010 ident: boe-5-7-2196-R40 publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.05.008 – volume: 18 start-page: 19413 year: 2010 ident: boe-5-7-2196-R13 publication-title: Opt. Express doi: 10.1364/OE.18.019413 – volume: 11 start-page: 963 year: 2012 ident: boe-5-7-2196-R42 publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(12)70213-2 – volume: 20 start-page: 900 year: 2001 ident: boe-5-7-2196-R10 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.952728 – volume: 77 start-page: 192 year: 2000 ident: boe-5-7-2196-R36 publication-title: Computer vision and image understanding doi: 10.1006/cviu.1999.0815 – volume: 14 start-page: 445 year: 1994 ident: boe-5-7-2196-R46 publication-title: Retina doi: 10.1097/00006982-199414050-00010 – volume: 51 start-page: 214 year: 2010 ident: boe-5-7-2196-R43 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.091 – volume: 4 start-page: 664 year: 2008 ident: boe-5-7-2196-R2 publication-title: Nat. Clin. Pract. Neuro. doi: 10.1038/ncpneuro0950 – volume: 46 start-page: 2012 year: 2005 ident: boe-5-7-2196-R11 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.04-0335 – volume: 480 start-page: 69 year: 2010 ident: boe-5-7-2196-R7 publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.06.006 – volume: 53 start-page: 7637 year: 2012 ident: boe-5-7-2196-R25 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.12-10047 – volume: 156 start-page: 304 year: 2013 ident: boe-5-7-2196-R34 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2013.03.012 – volume: 22 start-page: 1470 year: 2003 ident: boe-5-7-2196-R35 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2003.819299 – volume: 54 start-page: 2033 year: 2011 ident: boe-5-7-2196-R44 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.025 – volume: 11 start-page: 805821 year: 2000 ident: boe-5-7-2196-R17 publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – volume: 41 start-page: 277 year: 2008 ident: boe-5-7-2196-R41 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.02.043 – volume: 2 start-page: 2403 year: 2011 ident: boe-5-7-2196-R32 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.002403 – volume: 22 start-page: 1014 year: 2003 ident: boe-5-7-2196-R39 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2003.815865 |
SSID | ssj0000447038 |
Score | 2.1802454 |
Snippet | Optical coherence tomography (OCT) of the macula has become increasingly important in the investigation of retinal pathology. However, deformable image... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2196 |
Title | Analysis of macular OCT images using deformable registration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25071959 https://www.proquest.com/docview/1549632880 https://pubmed.ncbi.nlm.nih.gov/PMC4102359 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA96gngPoudX_ThW0Kdj6zZf0wVfpJwewnkvPejbkmQTLFy3RVs4_OudZLNfZw_Ul6VkQ1LmN51OJjO_IeSdzhRT3Hcvc5ynvNQqzX2YQ4B1wsA018wXCp9_k2eX_OtCLLqeraG6ZKvH5tfeupL_QRXHEFdfJfsPyLaL4gB-RnzxiQjj868w7jOKrFSdUXoxm58sV8pTN-xCHKC0wS_1FVK-C0PDkzu4zQ01-AGu9SbwNtvrTZubES7_bUyy7zJ4YqC5lxHpjUdskVJn43Zx1ZlCbcMVl21OcAyixoDDhLfJqdEuoZMgU8jqTjtju2csGlbR0x8YGkm513ozyX1O-sXpOAS6bkxD2W9WAUnqndg8MokP2bKbV3fJPQoQLu6_LCZt1C3jHE1caFPYfONYDYF7f-jv7Fmi41pDl-WPc8jNdNqefzJ_RB7Gg0XyqdaSx-SOrY7IYY9u8ojcP4-JFE_Ix0Z1krVLouokqDpJrTpJUJ2kU52krzpPyeXn0_nsLI2NNFLDRbZNzdRlSoLmoIRjBmgpxURLban2PTszJ03OJBgKGpgDMI5Tag3gLmBMmbNn5KBaV_YFSTI3pc4ZpozBs66YamUVKPRxHJ40RClG5KSRVWEiy7xvdnJVhKtTyQsUciGKWsgj8r6dvanZVW6Z97YRe4Hmz99pqcqudz8LzzAoGcV_oRF5XsPQrtTgNyIwAKid4KnVh2-q5fdAsc49o4nIX9665ivyoPttvCYH2x87-wbd060-DmGd46B3vwG2bo2y |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+macular+OCT+images+using+deformable+registration&rft.jtitle=Biomedical+optics+express&rft.au=Chen%2C+Min&rft.au=Lang%2C+Andrew&rft.au=Ying%2C+Howard+S&rft.au=Calabresi%2C+Peter+A&rft.date=2014-07-01&rft.issn=2156-7085&rft.eissn=2156-7085&rft.volume=5&rft.issue=7&rft.spage=2196&rft_id=info:doi/10.1364%2FBOE.5.002196&rft_id=info%3Apmid%2F25071959&rft.externalDocID=25071959 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon |