OneD: increasing reproducibility of Hi-C samples with abnormal karyotypes
Abstract The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream a...
Saved in:
Published in | Nucleic acids research Vol. 46; no. 8; p. e49 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
04.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb. |
---|---|
AbstractList | The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb. Abstract The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb. The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb.The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb. The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb. Spanish Ministry of Economy and Competitiveness ‘Centro de Excelencia Severo Ochoa 2013–2017’ [SEV-2012-0208]; ACER (to C.R.G.); EMBO Long-term Fellowship [ALTF 1201-2014 to R.S.]; Marie Curie Individual Fellowship [H2020-MSCA-IF-2014]; European Research Council under the European Union’s Seventh Framework Programme [FP7/2007–2013)/ERC Synergy grant agreement 609989 (4DGenome)]. We acknowledge the support of the CERCA Programme / Generalitat de Catalunya. Funding for open access charge: European Research Council. The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD , increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb. |
Author | Marti-Renom, Marc A Filion, Guillaume J le Dily, François Cuartero, Yasmina Vidal, Enrique Quilez, Javier Graf, Thomas Stadhouders, Ralph Beato, Miguel |
AuthorAffiliation | 3 CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain 4 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain 1 Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain 2 Universitat Pompeu Fabra (UPF), Barcelona, Spain |
AuthorAffiliation_xml | – name: 4 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain – name: 2 Universitat Pompeu Fabra (UPF), Barcelona, Spain – name: 1 Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain – name: 3 CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain |
Author_xml | – sequence: 1 givenname: Enrique orcidid: 0000-0002-4217-1807 surname: Vidal fullname: Vidal, Enrique email: enrique.vidal@crg.eu organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain – sequence: 2 givenname: François orcidid: 0000-0002-8324-7927 surname: le Dily fullname: le Dily, François organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain – sequence: 3 givenname: Javier orcidid: 0000-0002-0108-2672 surname: Quilez fullname: Quilez, Javier organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain – sequence: 4 givenname: Ralph surname: Stadhouders fullname: Stadhouders, Ralph organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain – sequence: 5 givenname: Yasmina surname: Cuartero fullname: Cuartero, Yasmina organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain – sequence: 6 givenname: Thomas surname: Graf fullname: Graf, Thomas organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain – sequence: 7 givenname: Marc A orcidid: 0000-0002-0151-4279 surname: Marti-Renom fullname: Marti-Renom, Marc A organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain – sequence: 8 givenname: Miguel surname: Beato fullname: Beato, Miguel organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain – sequence: 9 givenname: Guillaume J orcidid: 0000-0002-3473-1632 surname: Filion fullname: Filion, Guillaume J organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29394371$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UV1rFDEUDdJit9UXf4DMiyDC2HxNMvGhIFu1hUJf6nPIZO5uY2eSMcko---bdbdFpfThEi73nHNP7jlGBz54QOgNwR8JVuzUm3i6vttgwV-gBWGC1lwJeoAWmOGmJpi3R-g4pR8YE04a_hIdUcUUZ5Is0OW1h_NPlfM2gknOr6sIUwz9bF3nBpc3VVhVF65eVsmM0wCp-u3ybWU6H-JohurOxE3ImwnSK3S4MkOC1_v3BH3_-uVmeVFfXX-7XH6-qi1vcK4tFVQqTKQQSllDjbSm6RqAngnbqb5vbduSVW8k6ajklHJGrGyBNo1pbfnuCTrb6U5zN0JvwedoBj1FNxYvOhin_514d6vX4ZduFOOC8SJAdgI2zVZHsBCtyX-Ij822KJZUM9EI2RbO-_3SGH7OkLIeXbIwDMZDmJMmqlxUEapwgb7929-jsYebFwDe748hpQgrbV022YWtXTdogvU2Vl1i1btYC-XDf5QH1SfB73bgME_P4e4BmIeyMA |
CitedBy_id | crossref_primary_10_1093_nargab_lqab017 crossref_primary_10_1007_s12551_018_0489_1 crossref_primary_10_1093_nar_gkac226 crossref_primary_10_1093_nar_gkaa1275 crossref_primary_10_1038_s41586_021_04116_8 crossref_primary_10_1016_j_gde_2020_12_009 crossref_primary_10_1534_genetics_119_302978 crossref_primary_10_1101_gr_265900_120 crossref_primary_10_1093_nargab_lqac021 crossref_primary_10_1186_s12859_020_03832_8 crossref_primary_10_2139_ssrn_4156154 crossref_primary_10_1016_j_cell_2024_06_023 crossref_primary_10_1186_s12885_022_10359_z crossref_primary_10_1093_hmg_ddaa128 crossref_primary_10_1101_gr_243824_118 crossref_primary_10_1126_sciimmunol_adg3917 crossref_primary_10_1016_j_copbio_2018_01_023 crossref_primary_10_1038_s41576_019_0195_2 crossref_primary_10_1111_febs_15549 crossref_primary_10_1093_bib_bbae217 crossref_primary_10_1016_j_celrep_2023_112897 crossref_primary_10_1038_s41592_021_01164_w crossref_primary_10_1177_11769351211049236 crossref_primary_10_1016_j_molcel_2019_10_020 crossref_primary_10_1038_s41556_021_00722_w crossref_primary_10_1186_s13059_020_01986_5 crossref_primary_10_1038_s41467_019_09907_2 crossref_primary_10_1038_s41467_021_23610_1 crossref_primary_10_1371_journal_pcbi_1009368 crossref_primary_10_1038_s41467_023_42651_2 crossref_primary_10_1186_s13072_021_00390_y crossref_primary_10_7554_eLife_66034 crossref_primary_10_1093_bioinformatics_btab062 crossref_primary_10_1038_s41467_020_20849_y crossref_primary_10_1093_nar_gkaa087 crossref_primary_10_1101_gad_349115_121 crossref_primary_10_1093_gpbjnl_qzae048 crossref_primary_10_1038_s41588_020_0643_0 |
Cites_doi | 10.1111/j.1467-9868.2010.00749.x 10.1126/science.1067799 10.3389/fimmu.2014.00049 10.1093/bioinformatics/bti623 10.1038/ncomms7178 10.1016/j.cell.2016.02.007 10.1016/j.ceb.2016.01.009 10.1101/gr.220640.117 10.1111/1467-9868.00374 10.18637/jss.v067.i01 10.1016/j.gde.2017.01.004 10.1101/gad.179804.111 10.1038/nature11247 10.1016/j.gde.2015.04.002 10.1101/gr.5571506 10.1038/nrm.2016.104 10.1093/nar/gkq929 10.1038/nmeth.2148 10.1038/ncomms15454 10.1038/ni.2432 10.1038/nbt.2764 10.1093/bioinformatics/btw540 10.1038/nrg3454 10.1038/ng.947 10.1093/gigascience/gix100 10.1007/s11222-007-9033-z 10.1038/ng1896 10.1016/j.cell.2014.11.021 10.1126/science.1181369 10.1371/journal.pcbi.1005665 10.1016/j.cell.2010.09.009 10.1093/imanum/drs019 10.1038/nature12753 10.1093/bioinformatics/bts570 10.1186/s13059-014-0550-8 10.1093/bioinformatics/bts521 10.1101/gad.241422.114 10.1038/nature11082 10.1214/aoms/1177699147 10.1093/bioinformatics/btx152 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018 info:eu-repo/semantics/openAccess © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018 – notice: info:eu-repo/semantics/openAccess © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a>), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a> |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 XX2 5PM |
DOI | 10.1093/nar/gky064 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Recercat PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | e49 |
ExternalDocumentID | PMC5934634 oai_recercat_cat_2072_365678 29394371 10_1093_nar_gky064 10.1093/nar/gky064 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Spanish Ministry of Economy and Competitiveness grantid: SEV-2012-0208 funderid: 10.13039/501100003329 – fundername: EMBO grantid: ALTF 1201-2014 funderid: 10.13039/501100003043 – fundername: Marie Curie grantid: H2020-MSCA-IF-2014 funderid: 10.13039/501100000654 – fundername: European Research Council grantid: 609989 funderid: 10.13039/501100000781 – fundername: European Research Council grantid: 609989 – fundername: ; ; grantid: ALTF 1201-2014 – fundername: ; ; grantid: H2020-MSCA-IF-2014 – fundername: ; ; grantid: SEV-2012-0208 – fundername: ; ; grantid: 609989 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI M49 OAWHX OBC OBS OEB OES OJQWA P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAYXX CITATION OVT CGR CUY CVF ECM EIF NPM 7X8 .55 .GJ 3O- AAWDT AAYJJ ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACIPB ACPQN ACUKT ACVCV ACZBC AEHUL AEKPW AFSHK AGKRT AGMDO AGQPQ ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BEYMZ C1A COF CXTWN D0S DFGAJ EJD ELUNK FEDTE HVGLF H~9 MBTAY MVM NTWIH OVD O~Y PB- QBD RNI RZF RZO SJN TCN TEORI UHB X7M XSW XX2 ZXP 5PM |
ID | FETCH-LOGICAL-c450t-c262790176699ca2a7ca5b5eed36cb9dd8c881fda71b27422431c78e255a8c093 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:33:33 EDT 2025 Fri Aug 29 12:31:34 EDT 2025 Fri Jul 11 09:53:04 EDT 2025 Mon Jul 21 06:05:36 EDT 2025 Tue Jul 01 02:07:12 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Wed Apr 02 07:01:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-c262790176699ca2a7ca5b5eed36cb9dd8c881fda71b27422431c78e255a8c093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3473-1632 0000-0002-0151-4279 0000-0002-8324-7927 0000-0002-0108-2672 0000-0002-4217-1807 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gky064 |
PMID | 29394371 |
PQID | 1993991290 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5934634 csuc_recercat_oai_recercat_cat_2072_365678 proquest_miscellaneous_1993991290 pubmed_primary_29394371 crossref_citationtrail_10_1093_nar_gky064 crossref_primary_10_1093_nar_gky064 oup_primary_10_1093_nar_gky064 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-04 |
PublicationDateYYYYMMDD | 2018-05-04 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Love ( key 20180504012653_B20) 2014; 15 Choi ( key 20180504012653_B5) 2014; 5 Dekker ( key 20180504012653_B9) 2002; 295 Servant ( key 20180504012653_B35) 2012; 28 Yang ( key 20180504012653_B37) 2017; 27 Simonis ( key 20180504012653_B10) 2006; 38 Wu ( key 20180504012653_B18) 2016; 32 Forbes ( key 20180504012653_B32) 2010; 39 Filion ( key 20180504012653_B25) 2010; 143 Imakaev ( key 20180504012653_B16) 2012; 9 Von Luxburg ( key 20180504012653_B38) 2007; 17 Dekker ( key 20180504012653_B8) 2013; 14 Sing ( key 20180504012653_B40) 2005; 21 Lieberman-Aiden ( key 20180504012653_B7) 2009; 326 Bates ( key 20180504012653_B39) 2015; 67 Knight ( key 20180504012653_B41) 2013; 33 Schmitt ( key 20180504012653_B14) 2016; 17 R Core Team ( key 20180504012653_B23) 2017 Baum ( key 20180504012653_B24) 1966; 37 Quilez ( key 20180504012653_B34) 2017; 6 Galupa ( key 20180504012653_B6) 2015; 31 Yaffe ( key 20180504012653_B13) 2011; 43 Stadhouders ( key 20180504012653_B26) 2018; 13 De Laat ( key 20180504012653_B4) 2013; 502 Korbel ( key 20180504012653_B17) 2013; 31 Serra ( key 20180504012653_B33) 2017; 13 Le Dily ( key 20180504012653_B27) 2014; 28 Lin ( key 20180504012653_B30) 2012; 13 Wood ( key 20180504012653_B21) 2003; 65 Yan ( key 20180504012653_B36) 2017; 33 ENCODE Project Consortium ( key 20180504012653_B28) 2012; 489 Rao ( key 20180504012653_B29) 2014; 159 de Wit ( key 20180504012653_B12) 2012; 26 Dekker ( key 20180504012653_B2) 2016; 164 Pezic ( key 20180504012653_B3) 2017; 43 Carty ( key 20180504012653_B19) 2017; 8 Hu ( key 20180504012653_B15) 2012; 28 Dostie ( key 20180504012653_B11) 2006; 16 Wood ( key 20180504012653_B22) 2011; 73 Jäger ( key 20180504012653_B42) 2015; 6 Dixon ( key 20180504012653_B31) 2012; 485 Rowley ( key 20180504012653_B1) 2016; 40 |
References_xml | – volume: 73 start-page: 3 year: 2011 ident: key 20180504012653_B22 article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models publication-title: J. R. Stat. Soc.: Ser. B (Statist. Methodol.) doi: 10.1111/j.1467-9868.2010.00749.x – volume: 295 start-page: 1306 year: 2002 ident: key 20180504012653_B9 article-title: Capturing chromosome conformation publication-title: Science doi: 10.1126/science.1067799 – volume: 5 start-page: 49 year: 2014 ident: key 20180504012653_B5 article-title: CTCF and ncRNA regulate the three-dimensional structure of antigen receptor loci to facilitate V (D) J recombination publication-title: Front. Immunol. doi: 10.3389/fimmu.2014.00049 – volume: 21 start-page: 7881 year: 2005 ident: key 20180504012653_B40 article-title: ROCR: visualizing classifier performance in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti623 – volume: 6 start-page: 6178 year: 2015 ident: key 20180504012653_B42 article-title: Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci publication-title: Nat. Commun. doi: 10.1038/ncomms7178 – volume: 164 start-page: 1110 year: 2016 ident: key 20180504012653_B2 article-title: The 3D genome as moderator of chromosomal communication publication-title: Cell doi: 10.1016/j.cell.2016.02.007 – volume: 13 year: 2018 ident: key 20180504012653_B26 article-title: Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming publication-title: Nat. Genet. – volume: 40 start-page: 8 year: 2016 ident: key 20180504012653_B1 article-title: The three-dimensional genome: principles and roles of long-distance interactions publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2016.01.009 – volume: 27 start-page: 1939 year: 2017 ident: key 20180504012653_B37 article-title: HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient publication-title: Genome Res. doi: 10.1101/gr.220640.117 – volume: 65 start-page: 95 year: 2003 ident: key 20180504012653_B21 article-title: Thin plate regression splines publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) doi: 10.1111/1467-9868.00374 – volume: 67 start-page: 1 year: 2015 ident: key 20180504012653_B39 article-title: Fitting linear mixed-effects models using lme4 publication-title: J. Stat. Softw. doi: 10.18637/jss.v067.i01 – volume: 43 start-page: 93 year: 2017 ident: key 20180504012653_B3 article-title: More to cohesin than meets the eye: complex diversity for fine-tuning of function publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2017.01.004 – volume: 26 start-page: 11 year: 2012 ident: key 20180504012653_B12 article-title: A decade of 3C technologies: insights into nuclear organization publication-title: Genes Dev. doi: 10.1101/gad.179804.111 – volume: 489 start-page: 57 year: 2012 ident: key 20180504012653_B28 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume-title: R: A Language and Environment for Statistical Computing year: 2017 ident: key 20180504012653_B23 – volume: 31 start-page: 57 year: 2015 ident: key 20180504012653_B6 article-title: X-chromosome inactivation: new insights into cis and trans regulation publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2015.04.002 – volume: 16 start-page: 1299 year: 2006 ident: key 20180504012653_B11 article-title: Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements publication-title: Genome Res. doi: 10.1101/gr.5571506 – volume: 17 start-page: 743 year: 2016 ident: key 20180504012653_B14 article-title: Genome-wide mapping and analysis of chromosome architecture publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.104 – volume: 39 start-page: D945 year: 2010 ident: key 20180504012653_B32 article-title: COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq929 – volume: 9 start-page: 999 year: 2012 ident: key 20180504012653_B16 article-title: Iterative correction of Hi-C data reveals hallmarks of chromosome organization publication-title: Nature methods doi: 10.1038/nmeth.2148 – volume: 8 start-page: 15454 year: 2017 ident: key 20180504012653_B19 article-title: An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data publication-title: Nat. Commun. doi: 10.1038/ncomms15454 – volume: 13 start-page: 1196 year: 2012 ident: key 20180504012653_B30 article-title: Global changes in the nuclear positioning of genes and intra-and interdomain genomic interactions that orchestrate B cell fate publication-title: Nat. Immunol. doi: 10.1038/ni.2432 – volume: 31 start-page: 1099 year: 2013 ident: key 20180504012653_B17 article-title: Genome assembly and haplotyping with Hi-C publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2764 – volume: 32 start-page: 3695 year: 2016 ident: key 20180504012653_B18 article-title: A computational strategy to adjust for copy number in tumor Hi-C data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw540 – volume: 14 start-page: 390 year: 2013 ident: key 20180504012653_B8 article-title: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3454 – volume: 43 start-page: 1059 year: 2011 ident: key 20180504012653_B13 article-title: Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture publication-title: Nat. Genet. doi: 10.1038/ng.947 – volume: 6 start-page: 1 year: 2017 ident: key 20180504012653_B34 article-title: Parallel sequencing lives, or what makes large sequencing projects successful publication-title: GigaScience doi: 10.1093/gigascience/gix100 – volume: 17 start-page: 395 year: 2007 ident: key 20180504012653_B38 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 38 start-page: 1348 year: 2006 ident: key 20180504012653_B10 article-title: Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) publication-title: Nat. Genet. doi: 10.1038/ng1896 – volume: 159 start-page: 1665 year: 2014 ident: key 20180504012653_B29 article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping publication-title: Cell doi: 10.1016/j.cell.2014.11.021 – volume: 326 start-page: 289 year: 2009 ident: key 20180504012653_B7 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science doi: 10.1126/science.1181369 – volume: 13 start-page: e1005665 year: 2017 ident: key 20180504012653_B33 article-title: Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005665 – volume: 143 start-page: 212 year: 2010 ident: key 20180504012653_B25 article-title: Systematic protein location mapping reveals five principal chromatin types in Drosophila cells publication-title: Cell doi: 10.1016/j.cell.2010.09.009 – volume: 33 start-page: 1029 year: 2013 ident: key 20180504012653_B41 article-title: A fast algorithm for matrix balancing publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drs019 – volume: 502 start-page: 499 year: 2013 ident: key 20180504012653_B4 article-title: Topology of mammalian developmental enhancers and their regulatory landscapes publication-title: Nature doi: 10.1038/nature12753 – volume: 28 start-page: 3131 year: 2012 ident: key 20180504012653_B15 article-title: HiCNorm: removing biases in Hi-C data via Poisson regression publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts570 – volume: 15 start-page: 550 year: 2014 ident: key 20180504012653_B20 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 28 start-page: 2843 year: 2012 ident: key 20180504012653_B35 article-title: HiTC: exploration of high-throughput ‘C’ experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts521 – volume: 28 start-page: 2151 year: 2014 ident: key 20180504012653_B27 article-title: Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation publication-title: Genes Dev. doi: 10.1101/gad.241422.114 – volume: 485 start-page: 376 year: 2012 ident: key 20180504012653_B31 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature doi: 10.1038/nature11082 – volume: 37 start-page: 1554 year: 1966 ident: key 20180504012653_B24 article-title: Statistical inference for probabilistic functions of finite state markov chains publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177699147 – volume: 33 start-page: 2199 year: 2017 ident: key 20180504012653_B36 article-title: HiC-Spector: A matrix library for spectral and reproducibility analysis of Hi-C contact maps publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx152 |
SSID | ssj0014154 |
Score | 2.4527469 |
Snippet | Abstract
The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an... The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an... |
SourceID | pubmedcentral csuc proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e49 |
SubjectTerms | Abnormal Karyotype Animals Base Composition Bias Cell Line Chromosome Aberrations Computational Biology - methods Computational Biology - statistics & numerical data Computer Simulation DNA Copy Number Variations Genetic Techniques Humans Markov Chains Methods Online Mice Models, Statistical Reproducibility of Results |
Title | OneD: increasing reproducibility of Hi-C samples with abnormal karyotypes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29394371 https://www.proquest.com/docview/1993991290 https://recercat.cat/handle/2072/365678 https://pubmed.ncbi.nlm.nih.gov/PMC5934634 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV09b9swED20XtqlyEc_1LQGgxYFWkCIRFIimS1wErgdmiUBvBEUTbVGErqw7MH_vneSLcRB0A4aBFEUcUfwPd6dHgE-F0EWJuc-NVLxFBEipIiCVCaGZDdTyuHoqdriZzm-kT8mxWRTRNM8kcI34iS6xcmv2zViJ660iL6kkH99NelzBfiBTiSq1dSUeitCuvPqDuwMfLPyj_5oe0AsH9dHPgCcyz14tWGK7Kxz7T48C_EADs8i7pLv1-wLa2s326D4AbwYbc9tO4TvVzGcn7JZJD5IkQBGwpWk69oVwq7ZvGbjWTpijSNp4IZRLJa5KhJ9vWO3brGeU2S2eQ03lxfXo3G6OTAh9bLIlqnnJVcI8KosjfGOO-VdURUIg6L0lZlOtdc6r6dO5RWlaDmyB690wG2F0x4N9gYGcR7DO2Cy5qUQRciM85Kr2mkkallW55mokBaEBL5u7Wn9Rk2cDrW4s11WW1i0ve1sn8Cnvu2fTkPjyVbfyC0WF_qw8G5pSfi6v6EL5w63Agmo0gkM0Xn_7O1461eL9qcsiIthvmosVSwiKeYmS-Bt5-e-H-Q-RgqVJ6B2ZkDfgMa0-yTOfrei3IURshTy_f8GdgQvkXPptmZSfoDBcrEKH5HXLKshPFfZxbCNCgzbKf4XAg_38g |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OneD%3A+increasing+reproducibility+of+Hi-C+samples+with+abnormal+karyotypes&rft.jtitle=Nucleic+acids+research&rft.au=Vidal%2C+Enrique&rft.au=le+Dily%2C+Fran%C3%A7ois&rft.au=Quilez%2C+Javier&rft.au=Stadhouders%2C+Ralph&rft.date=2018-05-04&rft.eissn=1362-4962&rft.volume=46&rft.issue=8&rft.spage=e49&rft_id=info:doi/10.1093%2Fnar%2Fgky064&rft_id=info%3Apmid%2F29394371&rft.externalDocID=29394371 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |