OneD: increasing reproducibility of Hi-C samples with abnormal karyotypes

Abstract The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream a...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 46; no. 8; p. e49
Main Authors Vidal, Enrique, le Dily, François, Quilez, Javier, Stadhouders, Ralph, Cuartero, Yasmina, Graf, Thomas, Marti-Renom, Marc A, Beato, Miguel, Filion, Guillaume J
Format Journal Article
LanguageEnglish
Published England Oxford University Press 04.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb.
AbstractList The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb.
Abstract The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb.
The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb.The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb.
The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb. Spanish Ministry of Economy and Competitiveness ‘Centro de Excelencia Severo Ochoa 2013–2017’ [SEV-2012-0208]; ACER (to C.R.G.); EMBO Long-term Fellowship [ALTF 1201-2014 to R.S.]; Marie Curie Individual Fellowship [H2020-MSCA-IF-2014]; European Research Council under the European Union’s Seventh Framework Programme [FP7/2007–2013)/ERC Synergy grant agreement 609989 (4DGenome)]. We acknowledge the support of the CERCA Programme / Generalitat de Catalunya. Funding for open access charge: European Research Council.
The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD , increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb.
Author Marti-Renom, Marc A
Filion, Guillaume J
le Dily, François
Cuartero, Yasmina
Vidal, Enrique
Quilez, Javier
Graf, Thomas
Stadhouders, Ralph
Beato, Miguel
AuthorAffiliation 3 CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
4 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
1 Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
2 Universitat Pompeu Fabra (UPF), Barcelona, Spain
AuthorAffiliation_xml – name: 4 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
– name: 2 Universitat Pompeu Fabra (UPF), Barcelona, Spain
– name: 1 Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
– name: 3 CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
Author_xml – sequence: 1
  givenname: Enrique
  orcidid: 0000-0002-4217-1807
  surname: Vidal
  fullname: Vidal, Enrique
  email: enrique.vidal@crg.eu
  organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
– sequence: 2
  givenname: François
  orcidid: 0000-0002-8324-7927
  surname: le Dily
  fullname: le Dily, François
  organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
– sequence: 3
  givenname: Javier
  orcidid: 0000-0002-0108-2672
  surname: Quilez
  fullname: Quilez, Javier
  organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
– sequence: 4
  givenname: Ralph
  surname: Stadhouders
  fullname: Stadhouders, Ralph
  organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
– sequence: 5
  givenname: Yasmina
  surname: Cuartero
  fullname: Cuartero, Yasmina
  organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
– sequence: 6
  givenname: Thomas
  surname: Graf
  fullname: Graf, Thomas
  organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
– sequence: 7
  givenname: Marc A
  orcidid: 0000-0002-0151-4279
  surname: Marti-Renom
  fullname: Marti-Renom, Marc A
  organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
– sequence: 8
  givenname: Miguel
  surname: Beato
  fullname: Beato, Miguel
  organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
– sequence: 9
  givenname: Guillaume J
  orcidid: 0000-0002-3473-1632
  surname: Filion
  fullname: Filion, Guillaume J
  organization: Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29394371$$D View this record in MEDLINE/PubMed
BookMark eNp9UV1rFDEUDdJit9UXf4DMiyDC2HxNMvGhIFu1hUJf6nPIZO5uY2eSMcko---bdbdFpfThEi73nHNP7jlGBz54QOgNwR8JVuzUm3i6vttgwV-gBWGC1lwJeoAWmOGmJpi3R-g4pR8YE04a_hIdUcUUZ5Is0OW1h_NPlfM2gknOr6sIUwz9bF3nBpc3VVhVF65eVsmM0wCp-u3ybWU6H-JohurOxE3ImwnSK3S4MkOC1_v3BH3_-uVmeVFfXX-7XH6-qi1vcK4tFVQqTKQQSllDjbSm6RqAngnbqb5vbduSVW8k6ajklHJGrGyBNo1pbfnuCTrb6U5zN0JvwedoBj1FNxYvOhin_514d6vX4ZduFOOC8SJAdgI2zVZHsBCtyX-Ij822KJZUM9EI2RbO-_3SGH7OkLIeXbIwDMZDmJMmqlxUEapwgb7929-jsYebFwDe748hpQgrbV022YWtXTdogvU2Vl1i1btYC-XDf5QH1SfB73bgME_P4e4BmIeyMA
CitedBy_id crossref_primary_10_1093_nargab_lqab017
crossref_primary_10_1007_s12551_018_0489_1
crossref_primary_10_1093_nar_gkac226
crossref_primary_10_1093_nar_gkaa1275
crossref_primary_10_1038_s41586_021_04116_8
crossref_primary_10_1016_j_gde_2020_12_009
crossref_primary_10_1534_genetics_119_302978
crossref_primary_10_1101_gr_265900_120
crossref_primary_10_1093_nargab_lqac021
crossref_primary_10_1186_s12859_020_03832_8
crossref_primary_10_2139_ssrn_4156154
crossref_primary_10_1016_j_cell_2024_06_023
crossref_primary_10_1186_s12885_022_10359_z
crossref_primary_10_1093_hmg_ddaa128
crossref_primary_10_1101_gr_243824_118
crossref_primary_10_1126_sciimmunol_adg3917
crossref_primary_10_1016_j_copbio_2018_01_023
crossref_primary_10_1038_s41576_019_0195_2
crossref_primary_10_1111_febs_15549
crossref_primary_10_1093_bib_bbae217
crossref_primary_10_1016_j_celrep_2023_112897
crossref_primary_10_1038_s41592_021_01164_w
crossref_primary_10_1177_11769351211049236
crossref_primary_10_1016_j_molcel_2019_10_020
crossref_primary_10_1038_s41556_021_00722_w
crossref_primary_10_1186_s13059_020_01986_5
crossref_primary_10_1038_s41467_019_09907_2
crossref_primary_10_1038_s41467_021_23610_1
crossref_primary_10_1371_journal_pcbi_1009368
crossref_primary_10_1038_s41467_023_42651_2
crossref_primary_10_1186_s13072_021_00390_y
crossref_primary_10_7554_eLife_66034
crossref_primary_10_1093_bioinformatics_btab062
crossref_primary_10_1038_s41467_020_20849_y
crossref_primary_10_1093_nar_gkaa087
crossref_primary_10_1101_gad_349115_121
crossref_primary_10_1093_gpbjnl_qzae048
crossref_primary_10_1038_s41588_020_0643_0
Cites_doi 10.1111/j.1467-9868.2010.00749.x
10.1126/science.1067799
10.3389/fimmu.2014.00049
10.1093/bioinformatics/bti623
10.1038/ncomms7178
10.1016/j.cell.2016.02.007
10.1016/j.ceb.2016.01.009
10.1101/gr.220640.117
10.1111/1467-9868.00374
10.18637/jss.v067.i01
10.1016/j.gde.2017.01.004
10.1101/gad.179804.111
10.1038/nature11247
10.1016/j.gde.2015.04.002
10.1101/gr.5571506
10.1038/nrm.2016.104
10.1093/nar/gkq929
10.1038/nmeth.2148
10.1038/ncomms15454
10.1038/ni.2432
10.1038/nbt.2764
10.1093/bioinformatics/btw540
10.1038/nrg3454
10.1038/ng.947
10.1093/gigascience/gix100
10.1007/s11222-007-9033-z
10.1038/ng1896
10.1016/j.cell.2014.11.021
10.1126/science.1181369
10.1371/journal.pcbi.1005665
10.1016/j.cell.2010.09.009
10.1093/imanum/drs019
10.1038/nature12753
10.1093/bioinformatics/bts570
10.1186/s13059-014-0550-8
10.1093/bioinformatics/bts521
10.1101/gad.241422.114
10.1038/nature11082
10.1214/aoms/1177699147
10.1093/bioinformatics/btx152
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018
info:eu-repo/semantics/openAccess © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018
– notice: info:eu-repo/semantics/openAccess © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a>), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a>
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
XX2
5PM
DOI 10.1093/nar/gky064
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Recercat
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e49
ExternalDocumentID PMC5934634
oai_recercat_cat_2072_365678
29394371
10_1093_nar_gky064
10.1093/nar/gky064
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Spanish Ministry of Economy and Competitiveness
  grantid: SEV-2012-0208
  funderid: 10.13039/501100003329
– fundername: EMBO
  grantid: ALTF 1201-2014
  funderid: 10.13039/501100003043
– fundername: Marie Curie
  grantid: H2020-MSCA-IF-2014
  funderid: 10.13039/501100000654
– fundername: European Research Council
  grantid: 609989
  funderid: 10.13039/501100000781
– fundername: European Research Council
  grantid: 609989
– fundername: ; ;
  grantid: ALTF 1201-2014
– fundername: ; ;
  grantid: H2020-MSCA-IF-2014
– fundername: ; ;
  grantid: SEV-2012-0208
– fundername: ; ;
  grantid: 609989
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
.55
.GJ
3O-
AAWDT
AAYJJ
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACIPB
ACPQN
ACUKT
ACVCV
ACZBC
AEHUL
AEKPW
AFSHK
AGKRT
AGMDO
AGQPQ
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BEYMZ
C1A
COF
CXTWN
D0S
DFGAJ
EJD
ELUNK
FEDTE
HVGLF
H~9
MBTAY
MVM
NTWIH
OVD
O~Y
PB-
QBD
RNI
RZF
RZO
SJN
TCN
TEORI
UHB
X7M
XSW
XX2
ZXP
5PM
ID FETCH-LOGICAL-c450t-c262790176699ca2a7ca5b5eed36cb9dd8c881fda71b27422431c78e255a8c093
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:33:33 EDT 2025
Fri Aug 29 12:31:34 EDT 2025
Fri Jul 11 09:53:04 EDT 2025
Mon Jul 21 06:05:36 EDT 2025
Tue Jul 01 02:07:12 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Wed Apr 02 07:01:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-c262790176699ca2a7ca5b5eed36cb9dd8c881fda71b27422431c78e255a8c093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3473-1632
0000-0002-0151-4279
0000-0002-8324-7927
0000-0002-0108-2672
0000-0002-4217-1807
OpenAccessLink https://dx.doi.org/10.1093/nar/gky064
PMID 29394371
PQID 1993991290
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5934634
csuc_recercat_oai_recercat_cat_2072_365678
proquest_miscellaneous_1993991290
pubmed_primary_29394371
crossref_citationtrail_10_1093_nar_gky064
crossref_primary_10_1093_nar_gky064
oup_primary_10_1093_nar_gky064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-04
PublicationDateYYYYMMDD 2018-05-04
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Love ( key 20180504012653_B20) 2014; 15
Choi ( key 20180504012653_B5) 2014; 5
Dekker ( key 20180504012653_B9) 2002; 295
Servant ( key 20180504012653_B35) 2012; 28
Yang ( key 20180504012653_B37) 2017; 27
Simonis ( key 20180504012653_B10) 2006; 38
Wu ( key 20180504012653_B18) 2016; 32
Forbes ( key 20180504012653_B32) 2010; 39
Filion ( key 20180504012653_B25) 2010; 143
Imakaev ( key 20180504012653_B16) 2012; 9
Von Luxburg ( key 20180504012653_B38) 2007; 17
Dekker ( key 20180504012653_B8) 2013; 14
Sing ( key 20180504012653_B40) 2005; 21
Lieberman-Aiden ( key 20180504012653_B7) 2009; 326
Bates ( key 20180504012653_B39) 2015; 67
Knight ( key 20180504012653_B41) 2013; 33
Schmitt ( key 20180504012653_B14) 2016; 17
R Core Team ( key 20180504012653_B23) 2017
Baum ( key 20180504012653_B24) 1966; 37
Quilez ( key 20180504012653_B34) 2017; 6
Galupa ( key 20180504012653_B6) 2015; 31
Yaffe ( key 20180504012653_B13) 2011; 43
Stadhouders ( key 20180504012653_B26) 2018; 13
De Laat ( key 20180504012653_B4) 2013; 502
Korbel ( key 20180504012653_B17) 2013; 31
Serra ( key 20180504012653_B33) 2017; 13
Le Dily ( key 20180504012653_B27) 2014; 28
Lin ( key 20180504012653_B30) 2012; 13
Wood ( key 20180504012653_B21) 2003; 65
Yan ( key 20180504012653_B36) 2017; 33
ENCODE Project Consortium ( key 20180504012653_B28) 2012; 489
Rao ( key 20180504012653_B29) 2014; 159
de Wit ( key 20180504012653_B12) 2012; 26
Dekker ( key 20180504012653_B2) 2016; 164
Pezic ( key 20180504012653_B3) 2017; 43
Carty ( key 20180504012653_B19) 2017; 8
Hu ( key 20180504012653_B15) 2012; 28
Dostie ( key 20180504012653_B11) 2006; 16
Wood ( key 20180504012653_B22) 2011; 73
Jäger ( key 20180504012653_B42) 2015; 6
Dixon ( key 20180504012653_B31) 2012; 485
Rowley ( key 20180504012653_B1) 2016; 40
References_xml – volume: 73
  start-page: 3
  year: 2011
  ident: key 20180504012653_B22
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: J. R. Stat. Soc.: Ser. B (Statist. Methodol.)
  doi: 10.1111/j.1467-9868.2010.00749.x
– volume: 295
  start-page: 1306
  year: 2002
  ident: key 20180504012653_B9
  article-title: Capturing chromosome conformation
  publication-title: Science
  doi: 10.1126/science.1067799
– volume: 5
  start-page: 49
  year: 2014
  ident: key 20180504012653_B5
  article-title: CTCF and ncRNA regulate the three-dimensional structure of antigen receptor loci to facilitate V (D) J recombination
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00049
– volume: 21
  start-page: 7881
  year: 2005
  ident: key 20180504012653_B40
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
– volume: 6
  start-page: 6178
  year: 2015
  ident: key 20180504012653_B42
  article-title: Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7178
– volume: 164
  start-page: 1110
  year: 2016
  ident: key 20180504012653_B2
  article-title: The 3D genome as moderator of chromosomal communication
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.007
– volume: 13
  year: 2018
  ident: key 20180504012653_B26
  article-title: Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming
  publication-title: Nat. Genet.
– volume: 40
  start-page: 8
  year: 2016
  ident: key 20180504012653_B1
  article-title: The three-dimensional genome: principles and roles of long-distance interactions
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2016.01.009
– volume: 27
  start-page: 1939
  year: 2017
  ident: key 20180504012653_B37
  article-title: HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient
  publication-title: Genome Res.
  doi: 10.1101/gr.220640.117
– volume: 65
  start-page: 95
  year: 2003
  ident: key 20180504012653_B21
  article-title: Thin plate regression splines
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
  doi: 10.1111/1467-9868.00374
– volume: 67
  start-page: 1
  year: 2015
  ident: key 20180504012653_B39
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v067.i01
– volume: 43
  start-page: 93
  year: 2017
  ident: key 20180504012653_B3
  article-title: More to cohesin than meets the eye: complex diversity for fine-tuning of function
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2017.01.004
– volume: 26
  start-page: 11
  year: 2012
  ident: key 20180504012653_B12
  article-title: A decade of 3C technologies: insights into nuclear organization
  publication-title: Genes Dev.
  doi: 10.1101/gad.179804.111
– volume: 489
  start-page: 57
  year: 2012
  ident: key 20180504012653_B28
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2017
  ident: key 20180504012653_B23
– volume: 31
  start-page: 57
  year: 2015
  ident: key 20180504012653_B6
  article-title: X-chromosome inactivation: new insights into cis and trans regulation
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2015.04.002
– volume: 16
  start-page: 1299
  year: 2006
  ident: key 20180504012653_B11
  article-title: Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements
  publication-title: Genome Res.
  doi: 10.1101/gr.5571506
– volume: 17
  start-page: 743
  year: 2016
  ident: key 20180504012653_B14
  article-title: Genome-wide mapping and analysis of chromosome architecture
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.104
– volume: 39
  start-page: D945
  year: 2010
  ident: key 20180504012653_B32
  article-title: COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq929
– volume: 9
  start-page: 999
  year: 2012
  ident: key 20180504012653_B16
  article-title: Iterative correction of Hi-C data reveals hallmarks of chromosome organization
  publication-title: Nature methods
  doi: 10.1038/nmeth.2148
– volume: 8
  start-page: 15454
  year: 2017
  ident: key 20180504012653_B19
  article-title: An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15454
– volume: 13
  start-page: 1196
  year: 2012
  ident: key 20180504012653_B30
  article-title: Global changes in the nuclear positioning of genes and intra-and interdomain genomic interactions that orchestrate B cell fate
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2432
– volume: 31
  start-page: 1099
  year: 2013
  ident: key 20180504012653_B17
  article-title: Genome assembly and haplotyping with Hi-C
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2764
– volume: 32
  start-page: 3695
  year: 2016
  ident: key 20180504012653_B18
  article-title: A computational strategy to adjust for copy number in tumor Hi-C data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw540
– volume: 14
  start-page: 390
  year: 2013
  ident: key 20180504012653_B8
  article-title: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3454
– volume: 43
  start-page: 1059
  year: 2011
  ident: key 20180504012653_B13
  article-title: Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture
  publication-title: Nat. Genet.
  doi: 10.1038/ng.947
– volume: 6
  start-page: 1
  year: 2017
  ident: key 20180504012653_B34
  article-title: Parallel sequencing lives, or what makes large sequencing projects successful
  publication-title: GigaScience
  doi: 10.1093/gigascience/gix100
– volume: 17
  start-page: 395
  year: 2007
  ident: key 20180504012653_B38
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 38
  start-page: 1348
  year: 2006
  ident: key 20180504012653_B10
  article-title: Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C)
  publication-title: Nat. Genet.
  doi: 10.1038/ng1896
– volume: 159
  start-page: 1665
  year: 2014
  ident: key 20180504012653_B29
  article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.021
– volume: 326
  start-page: 289
  year: 2009
  ident: key 20180504012653_B7
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 13
  start-page: e1005665
  year: 2017
  ident: key 20180504012653_B33
  article-title: Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005665
– volume: 143
  start-page: 212
  year: 2010
  ident: key 20180504012653_B25
  article-title: Systematic protein location mapping reveals five principal chromatin types in Drosophila cells
  publication-title: Cell
  doi: 10.1016/j.cell.2010.09.009
– volume: 33
  start-page: 1029
  year: 2013
  ident: key 20180504012653_B41
  article-title: A fast algorithm for matrix balancing
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drs019
– volume: 502
  start-page: 499
  year: 2013
  ident: key 20180504012653_B4
  article-title: Topology of mammalian developmental enhancers and their regulatory landscapes
  publication-title: Nature
  doi: 10.1038/nature12753
– volume: 28
  start-page: 3131
  year: 2012
  ident: key 20180504012653_B15
  article-title: HiCNorm: removing biases in Hi-C data via Poisson regression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts570
– volume: 15
  start-page: 550
  year: 2014
  ident: key 20180504012653_B20
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 28
  start-page: 2843
  year: 2012
  ident: key 20180504012653_B35
  article-title: HiTC: exploration of high-throughput ‘C’ experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts521
– volume: 28
  start-page: 2151
  year: 2014
  ident: key 20180504012653_B27
  article-title: Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation
  publication-title: Genes Dev.
  doi: 10.1101/gad.241422.114
– volume: 485
  start-page: 376
  year: 2012
  ident: key 20180504012653_B31
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
  doi: 10.1038/nature11082
– volume: 37
  start-page: 1554
  year: 1966
  ident: key 20180504012653_B24
  article-title: Statistical inference for probabilistic functions of finite state markov chains
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177699147
– volume: 33
  start-page: 2199
  year: 2017
  ident: key 20180504012653_B36
  article-title: HiC-Spector: A matrix library for spectral and reproducibility analysis of Hi-C contact maps
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx152
SSID ssj0014154
Score 2.4527469
Snippet Abstract The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an...
The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an...
SourceID pubmedcentral
csuc
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e49
SubjectTerms Abnormal Karyotype
Animals
Base Composition
Bias
Cell Line
Chromosome Aberrations
Computational Biology - methods
Computational Biology - statistics & numerical data
Computer Simulation
DNA Copy Number Variations
Genetic Techniques
Humans
Markov Chains
Methods Online
Mice
Models, Statistical
Reproducibility of Results
Title OneD: increasing reproducibility of Hi-C samples with abnormal karyotypes
URI https://www.ncbi.nlm.nih.gov/pubmed/29394371
https://www.proquest.com/docview/1993991290
https://recercat.cat/handle/2072/365678
https://pubmed.ncbi.nlm.nih.gov/PMC5934634
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV09b9swED20XtqlyEc_1LQGgxYFWkCIRFIimS1wErgdmiUBvBEUTbVGErqw7MH_vneSLcRB0A4aBFEUcUfwPd6dHgE-F0EWJuc-NVLxFBEipIiCVCaGZDdTyuHoqdriZzm-kT8mxWRTRNM8kcI34iS6xcmv2zViJ660iL6kkH99NelzBfiBTiSq1dSUeitCuvPqDuwMfLPyj_5oe0AsH9dHPgCcyz14tWGK7Kxz7T48C_EADs8i7pLv1-wLa2s326D4AbwYbc9tO4TvVzGcn7JZJD5IkQBGwpWk69oVwq7ZvGbjWTpijSNp4IZRLJa5KhJ9vWO3brGeU2S2eQ03lxfXo3G6OTAh9bLIlqnnJVcI8KosjfGOO-VdURUIg6L0lZlOtdc6r6dO5RWlaDmyB690wG2F0x4N9gYGcR7DO2Cy5qUQRciM85Kr2mkkallW55mokBaEBL5u7Wn9Rk2cDrW4s11WW1i0ve1sn8Cnvu2fTkPjyVbfyC0WF_qw8G5pSfi6v6EL5w63Agmo0gkM0Xn_7O1461eL9qcsiIthvmosVSwiKeYmS-Bt5-e-H-Q-RgqVJ6B2ZkDfgMa0-yTOfrei3IURshTy_f8GdgQvkXPptmZSfoDBcrEKH5HXLKshPFfZxbCNCgzbKf4XAg_38g
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OneD%3A+increasing+reproducibility+of+Hi-C+samples+with+abnormal+karyotypes&rft.jtitle=Nucleic+acids+research&rft.au=Vidal%2C+Enrique&rft.au=le+Dily%2C+Fran%C3%A7ois&rft.au=Quilez%2C+Javier&rft.au=Stadhouders%2C+Ralph&rft.date=2018-05-04&rft.eissn=1362-4962&rft.volume=46&rft.issue=8&rft.spage=e49&rft_id=info:doi/10.1093%2Fnar%2Fgky064&rft_id=info%3Apmid%2F29394371&rft.externalDocID=29394371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon