Environmental physical cues determine the lineage specification of mesenchymal stem cells

Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemica...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1850; no. 6; pp. 1261 - 1266
Main Authors Huang, Chao, Dai, Jingxing, Zhang, Xin A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2015
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
1872-8006
DOI10.1016/j.bbagen.2015.02.011

Cover

Loading…
Abstract Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers. Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination. Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment. These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate. •Environmental physical cues can determine MSC fate and differentiation.•Cytoskeleton and nuclear skeleton undergo reorganization during MSC differentiation.•MSC fate determination and differentiation are associated with changes in cellular biophysical properties.•Physical cues and chemical inducers specify MSC lineages by regulating cell adhesion molecules and Rho GTPases.
AbstractList Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers. Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination. Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment. These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate.
Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers.BACKGROUNDPhysical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers.Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination.SCOPE OF REVIEWStiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination.Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment.MAJOR CONCLUSIONSBiophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment.These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate.GENERAL SIGNIFICANCEThese observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate.
Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers. Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination. Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment. These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate. •Environmental physical cues can determine MSC fate and differentiation.•Cytoskeleton and nuclear skeleton undergo reorganization during MSC differentiation.•MSC fate determination and differentiation are associated with changes in cellular biophysical properties.•Physical cues and chemical inducers specify MSC lineages by regulating cell adhesion molecules and Rho GTPases.
Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers.Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination.Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment.These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate.
Author Huang, Chao
Zhang, Xin A.
Dai, Jingxing
AuthorAffiliation 1 Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
2 Department of Anatomy, Southern Medical University, Guangzhou, China
AuthorAffiliation_xml – name: 1 Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
– name: 2 Department of Anatomy, Southern Medical University, Guangzhou, China
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0002-5747-4560
  surname: Huang
  fullname: Huang, Chao
  organization: Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
– sequence: 2
  givenname: Jingxing
  surname: Dai
  fullname: Dai, Jingxing
  organization: Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
– sequence: 3
  givenname: Xin A.
  surname: Zhang
  fullname: Zhang, Xin A.
  email: xin-zhang-1@ouhsc.edu
  organization: Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25727396$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFuEzEUtFARTQt_gNAeuezy7LXXXg5IqCoFqVIvvXCyvPZL42jXDvYmUv4eh6QVcGh98ZM8M34zc0HOQgxIyHsKDQXafVo3w2AeMDQMqGiANUDpK7KgSrJaAXRnZAEt8JrTTpyTi5zXUI7oxRtyzoRksu27Bfl5HXY-xTBhmM1YbVb77G0Z7BZz5XDGNPmA1bzCaixD-bDKG7R-WVCzj6GKy2rCjMGu9lPh5RmnyuI45rfk9dKMGd-d7kty_-36_up7fXt38-Pq621tuYC5HvreKdEyQbu2Uw46LtH1A5e0G5grBpw0yMHSQZnWtpJawdt-ME7ZtjeyvSRfjrKb7TChs8VHMqPeJD-ZtNfReP3vS_Ar_RB3mnNKQbEi8PEkkOKv4nrWk88HByZg3GbNSmqMcWDiRSiVwEBJxVSBfvh7rad9HpMvAH4E2BRzTrh8glDQh4L1Wh8L1oeCNTBdCi60z__RrJ__NFHM-fEl8ikrLH3sPCadrS_VofMJ7axd9M8L_AaYlMRg
CitedBy_id crossref_primary_10_3390_ijms232113016
crossref_primary_10_1007_s00018_018_2945_2
crossref_primary_10_1016_j_yexcr_2023_113766
crossref_primary_10_3390_ijms19030669
crossref_primary_10_1016_j_bcp_2024_116262
crossref_primary_10_1002_mabi_202000303
crossref_primary_10_1016_j_biotechadv_2017_04_005
crossref_primary_10_3390_ijms25168712
crossref_primary_10_1016_j_biomaterials_2015_08_005
crossref_primary_10_1016_j_biomaterials_2020_119881
crossref_primary_10_1038_s41598_023_42359_9
crossref_primary_10_1039_C5TB02546J
crossref_primary_10_3390_bioengineering8110165
crossref_primary_10_1002_adbi_202000062
crossref_primary_10_1007_s40495_016_0057_y
crossref_primary_10_3390_ijms232315010
crossref_primary_10_1002_jbm_a_35762
crossref_primary_10_1109_TNB_2017_2714462
crossref_primary_10_1002_term_2956
crossref_primary_10_1016_j_biopha_2017_04_094
crossref_primary_10_1371_journal_pone_0135519
crossref_primary_10_3892_etm_2016_3206
crossref_primary_10_1016_j_bbrc_2022_03_078
crossref_primary_10_1186_s13287_019_1532_2
crossref_primary_10_1016_j_bej_2021_107947
crossref_primary_10_3390_biomedicines12061369
crossref_primary_10_1155_2019_5214501
crossref_primary_10_1016_j_biomaterials_2015_10_062
crossref_primary_10_1016_j_colsurfb_2017_01_039
crossref_primary_10_1016_j_tem_2021_09_001
crossref_primary_10_1186_s13018_019_1346_z
crossref_primary_10_1039_C7BM00134G
crossref_primary_10_1016_j_onano_2025_100235
crossref_primary_10_1007_s12217_018_9653_2
crossref_primary_10_3389_fphar_2024_1345779
crossref_primary_10_1155_2018_6143081
crossref_primary_10_1007_s12015_020_09999_0
crossref_primary_10_1002_adbi_201700004
crossref_primary_10_1002_jor_25041
crossref_primary_10_1002_jbm_a_37495
crossref_primary_10_1631_jzus_B23d0003
crossref_primary_10_1063_5_0131125
crossref_primary_10_46889_JRMBR_2024_5202
crossref_primary_10_3389_fcell_2020_596831
crossref_primary_10_1021_acsami_8b19929
crossref_primary_10_1007_s00441_021_03458_z
crossref_primary_10_1016_j_colsurfb_2018_07_017
crossref_primary_10_1016_j_isci_2022_105875
crossref_primary_10_3389_fendo_2016_00171
crossref_primary_10_2174_1574888X14666181227120706
crossref_primary_10_1007_s00466_018_1604_7
crossref_primary_10_3390_cells12020224
crossref_primary_10_1080_02648725_2022_2162249
crossref_primary_10_1089_ten_teb_2017_0305
crossref_primary_10_1073_pnas_1910668117
crossref_primary_10_1155_2018_2891957
crossref_primary_10_1007_s13577_023_00997_1
crossref_primary_10_1038_s41598_021_03824_5
crossref_primary_10_1039_C6RA26509J
crossref_primary_10_3389_fcell_2022_824812
crossref_primary_10_1007_s42235_018_0056_2
crossref_primary_10_3390_jfb12020025
crossref_primary_10_3390_cells12050738
crossref_primary_10_1111_cpr_13630
crossref_primary_10_1002_adfm_202009619
crossref_primary_10_1038_s41598_024_60846_5
Cites_doi 10.1073/pnas.0912739107
10.1089/107632701300062859
10.1007/s12015-010-9115-8
10.1016/0021-9290(93)90042-D
10.1016/0092-8674(83)90098-3
10.1097/01.PRS.0000055043.62589.05
10.1038/nmat3339
10.1126/science.276.5317.1425
10.1073/pnas.0903269107
10.1210/en.2003-1156
10.1016/S1534-5807(04)00075-9
10.2217/nnm.13.31
10.1186/scrt230
10.1002/mabi.201200481
10.1083/jcb.133.6.1403
10.1073/pnas.94.25.13661
10.1002/jcb.21074
10.1126/science.1240104
10.1016/j.cmet.2005.08.006
10.1002/jcp.1041510308
10.1002/jbmr.278
10.1007/s10439-010-9979-4
10.1021/cr300426x
10.1002/stem.308
10.1152/ajpcell.67.2008
10.1002/cm.10037
10.1159/000091713
10.1073/pnas.0235407100
10.1210/en.2008-0687
10.1016/j.bbrc.2007.07.112
10.1152/ajpcell.00280.2003
10.1126/science.7079743
10.1038/nmeth.1487
10.1002/adhm.201200142
10.1073/pnas.1106467108
10.1111/j.1432-0436.2006.00092.x
10.1101/gad.948702
10.1126/science.284.5411.143
10.1016/j.yexcr.2010.02.010
10.1016/j.yexcr.2006.09.013
10.1634/stemcells.2008-0432
10.1115/1.2746375
10.1371/journal.pcbi.1002926
10.1002/stem.1567
10.1021/la200487w
10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
10.1016/S0006-3495(94)81014-8
10.1016/j.bone.2009.04.252
10.1210/en.2006-1704
10.1159/000204105
10.1242/bio.20122162
10.1529/biophysj.107.107797
10.1038/nmat4051
10.2217/rme.10.60
10.1359/JBMR.050611
10.2106/JBJS.G.00292
10.1128/MCB.01566-08
10.2152/jmi.56.142
10.1002/jcb.20839
10.1194/jlr.M300084-JLR200
10.1016/j.cell.2006.06.044
10.1097/MAT.0b013e31802deb2d
10.1038/nmat2013
10.1002/jnr.20147
10.1074/jbc.M405319200
10.1242/jcs.036293
10.1016/j.biomaterials.2013.07.074
10.1038/267531a0
10.1016/S0006-291X(03)01165-3
10.1038/nmat2732
10.1177/00220345010800061201
10.1242/jcs.110.18.2187
10.1038/cddis.2013.226
10.1073/pnas.1116268109
10.1089/ten.2006.12.3459
10.3233/BIR-2008-0517
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright © 2015 Elsevier B.V. All rights reserved.
2015 Published by Elsevier B.V. 2015
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright © 2015 Elsevier B.V. All rights reserved.
– notice: 2015 Published by Elsevier B.V. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.bbagen.2015.02.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 1266
ExternalDocumentID PMC4411082
25727396
10_1016_j_bbagen_2015_02_011
S0304416515000732
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA096991
– fundername: NCI NIH HHS
  grantid: CA096991
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
5PM
ID FETCH-LOGICAL-c450t-b99d8532516368d0647ed9b4716b2d304d7ae40c1b8a3c371c5439bad8c39a73
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Thu Aug 21 18:41:45 EDT 2025
Thu Sep 04 17:49:27 EDT 2025
Fri Sep 05 03:53:56 EDT 2025
Thu Apr 03 06:55:19 EDT 2025
Tue Jul 01 00:22:05 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 23 02:34:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Mesenchymal stem cell
LN
Rock
BMP
MLC
Physical cue
FN
ECM
3D
PEG
Topography
PAAm
Cytoskeleton
Stiffness
MSC
PDMS
Language English
License Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-b99d8532516368d0647ed9b4716b2d304d7ae40c1b8a3c371c5439bad8c39a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5747-4560
PMID 25727396
PQID 1702087828
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4411082
proquest_miscellaneous_2000224025
proquest_miscellaneous_1702087828
pubmed_primary_25727396
crossref_primary_10_1016_j_bbagen_2015_02_011
crossref_citationtrail_10_1016_j_bbagen_2015_02_011
elsevier_sciencedirect_doi_10_1016_j_bbagen_2015_02_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References von der Mark, Gauss, von der Mark, Muller (bb0280) 1977; 267
Higuchi, Ling, Chang, Hsu, Umezawa (bb0170) 2013; 113
Carbonetto, Gruver, Turner (bb0115) 1982; 216
Schneider, Zaharias, Stanford (bb0300) 2001; 80
Tay, Koh, Tan, Leong, Tan (bb0090) 2013; 8
Mooney, Hansen, Vacanti, Langer, Farmer, Ingber (bb0065) 1992; 151
Dalby, Gadegaard, Tare, Andar, Riehle, Herzyk, Wilkinson, Oreffo (bb0240) 2007; 6
David, Martin, Lafage-Proust, Malaval, Peyroche, Jones, Vico, Guignandon (bb0355) 2007; 148
Shih, Tseng, Lai, Lin, Lee (bb0365) 2011; 26
Song, Lu, Kawazoe, Chen (bb0340) 2011; 27
Liu, DeYoung, Zhang, Zhang, Cheng, Saltiel (bb0370) 2005; 2
Arnsdorf, Tummala, Kwon, Jacobs (bb0085) 2009; 122
Huebsch, Arany, Mao, Shvartsman, Ali, Bencherif, Rivera-Feliciano, Mooney (bb0110) 2010; 9
Gao, McBeath, Chen (bb0245) 2010; 28
Peng, Zhou, Luk, Cheung, Li, Lam, Zhou, Lu (bb0320) 2009; 23
Pittenger, Mackay, Beck, Jaiswal, Douglas, Mosca, Moorman, Simonetti, Craig, Marshak (bb0015) 1999; 284
Ashjian, Elbarbary, Edmonds, DeUgarte, Zhu, Zuk, Lorenz, Benhaim, Hedrick (bb0055) 2003; 111
Wang, Ostuni, Whitesides, Ingber (bb0285) 2002; 52
Chen, Alonso, Ostuni, Whitesides, Ingber (bb0290) 2003; 307
McBeath, Pirone, Nelson, Bhadriraju, Chen (bb0080) 2004; 6
Chen, Mrksich, Huang, Whitesides, Ingber (bb0060) 1997; 276
Li, Hosaka, Jambaldorj, Nakaya, Funaki (bb0345) 2009; 56
Leong, Khor, Chew, Lim, Hutmacher (bb0035) 2006; 182
Yourek, McCormick, Mao, Reilly (bb0145) 2010; 5
Yu, Chua, Tay, Wen, Yu, Chan, Chong, Leong, Tan (bb0270) 2013; 13
Zuk, Zhu, Mizuno, Huang, Futrell, Katz, Benhaim, Lorenz, Hedrick (bb0040) 2001; 7
Chrzanowska-Wodnicka, Burridge (bb0210) 1996; 133
Lee, Abdeen, Zhang, Kilian (bb0265) 2013; 34
Duty, Oest, Guldberg (bb0160) 2007; 129
Chen, Wang, Wu, Huang (bb0360) 2006; 98
Chen, Shou, Zhang, Xu, Zheng, Han, Li, Huang, Zhang, Shao, Roberts, Rabson, Ren, Zhang, Wang, Denhardt, Shi (bb0380) 2014; 32
Salasznyk, Klees, Williams, Boskey, Plopper (bb0220) 2007; 313
Rho, Ashman, Turner (bb0385) 1993; 26
Schiller, Schiele, Sims, Lee, Kuo (bb0195) 2013; 4
Guilak, Awad, Fermor, Leddy, Gimble (bb0050) 2004; 41
Walcott, Sun (bb0235) 2010; 107
Wen, Vincent, Fuhrmann, Choi, Hribar, Taylor-Weiner, Chen, Engler (bb0120) 2014; 13
Salasznyk, Klees, Boskey, Plopper (bb0225) 2007; 100
Moursi, Globus, Damsky (bb0375) 1997; 110
Onishi, Fujita, Yoshikawa, Yamashita (bb0255) 2013; 4
Schoeters, de Saint-Georges, Van den Heuvel, Vanderborght (bb0005) 1988; 21
Leong, Abraham, Rath, Lim, Chew, Hutmacher (bb0025) 2006; 74
Fu, Wang, Yang, Desai, Yu, Liu, Chen (bb0130) 2010; 7
Pelham, Wang (bb0295) 1997; 94
Hess, Ushmorov, Fiedler, Brenner, Wirth (bb0315) 2009; 45
Hsu, Wang, Liu, Krenek, Zuk, Hedrick, Benhaim, Lieberman (bb0045) 2008; American volume 90
Kilian, Bugarija, Lahn, Mrksich (bb0075) 2010; 107
Spiegelman, Ginty (bb0325) 1983; 35
Meyers, Zayzafoon, Douglas, McDonald (bb0215) 2005; 20
Sun, Nicholson, Hajjar, Gotto, Han (bb0020) 2003; 44
Yourek, Hussain, Mao (bb0180) 2007; 53
Neuhuber, Gallo, Howard, Kostura, Mackay, Fischer (bb0185) 2004; 77
Trappmann, Gautrot, Connelly, Strange, Li, Oyen, Cohen Stuart, Boehm, Li, Vogel, Spatz, Watt, Huck (bb0105) 2012; 11
Ruiz, Chen (bb0250) 2008; 26
Yu, Tay, Pal, Leong, Li, Li, Wen, Leong, Tan (bb0275) 2013; 2
Tan, Tien, Pirone, Gray, Bhadriraju, Chen (bb0125) 2003; 100
Kearney, Farrell, Prendergast, Campbell (bb0155) 2010; 38
Swift, Ivanovska, Buxboim, Harada, Dingal, Pinter, Pajerowski, Spinler, Shin, Tewari, Rehfeldt, Speicher, Discher (bb0310) 2013; 341
Sumanasinghe, Bernacki, Loboa (bb0330) 2006; 12
Jaiswal, Haynesworth, Caplan, Bruder (bb0010) 1997; 64
Kovacs, Toth, Hetenyi, Malnasi-Csizmadia, Sellers (bb0190) 2004; 279
Tay, Yu, Pal, Leong, Tan, Ng, Leong, Tan (bb0260) 2010; 316
Sen, Xie, Case, Ma, Rubin, Rubin (bb0150) 2008; 149
Ma, Kovacs, Conti, Wang, Zhang, Sellers, Adelstein (bb0200) 2012; 109
Engler, Sen, Sweeney, Discher (bb0095) 2006; 126
Feng, Szabo, Dziak, Opas (bb0175) 2010; 6
Polte, Eichler, Wang, Ingber (bb0305) 2004; 286
Kim, Neal, Kamm, Asada (bb0135) 2013; 9
Rosen, Hsu, Wang, Sakai, Freeman, Gonzalez, Spiegelman (bb0350) 2002; 16
Eyckmans, Lin, Chen (bb0205) 2012; 1
Wang, Ingber (bb0070) 1994; 66
Gupta, Leong, Bai, Singh, Lim, Hutmacher (bb0030) 2007; 362
Du, Chen, Liang, Zhang, Xu, He, Zhan, Feng, Chien, Yang (bb0165) 2011; 108
Geerligs, Peters, Ackermans, Oomens, Baaijens (bb0390) 2008; 45
Zayzafoon, Gathings, McDonald (bb0140) 2004; 145
Rowlands, George, Cooper-White (bb0100) 2008; 295
Zhao, Ko, Liu, Chen, Zhang, Wang, Harris, Oyajobi, Mundy (bb0230) 2009; 29
Titushkin, Cho (bb0335) 2007; 93
Tay (10.1016/j.bbagen.2015.02.011_bb0090) 2013; 8
Salasznyk (10.1016/j.bbagen.2015.02.011_bb0220) 2007; 313
Wang (10.1016/j.bbagen.2015.02.011_bb0070) 1994; 66
Wang (10.1016/j.bbagen.2015.02.011_bb0285) 2002; 52
Lee (10.1016/j.bbagen.2015.02.011_bb0265) 2013; 34
Huebsch (10.1016/j.bbagen.2015.02.011_bb0110) 2010; 9
Sen (10.1016/j.bbagen.2015.02.011_bb0150) 2008; 149
Higuchi (10.1016/j.bbagen.2015.02.011_bb0170) 2013; 113
Spiegelman (10.1016/j.bbagen.2015.02.011_bb0325) 1983; 35
Chen (10.1016/j.bbagen.2015.02.011_bb0360) 2006; 98
Moursi (10.1016/j.bbagen.2015.02.011_bb0375) 1997; 110
Guilak (10.1016/j.bbagen.2015.02.011_bb0050) 2004; 41
Li (10.1016/j.bbagen.2015.02.011_bb0345) 2009; 56
Yu (10.1016/j.bbagen.2015.02.011_bb0270) 2013; 13
Zuk (10.1016/j.bbagen.2015.02.011_bb0040) 2001; 7
Du (10.1016/j.bbagen.2015.02.011_bb0165) 2011; 108
von der Mark (10.1016/j.bbagen.2015.02.011_bb0280) 1977; 267
Tay (10.1016/j.bbagen.2015.02.011_bb0260) 2010; 316
Carbonetto (10.1016/j.bbagen.2015.02.011_bb0115) 1982; 216
Wen (10.1016/j.bbagen.2015.02.011_bb0120) 2014; 13
Yourek (10.1016/j.bbagen.2015.02.011_bb0180) 2007; 53
Rosen (10.1016/j.bbagen.2015.02.011_bb0350) 2002; 16
Fu (10.1016/j.bbagen.2015.02.011_bb0130) 2010; 7
Zhao (10.1016/j.bbagen.2015.02.011_bb0230) 2009; 29
Schneider (10.1016/j.bbagen.2015.02.011_bb0300) 2001; 80
Dalby (10.1016/j.bbagen.2015.02.011_bb0240) 2007; 6
Chen (10.1016/j.bbagen.2015.02.011_bb0380) 2014; 32
David (10.1016/j.bbagen.2015.02.011_bb0355) 2007; 148
Liu (10.1016/j.bbagen.2015.02.011_bb0370) 2005; 2
Yu (10.1016/j.bbagen.2015.02.011_bb0275) 2013; 2
Pelham (10.1016/j.bbagen.2015.02.011_bb0295) 1997; 94
Engler (10.1016/j.bbagen.2015.02.011_bb0095) 2006; 126
Sun (10.1016/j.bbagen.2015.02.011_bb0020) 2003; 44
Feng (10.1016/j.bbagen.2015.02.011_bb0175) 2010; 6
Chen (10.1016/j.bbagen.2015.02.011_bb0060) 1997; 276
Rho (10.1016/j.bbagen.2015.02.011_bb0385) 1993; 26
Schiller (10.1016/j.bbagen.2015.02.011_bb0195) 2013; 4
Leong (10.1016/j.bbagen.2015.02.011_bb0035) 2006; 182
Kilian (10.1016/j.bbagen.2015.02.011_bb0075) 2010; 107
Schoeters (10.1016/j.bbagen.2015.02.011_bb0005) 1988; 21
Kearney (10.1016/j.bbagen.2015.02.011_bb0155) 2010; 38
Chrzanowska-Wodnicka (10.1016/j.bbagen.2015.02.011_bb0210) 1996; 133
Mooney (10.1016/j.bbagen.2015.02.011_bb0065) 1992; 151
Titushkin (10.1016/j.bbagen.2015.02.011_bb0335) 2007; 93
Kovacs (10.1016/j.bbagen.2015.02.011_bb0190) 2004; 279
Sumanasinghe (10.1016/j.bbagen.2015.02.011_bb0330) 2006; 12
Leong (10.1016/j.bbagen.2015.02.011_bb0025) 2006; 74
Salasznyk (10.1016/j.bbagen.2015.02.011_bb0225) 2007; 100
Hess (10.1016/j.bbagen.2015.02.011_bb0315) 2009; 45
Chen (10.1016/j.bbagen.2015.02.011_bb0290) 2003; 307
Peng (10.1016/j.bbagen.2015.02.011_bb0320) 2009; 23
McBeath (10.1016/j.bbagen.2015.02.011_bb0080) 2004; 6
Polte (10.1016/j.bbagen.2015.02.011_bb0305) 2004; 286
Hsu (10.1016/j.bbagen.2015.02.011_bb0045) 2008; American volume 90
Arnsdorf (10.1016/j.bbagen.2015.02.011_bb0085) 2009; 122
Meyers (10.1016/j.bbagen.2015.02.011_bb0215) 2005; 20
Ruiz (10.1016/j.bbagen.2015.02.011_bb0250) 2008; 26
Song (10.1016/j.bbagen.2015.02.011_bb0340) 2011; 27
Rowlands (10.1016/j.bbagen.2015.02.011_bb0100) 2008; 295
Gao (10.1016/j.bbagen.2015.02.011_bb0245) 2010; 28
Pittenger (10.1016/j.bbagen.2015.02.011_bb0015) 1999; 284
Walcott (10.1016/j.bbagen.2015.02.011_bb0235) 2010; 107
Duty (10.1016/j.bbagen.2015.02.011_bb0160) 2007; 129
Neuhuber (10.1016/j.bbagen.2015.02.011_bb0185) 2004; 77
Tan (10.1016/j.bbagen.2015.02.011_bb0125) 2003; 100
Zayzafoon (10.1016/j.bbagen.2015.02.011_bb0140) 2004; 145
Jaiswal (10.1016/j.bbagen.2015.02.011_bb0010) 1997; 64
Shih (10.1016/j.bbagen.2015.02.011_bb0365) 2011; 26
Ashjian (10.1016/j.bbagen.2015.02.011_bb0055) 2003; 111
Ma (10.1016/j.bbagen.2015.02.011_bb0200) 2012; 109
Trappmann (10.1016/j.bbagen.2015.02.011_bb0105) 2012; 11
Gupta (10.1016/j.bbagen.2015.02.011_bb0030) 2007; 362
Onishi (10.1016/j.bbagen.2015.02.011_bb0255) 2013; 4
Eyckmans (10.1016/j.bbagen.2015.02.011_bb0205) 2012; 1
Kim (10.1016/j.bbagen.2015.02.011_bb0135) 2013; 9
Swift (10.1016/j.bbagen.2015.02.011_bb0310) 2013; 341
Geerligs (10.1016/j.bbagen.2015.02.011_bb0390) 2008; 45
Yourek (10.1016/j.bbagen.2015.02.011_bb0145) 2010; 5
12112152 - Cell Motil Cytoskeleton. 2002 Jun;52(2):97-106
12859964 - Biochem Biophys Res Commun. 2003 Jul 25;307(2):355-61
11499509 - J Dent Res. 2001 Jun;80(6):1540-4
9027589 - J Cell Biochem. 1997 Feb;64(2):295-312
17891143 - Nat Mater. 2007 Dec;6(12):997-1003
8075352 - Biophys J. 1994 Jun;66(6):2181-9
20217480 - Ann Biomed Eng. 2010 May;38(5):1767-79
19255511 - Cell Physiol Biochem. 2009;23(1-3):165-74
16651824 - Cells Tissues Organs. 2006;182(1):1-11
17655474 - J Biomech Eng. 2007 Aug;129(4):531-9
8682874 - J Cell Biol. 1996 Jun;133(6):1403-15
20385838 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7757-62
19174467 - J Cell Sci. 2009 Feb 15;122(Pt 4):546-53
17413564 - ASAIO J. 2007 Mar-Apr;53(2):219-28
15211586 - J Neurosci Res. 2004 Jul 15;77(2):192-204
9162012 - Science. 1997 May 30;276(5317):1425-8
15299271 - Biorheology. 2004;41(3-4):389-99
17081517 - Exp Cell Res. 2007 Jan 1;313(1):22-37
23606448 - Macromol Biosci. 2013 Jun;13(6):799-807
19103752 - Mol Cell Biol. 2009 Mar;29(5):1291-305
20194780 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4872-7
21593411 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9466-71
20082286 - Stem Cells. 2010 Mar 31;28(3):564-72
21486006 - Langmuir. 2011 May 17;27(10):6155-62
7079743 - Science. 1982 May 21;216(4548):897-9
20148318 - Stem Cell Rev. 2010 Mar;6(1):74-85
23213385 - Biol Open. 2012 Nov 15;1(11):1058-68
559947 - Nature. 1977 Jun 9;267(5611):531-2
23560412 - Nanomedicine (Lond). 2013 Apr;8(4):623-38
19763027 - J Med Invest. 2009 Aug;56(3-4):142-9
17518682 - Tissue Eng. 2006 Dec;12(12):3459-65
9378768 - J Cell Sci. 1997 Sep;110 ( Pt 18):2187-96
23932245 - Biomaterials. 2013 Nov;34(33):8140-8
17675345 - Biophys J. 2007 Nov 15;93(10):3693-702
18687779 - Endocrinology. 2008 Dec;149(12):6065-75
16795079 - J Cell Biochem. 2006 Jul 1;98(4):1021-35
20868327 - Regen Med. 2010 Sep;5(5):713-24
16160744 - J Bone Miner Res. 2005 Oct;20(10):1858-66
3245957 - Cell Tissue Kinet. 1988 Sep;21(5):363-74
15205456 - J Biol Chem. 2004 Aug 20;279(34):35557-63
17317771 - Endocrinology. 2007 May;148(5):2553-62
24123709 - Stem Cells. 2014 Feb;32(2):327-37
1295898 - J Cell Physiol. 1992 Jun;151(3):497-505
20939067 - J Bone Miner Res. 2011 Apr;26(4):730-8
20676108 - Nat Methods. 2010 Sep;7(9):733-6
12711954 - Plast Reconstr Surg. 2003 May;111(6):1922-31
9391082 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13661-5
6686086 - Cell. 1983 Dec;35(3 Pt 2):657-66
19065014 - Biorheology. 2008;45(6):677-88
12552122 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9
16927379 - J Cell Biochem. 2007 Feb 1;100(2):499-514
11782441 - Genes Dev. 2002 Jan 1;16(1):22-6
23990565 - Science. 2013 Aug 30;341(6149):1240104
18451397 - J Bone Joint Surg Am. 2008 May;90(5):1043-52
22635042 - Nat Mater. 2012 Jul;11(7):642-9
11304456 - Tissue Eng. 2001 Apr;7(2):211-28
20418863 - Nat Mater. 2010 Jun;9(6):518-26
23468612 - PLoS Comput Biol. 2013;9(2):e1002926
12867536 - J Lipid Res. 2003 Oct;44(10):1877-86
25108614 - Nat Mater. 2014 Oct;13(10):979-87
18703661 - Stem Cells. 2008 Nov;26(11):2921-7
20156435 - Exp Cell Res. 2010 Apr 15;316(7):1159-68
10102814 - Science. 1999 Apr 2;284(5411):143-7
14749352 - Endocrinology. 2004 May;145(5):2421-32
23184715 - Adv Healthc Mater. 2013 Mar;2(3):442-9
23391258 - Chem Rev. 2013 May 8;113(5):3297-328
17177849 - Differentiation. 2006 Dec;74(9-10):519-29
14761883 - Am J Physiol Cell Physiol. 2004 Mar;286(3):C518-28
23838354 - Stem Cell Res Ther. 2013;4(4):79
18753317 - Am J Physiol Cell Physiol. 2008 Oct;295(4):C1037-44
23807227 - Cell Death Dis. 2013;4:e698
8429054 - J Biomech. 1993 Feb;26(2):111-9
16154099 - Cell Metab. 2005 Sep;2(3):165-77
17692823 - Biochem Biophys Res Commun. 2007 Oct 12;362(1):17-24
16923388 - Cell. 2006 Aug 25;126(4):677-89
19414075 - Bone. 2009 Aug;45(2):367-76
15068789 - Dev Cell. 2004 Apr;6(4):483-95
22393000 - Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4509-14
References_xml – volume: 94
  start-page: 13661
  year: 1997
  end-page: 13665
  ident: bb0295
  article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 26
  start-page: 730
  year: 2011
  end-page: 738
  ident: bb0365
  article-title: Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells
  publication-title: J. Bone Miner. Res.
– volume: 8
  start-page: 623
  year: 2013
  end-page: 638
  ident: bb0090
  article-title: Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine
  publication-title: Nanomedicine (Lond.)
– volume: 5
  start-page: 713
  year: 2010
  end-page: 724
  ident: bb0145
  article-title: Shear stress induces osteogenic differentiation of human mesenchymal stem cells
  publication-title: Regen. Med.
– volume: 26
  start-page: 2921
  year: 2008
  end-page: 2927
  ident: bb0250
  article-title: Emergence of patterned stem cell differentiation within multicellular structures
  publication-title: Stem Cells
– volume: 13
  start-page: 979
  year: 2014
  end-page: 987
  ident: bb0120
  article-title: Interplay of matrix stiffness and protein tethering in stem cell differentiation
  publication-title: Nat. Mater
– volume: 307
  start-page: 355
  year: 2003
  end-page: 361
  ident: bb0290
  article-title: Cell shape provides global control of focal adhesion assembly
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 362
  start-page: 17
  year: 2007
  end-page: 24
  ident: bb0030
  article-title: Osteo-maturation of adipose-derived stem cells required the combined action of vitamin D3, beta-glycerophosphate, and ascorbic acid
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 100
  start-page: 1484
  year: 2003
  end-page: 1489
  ident: bb0125
  article-title: Cells lying on a bed of microneedles: an approach to isolate mechanical force
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 52
  start-page: 97
  year: 2002
  end-page: 106
  ident: bb0285
  article-title: Micropatterning tractional forces in living cells
  publication-title: Cell Motil. Cytoskeleton
– volume: 11
  start-page: 642
  year: 2012
  end-page: 649
  ident: bb0105
  article-title: Extracellular-matrix tethering regulates stem-cell fate
  publication-title: Nat. Mater.
– volume: 6
  start-page: 997
  year: 2007
  end-page: 1003
  ident: bb0240
  article-title: The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder
  publication-title: Nat. Mater.
– volume: 4
  start-page: e698
  year: 2013
  ident: bb0255
  article-title: Inhibition of Rac1 promotes BMP-2-induced osteoblastic differentiation
  publication-title: Cell Death Dis.
– volume: 151
  start-page: 497
  year: 1992
  end-page: 505
  ident: bb0065
  article-title: Switching from differentiation to growth in hepatocytes: control by extracellular matrix
  publication-title: J. Cell. Physiol.
– volume: 111
  start-page: 1922
  year: 2003
  end-page: 1931
  ident: bb0055
  article-title: In vitro differentiation of human processed lipoaspirate cells into early neural progenitors
  publication-title: Plast. Reconstr. Surg.
– volume: 23
  start-page: 165
  year: 2009
  end-page: 174
  ident: bb0320
  article-title: Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway
  publication-title: Cell Physiol. Biochem.
– volume: 56
  start-page: 142
  year: 2009
  end-page: 149
  ident: bb0345
  article-title: Extracellular matrix with the rigidity of adipose tissue helps 3
  publication-title: J. Med. Invest.
– volume: 6
  start-page: 483
  year: 2004
  end-page: 495
  ident: bb0080
  article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment
  publication-title: Dev. Cell
– volume: 109
  start-page: 4509
  year: 2012
  end-page: 4514
  ident: bb0200
  article-title: Nonmuscle myosin II exerts tension but does not translocate actin in vertebrate cytokinesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 149
  start-page: 6065
  year: 2008
  end-page: 6075
  ident: bb0150
  article-title: Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal
  publication-title: Endocrinology
– volume: 12
  start-page: 3459
  year: 2006
  end-page: 3465
  ident: bb0330
  article-title: Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression
  publication-title: Tissue Eng.
– volume: 148
  start-page: 2553
  year: 2007
  end-page: 2562
  ident: bb0355
  article-title: Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis
  publication-title: Endocrinology
– volume: 9
  start-page: e1002926
  year: 2013
  ident: bb0135
  article-title: Dynamic modeling of cell migration and spreading behaviors on fibronectin coated planar substrates and micropatterned geometries
  publication-title: PLoS Comput. Biol.
– volume: American volume 90
  start-page: 1043
  year: 2008
  end-page: 1052
  ident: bb0045
  article-title: Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model
  publication-title: J. Bone Joint Surg.
– volume: 41
  start-page: 389
  year: 2004
  end-page: 399
  ident: bb0050
  article-title: Adipose-derived adult stem cells for cartilage tissue engineering
  publication-title: Biorheology
– volume: 216
  start-page: 897
  year: 1982
  end-page: 899
  ident: bb0115
  article-title: Nerve fiber growth on defined hydrogel substrates
  publication-title: Science
– volume: 7
  start-page: 733
  year: 2010
  end-page: 736
  ident: bb0130
  article-title: Mechanical regulation of cell function with geometrically modulated elastomeric substrates
  publication-title: Nat. Methods
– volume: 93
  start-page: 3693
  year: 2007
  end-page: 3702
  ident: bb0335
  article-title: Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells
  publication-title: Biophys. J.
– volume: 27
  start-page: 6155
  year: 2011
  end-page: 6162
  ident: bb0340
  article-title: Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns
  publication-title: Langmuir
– volume: 38
  start-page: 1767
  year: 2010
  end-page: 1779
  ident: bb0155
  article-title: Tensile strain as a regulator of mesenchymal stem cell osteogenesis
  publication-title: Ann. Biomed. Eng.
– volume: 126
  start-page: 677
  year: 2006
  end-page: 689
  ident: bb0095
  article-title: Matrix elasticity directs stem cell lineage specification
  publication-title: Cell
– volume: 35
  start-page: 657
  year: 1983
  end-page: 666
  ident: bb0325
  article-title: Fibronectin modulation of cell shape and lipogenic gene expression in 3
  publication-title: Cell
– volume: 295
  start-page: C1037
  year: 2008
  end-page: C1044
  ident: bb0100
  article-title: Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 108
  start-page: 9466
  year: 2011
  end-page: 9471
  ident: bb0165
  article-title: Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 80
  start-page: 1540
  year: 2001
  end-page: 1544
  ident: bb0300
  article-title: Osteoblast integrin adhesion and signaling regulate mineralization
  publication-title: J. Dent. Res.
– volume: 6
  start-page: 74
  year: 2010
  end-page: 85
  ident: bb0175
  article-title: Cytoskeletal disassembly and cell rounding promotes adipogenesis from ES cells
  publication-title: Stem Cell Rev.
– volume: 45
  start-page: 367
  year: 2009
  end-page: 376
  ident: bb0315
  article-title: TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway
  publication-title: Bone
– volume: 129
  start-page: 531
  year: 2007
  end-page: 539
  ident: bb0160
  article-title: Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo
  publication-title: J. Biomech. Eng.
– volume: 98
  start-page: 1021
  year: 2006
  end-page: 1035
  ident: bb0360
  article-title: Effects of PPARgamma agonists on cell survival and focal adhesions in a Chinese thyroid carcinoma cell line
  publication-title: J. Cell. Biochem.
– volume: 32
  start-page: 327
  year: 2014
  end-page: 337
  ident: bb0380
  article-title: An osteopontin–integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells
  publication-title: Stem Cells
– volume: 34
  start-page: 8140
  year: 2013
  end-page: 8148
  ident: bb0265
  article-title: Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition
  publication-title: Biomaterials
– volume: 28
  start-page: 564
  year: 2010
  end-page: 572
  ident: bb0245
  article-title: Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin
  publication-title: Stem Cells
– volume: 66
  start-page: 2181
  year: 1994
  end-page: 2189
  ident: bb0070
  article-title: Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension
  publication-title: Biophys. J.
– volume: 2
  start-page: 442
  year: 2013
  end-page: 449
  ident: bb0275
  article-title: A bio-inspired platform to modulate myogenic differentiation of human mesenchymal stem cells through focal adhesion regulation
  publication-title: Adv. Healthc. Mater.
– volume: 74
  start-page: 519
  year: 2006
  end-page: 529
  ident: bb0025
  article-title: Investigating the effects of preinduction on human adipose-derived precursor cells in an athymic rat model
  publication-title: Differentiation
– volume: 182
  start-page: 1
  year: 2006
  end-page: 11
  ident: bb0035
  article-title: Characterization of osteogenically induced adipose tissue-derived precursor cells in 2-dimensional and 3-dimensional environments
  publication-title: Cells Tissues Organs
– volume: 122
  start-page: 546
  year: 2009
  end-page: 553
  ident: bb0085
  article-title: Mechanically induced osteogenic differentiation—the role of RhoA ROCKII and cytoskeletal dynamics
  publication-title: J. Cell Sci.
– volume: 13
  start-page: 799
  year: 2013
  end-page: 807
  ident: bb0270
  article-title: A generic micropatterning platform to direct human mesenchymal stem cells from different origins towards myogenic differentiation
  publication-title: Macromol. Biosci.
– volume: 107
  start-page: 4872
  year: 2010
  end-page: 4877
  ident: bb0075
  article-title: Geometric cues for directing the differentiation of mesenchymal stem cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: 79
  year: 2013
  ident: bb0195
  article-title: Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro
  publication-title: Stem Cell Res. Ther.
– volume: 64
  start-page: 295
  year: 1997
  end-page: 312
  ident: bb0010
  article-title: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro
  publication-title: J. Cell. Biochem.
– volume: 9
  start-page: 518
  year: 2010
  end-page: 526
  ident: bb0110
  article-title: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate
  publication-title: Nat. Mater.
– volume: 284
  start-page: 143
  year: 1999
  end-page: 147
  ident: bb0015
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
– volume: 110
  start-page: 2187
  year: 1997
  end-page: 2196
  ident: bb0375
  article-title: Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro
  publication-title: J. Cell Sci.
– volume: 20
  start-page: 1858
  year: 2005
  end-page: 1866
  ident: bb0215
  article-title: RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity
  publication-title: J. Bone Miner. Res.
– volume: 53
  start-page: 219
  year: 2007
  end-page: 228
  ident: bb0180
  article-title: Cytoskeletal changes of mesenchymal stem cells during differentiation
  publication-title: ASAIO J.
– volume: 29
  start-page: 1291
  year: 2009
  end-page: 1305
  ident: bb0230
  article-title: Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2
  publication-title: Mol. Cell. Biol.
– volume: 133
  start-page: 1403
  year: 1996
  end-page: 1415
  ident: bb0210
  article-title: Rho-stimulated contractility drives the formation of stress fibers and focal adhesions
  publication-title: J. Cell Biol.
– volume: 44
  start-page: 1877
  year: 2003
  end-page: 1886
  ident: bb0020
  article-title: Adipogenic differentiating agents regulate expression of fatty acid binding protein and CD36 in the J744 macrophage cell line
  publication-title: J. Lipid Res.
– volume: 2
  start-page: 165
  year: 2005
  end-page: 177
  ident: bb0370
  article-title: Changes in integrin expression during adipocyte differentiation
  publication-title: Cell Metab.
– volume: 1
  start-page: 1058
  year: 2012
  end-page: 1068
  ident: bb0205
  article-title: Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells
  publication-title: Biol. Open
– volume: 45
  start-page: 677
  year: 2008
  end-page: 688
  ident: bb0390
  article-title: Linear viscoelastic behavior of subcutaneous adipose tissue
  publication-title: Biorheology
– volume: 113
  start-page: 3297
  year: 2013
  end-page: 3328
  ident: bb0170
  article-title: Physical cues of biomaterials guide stem cell differentiation fate
  publication-title: Chem. Rev.
– volume: 279
  start-page: 35557
  year: 2004
  end-page: 35563
  ident: bb0190
  article-title: Mechanism of blebbistatin inhibition of myosin II
  publication-title: J. Biol. Chem.
– volume: 267
  start-page: 531
  year: 1977
  end-page: 532
  ident: bb0280
  article-title: Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture
  publication-title: Nature
– volume: 145
  start-page: 2421
  year: 2004
  end-page: 2432
  ident: bb0140
  article-title: Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis
  publication-title: Endocrinology
– volume: 77
  start-page: 192
  year: 2004
  end-page: 204
  ident: bb0185
  article-title: Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype
  publication-title: J. Neurosci. Res.
– volume: 107
  start-page: 7757
  year: 2010
  end-page: 7762
  ident: bb0235
  article-title: A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 21
  start-page: 363
  year: 1988
  end-page: 374
  ident: bb0005
  article-title: Mineralization of adult mouse bone marrow in vitro
  publication-title: Cell Tissue Kinet.
– volume: 316
  start-page: 1159
  year: 2010
  end-page: 1168
  ident: bb0260
  article-title: Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage
  publication-title: Exp. Cell Res.
– volume: 286
  start-page: C518
  year: 2004
  end-page: C528
  ident: bb0305
  article-title: Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 341
  start-page: 1240104
  year: 2013
  ident: bb0310
  article-title: Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation
  publication-title: Science
– volume: 16
  start-page: 22
  year: 2002
  end-page: 26
  ident: bb0350
  article-title: C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway
  publication-title: Genes Dev.
– volume: 26
  start-page: 111
  year: 1993
  end-page: 119
  ident: bb0385
  article-title: Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements
  publication-title: J. Biomech.
– volume: 7
  start-page: 211
  year: 2001
  end-page: 228
  ident: bb0040
  article-title: Multilineage cells from human adipose tissue: implications for cell-based therapies
  publication-title: Tissue Eng.
– volume: 276
  start-page: 1425
  year: 1997
  end-page: 1428
  ident: bb0060
  article-title: Geometric control of cell life and death
  publication-title: Science
– volume: 100
  start-page: 499
  year: 2007
  end-page: 514
  ident: bb0225
  article-title: Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5
  publication-title: J. Cell. Biochem.
– volume: 313
  start-page: 22
  year: 2007
  end-page: 37
  ident: bb0220
  article-title: Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells
  publication-title: Exp. Cell Res.
– volume: 107
  start-page: 7757
  year: 2010
  ident: 10.1016/j.bbagen.2015.02.011_bb0235
  article-title: A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0912739107
– volume: 7
  start-page: 211
  year: 2001
  ident: 10.1016/j.bbagen.2015.02.011_bb0040
  article-title: Multilineage cells from human adipose tissue: implications for cell-based therapies
  publication-title: Tissue Eng.
  doi: 10.1089/107632701300062859
– volume: 6
  start-page: 74
  year: 2010
  ident: 10.1016/j.bbagen.2015.02.011_bb0175
  article-title: Cytoskeletal disassembly and cell rounding promotes adipogenesis from ES cells
  publication-title: Stem Cell Rev.
  doi: 10.1007/s12015-010-9115-8
– volume: 26
  start-page: 111
  year: 1993
  ident: 10.1016/j.bbagen.2015.02.011_bb0385
  article-title: Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(93)90042-D
– volume: 35
  start-page: 657
  year: 1983
  ident: 10.1016/j.bbagen.2015.02.011_bb0325
  article-title: Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes
  publication-title: Cell
  doi: 10.1016/0092-8674(83)90098-3
– volume: 111
  start-page: 1922
  year: 2003
  ident: 10.1016/j.bbagen.2015.02.011_bb0055
  article-title: In vitro differentiation of human processed lipoaspirate cells into early neural progenitors
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/01.PRS.0000055043.62589.05
– volume: 11
  start-page: 642
  year: 2012
  ident: 10.1016/j.bbagen.2015.02.011_bb0105
  article-title: Extracellular-matrix tethering regulates stem-cell fate
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3339
– volume: 276
  start-page: 1425
  year: 1997
  ident: 10.1016/j.bbagen.2015.02.011_bb0060
  article-title: Geometric control of cell life and death
  publication-title: Science
  doi: 10.1126/science.276.5317.1425
– volume: 107
  start-page: 4872
  year: 2010
  ident: 10.1016/j.bbagen.2015.02.011_bb0075
  article-title: Geometric cues for directing the differentiation of mesenchymal stem cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0903269107
– volume: 145
  start-page: 2421
  year: 2004
  ident: 10.1016/j.bbagen.2015.02.011_bb0140
  article-title: Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis
  publication-title: Endocrinology
  doi: 10.1210/en.2003-1156
– volume: 6
  start-page: 483
  year: 2004
  ident: 10.1016/j.bbagen.2015.02.011_bb0080
  article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(04)00075-9
– volume: 8
  start-page: 623
  year: 2013
  ident: 10.1016/j.bbagen.2015.02.011_bb0090
  article-title: Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine
  publication-title: Nanomedicine (Lond.)
  doi: 10.2217/nnm.13.31
– volume: 4
  start-page: 79
  year: 2013
  ident: 10.1016/j.bbagen.2015.02.011_bb0195
  article-title: Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/scrt230
– volume: 21
  start-page: 363
  year: 1988
  ident: 10.1016/j.bbagen.2015.02.011_bb0005
  article-title: Mineralization of adult mouse bone marrow in vitro
  publication-title: Cell Tissue Kinet.
– volume: 13
  start-page: 799
  year: 2013
  ident: 10.1016/j.bbagen.2015.02.011_bb0270
  article-title: A generic micropatterning platform to direct human mesenchymal stem cells from different origins towards myogenic differentiation
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201200481
– volume: 133
  start-page: 1403
  year: 1996
  ident: 10.1016/j.bbagen.2015.02.011_bb0210
  article-title: Rho-stimulated contractility drives the formation of stress fibers and focal adhesions
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.133.6.1403
– volume: 94
  start-page: 13661
  year: 1997
  ident: 10.1016/j.bbagen.2015.02.011_bb0295
  article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.94.25.13661
– volume: 100
  start-page: 499
  year: 2007
  ident: 10.1016/j.bbagen.2015.02.011_bb0225
  article-title: Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.21074
– volume: 341
  start-page: 1240104
  year: 2013
  ident: 10.1016/j.bbagen.2015.02.011_bb0310
  article-title: Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation
  publication-title: Science
  doi: 10.1126/science.1240104
– volume: 2
  start-page: 165
  year: 2005
  ident: 10.1016/j.bbagen.2015.02.011_bb0370
  article-title: Changes in integrin expression during adipocyte differentiation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.08.006
– volume: 151
  start-page: 497
  year: 1992
  ident: 10.1016/j.bbagen.2015.02.011_bb0065
  article-title: Switching from differentiation to growth in hepatocytes: control by extracellular matrix
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041510308
– volume: 26
  start-page: 730
  year: 2011
  ident: 10.1016/j.bbagen.2015.02.011_bb0365
  article-title: Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.278
– volume: 38
  start-page: 1767
  year: 2010
  ident: 10.1016/j.bbagen.2015.02.011_bb0155
  article-title: Tensile strain as a regulator of mesenchymal stem cell osteogenesis
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-9979-4
– volume: 113
  start-page: 3297
  year: 2013
  ident: 10.1016/j.bbagen.2015.02.011_bb0170
  article-title: Physical cues of biomaterials guide stem cell differentiation fate
  publication-title: Chem. Rev.
  doi: 10.1021/cr300426x
– volume: 28
  start-page: 564
  year: 2010
  ident: 10.1016/j.bbagen.2015.02.011_bb0245
  article-title: Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin
  publication-title: Stem Cells
  doi: 10.1002/stem.308
– volume: 295
  start-page: C1037
  year: 2008
  ident: 10.1016/j.bbagen.2015.02.011_bb0100
  article-title: Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.67.2008
– volume: 52
  start-page: 97
  year: 2002
  ident: 10.1016/j.bbagen.2015.02.011_bb0285
  article-title: Micropatterning tractional forces in living cells
  publication-title: Cell Motil. Cytoskeleton
  doi: 10.1002/cm.10037
– volume: 182
  start-page: 1
  year: 2006
  ident: 10.1016/j.bbagen.2015.02.011_bb0035
  article-title: Characterization of osteogenically induced adipose tissue-derived precursor cells in 2-dimensional and 3-dimensional environments
  publication-title: Cells Tissues Organs
  doi: 10.1159/000091713
– volume: 100
  start-page: 1484
  year: 2003
  ident: 10.1016/j.bbagen.2015.02.011_bb0125
  article-title: Cells lying on a bed of microneedles: an approach to isolate mechanical force
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0235407100
– volume: 149
  start-page: 6065
  year: 2008
  ident: 10.1016/j.bbagen.2015.02.011_bb0150
  article-title: Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal
  publication-title: Endocrinology
  doi: 10.1210/en.2008-0687
– volume: 362
  start-page: 17
  year: 2007
  ident: 10.1016/j.bbagen.2015.02.011_bb0030
  article-title: Osteo-maturation of adipose-derived stem cells required the combined action of vitamin D3, beta-glycerophosphate, and ascorbic acid
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.07.112
– volume: 286
  start-page: C518
  year: 2004
  ident: 10.1016/j.bbagen.2015.02.011_bb0305
  article-title: Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00280.2003
– volume: 216
  start-page: 897
  year: 1982
  ident: 10.1016/j.bbagen.2015.02.011_bb0115
  article-title: Nerve fiber growth on defined hydrogel substrates
  publication-title: Science
  doi: 10.1126/science.7079743
– volume: 7
  start-page: 733
  year: 2010
  ident: 10.1016/j.bbagen.2015.02.011_bb0130
  article-title: Mechanical regulation of cell function with geometrically modulated elastomeric substrates
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1487
– volume: 2
  start-page: 442
  year: 2013
  ident: 10.1016/j.bbagen.2015.02.011_bb0275
  article-title: A bio-inspired platform to modulate myogenic differentiation of human mesenchymal stem cells through focal adhesion regulation
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201200142
– volume: 41
  start-page: 389
  year: 2004
  ident: 10.1016/j.bbagen.2015.02.011_bb0050
  article-title: Adipose-derived adult stem cells for cartilage tissue engineering
  publication-title: Biorheology
– volume: 108
  start-page: 9466
  year: 2011
  ident: 10.1016/j.bbagen.2015.02.011_bb0165
  article-title: Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1106467108
– volume: 74
  start-page: 519
  year: 2006
  ident: 10.1016/j.bbagen.2015.02.011_bb0025
  article-title: Investigating the effects of preinduction on human adipose-derived precursor cells in an athymic rat model
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.2006.00092.x
– volume: 16
  start-page: 22
  year: 2002
  ident: 10.1016/j.bbagen.2015.02.011_bb0350
  article-title: C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway
  publication-title: Genes Dev.
  doi: 10.1101/gad.948702
– volume: 284
  start-page: 143
  year: 1999
  ident: 10.1016/j.bbagen.2015.02.011_bb0015
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
  doi: 10.1126/science.284.5411.143
– volume: 316
  start-page: 1159
  year: 2010
  ident: 10.1016/j.bbagen.2015.02.011_bb0260
  article-title: Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2010.02.010
– volume: 313
  start-page: 22
  year: 2007
  ident: 10.1016/j.bbagen.2015.02.011_bb0220
  article-title: Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2006.09.013
– volume: 26
  start-page: 2921
  year: 2008
  ident: 10.1016/j.bbagen.2015.02.011_bb0250
  article-title: Emergence of patterned stem cell differentiation within multicellular structures
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0432
– volume: 129
  start-page: 531
  year: 2007
  ident: 10.1016/j.bbagen.2015.02.011_bb0160
  article-title: Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2746375
– volume: 9
  start-page: e1002926
  year: 2013
  ident: 10.1016/j.bbagen.2015.02.011_bb0135
  article-title: Dynamic modeling of cell migration and spreading behaviors on fibronectin coated planar substrates and micropatterned geometries
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002926
– volume: 32
  start-page: 327
  year: 2014
  ident: 10.1016/j.bbagen.2015.02.011_bb0380
  article-title: An osteopontin–integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.1567
– volume: 27
  start-page: 6155
  year: 2011
  ident: 10.1016/j.bbagen.2015.02.011_bb0340
  article-title: Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns
  publication-title: Langmuir
  doi: 10.1021/la200487w
– volume: 64
  start-page: 295
  year: 1997
  ident: 10.1016/j.bbagen.2015.02.011_bb0010
  article-title: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro
  publication-title: J. Cell. Biochem.
  doi: 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
– volume: 66
  start-page: 2181
  year: 1994
  ident: 10.1016/j.bbagen.2015.02.011_bb0070
  article-title: Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)81014-8
– volume: 45
  start-page: 367
  year: 2009
  ident: 10.1016/j.bbagen.2015.02.011_bb0315
  article-title: TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway
  publication-title: Bone
  doi: 10.1016/j.bone.2009.04.252
– volume: 148
  start-page: 2553
  year: 2007
  ident: 10.1016/j.bbagen.2015.02.011_bb0355
  article-title: Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis
  publication-title: Endocrinology
  doi: 10.1210/en.2006-1704
– volume: 23
  start-page: 165
  year: 2009
  ident: 10.1016/j.bbagen.2015.02.011_bb0320
  article-title: Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000204105
– volume: 1
  start-page: 1058
  year: 2012
  ident: 10.1016/j.bbagen.2015.02.011_bb0205
  article-title: Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells
  publication-title: Biol. Open
  doi: 10.1242/bio.20122162
– volume: 93
  start-page: 3693
  year: 2007
  ident: 10.1016/j.bbagen.2015.02.011_bb0335
  article-title: Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.107797
– volume: 13
  start-page: 979
  year: 2014
  ident: 10.1016/j.bbagen.2015.02.011_bb0120
  article-title: Interplay of matrix stiffness and protein tethering in stem cell differentiation
  publication-title: Nat. Mater
  doi: 10.1038/nmat4051
– volume: 5
  start-page: 713
  year: 2010
  ident: 10.1016/j.bbagen.2015.02.011_bb0145
  article-title: Shear stress induces osteogenic differentiation of human mesenchymal stem cells
  publication-title: Regen. Med.
  doi: 10.2217/rme.10.60
– volume: 20
  start-page: 1858
  year: 2005
  ident: 10.1016/j.bbagen.2015.02.011_bb0215
  article-title: RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/JBMR.050611
– volume: American volume 90
  start-page: 1043
  year: 2008
  ident: 10.1016/j.bbagen.2015.02.011_bb0045
  article-title: Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model
  publication-title: J. Bone Joint Surg.
  doi: 10.2106/JBJS.G.00292
– volume: 29
  start-page: 1291
  year: 2009
  ident: 10.1016/j.bbagen.2015.02.011_bb0230
  article-title: Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01566-08
– volume: 56
  start-page: 142
  year: 2009
  ident: 10.1016/j.bbagen.2015.02.011_bb0345
  article-title: Extracellular matrix with the rigidity of adipose tissue helps 3T3-L1 adipocytes maintain insulin responsiveness
  publication-title: J. Med. Invest.
  doi: 10.2152/jmi.56.142
– volume: 98
  start-page: 1021
  year: 2006
  ident: 10.1016/j.bbagen.2015.02.011_bb0360
  article-title: Effects of PPARgamma agonists on cell survival and focal adhesions in a Chinese thyroid carcinoma cell line
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.20839
– volume: 44
  start-page: 1877
  year: 2003
  ident: 10.1016/j.bbagen.2015.02.011_bb0020
  article-title: Adipogenic differentiating agents regulate expression of fatty acid binding protein and CD36 in the J744 macrophage cell line
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M300084-JLR200
– volume: 126
  start-page: 677
  year: 2006
  ident: 10.1016/j.bbagen.2015.02.011_bb0095
  article-title: Matrix elasticity directs stem cell lineage specification
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.044
– volume: 53
  start-page: 219
  year: 2007
  ident: 10.1016/j.bbagen.2015.02.011_bb0180
  article-title: Cytoskeletal changes of mesenchymal stem cells during differentiation
  publication-title: ASAIO J.
  doi: 10.1097/MAT.0b013e31802deb2d
– volume: 6
  start-page: 997
  year: 2007
  ident: 10.1016/j.bbagen.2015.02.011_bb0240
  article-title: The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2013
– volume: 77
  start-page: 192
  year: 2004
  ident: 10.1016/j.bbagen.2015.02.011_bb0185
  article-title: Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.20147
– volume: 279
  start-page: 35557
  year: 2004
  ident: 10.1016/j.bbagen.2015.02.011_bb0190
  article-title: Mechanism of blebbistatin inhibition of myosin II
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M405319200
– volume: 122
  start-page: 546
  year: 2009
  ident: 10.1016/j.bbagen.2015.02.011_bb0085
  article-title: Mechanically induced osteogenic differentiation—the role of RhoA ROCKII and cytoskeletal dynamics
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.036293
– volume: 34
  start-page: 8140
  year: 2013
  ident: 10.1016/j.bbagen.2015.02.011_bb0265
  article-title: Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.07.074
– volume: 267
  start-page: 531
  year: 1977
  ident: 10.1016/j.bbagen.2015.02.011_bb0280
  article-title: Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture
  publication-title: Nature
  doi: 10.1038/267531a0
– volume: 307
  start-page: 355
  year: 2003
  ident: 10.1016/j.bbagen.2015.02.011_bb0290
  article-title: Cell shape provides global control of focal adhesion assembly
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(03)01165-3
– volume: 9
  start-page: 518
  year: 2010
  ident: 10.1016/j.bbagen.2015.02.011_bb0110
  article-title: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2732
– volume: 80
  start-page: 1540
  year: 2001
  ident: 10.1016/j.bbagen.2015.02.011_bb0300
  article-title: Osteoblast integrin adhesion and signaling regulate mineralization
  publication-title: J. Dent. Res.
  doi: 10.1177/00220345010800061201
– volume: 110
  start-page: 2187
  issue: Pt 18
  year: 1997
  ident: 10.1016/j.bbagen.2015.02.011_bb0375
  article-title: Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.110.18.2187
– volume: 4
  start-page: e698
  year: 2013
  ident: 10.1016/j.bbagen.2015.02.011_bb0255
  article-title: Inhibition of Rac1 promotes BMP-2-induced osteoblastic differentiation
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.226
– volume: 109
  start-page: 4509
  year: 2012
  ident: 10.1016/j.bbagen.2015.02.011_bb0200
  article-title: Nonmuscle myosin II exerts tension but does not translocate actin in vertebrate cytokinesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1116268109
– volume: 12
  start-page: 3459
  year: 2006
  ident: 10.1016/j.bbagen.2015.02.011_bb0330
  article-title: Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.12.3459
– volume: 45
  start-page: 677
  year: 2008
  ident: 10.1016/j.bbagen.2015.02.011_bb0390
  article-title: Linear viscoelastic behavior of subcutaneous adipose tissue
  publication-title: Biorheology
  doi: 10.3233/BIR-2008-0517
– reference: 19763027 - J Med Invest. 2009 Aug;56(3-4):142-9
– reference: 15211586 - J Neurosci Res. 2004 Jul 15;77(2):192-204
– reference: 21486006 - Langmuir. 2011 May 17;27(10):6155-62
– reference: 23807227 - Cell Death Dis. 2013;4:e698
– reference: 20156435 - Exp Cell Res. 2010 Apr 15;316(7):1159-68
– reference: 15205456 - J Biol Chem. 2004 Aug 20;279(34):35557-63
– reference: 20939067 - J Bone Miner Res. 2011 Apr;26(4):730-8
– reference: 16651824 - Cells Tissues Organs. 2006;182(1):1-11
– reference: 17081517 - Exp Cell Res. 2007 Jan 1;313(1):22-37
– reference: 17675345 - Biophys J. 2007 Nov 15;93(10):3693-702
– reference: 14761883 - Am J Physiol Cell Physiol. 2004 Mar;286(3):C518-28
– reference: 25108614 - Nat Mater. 2014 Oct;13(10):979-87
– reference: 14749352 - Endocrinology. 2004 May;145(5):2421-32
– reference: 23184715 - Adv Healthc Mater. 2013 Mar;2(3):442-9
– reference: 16927379 - J Cell Biochem. 2007 Feb 1;100(2):499-514
– reference: 17317771 - Endocrinology. 2007 May;148(5):2553-62
– reference: 16154099 - Cell Metab. 2005 Sep;2(3):165-77
– reference: 12867536 - J Lipid Res. 2003 Oct;44(10):1877-86
– reference: 9391082 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13661-5
– reference: 19255511 - Cell Physiol Biochem. 2009;23(1-3):165-74
– reference: 16795079 - J Cell Biochem. 2006 Jul 1;98(4):1021-35
– reference: 17413564 - ASAIO J. 2007 Mar-Apr;53(2):219-28
– reference: 11499509 - J Dent Res. 2001 Jun;80(6):1540-4
– reference: 8075352 - Biophys J. 1994 Jun;66(6):2181-9
– reference: 20676108 - Nat Methods. 2010 Sep;7(9):733-6
– reference: 12552122 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9
– reference: 559947 - Nature. 1977 Jun 9;267(5611):531-2
– reference: 12711954 - Plast Reconstr Surg. 2003 May;111(6):1922-31
– reference: 20082286 - Stem Cells. 2010 Mar 31;28(3):564-72
– reference: 17891143 - Nat Mater. 2007 Dec;6(12):997-1003
– reference: 20217480 - Ann Biomed Eng. 2010 May;38(5):1767-79
– reference: 20868327 - Regen Med. 2010 Sep;5(5):713-24
– reference: 11782441 - Genes Dev. 2002 Jan 1;16(1):22-6
– reference: 20418863 - Nat Mater. 2010 Jun;9(6):518-26
– reference: 7079743 - Science. 1982 May 21;216(4548):897-9
– reference: 17692823 - Biochem Biophys Res Commun. 2007 Oct 12;362(1):17-24
– reference: 19103752 - Mol Cell Biol. 2009 Mar;29(5):1291-305
– reference: 17518682 - Tissue Eng. 2006 Dec;12(12):3459-65
– reference: 24123709 - Stem Cells. 2014 Feb;32(2):327-37
– reference: 20194780 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4872-7
– reference: 19414075 - Bone. 2009 Aug;45(2):367-76
– reference: 23990565 - Science. 2013 Aug 30;341(6149):1240104
– reference: 9162012 - Science. 1997 May 30;276(5317):1425-8
– reference: 23468612 - PLoS Comput Biol. 2013;9(2):e1002926
– reference: 21593411 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9466-71
– reference: 17655474 - J Biomech Eng. 2007 Aug;129(4):531-9
– reference: 20148318 - Stem Cell Rev. 2010 Mar;6(1):74-85
– reference: 23606448 - Macromol Biosci. 2013 Jun;13(6):799-807
– reference: 15299271 - Biorheology. 2004;41(3-4):389-99
– reference: 10102814 - Science. 1999 Apr 2;284(5411):143-7
– reference: 23932245 - Biomaterials. 2013 Nov;34(33):8140-8
– reference: 12112152 - Cell Motil Cytoskeleton. 2002 Jun;52(2):97-106
– reference: 6686086 - Cell. 1983 Dec;35(3 Pt 2):657-66
– reference: 16160744 - J Bone Miner Res. 2005 Oct;20(10):1858-66
– reference: 23838354 - Stem Cell Res Ther. 2013;4(4):79
– reference: 1295898 - J Cell Physiol. 1992 Jun;151(3):497-505
– reference: 11304456 - Tissue Eng. 2001 Apr;7(2):211-28
– reference: 23560412 - Nanomedicine (Lond). 2013 Apr;8(4):623-38
– reference: 17177849 - Differentiation. 2006 Dec;74(9-10):519-29
– reference: 19174467 - J Cell Sci. 2009 Feb 15;122(Pt 4):546-53
– reference: 18687779 - Endocrinology. 2008 Dec;149(12):6065-75
– reference: 8682874 - J Cell Biol. 1996 Jun;133(6):1403-15
– reference: 22635042 - Nat Mater. 2012 Jul;11(7):642-9
– reference: 23391258 - Chem Rev. 2013 May 8;113(5):3297-328
– reference: 18703661 - Stem Cells. 2008 Nov;26(11):2921-7
– reference: 18753317 - Am J Physiol Cell Physiol. 2008 Oct;295(4):C1037-44
– reference: 15068789 - Dev Cell. 2004 Apr;6(4):483-95
– reference: 3245957 - Cell Tissue Kinet. 1988 Sep;21(5):363-74
– reference: 22393000 - Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4509-14
– reference: 9378768 - J Cell Sci. 1997 Sep;110 ( Pt 18):2187-96
– reference: 23213385 - Biol Open. 2012 Nov 15;1(11):1058-68
– reference: 8429054 - J Biomech. 1993 Feb;26(2):111-9
– reference: 20385838 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7757-62
– reference: 19065014 - Biorheology. 2008;45(6):677-88
– reference: 18451397 - J Bone Joint Surg Am. 2008 May;90(5):1043-52
– reference: 12859964 - Biochem Biophys Res Commun. 2003 Jul 25;307(2):355-61
– reference: 9027589 - J Cell Biochem. 1997 Feb;64(2):295-312
– reference: 16923388 - Cell. 2006 Aug 25;126(4):677-89
SSID ssj0000595
ssj0025309
Score 2.4172409
SecondaryResourceType review_article
Snippet Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1261
SubjectTerms Animals
bone formation
cell differentiation
Cell Lineage
Cell Shape
Cytoskeleton
Cytoskeleton - physiology
Extracellular Matrix - metabolism
gene expression
Humans
Mechanotransduction, Cellular
Mesenchymal stem cell
Mesenchymal Stromal Cells - metabolism
Mesenchymal Stromal Cells - physiology
Physical cue
physical properties
Physical Stimulation
Pressure
Stem Cell Niche
stem cells
Stiffness
Stress, Mechanical
Topography
Title Environmental physical cues determine the lineage specification of mesenchymal stem cells
URI https://dx.doi.org/10.1016/j.bbagen.2015.02.011
https://www.ncbi.nlm.nih.gov/pubmed/25727396
https://www.proquest.com/docview/1702087828
https://www.proquest.com/docview/2000224025
https://pubmed.ncbi.nlm.nih.gov/PMC4411082
Volume 1850
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUNVeEKUPlsfKlXp1N46d2DmiFattV-XQUpWerNjOiq1KdgXLgQu_nZk4WdhWCKmnKIlHmXic-T7F8wD4WE29SHwqucpNwpVLSk4wwo1EfFfpNKhAicJfT_PxD_XlPDvfgGGXC0Nhla3vjz698dbtlUE7m4PFbDb4Tpt6SCcQkJv9JvLDSmmqn__p7iHMA-lDFncSFKfRXfpcE-PlHH60VAVVZE3lTiGegqd_6effUZSPYGm0A9stn2THUeXXsFHVu_Aidpi83YWXw66h2xv4dfKQ1IYii9ZCzOMDWWjDYiqGjJAR90SdGeVhUixRYz42n7JLSlbyF7eXKEcloBn9-L9-C2ejk7PhmLedFbhXWbLkrigC4jRym1zmJlDCaRUKh0CVuzTgVAVdVirxwplSeqmFz5C4uDIYL4tSy3ewWc_rag-YV05LrUsjyqBcYQxKuFw4RETKzXQ9kN18Wt9WHafmF39sF17220YrWLKCTVKLVugBX0ktYtWNZ8brzlR2bfVYBIZnJD90lrVoDpq0sq7mN9dWaOpfigTKPD0mTSInSrMevI-rYaUv-kKkhkWOuq2tk9UAKuy9fqeeXTQFvnFZC6Rm-__9Vgfwis5iSNshbC6vbqojJE9L12--jj5sHX-ejE_pOPn2c3IPEYAbWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH-ahlC5TDC-Or6MxNU0jp3YOaKqU4F2F4pUTlZsp1oRSyvWHXbZ37734qSloGkS19hPcfye3--n-H0AfKgWXiQ-lVzlJuHKJSUnGOFGIr6rdBFUoETh6Vk-_q6-zLP5AQy7XBgKq2x9f_Tpjbdunwza3Rysl8vBN7rUQzqBgNzcN6EffqAyqcm0P97s4jyQP2TxKkFxmt7lzzVBXs7hqaUyqCJrSncKcRc-_cs__w6j_AOXTh_DUUso2ae45idwUNXH8DC2mLw-ht6w6-j2FH6MdlltKLJuVcQ8vpCFNi6mYkgJGZFPXDOjREwKJmr0x1YLdkHZSv78-gLlqAY0oz__l89gdjqaDce8ba3AvcqSDXdFERCokdzkMjeBMk6rUDhEqtylAbcq6LJSiRfOlNJLLXyGzMWVwXhZlFo-h8N6VVcvgXnltNS6NKIMyhXGoITLhUNIpORM1wfZ7af1bdlx6n7xy3bxZT9t1IIlLdgktaiFPvCt1DqW3bhnvu5UZffMxyIy3CP5vtOsRXXQppV1tbq6tEJTA1NkUObuOWkSSVGa9eFFtIbtetEZIjcsclzbnp1sJ1Bl7_2RenneVPhGuxbIzU7--6veQW88m07s5PPZ11fwiEZifNtrONz8vqreIJPauLfNSbkFlzMbTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+physical+cues+determine+the+lineage+specification+of+mesenchymal+stem+cells&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Huang%2C+Chao&rft.au=Dai%2C+Jingxing&rft.au=Zhang%2C+Xin+A.&rft.date=2015-06-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1850&rft.issue=6&rft.spage=1261&rft.epage=1266&rft_id=info:doi/10.1016%2Fj.bbagen.2015.02.011&rft.externalDocID=S0304416515000732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon