Environmental physical cues determine the lineage specification of mesenchymal stem cells
Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemica...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1850; no. 6; pp. 1261 - 1266 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 1872-8006 |
DOI | 10.1016/j.bbagen.2015.02.011 |
Cover
Loading…
Abstract | Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers.
Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination.
Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment.
These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate.
•Environmental physical cues can determine MSC fate and differentiation.•Cytoskeleton and nuclear skeleton undergo reorganization during MSC differentiation.•MSC fate determination and differentiation are associated with changes in cellular biophysical properties.•Physical cues and chemical inducers specify MSC lineages by regulating cell adhesion molecules and Rho GTPases. |
---|---|
AbstractList | Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers.
Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination.
Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment.
These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate. Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers.BACKGROUNDPhysical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers.Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination.SCOPE OF REVIEWStiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination.Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment.MAJOR CONCLUSIONSBiophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment.These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate.GENERAL SIGNIFICANCEThese observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate. Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers. Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination. Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment. These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate. •Environmental physical cues can determine MSC fate and differentiation.•Cytoskeleton and nuclear skeleton undergo reorganization during MSC differentiation.•MSC fate determination and differentiation are associated with changes in cellular biophysical properties.•Physical cues and chemical inducers specify MSC lineages by regulating cell adhesion molecules and Rho GTPases. Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers.Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination.Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment.These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate. |
Author | Huang, Chao Zhang, Xin A. Dai, Jingxing |
AuthorAffiliation | 1 Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA 2 Department of Anatomy, Southern Medical University, Guangzhou, China |
AuthorAffiliation_xml | – name: 1 Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA – name: 2 Department of Anatomy, Southern Medical University, Guangzhou, China |
Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0002-5747-4560 surname: Huang fullname: Huang, Chao organization: Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA – sequence: 2 givenname: Jingxing surname: Dai fullname: Dai, Jingxing organization: Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA – sequence: 3 givenname: Xin A. surname: Zhang fullname: Zhang, Xin A. email: xin-zhang-1@ouhsc.edu organization: Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25727396$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFuEzEUtFARTQt_gNAeuezy7LXXXg5IqCoFqVIvvXCyvPZL42jXDvYmUv4eh6QVcGh98ZM8M34zc0HOQgxIyHsKDQXafVo3w2AeMDQMqGiANUDpK7KgSrJaAXRnZAEt8JrTTpyTi5zXUI7oxRtyzoRksu27Bfl5HXY-xTBhmM1YbVb77G0Z7BZz5XDGNPmA1bzCaixD-bDKG7R-WVCzj6GKy2rCjMGu9lPh5RmnyuI45rfk9dKMGd-d7kty_-36_up7fXt38-Pq621tuYC5HvreKdEyQbu2Uw46LtH1A5e0G5grBpw0yMHSQZnWtpJawdt-ME7ZtjeyvSRfjrKb7TChs8VHMqPeJD-ZtNfReP3vS_Ar_RB3mnNKQbEi8PEkkOKv4nrWk88HByZg3GbNSmqMcWDiRSiVwEBJxVSBfvh7rad9HpMvAH4E2BRzTrh8glDQh4L1Wh8L1oeCNTBdCi60z__RrJ__NFHM-fEl8ikrLH3sPCadrS_VofMJ7axd9M8L_AaYlMRg |
CitedBy_id | crossref_primary_10_3390_ijms232113016 crossref_primary_10_1007_s00018_018_2945_2 crossref_primary_10_1016_j_yexcr_2023_113766 crossref_primary_10_3390_ijms19030669 crossref_primary_10_1016_j_bcp_2024_116262 crossref_primary_10_1002_mabi_202000303 crossref_primary_10_1016_j_biotechadv_2017_04_005 crossref_primary_10_3390_ijms25168712 crossref_primary_10_1016_j_biomaterials_2015_08_005 crossref_primary_10_1016_j_biomaterials_2020_119881 crossref_primary_10_1038_s41598_023_42359_9 crossref_primary_10_1039_C5TB02546J crossref_primary_10_3390_bioengineering8110165 crossref_primary_10_1002_adbi_202000062 crossref_primary_10_1007_s40495_016_0057_y crossref_primary_10_3390_ijms232315010 crossref_primary_10_1002_jbm_a_35762 crossref_primary_10_1109_TNB_2017_2714462 crossref_primary_10_1002_term_2956 crossref_primary_10_1016_j_biopha_2017_04_094 crossref_primary_10_1371_journal_pone_0135519 crossref_primary_10_3892_etm_2016_3206 crossref_primary_10_1016_j_bbrc_2022_03_078 crossref_primary_10_1186_s13287_019_1532_2 crossref_primary_10_1016_j_bej_2021_107947 crossref_primary_10_3390_biomedicines12061369 crossref_primary_10_1155_2019_5214501 crossref_primary_10_1016_j_biomaterials_2015_10_062 crossref_primary_10_1016_j_colsurfb_2017_01_039 crossref_primary_10_1016_j_tem_2021_09_001 crossref_primary_10_1186_s13018_019_1346_z crossref_primary_10_1039_C7BM00134G crossref_primary_10_1016_j_onano_2025_100235 crossref_primary_10_1007_s12217_018_9653_2 crossref_primary_10_3389_fphar_2024_1345779 crossref_primary_10_1155_2018_6143081 crossref_primary_10_1007_s12015_020_09999_0 crossref_primary_10_1002_adbi_201700004 crossref_primary_10_1002_jor_25041 crossref_primary_10_1002_jbm_a_37495 crossref_primary_10_1631_jzus_B23d0003 crossref_primary_10_1063_5_0131125 crossref_primary_10_46889_JRMBR_2024_5202 crossref_primary_10_3389_fcell_2020_596831 crossref_primary_10_1021_acsami_8b19929 crossref_primary_10_1007_s00441_021_03458_z crossref_primary_10_1016_j_colsurfb_2018_07_017 crossref_primary_10_1016_j_isci_2022_105875 crossref_primary_10_3389_fendo_2016_00171 crossref_primary_10_2174_1574888X14666181227120706 crossref_primary_10_1007_s00466_018_1604_7 crossref_primary_10_3390_cells12020224 crossref_primary_10_1080_02648725_2022_2162249 crossref_primary_10_1089_ten_teb_2017_0305 crossref_primary_10_1073_pnas_1910668117 crossref_primary_10_1155_2018_2891957 crossref_primary_10_1007_s13577_023_00997_1 crossref_primary_10_1038_s41598_021_03824_5 crossref_primary_10_1039_C6RA26509J crossref_primary_10_3389_fcell_2022_824812 crossref_primary_10_1007_s42235_018_0056_2 crossref_primary_10_3390_jfb12020025 crossref_primary_10_3390_cells12050738 crossref_primary_10_1111_cpr_13630 crossref_primary_10_1002_adfm_202009619 crossref_primary_10_1038_s41598_024_60846_5 |
Cites_doi | 10.1073/pnas.0912739107 10.1089/107632701300062859 10.1007/s12015-010-9115-8 10.1016/0021-9290(93)90042-D 10.1016/0092-8674(83)90098-3 10.1097/01.PRS.0000055043.62589.05 10.1038/nmat3339 10.1126/science.276.5317.1425 10.1073/pnas.0903269107 10.1210/en.2003-1156 10.1016/S1534-5807(04)00075-9 10.2217/nnm.13.31 10.1186/scrt230 10.1002/mabi.201200481 10.1083/jcb.133.6.1403 10.1073/pnas.94.25.13661 10.1002/jcb.21074 10.1126/science.1240104 10.1016/j.cmet.2005.08.006 10.1002/jcp.1041510308 10.1002/jbmr.278 10.1007/s10439-010-9979-4 10.1021/cr300426x 10.1002/stem.308 10.1152/ajpcell.67.2008 10.1002/cm.10037 10.1159/000091713 10.1073/pnas.0235407100 10.1210/en.2008-0687 10.1016/j.bbrc.2007.07.112 10.1152/ajpcell.00280.2003 10.1126/science.7079743 10.1038/nmeth.1487 10.1002/adhm.201200142 10.1073/pnas.1106467108 10.1111/j.1432-0436.2006.00092.x 10.1101/gad.948702 10.1126/science.284.5411.143 10.1016/j.yexcr.2010.02.010 10.1016/j.yexcr.2006.09.013 10.1634/stemcells.2008-0432 10.1115/1.2746375 10.1371/journal.pcbi.1002926 10.1002/stem.1567 10.1021/la200487w 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I 10.1016/S0006-3495(94)81014-8 10.1016/j.bone.2009.04.252 10.1210/en.2006-1704 10.1159/000204105 10.1242/bio.20122162 10.1529/biophysj.107.107797 10.1038/nmat4051 10.2217/rme.10.60 10.1359/JBMR.050611 10.2106/JBJS.G.00292 10.1128/MCB.01566-08 10.2152/jmi.56.142 10.1002/jcb.20839 10.1194/jlr.M300084-JLR200 10.1016/j.cell.2006.06.044 10.1097/MAT.0b013e31802deb2d 10.1038/nmat2013 10.1002/jnr.20147 10.1074/jbc.M405319200 10.1242/jcs.036293 10.1016/j.biomaterials.2013.07.074 10.1038/267531a0 10.1016/S0006-291X(03)01165-3 10.1038/nmat2732 10.1177/00220345010800061201 10.1242/jcs.110.18.2187 10.1038/cddis.2013.226 10.1073/pnas.1116268109 10.1089/ten.2006.12.3459 10.3233/BIR-2008-0517 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. 2015 Published by Elsevier B.V. 2015 |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. – notice: 2015 Published by Elsevier B.V. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.bbagen.2015.02.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1266 |
ExternalDocumentID | PMC4411082 25727396 10_1016_j_bbagen_2015_02_011 S0304416515000732 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA096991 – fundername: NCI NIH HHS grantid: CA096991 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 5PM |
ID | FETCH-LOGICAL-c450t-b99d8532516368d0647ed9b4716b2d304d7ae40c1b8a3c371c5439bad8c39a73 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Aug 21 18:41:45 EDT 2025 Thu Sep 04 17:49:27 EDT 2025 Fri Sep 05 03:53:56 EDT 2025 Thu Apr 03 06:55:19 EDT 2025 Tue Jul 01 00:22:05 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Fri Feb 23 02:34:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Mesenchymal stem cell LN Rock BMP MLC Physical cue FN ECM 3D PEG Topography PAAm Cytoskeleton Stiffness MSC PDMS |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-b99d8532516368d0647ed9b4716b2d304d7ae40c1b8a3c371c5439bad8c39a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5747-4560 |
PMID | 25727396 |
PQID | 1702087828 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4411082 proquest_miscellaneous_2000224025 proquest_miscellaneous_1702087828 pubmed_primary_25727396 crossref_primary_10_1016_j_bbagen_2015_02_011 crossref_citationtrail_10_1016_j_bbagen_2015_02_011 elsevier_sciencedirect_doi_10_1016_j_bbagen_2015_02_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | von der Mark, Gauss, von der Mark, Muller (bb0280) 1977; 267 Higuchi, Ling, Chang, Hsu, Umezawa (bb0170) 2013; 113 Carbonetto, Gruver, Turner (bb0115) 1982; 216 Schneider, Zaharias, Stanford (bb0300) 2001; 80 Tay, Koh, Tan, Leong, Tan (bb0090) 2013; 8 Mooney, Hansen, Vacanti, Langer, Farmer, Ingber (bb0065) 1992; 151 Dalby, Gadegaard, Tare, Andar, Riehle, Herzyk, Wilkinson, Oreffo (bb0240) 2007; 6 David, Martin, Lafage-Proust, Malaval, Peyroche, Jones, Vico, Guignandon (bb0355) 2007; 148 Shih, Tseng, Lai, Lin, Lee (bb0365) 2011; 26 Song, Lu, Kawazoe, Chen (bb0340) 2011; 27 Liu, DeYoung, Zhang, Zhang, Cheng, Saltiel (bb0370) 2005; 2 Arnsdorf, Tummala, Kwon, Jacobs (bb0085) 2009; 122 Huebsch, Arany, Mao, Shvartsman, Ali, Bencherif, Rivera-Feliciano, Mooney (bb0110) 2010; 9 Gao, McBeath, Chen (bb0245) 2010; 28 Peng, Zhou, Luk, Cheung, Li, Lam, Zhou, Lu (bb0320) 2009; 23 Pittenger, Mackay, Beck, Jaiswal, Douglas, Mosca, Moorman, Simonetti, Craig, Marshak (bb0015) 1999; 284 Ashjian, Elbarbary, Edmonds, DeUgarte, Zhu, Zuk, Lorenz, Benhaim, Hedrick (bb0055) 2003; 111 Wang, Ostuni, Whitesides, Ingber (bb0285) 2002; 52 Chen, Alonso, Ostuni, Whitesides, Ingber (bb0290) 2003; 307 McBeath, Pirone, Nelson, Bhadriraju, Chen (bb0080) 2004; 6 Chen, Mrksich, Huang, Whitesides, Ingber (bb0060) 1997; 276 Li, Hosaka, Jambaldorj, Nakaya, Funaki (bb0345) 2009; 56 Leong, Khor, Chew, Lim, Hutmacher (bb0035) 2006; 182 Yourek, McCormick, Mao, Reilly (bb0145) 2010; 5 Yu, Chua, Tay, Wen, Yu, Chan, Chong, Leong, Tan (bb0270) 2013; 13 Zuk, Zhu, Mizuno, Huang, Futrell, Katz, Benhaim, Lorenz, Hedrick (bb0040) 2001; 7 Chrzanowska-Wodnicka, Burridge (bb0210) 1996; 133 Lee, Abdeen, Zhang, Kilian (bb0265) 2013; 34 Duty, Oest, Guldberg (bb0160) 2007; 129 Chen, Wang, Wu, Huang (bb0360) 2006; 98 Chen, Shou, Zhang, Xu, Zheng, Han, Li, Huang, Zhang, Shao, Roberts, Rabson, Ren, Zhang, Wang, Denhardt, Shi (bb0380) 2014; 32 Salasznyk, Klees, Williams, Boskey, Plopper (bb0220) 2007; 313 Rho, Ashman, Turner (bb0385) 1993; 26 Schiller, Schiele, Sims, Lee, Kuo (bb0195) 2013; 4 Guilak, Awad, Fermor, Leddy, Gimble (bb0050) 2004; 41 Walcott, Sun (bb0235) 2010; 107 Wen, Vincent, Fuhrmann, Choi, Hribar, Taylor-Weiner, Chen, Engler (bb0120) 2014; 13 Salasznyk, Klees, Boskey, Plopper (bb0225) 2007; 100 Moursi, Globus, Damsky (bb0375) 1997; 110 Onishi, Fujita, Yoshikawa, Yamashita (bb0255) 2013; 4 Schoeters, de Saint-Georges, Van den Heuvel, Vanderborght (bb0005) 1988; 21 Leong, Abraham, Rath, Lim, Chew, Hutmacher (bb0025) 2006; 74 Fu, Wang, Yang, Desai, Yu, Liu, Chen (bb0130) 2010; 7 Pelham, Wang (bb0295) 1997; 94 Hess, Ushmorov, Fiedler, Brenner, Wirth (bb0315) 2009; 45 Hsu, Wang, Liu, Krenek, Zuk, Hedrick, Benhaim, Lieberman (bb0045) 2008; American volume 90 Kilian, Bugarija, Lahn, Mrksich (bb0075) 2010; 107 Spiegelman, Ginty (bb0325) 1983; 35 Meyers, Zayzafoon, Douglas, McDonald (bb0215) 2005; 20 Sun, Nicholson, Hajjar, Gotto, Han (bb0020) 2003; 44 Yourek, Hussain, Mao (bb0180) 2007; 53 Neuhuber, Gallo, Howard, Kostura, Mackay, Fischer (bb0185) 2004; 77 Trappmann, Gautrot, Connelly, Strange, Li, Oyen, Cohen Stuart, Boehm, Li, Vogel, Spatz, Watt, Huck (bb0105) 2012; 11 Ruiz, Chen (bb0250) 2008; 26 Yu, Tay, Pal, Leong, Li, Li, Wen, Leong, Tan (bb0275) 2013; 2 Tan, Tien, Pirone, Gray, Bhadriraju, Chen (bb0125) 2003; 100 Kearney, Farrell, Prendergast, Campbell (bb0155) 2010; 38 Swift, Ivanovska, Buxboim, Harada, Dingal, Pinter, Pajerowski, Spinler, Shin, Tewari, Rehfeldt, Speicher, Discher (bb0310) 2013; 341 Sumanasinghe, Bernacki, Loboa (bb0330) 2006; 12 Jaiswal, Haynesworth, Caplan, Bruder (bb0010) 1997; 64 Kovacs, Toth, Hetenyi, Malnasi-Csizmadia, Sellers (bb0190) 2004; 279 Tay, Yu, Pal, Leong, Tan, Ng, Leong, Tan (bb0260) 2010; 316 Sen, Xie, Case, Ma, Rubin, Rubin (bb0150) 2008; 149 Ma, Kovacs, Conti, Wang, Zhang, Sellers, Adelstein (bb0200) 2012; 109 Engler, Sen, Sweeney, Discher (bb0095) 2006; 126 Feng, Szabo, Dziak, Opas (bb0175) 2010; 6 Polte, Eichler, Wang, Ingber (bb0305) 2004; 286 Kim, Neal, Kamm, Asada (bb0135) 2013; 9 Rosen, Hsu, Wang, Sakai, Freeman, Gonzalez, Spiegelman (bb0350) 2002; 16 Eyckmans, Lin, Chen (bb0205) 2012; 1 Wang, Ingber (bb0070) 1994; 66 Gupta, Leong, Bai, Singh, Lim, Hutmacher (bb0030) 2007; 362 Du, Chen, Liang, Zhang, Xu, He, Zhan, Feng, Chien, Yang (bb0165) 2011; 108 Geerligs, Peters, Ackermans, Oomens, Baaijens (bb0390) 2008; 45 Zayzafoon, Gathings, McDonald (bb0140) 2004; 145 Rowlands, George, Cooper-White (bb0100) 2008; 295 Zhao, Ko, Liu, Chen, Zhang, Wang, Harris, Oyajobi, Mundy (bb0230) 2009; 29 Titushkin, Cho (bb0335) 2007; 93 Tay (10.1016/j.bbagen.2015.02.011_bb0090) 2013; 8 Salasznyk (10.1016/j.bbagen.2015.02.011_bb0220) 2007; 313 Wang (10.1016/j.bbagen.2015.02.011_bb0070) 1994; 66 Wang (10.1016/j.bbagen.2015.02.011_bb0285) 2002; 52 Lee (10.1016/j.bbagen.2015.02.011_bb0265) 2013; 34 Huebsch (10.1016/j.bbagen.2015.02.011_bb0110) 2010; 9 Sen (10.1016/j.bbagen.2015.02.011_bb0150) 2008; 149 Higuchi (10.1016/j.bbagen.2015.02.011_bb0170) 2013; 113 Spiegelman (10.1016/j.bbagen.2015.02.011_bb0325) 1983; 35 Chen (10.1016/j.bbagen.2015.02.011_bb0360) 2006; 98 Moursi (10.1016/j.bbagen.2015.02.011_bb0375) 1997; 110 Guilak (10.1016/j.bbagen.2015.02.011_bb0050) 2004; 41 Li (10.1016/j.bbagen.2015.02.011_bb0345) 2009; 56 Yu (10.1016/j.bbagen.2015.02.011_bb0270) 2013; 13 Zuk (10.1016/j.bbagen.2015.02.011_bb0040) 2001; 7 Du (10.1016/j.bbagen.2015.02.011_bb0165) 2011; 108 von der Mark (10.1016/j.bbagen.2015.02.011_bb0280) 1977; 267 Tay (10.1016/j.bbagen.2015.02.011_bb0260) 2010; 316 Carbonetto (10.1016/j.bbagen.2015.02.011_bb0115) 1982; 216 Wen (10.1016/j.bbagen.2015.02.011_bb0120) 2014; 13 Yourek (10.1016/j.bbagen.2015.02.011_bb0180) 2007; 53 Rosen (10.1016/j.bbagen.2015.02.011_bb0350) 2002; 16 Fu (10.1016/j.bbagen.2015.02.011_bb0130) 2010; 7 Zhao (10.1016/j.bbagen.2015.02.011_bb0230) 2009; 29 Schneider (10.1016/j.bbagen.2015.02.011_bb0300) 2001; 80 Dalby (10.1016/j.bbagen.2015.02.011_bb0240) 2007; 6 Chen (10.1016/j.bbagen.2015.02.011_bb0380) 2014; 32 David (10.1016/j.bbagen.2015.02.011_bb0355) 2007; 148 Liu (10.1016/j.bbagen.2015.02.011_bb0370) 2005; 2 Yu (10.1016/j.bbagen.2015.02.011_bb0275) 2013; 2 Pelham (10.1016/j.bbagen.2015.02.011_bb0295) 1997; 94 Engler (10.1016/j.bbagen.2015.02.011_bb0095) 2006; 126 Sun (10.1016/j.bbagen.2015.02.011_bb0020) 2003; 44 Feng (10.1016/j.bbagen.2015.02.011_bb0175) 2010; 6 Chen (10.1016/j.bbagen.2015.02.011_bb0060) 1997; 276 Rho (10.1016/j.bbagen.2015.02.011_bb0385) 1993; 26 Schiller (10.1016/j.bbagen.2015.02.011_bb0195) 2013; 4 Leong (10.1016/j.bbagen.2015.02.011_bb0035) 2006; 182 Kilian (10.1016/j.bbagen.2015.02.011_bb0075) 2010; 107 Schoeters (10.1016/j.bbagen.2015.02.011_bb0005) 1988; 21 Kearney (10.1016/j.bbagen.2015.02.011_bb0155) 2010; 38 Chrzanowska-Wodnicka (10.1016/j.bbagen.2015.02.011_bb0210) 1996; 133 Mooney (10.1016/j.bbagen.2015.02.011_bb0065) 1992; 151 Titushkin (10.1016/j.bbagen.2015.02.011_bb0335) 2007; 93 Kovacs (10.1016/j.bbagen.2015.02.011_bb0190) 2004; 279 Sumanasinghe (10.1016/j.bbagen.2015.02.011_bb0330) 2006; 12 Leong (10.1016/j.bbagen.2015.02.011_bb0025) 2006; 74 Salasznyk (10.1016/j.bbagen.2015.02.011_bb0225) 2007; 100 Hess (10.1016/j.bbagen.2015.02.011_bb0315) 2009; 45 Chen (10.1016/j.bbagen.2015.02.011_bb0290) 2003; 307 Peng (10.1016/j.bbagen.2015.02.011_bb0320) 2009; 23 McBeath (10.1016/j.bbagen.2015.02.011_bb0080) 2004; 6 Polte (10.1016/j.bbagen.2015.02.011_bb0305) 2004; 286 Hsu (10.1016/j.bbagen.2015.02.011_bb0045) 2008; American volume 90 Arnsdorf (10.1016/j.bbagen.2015.02.011_bb0085) 2009; 122 Meyers (10.1016/j.bbagen.2015.02.011_bb0215) 2005; 20 Ruiz (10.1016/j.bbagen.2015.02.011_bb0250) 2008; 26 Song (10.1016/j.bbagen.2015.02.011_bb0340) 2011; 27 Rowlands (10.1016/j.bbagen.2015.02.011_bb0100) 2008; 295 Gao (10.1016/j.bbagen.2015.02.011_bb0245) 2010; 28 Pittenger (10.1016/j.bbagen.2015.02.011_bb0015) 1999; 284 Walcott (10.1016/j.bbagen.2015.02.011_bb0235) 2010; 107 Duty (10.1016/j.bbagen.2015.02.011_bb0160) 2007; 129 Neuhuber (10.1016/j.bbagen.2015.02.011_bb0185) 2004; 77 Tan (10.1016/j.bbagen.2015.02.011_bb0125) 2003; 100 Zayzafoon (10.1016/j.bbagen.2015.02.011_bb0140) 2004; 145 Jaiswal (10.1016/j.bbagen.2015.02.011_bb0010) 1997; 64 Shih (10.1016/j.bbagen.2015.02.011_bb0365) 2011; 26 Ashjian (10.1016/j.bbagen.2015.02.011_bb0055) 2003; 111 Ma (10.1016/j.bbagen.2015.02.011_bb0200) 2012; 109 Trappmann (10.1016/j.bbagen.2015.02.011_bb0105) 2012; 11 Gupta (10.1016/j.bbagen.2015.02.011_bb0030) 2007; 362 Onishi (10.1016/j.bbagen.2015.02.011_bb0255) 2013; 4 Eyckmans (10.1016/j.bbagen.2015.02.011_bb0205) 2012; 1 Kim (10.1016/j.bbagen.2015.02.011_bb0135) 2013; 9 Swift (10.1016/j.bbagen.2015.02.011_bb0310) 2013; 341 Geerligs (10.1016/j.bbagen.2015.02.011_bb0390) 2008; 45 Yourek (10.1016/j.bbagen.2015.02.011_bb0145) 2010; 5 12112152 - Cell Motil Cytoskeleton. 2002 Jun;52(2):97-106 12859964 - Biochem Biophys Res Commun. 2003 Jul 25;307(2):355-61 11499509 - J Dent Res. 2001 Jun;80(6):1540-4 9027589 - J Cell Biochem. 1997 Feb;64(2):295-312 17891143 - Nat Mater. 2007 Dec;6(12):997-1003 8075352 - Biophys J. 1994 Jun;66(6):2181-9 20217480 - Ann Biomed Eng. 2010 May;38(5):1767-79 19255511 - Cell Physiol Biochem. 2009;23(1-3):165-74 16651824 - Cells Tissues Organs. 2006;182(1):1-11 17655474 - J Biomech Eng. 2007 Aug;129(4):531-9 8682874 - J Cell Biol. 1996 Jun;133(6):1403-15 20385838 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7757-62 19174467 - J Cell Sci. 2009 Feb 15;122(Pt 4):546-53 17413564 - ASAIO J. 2007 Mar-Apr;53(2):219-28 15211586 - J Neurosci Res. 2004 Jul 15;77(2):192-204 9162012 - Science. 1997 May 30;276(5317):1425-8 15299271 - Biorheology. 2004;41(3-4):389-99 17081517 - Exp Cell Res. 2007 Jan 1;313(1):22-37 23606448 - Macromol Biosci. 2013 Jun;13(6):799-807 19103752 - Mol Cell Biol. 2009 Mar;29(5):1291-305 20194780 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4872-7 21593411 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9466-71 20082286 - Stem Cells. 2010 Mar 31;28(3):564-72 21486006 - Langmuir. 2011 May 17;27(10):6155-62 7079743 - Science. 1982 May 21;216(4548):897-9 20148318 - Stem Cell Rev. 2010 Mar;6(1):74-85 23213385 - Biol Open. 2012 Nov 15;1(11):1058-68 559947 - Nature. 1977 Jun 9;267(5611):531-2 23560412 - Nanomedicine (Lond). 2013 Apr;8(4):623-38 19763027 - J Med Invest. 2009 Aug;56(3-4):142-9 17518682 - Tissue Eng. 2006 Dec;12(12):3459-65 9378768 - J Cell Sci. 1997 Sep;110 ( Pt 18):2187-96 23932245 - Biomaterials. 2013 Nov;34(33):8140-8 17675345 - Biophys J. 2007 Nov 15;93(10):3693-702 18687779 - Endocrinology. 2008 Dec;149(12):6065-75 16795079 - J Cell Biochem. 2006 Jul 1;98(4):1021-35 20868327 - Regen Med. 2010 Sep;5(5):713-24 16160744 - J Bone Miner Res. 2005 Oct;20(10):1858-66 3245957 - Cell Tissue Kinet. 1988 Sep;21(5):363-74 15205456 - J Biol Chem. 2004 Aug 20;279(34):35557-63 17317771 - Endocrinology. 2007 May;148(5):2553-62 24123709 - Stem Cells. 2014 Feb;32(2):327-37 1295898 - J Cell Physiol. 1992 Jun;151(3):497-505 20939067 - J Bone Miner Res. 2011 Apr;26(4):730-8 20676108 - Nat Methods. 2010 Sep;7(9):733-6 12711954 - Plast Reconstr Surg. 2003 May;111(6):1922-31 9391082 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13661-5 6686086 - Cell. 1983 Dec;35(3 Pt 2):657-66 19065014 - Biorheology. 2008;45(6):677-88 12552122 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9 16927379 - J Cell Biochem. 2007 Feb 1;100(2):499-514 11782441 - Genes Dev. 2002 Jan 1;16(1):22-6 23990565 - Science. 2013 Aug 30;341(6149):1240104 18451397 - J Bone Joint Surg Am. 2008 May;90(5):1043-52 22635042 - Nat Mater. 2012 Jul;11(7):642-9 11304456 - Tissue Eng. 2001 Apr;7(2):211-28 20418863 - Nat Mater. 2010 Jun;9(6):518-26 23468612 - PLoS Comput Biol. 2013;9(2):e1002926 12867536 - J Lipid Res. 2003 Oct;44(10):1877-86 25108614 - Nat Mater. 2014 Oct;13(10):979-87 18703661 - Stem Cells. 2008 Nov;26(11):2921-7 20156435 - Exp Cell Res. 2010 Apr 15;316(7):1159-68 10102814 - Science. 1999 Apr 2;284(5411):143-7 14749352 - Endocrinology. 2004 May;145(5):2421-32 23184715 - Adv Healthc Mater. 2013 Mar;2(3):442-9 23391258 - Chem Rev. 2013 May 8;113(5):3297-328 17177849 - Differentiation. 2006 Dec;74(9-10):519-29 14761883 - Am J Physiol Cell Physiol. 2004 Mar;286(3):C518-28 23838354 - Stem Cell Res Ther. 2013;4(4):79 18753317 - Am J Physiol Cell Physiol. 2008 Oct;295(4):C1037-44 23807227 - Cell Death Dis. 2013;4:e698 8429054 - J Biomech. 1993 Feb;26(2):111-9 16154099 - Cell Metab. 2005 Sep;2(3):165-77 17692823 - Biochem Biophys Res Commun. 2007 Oct 12;362(1):17-24 16923388 - Cell. 2006 Aug 25;126(4):677-89 19414075 - Bone. 2009 Aug;45(2):367-76 15068789 - Dev Cell. 2004 Apr;6(4):483-95 22393000 - Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4509-14 |
References_xml | – volume: 94 start-page: 13661 year: 1997 end-page: 13665 ident: bb0295 article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 26 start-page: 730 year: 2011 end-page: 738 ident: bb0365 article-title: Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells publication-title: J. Bone Miner. Res. – volume: 8 start-page: 623 year: 2013 end-page: 638 ident: bb0090 article-title: Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine publication-title: Nanomedicine (Lond.) – volume: 5 start-page: 713 year: 2010 end-page: 724 ident: bb0145 article-title: Shear stress induces osteogenic differentiation of human mesenchymal stem cells publication-title: Regen. Med. – volume: 26 start-page: 2921 year: 2008 end-page: 2927 ident: bb0250 article-title: Emergence of patterned stem cell differentiation within multicellular structures publication-title: Stem Cells – volume: 13 start-page: 979 year: 2014 end-page: 987 ident: bb0120 article-title: Interplay of matrix stiffness and protein tethering in stem cell differentiation publication-title: Nat. Mater – volume: 307 start-page: 355 year: 2003 end-page: 361 ident: bb0290 article-title: Cell shape provides global control of focal adhesion assembly publication-title: Biochem. Biophys. Res. Commun. – volume: 362 start-page: 17 year: 2007 end-page: 24 ident: bb0030 article-title: Osteo-maturation of adipose-derived stem cells required the combined action of vitamin D3, beta-glycerophosphate, and ascorbic acid publication-title: Biochem. Biophys. Res. Commun. – volume: 100 start-page: 1484 year: 2003 end-page: 1489 ident: bb0125 article-title: Cells lying on a bed of microneedles: an approach to isolate mechanical force publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 52 start-page: 97 year: 2002 end-page: 106 ident: bb0285 article-title: Micropatterning tractional forces in living cells publication-title: Cell Motil. Cytoskeleton – volume: 11 start-page: 642 year: 2012 end-page: 649 ident: bb0105 article-title: Extracellular-matrix tethering regulates stem-cell fate publication-title: Nat. Mater. – volume: 6 start-page: 997 year: 2007 end-page: 1003 ident: bb0240 article-title: The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder publication-title: Nat. Mater. – volume: 4 start-page: e698 year: 2013 ident: bb0255 article-title: Inhibition of Rac1 promotes BMP-2-induced osteoblastic differentiation publication-title: Cell Death Dis. – volume: 151 start-page: 497 year: 1992 end-page: 505 ident: bb0065 article-title: Switching from differentiation to growth in hepatocytes: control by extracellular matrix publication-title: J. Cell. Physiol. – volume: 111 start-page: 1922 year: 2003 end-page: 1931 ident: bb0055 article-title: In vitro differentiation of human processed lipoaspirate cells into early neural progenitors publication-title: Plast. Reconstr. Surg. – volume: 23 start-page: 165 year: 2009 end-page: 174 ident: bb0320 article-title: Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway publication-title: Cell Physiol. Biochem. – volume: 56 start-page: 142 year: 2009 end-page: 149 ident: bb0345 article-title: Extracellular matrix with the rigidity of adipose tissue helps 3 publication-title: J. Med. Invest. – volume: 6 start-page: 483 year: 2004 end-page: 495 ident: bb0080 article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment publication-title: Dev. Cell – volume: 109 start-page: 4509 year: 2012 end-page: 4514 ident: bb0200 article-title: Nonmuscle myosin II exerts tension but does not translocate actin in vertebrate cytokinesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 149 start-page: 6065 year: 2008 end-page: 6075 ident: bb0150 article-title: Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal publication-title: Endocrinology – volume: 12 start-page: 3459 year: 2006 end-page: 3465 ident: bb0330 article-title: Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression publication-title: Tissue Eng. – volume: 148 start-page: 2553 year: 2007 end-page: 2562 ident: bb0355 article-title: Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis publication-title: Endocrinology – volume: 9 start-page: e1002926 year: 2013 ident: bb0135 article-title: Dynamic modeling of cell migration and spreading behaviors on fibronectin coated planar substrates and micropatterned geometries publication-title: PLoS Comput. Biol. – volume: American volume 90 start-page: 1043 year: 2008 end-page: 1052 ident: bb0045 article-title: Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model publication-title: J. Bone Joint Surg. – volume: 41 start-page: 389 year: 2004 end-page: 399 ident: bb0050 article-title: Adipose-derived adult stem cells for cartilage tissue engineering publication-title: Biorheology – volume: 216 start-page: 897 year: 1982 end-page: 899 ident: bb0115 article-title: Nerve fiber growth on defined hydrogel substrates publication-title: Science – volume: 7 start-page: 733 year: 2010 end-page: 736 ident: bb0130 article-title: Mechanical regulation of cell function with geometrically modulated elastomeric substrates publication-title: Nat. Methods – volume: 93 start-page: 3693 year: 2007 end-page: 3702 ident: bb0335 article-title: Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells publication-title: Biophys. J. – volume: 27 start-page: 6155 year: 2011 end-page: 6162 ident: bb0340 article-title: Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns publication-title: Langmuir – volume: 38 start-page: 1767 year: 2010 end-page: 1779 ident: bb0155 article-title: Tensile strain as a regulator of mesenchymal stem cell osteogenesis publication-title: Ann. Biomed. Eng. – volume: 126 start-page: 677 year: 2006 end-page: 689 ident: bb0095 article-title: Matrix elasticity directs stem cell lineage specification publication-title: Cell – volume: 35 start-page: 657 year: 1983 end-page: 666 ident: bb0325 article-title: Fibronectin modulation of cell shape and lipogenic gene expression in 3 publication-title: Cell – volume: 295 start-page: C1037 year: 2008 end-page: C1044 ident: bb0100 article-title: Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation publication-title: Am. J. Physiol. Cell Physiol. – volume: 108 start-page: 9466 year: 2011 end-page: 9471 ident: bb0165 article-title: Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 80 start-page: 1540 year: 2001 end-page: 1544 ident: bb0300 article-title: Osteoblast integrin adhesion and signaling regulate mineralization publication-title: J. Dent. Res. – volume: 6 start-page: 74 year: 2010 end-page: 85 ident: bb0175 article-title: Cytoskeletal disassembly and cell rounding promotes adipogenesis from ES cells publication-title: Stem Cell Rev. – volume: 45 start-page: 367 year: 2009 end-page: 376 ident: bb0315 article-title: TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway publication-title: Bone – volume: 129 start-page: 531 year: 2007 end-page: 539 ident: bb0160 article-title: Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo publication-title: J. Biomech. Eng. – volume: 98 start-page: 1021 year: 2006 end-page: 1035 ident: bb0360 article-title: Effects of PPARgamma agonists on cell survival and focal adhesions in a Chinese thyroid carcinoma cell line publication-title: J. Cell. Biochem. – volume: 32 start-page: 327 year: 2014 end-page: 337 ident: bb0380 article-title: An osteopontin–integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells publication-title: Stem Cells – volume: 34 start-page: 8140 year: 2013 end-page: 8148 ident: bb0265 article-title: Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition publication-title: Biomaterials – volume: 28 start-page: 564 year: 2010 end-page: 572 ident: bb0245 article-title: Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin publication-title: Stem Cells – volume: 66 start-page: 2181 year: 1994 end-page: 2189 ident: bb0070 article-title: Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension publication-title: Biophys. J. – volume: 2 start-page: 442 year: 2013 end-page: 449 ident: bb0275 article-title: A bio-inspired platform to modulate myogenic differentiation of human mesenchymal stem cells through focal adhesion regulation publication-title: Adv. Healthc. Mater. – volume: 74 start-page: 519 year: 2006 end-page: 529 ident: bb0025 article-title: Investigating the effects of preinduction on human adipose-derived precursor cells in an athymic rat model publication-title: Differentiation – volume: 182 start-page: 1 year: 2006 end-page: 11 ident: bb0035 article-title: Characterization of osteogenically induced adipose tissue-derived precursor cells in 2-dimensional and 3-dimensional environments publication-title: Cells Tissues Organs – volume: 122 start-page: 546 year: 2009 end-page: 553 ident: bb0085 article-title: Mechanically induced osteogenic differentiation—the role of RhoA ROCKII and cytoskeletal dynamics publication-title: J. Cell Sci. – volume: 13 start-page: 799 year: 2013 end-page: 807 ident: bb0270 article-title: A generic micropatterning platform to direct human mesenchymal stem cells from different origins towards myogenic differentiation publication-title: Macromol. Biosci. – volume: 107 start-page: 4872 year: 2010 end-page: 4877 ident: bb0075 article-title: Geometric cues for directing the differentiation of mesenchymal stem cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 79 year: 2013 ident: bb0195 article-title: Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro publication-title: Stem Cell Res. Ther. – volume: 64 start-page: 295 year: 1997 end-page: 312 ident: bb0010 article-title: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro publication-title: J. Cell. Biochem. – volume: 9 start-page: 518 year: 2010 end-page: 526 ident: bb0110 article-title: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate publication-title: Nat. Mater. – volume: 284 start-page: 143 year: 1999 end-page: 147 ident: bb0015 article-title: Multilineage potential of adult human mesenchymal stem cells publication-title: Science – volume: 110 start-page: 2187 year: 1997 end-page: 2196 ident: bb0375 article-title: Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro publication-title: J. Cell Sci. – volume: 20 start-page: 1858 year: 2005 end-page: 1866 ident: bb0215 article-title: RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity publication-title: J. Bone Miner. Res. – volume: 53 start-page: 219 year: 2007 end-page: 228 ident: bb0180 article-title: Cytoskeletal changes of mesenchymal stem cells during differentiation publication-title: ASAIO J. – volume: 29 start-page: 1291 year: 2009 end-page: 1305 ident: bb0230 article-title: Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2 publication-title: Mol. Cell. Biol. – volume: 133 start-page: 1403 year: 1996 end-page: 1415 ident: bb0210 article-title: Rho-stimulated contractility drives the formation of stress fibers and focal adhesions publication-title: J. Cell Biol. – volume: 44 start-page: 1877 year: 2003 end-page: 1886 ident: bb0020 article-title: Adipogenic differentiating agents regulate expression of fatty acid binding protein and CD36 in the J744 macrophage cell line publication-title: J. Lipid Res. – volume: 2 start-page: 165 year: 2005 end-page: 177 ident: bb0370 article-title: Changes in integrin expression during adipocyte differentiation publication-title: Cell Metab. – volume: 1 start-page: 1058 year: 2012 end-page: 1068 ident: bb0205 article-title: Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells publication-title: Biol. Open – volume: 45 start-page: 677 year: 2008 end-page: 688 ident: bb0390 article-title: Linear viscoelastic behavior of subcutaneous adipose tissue publication-title: Biorheology – volume: 113 start-page: 3297 year: 2013 end-page: 3328 ident: bb0170 article-title: Physical cues of biomaterials guide stem cell differentiation fate publication-title: Chem. Rev. – volume: 279 start-page: 35557 year: 2004 end-page: 35563 ident: bb0190 article-title: Mechanism of blebbistatin inhibition of myosin II publication-title: J. Biol. Chem. – volume: 267 start-page: 531 year: 1977 end-page: 532 ident: bb0280 article-title: Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture publication-title: Nature – volume: 145 start-page: 2421 year: 2004 end-page: 2432 ident: bb0140 article-title: Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis publication-title: Endocrinology – volume: 77 start-page: 192 year: 2004 end-page: 204 ident: bb0185 article-title: Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype publication-title: J. Neurosci. Res. – volume: 107 start-page: 7757 year: 2010 end-page: 7762 ident: bb0235 article-title: A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 21 start-page: 363 year: 1988 end-page: 374 ident: bb0005 article-title: Mineralization of adult mouse bone marrow in vitro publication-title: Cell Tissue Kinet. – volume: 316 start-page: 1159 year: 2010 end-page: 1168 ident: bb0260 article-title: Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage publication-title: Exp. Cell Res. – volume: 286 start-page: C518 year: 2004 end-page: C528 ident: bb0305 article-title: Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress publication-title: Am. J. Physiol. Cell Physiol. – volume: 341 start-page: 1240104 year: 2013 ident: bb0310 article-title: Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation publication-title: Science – volume: 16 start-page: 22 year: 2002 end-page: 26 ident: bb0350 article-title: C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway publication-title: Genes Dev. – volume: 26 start-page: 111 year: 1993 end-page: 119 ident: bb0385 article-title: Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements publication-title: J. Biomech. – volume: 7 start-page: 211 year: 2001 end-page: 228 ident: bb0040 article-title: Multilineage cells from human adipose tissue: implications for cell-based therapies publication-title: Tissue Eng. – volume: 276 start-page: 1425 year: 1997 end-page: 1428 ident: bb0060 article-title: Geometric control of cell life and death publication-title: Science – volume: 100 start-page: 499 year: 2007 end-page: 514 ident: bb0225 article-title: Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5 publication-title: J. Cell. Biochem. – volume: 313 start-page: 22 year: 2007 end-page: 37 ident: bb0220 article-title: Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells publication-title: Exp. Cell Res. – volume: 107 start-page: 7757 year: 2010 ident: 10.1016/j.bbagen.2015.02.011_bb0235 article-title: A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0912739107 – volume: 7 start-page: 211 year: 2001 ident: 10.1016/j.bbagen.2015.02.011_bb0040 article-title: Multilineage cells from human adipose tissue: implications for cell-based therapies publication-title: Tissue Eng. doi: 10.1089/107632701300062859 – volume: 6 start-page: 74 year: 2010 ident: 10.1016/j.bbagen.2015.02.011_bb0175 article-title: Cytoskeletal disassembly and cell rounding promotes adipogenesis from ES cells publication-title: Stem Cell Rev. doi: 10.1007/s12015-010-9115-8 – volume: 26 start-page: 111 year: 1993 ident: 10.1016/j.bbagen.2015.02.011_bb0385 article-title: Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements publication-title: J. Biomech. doi: 10.1016/0021-9290(93)90042-D – volume: 35 start-page: 657 year: 1983 ident: 10.1016/j.bbagen.2015.02.011_bb0325 article-title: Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes publication-title: Cell doi: 10.1016/0092-8674(83)90098-3 – volume: 111 start-page: 1922 year: 2003 ident: 10.1016/j.bbagen.2015.02.011_bb0055 article-title: In vitro differentiation of human processed lipoaspirate cells into early neural progenitors publication-title: Plast. Reconstr. Surg. doi: 10.1097/01.PRS.0000055043.62589.05 – volume: 11 start-page: 642 year: 2012 ident: 10.1016/j.bbagen.2015.02.011_bb0105 article-title: Extracellular-matrix tethering regulates stem-cell fate publication-title: Nat. Mater. doi: 10.1038/nmat3339 – volume: 276 start-page: 1425 year: 1997 ident: 10.1016/j.bbagen.2015.02.011_bb0060 article-title: Geometric control of cell life and death publication-title: Science doi: 10.1126/science.276.5317.1425 – volume: 107 start-page: 4872 year: 2010 ident: 10.1016/j.bbagen.2015.02.011_bb0075 article-title: Geometric cues for directing the differentiation of mesenchymal stem cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0903269107 – volume: 145 start-page: 2421 year: 2004 ident: 10.1016/j.bbagen.2015.02.011_bb0140 article-title: Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis publication-title: Endocrinology doi: 10.1210/en.2003-1156 – volume: 6 start-page: 483 year: 2004 ident: 10.1016/j.bbagen.2015.02.011_bb0080 article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment publication-title: Dev. Cell doi: 10.1016/S1534-5807(04)00075-9 – volume: 8 start-page: 623 year: 2013 ident: 10.1016/j.bbagen.2015.02.011_bb0090 article-title: Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine publication-title: Nanomedicine (Lond.) doi: 10.2217/nnm.13.31 – volume: 4 start-page: 79 year: 2013 ident: 10.1016/j.bbagen.2015.02.011_bb0195 article-title: Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro publication-title: Stem Cell Res. Ther. doi: 10.1186/scrt230 – volume: 21 start-page: 363 year: 1988 ident: 10.1016/j.bbagen.2015.02.011_bb0005 article-title: Mineralization of adult mouse bone marrow in vitro publication-title: Cell Tissue Kinet. – volume: 13 start-page: 799 year: 2013 ident: 10.1016/j.bbagen.2015.02.011_bb0270 article-title: A generic micropatterning platform to direct human mesenchymal stem cells from different origins towards myogenic differentiation publication-title: Macromol. Biosci. doi: 10.1002/mabi.201200481 – volume: 133 start-page: 1403 year: 1996 ident: 10.1016/j.bbagen.2015.02.011_bb0210 article-title: Rho-stimulated contractility drives the formation of stress fibers and focal adhesions publication-title: J. Cell Biol. doi: 10.1083/jcb.133.6.1403 – volume: 94 start-page: 13661 year: 1997 ident: 10.1016/j.bbagen.2015.02.011_bb0295 article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.25.13661 – volume: 100 start-page: 499 year: 2007 ident: 10.1016/j.bbagen.2015.02.011_bb0225 article-title: Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.21074 – volume: 341 start-page: 1240104 year: 2013 ident: 10.1016/j.bbagen.2015.02.011_bb0310 article-title: Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation publication-title: Science doi: 10.1126/science.1240104 – volume: 2 start-page: 165 year: 2005 ident: 10.1016/j.bbagen.2015.02.011_bb0370 article-title: Changes in integrin expression during adipocyte differentiation publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.08.006 – volume: 151 start-page: 497 year: 1992 ident: 10.1016/j.bbagen.2015.02.011_bb0065 article-title: Switching from differentiation to growth in hepatocytes: control by extracellular matrix publication-title: J. Cell. Physiol. doi: 10.1002/jcp.1041510308 – volume: 26 start-page: 730 year: 2011 ident: 10.1016/j.bbagen.2015.02.011_bb0365 article-title: Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.278 – volume: 38 start-page: 1767 year: 2010 ident: 10.1016/j.bbagen.2015.02.011_bb0155 article-title: Tensile strain as a regulator of mesenchymal stem cell osteogenesis publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-9979-4 – volume: 113 start-page: 3297 year: 2013 ident: 10.1016/j.bbagen.2015.02.011_bb0170 article-title: Physical cues of biomaterials guide stem cell differentiation fate publication-title: Chem. Rev. doi: 10.1021/cr300426x – volume: 28 start-page: 564 year: 2010 ident: 10.1016/j.bbagen.2015.02.011_bb0245 article-title: Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin publication-title: Stem Cells doi: 10.1002/stem.308 – volume: 295 start-page: C1037 year: 2008 ident: 10.1016/j.bbagen.2015.02.011_bb0100 article-title: Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.67.2008 – volume: 52 start-page: 97 year: 2002 ident: 10.1016/j.bbagen.2015.02.011_bb0285 article-title: Micropatterning tractional forces in living cells publication-title: Cell Motil. Cytoskeleton doi: 10.1002/cm.10037 – volume: 182 start-page: 1 year: 2006 ident: 10.1016/j.bbagen.2015.02.011_bb0035 article-title: Characterization of osteogenically induced adipose tissue-derived precursor cells in 2-dimensional and 3-dimensional environments publication-title: Cells Tissues Organs doi: 10.1159/000091713 – volume: 100 start-page: 1484 year: 2003 ident: 10.1016/j.bbagen.2015.02.011_bb0125 article-title: Cells lying on a bed of microneedles: an approach to isolate mechanical force publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0235407100 – volume: 149 start-page: 6065 year: 2008 ident: 10.1016/j.bbagen.2015.02.011_bb0150 article-title: Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal publication-title: Endocrinology doi: 10.1210/en.2008-0687 – volume: 362 start-page: 17 year: 2007 ident: 10.1016/j.bbagen.2015.02.011_bb0030 article-title: Osteo-maturation of adipose-derived stem cells required the combined action of vitamin D3, beta-glycerophosphate, and ascorbic acid publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.07.112 – volume: 286 start-page: C518 year: 2004 ident: 10.1016/j.bbagen.2015.02.011_bb0305 article-title: Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00280.2003 – volume: 216 start-page: 897 year: 1982 ident: 10.1016/j.bbagen.2015.02.011_bb0115 article-title: Nerve fiber growth on defined hydrogel substrates publication-title: Science doi: 10.1126/science.7079743 – volume: 7 start-page: 733 year: 2010 ident: 10.1016/j.bbagen.2015.02.011_bb0130 article-title: Mechanical regulation of cell function with geometrically modulated elastomeric substrates publication-title: Nat. Methods doi: 10.1038/nmeth.1487 – volume: 2 start-page: 442 year: 2013 ident: 10.1016/j.bbagen.2015.02.011_bb0275 article-title: A bio-inspired platform to modulate myogenic differentiation of human mesenchymal stem cells through focal adhesion regulation publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201200142 – volume: 41 start-page: 389 year: 2004 ident: 10.1016/j.bbagen.2015.02.011_bb0050 article-title: Adipose-derived adult stem cells for cartilage tissue engineering publication-title: Biorheology – volume: 108 start-page: 9466 year: 2011 ident: 10.1016/j.bbagen.2015.02.011_bb0165 article-title: Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1106467108 – volume: 74 start-page: 519 year: 2006 ident: 10.1016/j.bbagen.2015.02.011_bb0025 article-title: Investigating the effects of preinduction on human adipose-derived precursor cells in an athymic rat model publication-title: Differentiation doi: 10.1111/j.1432-0436.2006.00092.x – volume: 16 start-page: 22 year: 2002 ident: 10.1016/j.bbagen.2015.02.011_bb0350 article-title: C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway publication-title: Genes Dev. doi: 10.1101/gad.948702 – volume: 284 start-page: 143 year: 1999 ident: 10.1016/j.bbagen.2015.02.011_bb0015 article-title: Multilineage potential of adult human mesenchymal stem cells publication-title: Science doi: 10.1126/science.284.5411.143 – volume: 316 start-page: 1159 year: 2010 ident: 10.1016/j.bbagen.2015.02.011_bb0260 article-title: Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2010.02.010 – volume: 313 start-page: 22 year: 2007 ident: 10.1016/j.bbagen.2015.02.011_bb0220 article-title: Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2006.09.013 – volume: 26 start-page: 2921 year: 2008 ident: 10.1016/j.bbagen.2015.02.011_bb0250 article-title: Emergence of patterned stem cell differentiation within multicellular structures publication-title: Stem Cells doi: 10.1634/stemcells.2008-0432 – volume: 129 start-page: 531 year: 2007 ident: 10.1016/j.bbagen.2015.02.011_bb0160 article-title: Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo publication-title: J. Biomech. Eng. doi: 10.1115/1.2746375 – volume: 9 start-page: e1002926 year: 2013 ident: 10.1016/j.bbagen.2015.02.011_bb0135 article-title: Dynamic modeling of cell migration and spreading behaviors on fibronectin coated planar substrates and micropatterned geometries publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002926 – volume: 32 start-page: 327 year: 2014 ident: 10.1016/j.bbagen.2015.02.011_bb0380 article-title: An osteopontin–integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells publication-title: Stem Cells doi: 10.1002/stem.1567 – volume: 27 start-page: 6155 year: 2011 ident: 10.1016/j.bbagen.2015.02.011_bb0340 article-title: Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns publication-title: Langmuir doi: 10.1021/la200487w – volume: 64 start-page: 295 year: 1997 ident: 10.1016/j.bbagen.2015.02.011_bb0010 article-title: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro publication-title: J. Cell. Biochem. doi: 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I – volume: 66 start-page: 2181 year: 1994 ident: 10.1016/j.bbagen.2015.02.011_bb0070 article-title: Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)81014-8 – volume: 45 start-page: 367 year: 2009 ident: 10.1016/j.bbagen.2015.02.011_bb0315 article-title: TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway publication-title: Bone doi: 10.1016/j.bone.2009.04.252 – volume: 148 start-page: 2553 year: 2007 ident: 10.1016/j.bbagen.2015.02.011_bb0355 article-title: Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis publication-title: Endocrinology doi: 10.1210/en.2006-1704 – volume: 23 start-page: 165 year: 2009 ident: 10.1016/j.bbagen.2015.02.011_bb0320 article-title: Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway publication-title: Cell Physiol. Biochem. doi: 10.1159/000204105 – volume: 1 start-page: 1058 year: 2012 ident: 10.1016/j.bbagen.2015.02.011_bb0205 article-title: Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells publication-title: Biol. Open doi: 10.1242/bio.20122162 – volume: 93 start-page: 3693 year: 2007 ident: 10.1016/j.bbagen.2015.02.011_bb0335 article-title: Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells publication-title: Biophys. J. doi: 10.1529/biophysj.107.107797 – volume: 13 start-page: 979 year: 2014 ident: 10.1016/j.bbagen.2015.02.011_bb0120 article-title: Interplay of matrix stiffness and protein tethering in stem cell differentiation publication-title: Nat. Mater doi: 10.1038/nmat4051 – volume: 5 start-page: 713 year: 2010 ident: 10.1016/j.bbagen.2015.02.011_bb0145 article-title: Shear stress induces osteogenic differentiation of human mesenchymal stem cells publication-title: Regen. Med. doi: 10.2217/rme.10.60 – volume: 20 start-page: 1858 year: 2005 ident: 10.1016/j.bbagen.2015.02.011_bb0215 article-title: RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity publication-title: J. Bone Miner. Res. doi: 10.1359/JBMR.050611 – volume: American volume 90 start-page: 1043 year: 2008 ident: 10.1016/j.bbagen.2015.02.011_bb0045 article-title: Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model publication-title: J. Bone Joint Surg. doi: 10.2106/JBJS.G.00292 – volume: 29 start-page: 1291 year: 2009 ident: 10.1016/j.bbagen.2015.02.011_bb0230 article-title: Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01566-08 – volume: 56 start-page: 142 year: 2009 ident: 10.1016/j.bbagen.2015.02.011_bb0345 article-title: Extracellular matrix with the rigidity of adipose tissue helps 3T3-L1 adipocytes maintain insulin responsiveness publication-title: J. Med. Invest. doi: 10.2152/jmi.56.142 – volume: 98 start-page: 1021 year: 2006 ident: 10.1016/j.bbagen.2015.02.011_bb0360 article-title: Effects of PPARgamma agonists on cell survival and focal adhesions in a Chinese thyroid carcinoma cell line publication-title: J. Cell. Biochem. doi: 10.1002/jcb.20839 – volume: 44 start-page: 1877 year: 2003 ident: 10.1016/j.bbagen.2015.02.011_bb0020 article-title: Adipogenic differentiating agents regulate expression of fatty acid binding protein and CD36 in the J744 macrophage cell line publication-title: J. Lipid Res. doi: 10.1194/jlr.M300084-JLR200 – volume: 126 start-page: 677 year: 2006 ident: 10.1016/j.bbagen.2015.02.011_bb0095 article-title: Matrix elasticity directs stem cell lineage specification publication-title: Cell doi: 10.1016/j.cell.2006.06.044 – volume: 53 start-page: 219 year: 2007 ident: 10.1016/j.bbagen.2015.02.011_bb0180 article-title: Cytoskeletal changes of mesenchymal stem cells during differentiation publication-title: ASAIO J. doi: 10.1097/MAT.0b013e31802deb2d – volume: 6 start-page: 997 year: 2007 ident: 10.1016/j.bbagen.2015.02.011_bb0240 article-title: The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder publication-title: Nat. Mater. doi: 10.1038/nmat2013 – volume: 77 start-page: 192 year: 2004 ident: 10.1016/j.bbagen.2015.02.011_bb0185 article-title: Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20147 – volume: 279 start-page: 35557 year: 2004 ident: 10.1016/j.bbagen.2015.02.011_bb0190 article-title: Mechanism of blebbistatin inhibition of myosin II publication-title: J. Biol. Chem. doi: 10.1074/jbc.M405319200 – volume: 122 start-page: 546 year: 2009 ident: 10.1016/j.bbagen.2015.02.011_bb0085 article-title: Mechanically induced osteogenic differentiation—the role of RhoA ROCKII and cytoskeletal dynamics publication-title: J. Cell Sci. doi: 10.1242/jcs.036293 – volume: 34 start-page: 8140 year: 2013 ident: 10.1016/j.bbagen.2015.02.011_bb0265 article-title: Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.07.074 – volume: 267 start-page: 531 year: 1977 ident: 10.1016/j.bbagen.2015.02.011_bb0280 article-title: Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture publication-title: Nature doi: 10.1038/267531a0 – volume: 307 start-page: 355 year: 2003 ident: 10.1016/j.bbagen.2015.02.011_bb0290 article-title: Cell shape provides global control of focal adhesion assembly publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(03)01165-3 – volume: 9 start-page: 518 year: 2010 ident: 10.1016/j.bbagen.2015.02.011_bb0110 article-title: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate publication-title: Nat. Mater. doi: 10.1038/nmat2732 – volume: 80 start-page: 1540 year: 2001 ident: 10.1016/j.bbagen.2015.02.011_bb0300 article-title: Osteoblast integrin adhesion and signaling regulate mineralization publication-title: J. Dent. Res. doi: 10.1177/00220345010800061201 – volume: 110 start-page: 2187 issue: Pt 18 year: 1997 ident: 10.1016/j.bbagen.2015.02.011_bb0375 article-title: Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro publication-title: J. Cell Sci. doi: 10.1242/jcs.110.18.2187 – volume: 4 start-page: e698 year: 2013 ident: 10.1016/j.bbagen.2015.02.011_bb0255 article-title: Inhibition of Rac1 promotes BMP-2-induced osteoblastic differentiation publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.226 – volume: 109 start-page: 4509 year: 2012 ident: 10.1016/j.bbagen.2015.02.011_bb0200 article-title: Nonmuscle myosin II exerts tension but does not translocate actin in vertebrate cytokinesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1116268109 – volume: 12 start-page: 3459 year: 2006 ident: 10.1016/j.bbagen.2015.02.011_bb0330 article-title: Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression publication-title: Tissue Eng. doi: 10.1089/ten.2006.12.3459 – volume: 45 start-page: 677 year: 2008 ident: 10.1016/j.bbagen.2015.02.011_bb0390 article-title: Linear viscoelastic behavior of subcutaneous adipose tissue publication-title: Biorheology doi: 10.3233/BIR-2008-0517 – reference: 19763027 - J Med Invest. 2009 Aug;56(3-4):142-9 – reference: 15211586 - J Neurosci Res. 2004 Jul 15;77(2):192-204 – reference: 21486006 - Langmuir. 2011 May 17;27(10):6155-62 – reference: 23807227 - Cell Death Dis. 2013;4:e698 – reference: 20156435 - Exp Cell Res. 2010 Apr 15;316(7):1159-68 – reference: 15205456 - J Biol Chem. 2004 Aug 20;279(34):35557-63 – reference: 20939067 - J Bone Miner Res. 2011 Apr;26(4):730-8 – reference: 16651824 - Cells Tissues Organs. 2006;182(1):1-11 – reference: 17081517 - Exp Cell Res. 2007 Jan 1;313(1):22-37 – reference: 17675345 - Biophys J. 2007 Nov 15;93(10):3693-702 – reference: 14761883 - Am J Physiol Cell Physiol. 2004 Mar;286(3):C518-28 – reference: 25108614 - Nat Mater. 2014 Oct;13(10):979-87 – reference: 14749352 - Endocrinology. 2004 May;145(5):2421-32 – reference: 23184715 - Adv Healthc Mater. 2013 Mar;2(3):442-9 – reference: 16927379 - J Cell Biochem. 2007 Feb 1;100(2):499-514 – reference: 17317771 - Endocrinology. 2007 May;148(5):2553-62 – reference: 16154099 - Cell Metab. 2005 Sep;2(3):165-77 – reference: 12867536 - J Lipid Res. 2003 Oct;44(10):1877-86 – reference: 9391082 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13661-5 – reference: 19255511 - Cell Physiol Biochem. 2009;23(1-3):165-74 – reference: 16795079 - J Cell Biochem. 2006 Jul 1;98(4):1021-35 – reference: 17413564 - ASAIO J. 2007 Mar-Apr;53(2):219-28 – reference: 11499509 - J Dent Res. 2001 Jun;80(6):1540-4 – reference: 8075352 - Biophys J. 1994 Jun;66(6):2181-9 – reference: 20676108 - Nat Methods. 2010 Sep;7(9):733-6 – reference: 12552122 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9 – reference: 559947 - Nature. 1977 Jun 9;267(5611):531-2 – reference: 12711954 - Plast Reconstr Surg. 2003 May;111(6):1922-31 – reference: 20082286 - Stem Cells. 2010 Mar 31;28(3):564-72 – reference: 17891143 - Nat Mater. 2007 Dec;6(12):997-1003 – reference: 20217480 - Ann Biomed Eng. 2010 May;38(5):1767-79 – reference: 20868327 - Regen Med. 2010 Sep;5(5):713-24 – reference: 11782441 - Genes Dev. 2002 Jan 1;16(1):22-6 – reference: 20418863 - Nat Mater. 2010 Jun;9(6):518-26 – reference: 7079743 - Science. 1982 May 21;216(4548):897-9 – reference: 17692823 - Biochem Biophys Res Commun. 2007 Oct 12;362(1):17-24 – reference: 19103752 - Mol Cell Biol. 2009 Mar;29(5):1291-305 – reference: 17518682 - Tissue Eng. 2006 Dec;12(12):3459-65 – reference: 24123709 - Stem Cells. 2014 Feb;32(2):327-37 – reference: 20194780 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4872-7 – reference: 19414075 - Bone. 2009 Aug;45(2):367-76 – reference: 23990565 - Science. 2013 Aug 30;341(6149):1240104 – reference: 9162012 - Science. 1997 May 30;276(5317):1425-8 – reference: 23468612 - PLoS Comput Biol. 2013;9(2):e1002926 – reference: 21593411 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9466-71 – reference: 17655474 - J Biomech Eng. 2007 Aug;129(4):531-9 – reference: 20148318 - Stem Cell Rev. 2010 Mar;6(1):74-85 – reference: 23606448 - Macromol Biosci. 2013 Jun;13(6):799-807 – reference: 15299271 - Biorheology. 2004;41(3-4):389-99 – reference: 10102814 - Science. 1999 Apr 2;284(5411):143-7 – reference: 23932245 - Biomaterials. 2013 Nov;34(33):8140-8 – reference: 12112152 - Cell Motil Cytoskeleton. 2002 Jun;52(2):97-106 – reference: 6686086 - Cell. 1983 Dec;35(3 Pt 2):657-66 – reference: 16160744 - J Bone Miner Res. 2005 Oct;20(10):1858-66 – reference: 23838354 - Stem Cell Res Ther. 2013;4(4):79 – reference: 1295898 - J Cell Physiol. 1992 Jun;151(3):497-505 – reference: 11304456 - Tissue Eng. 2001 Apr;7(2):211-28 – reference: 23560412 - Nanomedicine (Lond). 2013 Apr;8(4):623-38 – reference: 17177849 - Differentiation. 2006 Dec;74(9-10):519-29 – reference: 19174467 - J Cell Sci. 2009 Feb 15;122(Pt 4):546-53 – reference: 18687779 - Endocrinology. 2008 Dec;149(12):6065-75 – reference: 8682874 - J Cell Biol. 1996 Jun;133(6):1403-15 – reference: 22635042 - Nat Mater. 2012 Jul;11(7):642-9 – reference: 23391258 - Chem Rev. 2013 May 8;113(5):3297-328 – reference: 18703661 - Stem Cells. 2008 Nov;26(11):2921-7 – reference: 18753317 - Am J Physiol Cell Physiol. 2008 Oct;295(4):C1037-44 – reference: 15068789 - Dev Cell. 2004 Apr;6(4):483-95 – reference: 3245957 - Cell Tissue Kinet. 1988 Sep;21(5):363-74 – reference: 22393000 - Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4509-14 – reference: 9378768 - J Cell Sci. 1997 Sep;110 ( Pt 18):2187-96 – reference: 23213385 - Biol Open. 2012 Nov 15;1(11):1058-68 – reference: 8429054 - J Biomech. 1993 Feb;26(2):111-9 – reference: 20385838 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7757-62 – reference: 19065014 - Biorheology. 2008;45(6):677-88 – reference: 18451397 - J Bone Joint Surg Am. 2008 May;90(5):1043-52 – reference: 12859964 - Biochem Biophys Res Commun. 2003 Jul 25;307(2):355-61 – reference: 9027589 - J Cell Biochem. 1997 Feb;64(2):295-312 – reference: 16923388 - Cell. 2006 Aug 25;126(4):677-89 |
SSID | ssj0000595 ssj0025309 |
Score | 2.4172409 |
SecondaryResourceType | review_article |
Snippet | Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1261 |
SubjectTerms | Animals bone formation cell differentiation Cell Lineage Cell Shape Cytoskeleton Cytoskeleton - physiology Extracellular Matrix - metabolism gene expression Humans Mechanotransduction, Cellular Mesenchymal stem cell Mesenchymal Stromal Cells - metabolism Mesenchymal Stromal Cells - physiology Physical cue physical properties Physical Stimulation Pressure Stem Cell Niche stem cells Stiffness Stress, Mechanical Topography |
Title | Environmental physical cues determine the lineage specification of mesenchymal stem cells |
URI | https://dx.doi.org/10.1016/j.bbagen.2015.02.011 https://www.ncbi.nlm.nih.gov/pubmed/25727396 https://www.proquest.com/docview/1702087828 https://www.proquest.com/docview/2000224025 https://pubmed.ncbi.nlm.nih.gov/PMC4411082 |
Volume | 1850 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUNVeEKUPlsfKlXp1N46d2DmiFattV-XQUpWerNjOiq1KdgXLgQu_nZk4WdhWCKmnKIlHmXic-T7F8wD4WE29SHwqucpNwpVLSk4wwo1EfFfpNKhAicJfT_PxD_XlPDvfgGGXC0Nhla3vjz698dbtlUE7m4PFbDb4Tpt6SCcQkJv9JvLDSmmqn__p7iHMA-lDFncSFKfRXfpcE-PlHH60VAVVZE3lTiGegqd_6effUZSPYGm0A9stn2THUeXXsFHVu_Aidpi83YWXw66h2xv4dfKQ1IYii9ZCzOMDWWjDYiqGjJAR90SdGeVhUixRYz42n7JLSlbyF7eXKEcloBn9-L9-C2ejk7PhmLedFbhXWbLkrigC4jRym1zmJlDCaRUKh0CVuzTgVAVdVirxwplSeqmFz5C4uDIYL4tSy3ewWc_rag-YV05LrUsjyqBcYQxKuFw4RETKzXQ9kN18Wt9WHafmF39sF17220YrWLKCTVKLVugBX0ktYtWNZ8brzlR2bfVYBIZnJD90lrVoDpq0sq7mN9dWaOpfigTKPD0mTSInSrMevI-rYaUv-kKkhkWOuq2tk9UAKuy9fqeeXTQFvnFZC6Rm-__9Vgfwis5iSNshbC6vbqojJE9L12--jj5sHX-ejE_pOPn2c3IPEYAbWw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH-ahlC5TDC-Or6MxNU0jp3YOaKqU4F2F4pUTlZsp1oRSyvWHXbZ37734qSloGkS19hPcfye3--n-H0AfKgWXiQ-lVzlJuHKJSUnGOFGIr6rdBFUoETh6Vk-_q6-zLP5AQy7XBgKq2x9f_Tpjbdunwza3Rysl8vBN7rUQzqBgNzcN6EffqAyqcm0P97s4jyQP2TxKkFxmt7lzzVBXs7hqaUyqCJrSncKcRc-_cs__w6j_AOXTh_DUUso2ae45idwUNXH8DC2mLw-ht6w6-j2FH6MdlltKLJuVcQ8vpCFNi6mYkgJGZFPXDOjREwKJmr0x1YLdkHZSv78-gLlqAY0oz__l89gdjqaDce8ba3AvcqSDXdFERCokdzkMjeBMk6rUDhEqtylAbcq6LJSiRfOlNJLLXyGzMWVwXhZlFo-h8N6VVcvgXnltNS6NKIMyhXGoITLhUNIpORM1wfZ7af1bdlx6n7xy3bxZT9t1IIlLdgktaiFPvCt1DqW3bhnvu5UZffMxyIy3CP5vtOsRXXQppV1tbq6tEJTA1NkUObuOWkSSVGa9eFFtIbtetEZIjcsclzbnp1sJ1Bl7_2RenneVPhGuxbIzU7--6veQW88m07s5PPZ11fwiEZifNtrONz8vqreIJPauLfNSbkFlzMbTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+physical+cues+determine+the+lineage+specification+of+mesenchymal+stem+cells&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Huang%2C+Chao&rft.au=Dai%2C+Jingxing&rft.au=Zhang%2C+Xin+A.&rft.date=2015-06-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1850&rft.issue=6&rft.spage=1261&rft.epage=1266&rft_id=info:doi/10.1016%2Fj.bbagen.2015.02.011&rft.externalDocID=S0304416515000732 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |