A Proteomic Atlas of the African Swine Fever Virus Particle
African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral st...
Saved in:
Published in | Journal of virology Vol. 92; no. 23 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.
African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.
IMPORTANCE
African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts. |
---|---|
AbstractList | African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.
African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.
IMPORTANCE
African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts. African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts. African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information. African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts. |
Author | Andrés, Germán Alejo, Alí Matamoros, Tania Guerra, Milagros |
Author_xml | – sequence: 1 givenname: Alí surname: Alejo fullname: Alejo, Alí organization: Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain – sequence: 2 givenname: Tania surname: Matamoros fullname: Matamoros, Tania organization: Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain – sequence: 3 givenname: Milagros surname: Guerra fullname: Guerra, Milagros organization: Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain – sequence: 4 givenname: Germán orcidid: 0000-0003-0265-5409 surname: Andrés fullname: Andrés, Germán organization: Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30185597$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LAzEQxYNU7IfePEuOHtyaj81ugiCUYrVSsKAWbyFNszay3WiSVvzv3dpaVGQOc5jfvDfMa4NG5SoDwDFGXYwJP7-dDLsIE0ETzPdACyPBE8Zw2gAthAhJGOVPTdAO4QUhnKZZegCaFGHOmMhb4KIHx95F4xZWw14sVYCugHFuYK_wVqsK3r_bysCBWRkPJ9YvAxwrH60uzSHYL1QZzNG2d8Dj4Oqhf5OM7q6H_d4o0SlDMZmyWS5woTXHPNdiOhOFzmYIM5Qrbhijuch5lq2nNVRwjrhOaY610oQrI2gHXG50X5fThZlpU0WvSvnq7UL5D-mUlb8nlZ3LZ7eSGaEkFbQWON0KePe2NCHKhQ3alKWqjFsGSTBClKZ11ejJT6-dyffHauBsA2jvQvCm2CEYyXUgsg5EfgUiMa9x8gfXNqpo3fpSW_6_9AnZVozw |
CitedBy_id | crossref_primary_10_3390_pathogens9121078 crossref_primary_10_3390_v11090864 crossref_primary_10_3390_vaccines13030211 crossref_primary_10_1128_mbio_01655_24 crossref_primary_10_3389_fvets_2021_719859 crossref_primary_10_1016_j_immuno_2022_100019 crossref_primary_10_1016_j_jbc_2021_101480 crossref_primary_10_3390_v13112124 crossref_primary_10_1074_jbc_AC119_011196 crossref_primary_10_3390_v13020255 crossref_primary_10_1128_jvi_01701_24 crossref_primary_10_1186_s13567_022_01119_9 crossref_primary_10_1016_j_antiviral_2019_02_018 crossref_primary_10_1016_j_mcp_2021_101764 crossref_primary_10_1186_s12985_021_01568_2 crossref_primary_10_1128_jvi_00616_23 crossref_primary_10_1128_jvi_00748_23 crossref_primary_10_3390_v15040858 crossref_primary_10_3390_v15071477 crossref_primary_10_1016_j_bmc_2021_116055 crossref_primary_10_3390_v11100882 crossref_primary_10_1126_science_aaz1439 crossref_primary_10_3390_vaccines11040762 crossref_primary_10_3390_v14112348 crossref_primary_10_3389_fmicb_2022_971888 crossref_primary_10_1016_j_jviromet_2024_115037 crossref_primary_10_3390_v14020220 crossref_primary_10_1016_j_heliyon_2024_e28426 crossref_primary_10_1128_jvi_01667_21 crossref_primary_10_1016_j_ijbiomac_2024_135983 crossref_primary_10_3390_v16050758 crossref_primary_10_3389_fmicb_2023_1169699 crossref_primary_10_1038_s41467_024_54461_1 crossref_primary_10_3390_life12071067 crossref_primary_10_1128_JVI_01139_21 crossref_primary_10_3389_fvets_2019_00306 crossref_primary_10_3390_vetsci11120650 crossref_primary_10_3390_v17030309 crossref_primary_10_1016_j_jbc_2023_104767 crossref_primary_10_1128_jvi_00577_23 crossref_primary_10_1038_s41598_023_47068_x crossref_primary_10_3390_vaccines8040585 crossref_primary_10_3390_vaccines11101577 crossref_primary_10_3390_vaccines9040343 crossref_primary_10_3390_ani14152187 crossref_primary_10_1128_jvi_01106_23 crossref_primary_10_1128_spectrum_03282_22 crossref_primary_10_3389_fgene_2020_00758 crossref_primary_10_3389_fimmu_2024_1350267 crossref_primary_10_1016_j_virol_2024_110317 crossref_primary_10_1128_jvi_00268_23 crossref_primary_10_3390_ani11072039 crossref_primary_10_1016_j_virol_2025_110477 crossref_primary_10_3389_fvets_2022_1080397 crossref_primary_10_1007_s00253_023_12921_6 crossref_primary_10_3390_ijms25042099 crossref_primary_10_3390_ani14131951 crossref_primary_10_3390_v13112333 crossref_primary_10_3390_ani14172469 crossref_primary_10_3389_fvets_2023_1175701 crossref_primary_10_1016_j_ijbiomac_2025_139701 crossref_primary_10_1111_tbed_13364 crossref_primary_10_1128_JVI_01500_21 crossref_primary_10_3390_v13122495 crossref_primary_10_3389_fvets_2023_1160583 crossref_primary_10_3390_v15071467 crossref_primary_10_1016_j_virusres_2019_04_002 crossref_primary_10_1042_BST20191108 crossref_primary_10_1016_j_talanta_2022_124007 crossref_primary_10_1128_jvi_00228_23 crossref_primary_10_3389_fmicb_2024_1328177 crossref_primary_10_3390_v14122619 crossref_primary_10_3390_vaccines9111371 crossref_primary_10_3390_v13112285 crossref_primary_10_3390_microorganisms11122846 crossref_primary_10_1007_s12250_019_00157_6 crossref_primary_10_1039_D4AY01057D crossref_primary_10_1093_abbs_gmaa135 crossref_primary_10_1080_21505594_2022_2065962 crossref_primary_10_1080_22221751_2023_2220575 crossref_primary_10_3389_fmicb_2024_1469166 crossref_primary_10_1096_fj_202400931RR crossref_primary_10_3390_v17010063 crossref_primary_10_3390_v15091845 crossref_primary_10_1016_j_antiviral_2022_105433 crossref_primary_10_1128_JVI_01872_20 crossref_primary_10_3390_v16030376 crossref_primary_10_1016_j_virs_2022_11_006 crossref_primary_10_1016_j_virusres_2019_197673 crossref_primary_10_3390_v14091917 crossref_primary_10_1007_s00705_020_04915_w crossref_primary_10_1016_j_virs_2023_03_004 crossref_primary_10_3390_v16060879 crossref_primary_10_1128_spectrum_01401_23 crossref_primary_10_3389_fimmu_2024_1361531 crossref_primary_10_1128_msystems_00471_23 crossref_primary_10_1016_j_micpath_2022_105957 crossref_primary_10_1016_j_ijbiomac_2024_132432 crossref_primary_10_1099_jgv_0_001306 crossref_primary_10_1128_jvi_01889_22 crossref_primary_10_3390_vaccines11111687 crossref_primary_10_1038_s41598_023_36788_9 crossref_primary_10_1016_j_virs_2024_05_007 crossref_primary_10_1016_j_chom_2019_11_004 crossref_primary_10_1016_j_vetvac_2023_100042 crossref_primary_10_3390_v14122621 crossref_primary_10_1080_21505594_2025_2457949 crossref_primary_10_3390_vaccines8020312 crossref_primary_10_3390_v12060676 crossref_primary_10_3390_v13081473 crossref_primary_10_1128_jvi_00954_22 crossref_primary_10_3390_v16091478 crossref_primary_10_1016_j_ijbiomac_2024_131695 crossref_primary_10_1080_22221751_2024_2377599 crossref_primary_10_1128_jvi_01943_22 crossref_primary_10_2222_jsv_70_15 crossref_primary_10_1093_bib_bbaa380 crossref_primary_10_1128_JVI_01419_21 crossref_primary_10_3390_vaccines12030307 crossref_primary_10_1186_s12864_022_08754_8 crossref_primary_10_1128_jvi_00723_23 crossref_primary_10_1016_j_aca_2021_339187 crossref_primary_10_3390_pathogens10020178 crossref_primary_10_1080_21505594_2023_2232707 crossref_primary_10_1128_mBio_02483_19 crossref_primary_10_3389_fcimb_2022_809135 crossref_primary_10_1128_jvi_00569_23 crossref_primary_10_3389_fmicb_2023_1225469 crossref_primary_10_3389_fimmu_2023_1186916 crossref_primary_10_3390_v16030349 crossref_primary_10_1038_s41421_024_00692_x crossref_primary_10_3390_v15020557 crossref_primary_10_3390_pathogens11020274 crossref_primary_10_3390_vaccines9050508 crossref_primary_10_3389_fmicb_2023_1043129 crossref_primary_10_1186_s44149_024_00122_1 crossref_primary_10_1186_s40813_020_00154_2 crossref_primary_10_3390_vaccines10050707 crossref_primary_10_3390_ani13121967 crossref_primary_10_1021_acsabm_3c01035 crossref_primary_10_1128_jvi_00545_22 crossref_primary_10_3390_vaccines12101125 crossref_primary_10_3390_life12081255 crossref_primary_10_1111_tbed_14191 crossref_primary_10_3390_life11111214 crossref_primary_10_1128_jvi_00327_24 crossref_primary_10_3390_v13071212 crossref_primary_10_1038_s41467_023_37681_9 crossref_primary_10_3390_v14092003 crossref_primary_10_3389_fchem_2021_804981 crossref_primary_10_1016_j_crmicr_2024_100232 crossref_primary_10_1080_21505594_2024_2375550 crossref_primary_10_3389_fimmu_2024_1358960 crossref_primary_10_1016_j_virusres_2024_199412 crossref_primary_10_1016_j_jbc_2024_107453 crossref_primary_10_1007_s11250_021_02877_y crossref_primary_10_3390_v16091464 crossref_primary_10_3390_v13112198 crossref_primary_10_3390_pathogens12060811 crossref_primary_10_1016_j_talanta_2025_127964 crossref_primary_10_1007_s00705_021_05335_0 crossref_primary_10_3390_ani14091331 crossref_primary_10_1007_s00253_021_11706_z crossref_primary_10_1007_s12088_024_01334_2 crossref_primary_10_1128_jvi_01939_21 crossref_primary_10_1128_JVI_02125_19 crossref_primary_10_1016_j_antiviral_2024_106058 crossref_primary_10_3390_pathogens13020103 crossref_primary_10_3389_fimmu_2019_01318 crossref_primary_10_3389_fvets_2022_830244 crossref_primary_10_1016_j_vetmic_2020_108832 crossref_primary_10_1016_j_csbj_2023_08_028 crossref_primary_10_1146_annurev_animal_021419_083741 crossref_primary_10_1186_s12917_020_02420_5 crossref_primary_10_1016_j_virusres_2024_199328 crossref_primary_10_3389_fimmu_2022_832264 crossref_primary_10_3390_v13010077 crossref_primary_10_3390_v14051112 crossref_primary_10_1371_journal_ppat_1011136 crossref_primary_10_3390_v14092021 crossref_primary_10_1186_s13568_024_01749_6 crossref_primary_10_2478_jvetres_2022_0043 crossref_primary_10_1128_jvi_00704_23 crossref_primary_10_3390_ijms26030921 crossref_primary_10_1016_j_ijbiomac_2021_03_059 crossref_primary_10_1016_j_vetmic_2025_110416 crossref_primary_10_3390_v14102140 crossref_primary_10_1128_jvi_00350_23 crossref_primary_10_1128_jvi_01022_22 crossref_primary_10_1016_j_virol_2024_110277 crossref_primary_10_1096_fj_202002145R crossref_primary_10_1007_s11262_023_02003_0 crossref_primary_10_1371_journal_pone_0293049 crossref_primary_10_3390_v16071058 crossref_primary_10_1016_j_bbrc_2022_07_091 crossref_primary_10_1016_j_micinf_2024_105348 crossref_primary_10_1128_JVI_00350_20 crossref_primary_10_1016_j_ijbiomac_2024_137070 crossref_primary_10_3390_v13112175 crossref_primary_10_1074_jbc_RA120_014005 crossref_primary_10_1016_j_bsheal_2022_04_002 crossref_primary_10_3390_microorganisms13030615 crossref_primary_10_58318_2957_5702_2023_15_17_34 crossref_primary_10_3390_ijms23137463 crossref_primary_10_3390_v12101193 crossref_primary_10_1038_s41541_025_01101_4 crossref_primary_10_1016_j_vetmic_2024_110247 crossref_primary_10_3390_v14122642 crossref_primary_10_32634_0869_8155_2023_368_3_40_45 crossref_primary_10_1007_s11427_019_9828_1 crossref_primary_10_3390_v14102170 crossref_primary_10_3390_vaccines7020056 crossref_primary_10_1128_jvi_01445_24 crossref_primary_10_3390_v12090918 crossref_primary_10_1038_s41541_025_01099_9 crossref_primary_10_3390_v15081634 crossref_primary_10_3390_v15040890 crossref_primary_10_4049_jimmunol_2200357 crossref_primary_10_1016_j_virs_2022_03_006 crossref_primary_10_1007_s11427_020_1657_9 crossref_primary_10_1016_j_virol_2022_04_001 crossref_primary_10_1371_journal_ppat_1010931 crossref_primary_10_1016_j_micpath_2022_105561 crossref_primary_10_1016_j_ijbiomac_2023_128111 crossref_primary_10_3389_fvets_2023_1093440 crossref_primary_10_1186_s12985_023_02111_1 crossref_primary_10_3390_v13060986 crossref_primary_10_1186_s13567_024_01386_8 crossref_primary_10_3390_vaccines11040846 crossref_primary_10_1128_jvi_00231_24 crossref_primary_10_3390_pathogens10050521 crossref_primary_10_1038_s41467_024_50981_y crossref_primary_10_1038_s41541_024_00845_9 crossref_primary_10_3389_fvets_2023_1286906 crossref_primary_10_1038_s41467_024_45842_7 crossref_primary_10_3390_vetsci9080417 crossref_primary_10_3389_fmicb_2018_02534 crossref_primary_10_3389_fimmu_2022_947180 crossref_primary_10_1016_j_virusres_2024_199465 crossref_primary_10_3389_fvets_2021_766533 crossref_primary_10_3390_vaccines9010029 crossref_primary_10_3390_v13010039 crossref_primary_10_3390_pathogens11070797 crossref_primary_10_1016_j_vetmic_2024_110067 crossref_primary_10_1128_mBio_00789_20 crossref_primary_10_1007_s42770_024_01439_2 crossref_primary_10_3390_vaccines8030531 crossref_primary_10_1073_pnas_1922523117 crossref_primary_10_1016_j_jviromet_2023_114823 crossref_primary_10_1016_j_virol_2024_110237 crossref_primary_10_3390_v15010131 crossref_primary_10_1111_tbed_14242 crossref_primary_10_3390_pr12122705 crossref_primary_10_1016_j_ijbiomac_2024_136747 crossref_primary_10_3390_vaccines12111278 crossref_primary_10_1016_j_virusres_2021_198621 crossref_primary_10_1128_jvi_01957_21 crossref_primary_10_3389_fmicb_2022_1017792 crossref_primary_10_3390_pathogens13070537 crossref_primary_10_1128_JVI_01340_21 crossref_primary_10_1016_j_ijbiomac_2023_123264 crossref_primary_10_1016_j_virusres_2024_199359 crossref_primary_10_1016_j_ijbiomac_2023_127724 crossref_primary_10_3389_fvets_2022_921481 crossref_primary_10_1016_j_virusres_2023_199190 crossref_primary_10_1016_j_vetmic_2019_08_003 crossref_primary_10_1016_j_jmgm_2024_108846 crossref_primary_10_3389_fimmu_2021_715582 crossref_primary_10_3389_fvets_2020_00215 crossref_primary_10_3390_ijms25168906 crossref_primary_10_3390_cimb46080488 crossref_primary_10_1186_s13567_024_01407_6 crossref_primary_10_3389_fimmu_2022_1015224 crossref_primary_10_3390_v14010010 crossref_primary_10_1128_JVI_00119_20 crossref_primary_10_1111_tbed_14018 crossref_primary_10_3389_fvets_2022_936978 |
Cites_doi | 10.1111/tbed.12989 10.1128/JVI.01333-09 10.1074/mcp.M500061-MCP200 10.1128/JVI.00600-10 10.1016/j.virusres.2013.10.017 10.1021/ac950914h 10.1016/0042-6822(90)90432-Q 10.1016/0042-6822(80)90493-6 10.1093/nar/21.10.2423 10.1006/viro.1995.1149 10.1111/j.1462-5822.2006.00750.x 10.1016/j.virol.2012.08.019 10.1128/JVI.75.6.2535-2543.2001 10.1128/JVI.00115-15 10.1006/viro.1995.1039 10.1128/JVI.01468-06 10.1074/jbc.M006844200 10.1128/JVI.01173-13 10.1099/0022-1317-32-3-471 10.1128/JVI.78.15.7990-8001.2004 10.1128/JVI.75.23.11720-11734.2001 10.1371/journal.pone.0123714 10.1021/bi047706g 10.1128/JVI.01858-09 10.1128/JVI.80.5.2127-2140.2006 10.1128/JVI.02338-16 10.1128/jvi.69.3.1785-1793.1995 10.3390/v4050688 10.1016/j.tvjl.2017.12.025 10.1128/jvi.67.9.5463-5471.1993 10.1128/JVI.01906-16 10.1128/jvi.71.8.5799-5804.1997 10.1016/0042-6822(86)90384-3 10.1128/jvi.71.3.2331-2341.1997 10.1128/JVI.73.11.8934-8943.1999 10.1016/j.virusres.2016.07.013 10.1128/JVI.01994-10 10.1016/0378-1119(93)90090-P 10.1128/JVI.00969-15 10.1016/j.virusres.2012.10.020 10.1073/pnas.0509239102 10.1074/jbc.272.49.30899 10.1128/JVI.72.4.3185-3195.1998 10.1007/BF01318999 10.1006/viro.1993.1128 10.1371/journal.ppat.1005595 10.1128/JVI.72.11.8988-9001.1998 10.1128/jvi.54.2.337-344.1985 10.1128/JVI.80.7.3157-3166.2006 10.1016/j.virusres.2012.09.016 10.1099/0022-1317-79-5-1179 10.1128/JVI.72.4.2881-2889.1998 10.1128/JVI.80.10.4847-4857.2006 10.1128/jvi.65.5.2283-2289.1991 10.1128/JVI.78.8.4299-4313.2004 10.1128/jvi.67.9.5312-5320.1993 10.1128/JVI.77.10.5571-5577.2003 10.1016/0042-6822(91)90490-3 10.1006/viro.1999.0080 10.1016/j.virol.2014.05.029 10.1128/jvi.68.11.7244-7252.1994 10.1099/0022-1317-40-2-499 10.1128/JVI.76.24.12473-12482.2002 10.1128/JVI.75.15.6758-6768.2001 10.1128/JVI.02498-16 10.1099/0022-1317-74-9-1969 10.1002/j.1460-2075.1993.tb05960.x 10.1093/nar/21.12.2940 10.1016/j.virusres.2006.01.009 10.1099/0022-1317-77-5-941 10.1128/JVI.76.19.9991-9999.2002 10.1128/jvi.67.5.2475-2485.1993 10.1016/j.virusres.2012.09.014 10.1016/0042-6822(81)90176-8 10.1006/viro.1997.8481 10.1099/0022-1317-74-11-2317 10.1016/0042-6822(92)90718-5 10.1016/j.virol.2006.08.025 10.1128/JVI.76.6.2654-2666.2002 10.1006/viro.1995.0083 10.1128/jvi.67.8.4549-4556.1993 10.1111/cmi.12468 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Society for Microbiology. Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2018 American Society for Microbiology. – notice: Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1128/JVI.01293-18 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | ASFV Proteome |
EISSN | 1098-5514 |
ExternalDocumentID | PMC6232493 30185597 10_1128_JVI_01293_18 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ AAYXX ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM NPM RHF UCJ 7X8 5PM |
ID | FETCH-LOGICAL-c450t-b5d791fcc8187c9bd9fc6d01507a8e5537978668187fccf8808c4371cac28ae93 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 17:41:52 EDT 2025 Thu Aug 28 07:11:38 EDT 2025 Wed Feb 19 02:36:29 EST 2025 Tue Jul 01 01:02:57 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | giant virus NCLDV immunoelectron microscopy virus composition African swine fever virus mass spectrometry virus structure proteome proteomic analysis |
Language | English |
License | Copyright © 2018 American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-b5d791fcc8187c9bd9fc6d01507a8e5537978668187fccf8808c4371cac28ae93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Alejo A, Matamoros T, Guerra M, Andrés G. 2018. A proteomic atlas of the African swine fever virus particle. J Virol 92:e01293-18. https://doi.org/10.1128/JVI.01293-18. A.A. and T.M. contributed equally to this article. |
ORCID | 0000-0003-0265-5409 |
OpenAccessLink | https://jvi.asm.org/content/jvi/92/23/e01293-18.full.pdf |
PMID | 30185597 |
PQID | 2100334343 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232493 proquest_miscellaneous_2100334343 pubmed_primary_30185597 crossref_primary_10_1128_JVI_01293_18 crossref_citationtrail_10_1128_JVI_01293_18 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2018 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 |
References_xml | – ident: e_1_3_2_3_2 doi: 10.1111/tbed.12989 – ident: e_1_3_2_45_2 doi: 10.1128/JVI.01333-09 – ident: e_1_3_2_24_2 doi: 10.1074/mcp.M500061-MCP200 – ident: e_1_3_2_32_2 doi: 10.1128/JVI.00600-10 – ident: e_1_3_2_55_2 doi: 10.1016/j.virusres.2013.10.017 – ident: e_1_3_2_75_2 doi: 10.1021/ac950914h – ident: e_1_3_2_76_2 doi: 10.1016/0042-6822(90)90432-Q – ident: e_1_3_2_52_2 doi: 10.1016/0042-6822(80)90493-6 – ident: e_1_3_2_78_2 doi: 10.1093/nar/21.10.2423 – ident: e_1_3_2_6_2 doi: 10.1006/viro.1995.1149 – ident: e_1_3_2_70_2 doi: 10.1111/j.1462-5822.2006.00750.x – ident: e_1_3_2_71_2 doi: 10.1016/j.virol.2012.08.019 – ident: e_1_3_2_63_2 doi: 10.1128/JVI.75.6.2535-2543.2001 – ident: e_1_3_2_23_2 doi: 10.1128/JVI.00115-15 – ident: e_1_3_2_43_2 doi: 10.1006/viro.1995.1039 – ident: e_1_3_2_30_2 doi: 10.1128/JVI.01468-06 – ident: e_1_3_2_37_2 doi: 10.1074/jbc.M006844200 – ident: e_1_3_2_59_2 doi: 10.1128/JVI.01173-13 – ident: e_1_3_2_73_2 doi: 10.1099/0022-1317-32-3-471 – ident: e_1_3_2_16_2 doi: 10.1128/JVI.78.15.7990-8001.2004 – ident: e_1_3_2_4_2 doi: 10.1128/JVI.75.23.11720-11734.2001 – ident: e_1_3_2_48_2 doi: 10.1371/journal.pone.0123714 – ident: e_1_3_2_57_2 doi: 10.1021/bi047706g – ident: e_1_3_2_36_2 doi: 10.1128/JVI.01858-09 – ident: e_1_3_2_20_2 doi: 10.1128/JVI.80.5.2127-2140.2006 – ident: e_1_3_2_8_2 doi: 10.1128/JVI.02338-16 – ident: e_1_3_2_26_2 doi: 10.1128/jvi.69.3.1785-1793.1995 – ident: e_1_3_2_72_2 doi: 10.3390/v4050688 – ident: e_1_3_2_2_2 doi: 10.1016/j.tvjl.2017.12.025 – ident: e_1_3_2_44_2 doi: 10.1128/jvi.67.9.5463-5471.1993 – ident: e_1_3_2_10_2 doi: 10.1128/JVI.01906-16 – ident: e_1_3_2_34_2 doi: 10.1128/jvi.71.8.5799-5804.1997 – ident: e_1_3_2_19_2 doi: 10.1016/0042-6822(86)90384-3 – ident: e_1_3_2_15_2 doi: 10.1128/jvi.71.3.2331-2341.1997 – ident: e_1_3_2_60_2 doi: 10.1128/JVI.73.11.8934-8943.1999 – ident: e_1_3_2_80_2 doi: 10.1016/j.virusres.2016.07.013 – ident: e_1_3_2_51_2 doi: 10.1128/JVI.01994-10 – ident: e_1_3_2_77_2 doi: 10.1016/0378-1119(93)90090-P – ident: e_1_3_2_69_2 doi: 10.1128/JVI.00969-15 – ident: e_1_3_2_7_2 doi: 10.1016/j.virusres.2012.10.020 – ident: e_1_3_2_49_2 doi: 10.1073/pnas.0509239102 – ident: e_1_3_2_58_2 doi: 10.1074/jbc.272.49.30899 – ident: e_1_3_2_28_2 doi: 10.1128/JVI.72.4.3185-3195.1998 – ident: e_1_3_2_39_2 doi: 10.1007/BF01318999 – ident: e_1_3_2_54_2 doi: 10.1006/viro.1993.1128 – ident: e_1_3_2_11_2 doi: 10.1371/journal.ppat.1005595 – ident: e_1_3_2_14_2 doi: 10.1128/JVI.72.11.8988-9001.1998 – ident: e_1_3_2_18_2 doi: 10.1128/jvi.54.2.337-344.1985 – ident: e_1_3_2_68_2 doi: 10.1128/JVI.80.7.3157-3166.2006 – ident: e_1_3_2_9_2 doi: 10.1016/j.virusres.2012.09.016 – ident: e_1_3_2_27_2 doi: 10.1099/0022-1317-79-5-1179 – ident: e_1_3_2_46_2 doi: 10.1128/JVI.72.4.2881-2889.1998 – ident: e_1_3_2_56_2 doi: 10.1128/JVI.80.10.4847-4857.2006 – ident: e_1_3_2_41_2 doi: 10.1128/jvi.65.5.2283-2289.1991 – ident: e_1_3_2_31_2 doi: 10.1128/JVI.78.8.4299-4313.2004 – ident: e_1_3_2_47_2 doi: 10.1128/jvi.67.9.5312-5320.1993 – ident: e_1_3_2_38_2 doi: 10.1128/JVI.77.10.5571-5577.2003 – ident: e_1_3_2_50_2 doi: 10.1016/0042-6822(91)90490-3 – ident: e_1_3_2_74_2 doi: 10.1006/viro.1999.0080 – ident: e_1_3_2_22_2 doi: 10.1016/j.virol.2014.05.029 – ident: e_1_3_2_82_2 doi: 10.1128/jvi.68.11.7244-7252.1994 – ident: e_1_3_2_17_2 doi: 10.1099/0022-1317-40-2-499 – ident: e_1_3_2_25_2 doi: 10.1128/JVI.76.24.12473-12482.2002 – ident: e_1_3_2_29_2 doi: 10.1128/JVI.75.15.6758-6768.2001 – ident: e_1_3_2_40_2 doi: 10.1128/JVI.02498-16 – ident: e_1_3_2_79_2 doi: 10.1099/0022-1317-74-9-1969 – ident: e_1_3_2_33_2 doi: 10.1002/j.1460-2075.1993.tb05960.x – ident: e_1_3_2_83_2 doi: 10.1093/nar/21.12.2940 – ident: e_1_3_2_5_2 doi: 10.1016/j.virusres.2006.01.009 – ident: e_1_3_2_42_2 doi: 10.1099/0022-1317-77-5-941 – ident: e_1_3_2_66_2 doi: 10.1128/JVI.76.19.9991-9999.2002 – ident: e_1_3_2_65_2 doi: 10.1128/jvi.67.5.2475-2485.1993 – ident: e_1_3_2_12_2 doi: 10.1016/j.virusres.2012.09.014 – ident: e_1_3_2_53_2 doi: 10.1016/0042-6822(81)90176-8 – ident: e_1_3_2_62_2 doi: 10.1006/viro.1997.8481 – ident: e_1_3_2_64_2 doi: 10.1099/0022-1317-74-11-2317 – ident: e_1_3_2_81_2 doi: 10.1016/0042-6822(92)90718-5 – ident: e_1_3_2_21_2 doi: 10.1016/j.virol.2006.08.025 – ident: e_1_3_2_35_2 doi: 10.1128/JVI.76.6.2654-2666.2002 – ident: e_1_3_2_61_2 doi: 10.1006/viro.1995.0083 – ident: e_1_3_2_67_2 doi: 10.1128/jvi.67.8.4549-4556.1993 – ident: e_1_3_2_13_2 doi: 10.1111/cmi.12468 |
SSID | ssj0014464 |
Score | 2.6682649 |
Snippet | African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the... African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Structure and Assembly |
Title | A Proteomic Atlas of the African Swine Fever Virus Particle |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30185597 https://www.proquest.com/docview/2100334343 https://pubmed.ncbi.nlm.nih.gov/PMC6232493 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCLQXxDflS0aCpyqjSZzYFk8RYoxJ5amb9hY5tjOK2nRKUyH467mzkzSlTAJeoja5uKp_l8vd-X4-Qt7EUpWTpEgCw1gUsIIV8EgZHthQo3eOZEjkDk-_pCdn7PQiudi2uXPskqY40j__yCv5H1ThHOCKLNl_QLYfFE7AZ8AXjoAwHP8K4wzr_BuLxOJx1izUulvx991_4Mn9jk7ksYV_Nj6f15s1eIyDYfadUmS9DfPs2cJ-a4kwbkm9rw-eqkYtV7Uv0pupat6b908bW7vmRePpfKEuQWSbajDtwnybjq-X7mtYDXMPoRjUcVhvL3E7UnS6hgZVRgPF8WzifUMdIfng9PzzEWbC4sAb4QFmV0sHGtgfgUHP9nXVFxF2l26SWxHECHGXqmmXkCDOZR3TIRLvhj91SO50N--6I3sxxu-lsgPfY3aP3G3xoZmH7j65YasH5LZvI_rjIXmf0V4PqNMDuiop6AFt9YA6PaBOD6jTA9rpwSNydvxx9uEkaJtiBJolkyYoEsNlWGoNnhbXsjCy1KnBvBVXwiZJzCUXaYpXQagE8yw0i3molY6EsjJ-TA6qVWWfEmqYmsgytNIwwZSB20GMR6HRQnE5sSMy7uYm1-2O8di4ZJG7yDESOUxq7iY1D8WIvO2lr_xOKdfIve6mOQdThutTqrKrzTqPQuwsiFTnEXnip70fqcNrRPgOIL0AbpO-e6Waf3XbpacYNMj42bVjPieHW-V-QQ6aemNfgqvZFK-cSv0C8Xx6Yg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Proteomic+Atlas+of+the+African+Swine+Fever+Virus+Particle&rft.jtitle=Journal+of+virology&rft.au=Alejo%2C+Al%C3%AD&rft.au=Matamoros%2C+Tania&rft.au=Guerra%2C+Milagros&rft.au=Andr%C3%A9s%2C+Germ%C3%A1n&rft.date=2018-12-01&rft.eissn=1098-5514&rft.volume=92&rft.issue=23&rft_id=info:doi/10.1128%2FJVI.01293-18&rft_id=info%3Apmid%2F30185597&rft.externalDocID=30185597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |