A Proteomic Atlas of the African Swine Fever Virus Particle

African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral st...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 92; no. 23
Main Authors Alejo, Alí, Matamoros, Tania, Guerra, Milagros, Andrés, Germán
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts. African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information. IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.
AbstractList African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts. African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information. IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.
African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.
African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information. African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.
Author Andrés, Germán
Alejo, Alí
Matamoros, Tania
Guerra, Milagros
Author_xml – sequence: 1
  givenname: Alí
  surname: Alejo
  fullname: Alejo, Alí
  organization: Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
– sequence: 2
  givenname: Tania
  surname: Matamoros
  fullname: Matamoros, Tania
  organization: Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
– sequence: 3
  givenname: Milagros
  surname: Guerra
  fullname: Guerra, Milagros
  organization: Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
– sequence: 4
  givenname: Germán
  orcidid: 0000-0003-0265-5409
  surname: Andrés
  fullname: Andrés, Germán
  organization: Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30185597$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LAzEQxYNU7IfePEuOHtyaj81ugiCUYrVSsKAWbyFNszay3WiSVvzv3dpaVGQOc5jfvDfMa4NG5SoDwDFGXYwJP7-dDLsIE0ETzPdACyPBE8Zw2gAthAhJGOVPTdAO4QUhnKZZegCaFGHOmMhb4KIHx95F4xZWw14sVYCugHFuYK_wVqsK3r_bysCBWRkPJ9YvAxwrH60uzSHYL1QZzNG2d8Dj4Oqhf5OM7q6H_d4o0SlDMZmyWS5woTXHPNdiOhOFzmYIM5Qrbhijuch5lq2nNVRwjrhOaY610oQrI2gHXG50X5fThZlpU0WvSvnq7UL5D-mUlb8nlZ3LZ7eSGaEkFbQWON0KePe2NCHKhQ3alKWqjFsGSTBClKZ11ejJT6-dyffHauBsA2jvQvCm2CEYyXUgsg5EfgUiMa9x8gfXNqpo3fpSW_6_9AnZVozw
CitedBy_id crossref_primary_10_3390_pathogens9121078
crossref_primary_10_3390_v11090864
crossref_primary_10_3390_vaccines13030211
crossref_primary_10_1128_mbio_01655_24
crossref_primary_10_3389_fvets_2021_719859
crossref_primary_10_1016_j_immuno_2022_100019
crossref_primary_10_1016_j_jbc_2021_101480
crossref_primary_10_3390_v13112124
crossref_primary_10_1074_jbc_AC119_011196
crossref_primary_10_3390_v13020255
crossref_primary_10_1128_jvi_01701_24
crossref_primary_10_1186_s13567_022_01119_9
crossref_primary_10_1016_j_antiviral_2019_02_018
crossref_primary_10_1016_j_mcp_2021_101764
crossref_primary_10_1186_s12985_021_01568_2
crossref_primary_10_1128_jvi_00616_23
crossref_primary_10_1128_jvi_00748_23
crossref_primary_10_3390_v15040858
crossref_primary_10_3390_v15071477
crossref_primary_10_1016_j_bmc_2021_116055
crossref_primary_10_3390_v11100882
crossref_primary_10_1126_science_aaz1439
crossref_primary_10_3390_vaccines11040762
crossref_primary_10_3390_v14112348
crossref_primary_10_3389_fmicb_2022_971888
crossref_primary_10_1016_j_jviromet_2024_115037
crossref_primary_10_3390_v14020220
crossref_primary_10_1016_j_heliyon_2024_e28426
crossref_primary_10_1128_jvi_01667_21
crossref_primary_10_1016_j_ijbiomac_2024_135983
crossref_primary_10_3390_v16050758
crossref_primary_10_3389_fmicb_2023_1169699
crossref_primary_10_1038_s41467_024_54461_1
crossref_primary_10_3390_life12071067
crossref_primary_10_1128_JVI_01139_21
crossref_primary_10_3389_fvets_2019_00306
crossref_primary_10_3390_vetsci11120650
crossref_primary_10_3390_v17030309
crossref_primary_10_1016_j_jbc_2023_104767
crossref_primary_10_1128_jvi_00577_23
crossref_primary_10_1038_s41598_023_47068_x
crossref_primary_10_3390_vaccines8040585
crossref_primary_10_3390_vaccines11101577
crossref_primary_10_3390_vaccines9040343
crossref_primary_10_3390_ani14152187
crossref_primary_10_1128_jvi_01106_23
crossref_primary_10_1128_spectrum_03282_22
crossref_primary_10_3389_fgene_2020_00758
crossref_primary_10_3389_fimmu_2024_1350267
crossref_primary_10_1016_j_virol_2024_110317
crossref_primary_10_1128_jvi_00268_23
crossref_primary_10_3390_ani11072039
crossref_primary_10_1016_j_virol_2025_110477
crossref_primary_10_3389_fvets_2022_1080397
crossref_primary_10_1007_s00253_023_12921_6
crossref_primary_10_3390_ijms25042099
crossref_primary_10_3390_ani14131951
crossref_primary_10_3390_v13112333
crossref_primary_10_3390_ani14172469
crossref_primary_10_3389_fvets_2023_1175701
crossref_primary_10_1016_j_ijbiomac_2025_139701
crossref_primary_10_1111_tbed_13364
crossref_primary_10_1128_JVI_01500_21
crossref_primary_10_3390_v13122495
crossref_primary_10_3389_fvets_2023_1160583
crossref_primary_10_3390_v15071467
crossref_primary_10_1016_j_virusres_2019_04_002
crossref_primary_10_1042_BST20191108
crossref_primary_10_1016_j_talanta_2022_124007
crossref_primary_10_1128_jvi_00228_23
crossref_primary_10_3389_fmicb_2024_1328177
crossref_primary_10_3390_v14122619
crossref_primary_10_3390_vaccines9111371
crossref_primary_10_3390_v13112285
crossref_primary_10_3390_microorganisms11122846
crossref_primary_10_1007_s12250_019_00157_6
crossref_primary_10_1039_D4AY01057D
crossref_primary_10_1093_abbs_gmaa135
crossref_primary_10_1080_21505594_2022_2065962
crossref_primary_10_1080_22221751_2023_2220575
crossref_primary_10_3389_fmicb_2024_1469166
crossref_primary_10_1096_fj_202400931RR
crossref_primary_10_3390_v17010063
crossref_primary_10_3390_v15091845
crossref_primary_10_1016_j_antiviral_2022_105433
crossref_primary_10_1128_JVI_01872_20
crossref_primary_10_3390_v16030376
crossref_primary_10_1016_j_virs_2022_11_006
crossref_primary_10_1016_j_virusres_2019_197673
crossref_primary_10_3390_v14091917
crossref_primary_10_1007_s00705_020_04915_w
crossref_primary_10_1016_j_virs_2023_03_004
crossref_primary_10_3390_v16060879
crossref_primary_10_1128_spectrum_01401_23
crossref_primary_10_3389_fimmu_2024_1361531
crossref_primary_10_1128_msystems_00471_23
crossref_primary_10_1016_j_micpath_2022_105957
crossref_primary_10_1016_j_ijbiomac_2024_132432
crossref_primary_10_1099_jgv_0_001306
crossref_primary_10_1128_jvi_01889_22
crossref_primary_10_3390_vaccines11111687
crossref_primary_10_1038_s41598_023_36788_9
crossref_primary_10_1016_j_virs_2024_05_007
crossref_primary_10_1016_j_chom_2019_11_004
crossref_primary_10_1016_j_vetvac_2023_100042
crossref_primary_10_3390_v14122621
crossref_primary_10_1080_21505594_2025_2457949
crossref_primary_10_3390_vaccines8020312
crossref_primary_10_3390_v12060676
crossref_primary_10_3390_v13081473
crossref_primary_10_1128_jvi_00954_22
crossref_primary_10_3390_v16091478
crossref_primary_10_1016_j_ijbiomac_2024_131695
crossref_primary_10_1080_22221751_2024_2377599
crossref_primary_10_1128_jvi_01943_22
crossref_primary_10_2222_jsv_70_15
crossref_primary_10_1093_bib_bbaa380
crossref_primary_10_1128_JVI_01419_21
crossref_primary_10_3390_vaccines12030307
crossref_primary_10_1186_s12864_022_08754_8
crossref_primary_10_1128_jvi_00723_23
crossref_primary_10_1016_j_aca_2021_339187
crossref_primary_10_3390_pathogens10020178
crossref_primary_10_1080_21505594_2023_2232707
crossref_primary_10_1128_mBio_02483_19
crossref_primary_10_3389_fcimb_2022_809135
crossref_primary_10_1128_jvi_00569_23
crossref_primary_10_3389_fmicb_2023_1225469
crossref_primary_10_3389_fimmu_2023_1186916
crossref_primary_10_3390_v16030349
crossref_primary_10_1038_s41421_024_00692_x
crossref_primary_10_3390_v15020557
crossref_primary_10_3390_pathogens11020274
crossref_primary_10_3390_vaccines9050508
crossref_primary_10_3389_fmicb_2023_1043129
crossref_primary_10_1186_s44149_024_00122_1
crossref_primary_10_1186_s40813_020_00154_2
crossref_primary_10_3390_vaccines10050707
crossref_primary_10_3390_ani13121967
crossref_primary_10_1021_acsabm_3c01035
crossref_primary_10_1128_jvi_00545_22
crossref_primary_10_3390_vaccines12101125
crossref_primary_10_3390_life12081255
crossref_primary_10_1111_tbed_14191
crossref_primary_10_3390_life11111214
crossref_primary_10_1128_jvi_00327_24
crossref_primary_10_3390_v13071212
crossref_primary_10_1038_s41467_023_37681_9
crossref_primary_10_3390_v14092003
crossref_primary_10_3389_fchem_2021_804981
crossref_primary_10_1016_j_crmicr_2024_100232
crossref_primary_10_1080_21505594_2024_2375550
crossref_primary_10_3389_fimmu_2024_1358960
crossref_primary_10_1016_j_virusres_2024_199412
crossref_primary_10_1016_j_jbc_2024_107453
crossref_primary_10_1007_s11250_021_02877_y
crossref_primary_10_3390_v16091464
crossref_primary_10_3390_v13112198
crossref_primary_10_3390_pathogens12060811
crossref_primary_10_1016_j_talanta_2025_127964
crossref_primary_10_1007_s00705_021_05335_0
crossref_primary_10_3390_ani14091331
crossref_primary_10_1007_s00253_021_11706_z
crossref_primary_10_1007_s12088_024_01334_2
crossref_primary_10_1128_jvi_01939_21
crossref_primary_10_1128_JVI_02125_19
crossref_primary_10_1016_j_antiviral_2024_106058
crossref_primary_10_3390_pathogens13020103
crossref_primary_10_3389_fimmu_2019_01318
crossref_primary_10_3389_fvets_2022_830244
crossref_primary_10_1016_j_vetmic_2020_108832
crossref_primary_10_1016_j_csbj_2023_08_028
crossref_primary_10_1146_annurev_animal_021419_083741
crossref_primary_10_1186_s12917_020_02420_5
crossref_primary_10_1016_j_virusres_2024_199328
crossref_primary_10_3389_fimmu_2022_832264
crossref_primary_10_3390_v13010077
crossref_primary_10_3390_v14051112
crossref_primary_10_1371_journal_ppat_1011136
crossref_primary_10_3390_v14092021
crossref_primary_10_1186_s13568_024_01749_6
crossref_primary_10_2478_jvetres_2022_0043
crossref_primary_10_1128_jvi_00704_23
crossref_primary_10_3390_ijms26030921
crossref_primary_10_1016_j_ijbiomac_2021_03_059
crossref_primary_10_1016_j_vetmic_2025_110416
crossref_primary_10_3390_v14102140
crossref_primary_10_1128_jvi_00350_23
crossref_primary_10_1128_jvi_01022_22
crossref_primary_10_1016_j_virol_2024_110277
crossref_primary_10_1096_fj_202002145R
crossref_primary_10_1007_s11262_023_02003_0
crossref_primary_10_1371_journal_pone_0293049
crossref_primary_10_3390_v16071058
crossref_primary_10_1016_j_bbrc_2022_07_091
crossref_primary_10_1016_j_micinf_2024_105348
crossref_primary_10_1128_JVI_00350_20
crossref_primary_10_1016_j_ijbiomac_2024_137070
crossref_primary_10_3390_v13112175
crossref_primary_10_1074_jbc_RA120_014005
crossref_primary_10_1016_j_bsheal_2022_04_002
crossref_primary_10_3390_microorganisms13030615
crossref_primary_10_58318_2957_5702_2023_15_17_34
crossref_primary_10_3390_ijms23137463
crossref_primary_10_3390_v12101193
crossref_primary_10_1038_s41541_025_01101_4
crossref_primary_10_1016_j_vetmic_2024_110247
crossref_primary_10_3390_v14122642
crossref_primary_10_32634_0869_8155_2023_368_3_40_45
crossref_primary_10_1007_s11427_019_9828_1
crossref_primary_10_3390_v14102170
crossref_primary_10_3390_vaccines7020056
crossref_primary_10_1128_jvi_01445_24
crossref_primary_10_3390_v12090918
crossref_primary_10_1038_s41541_025_01099_9
crossref_primary_10_3390_v15081634
crossref_primary_10_3390_v15040890
crossref_primary_10_4049_jimmunol_2200357
crossref_primary_10_1016_j_virs_2022_03_006
crossref_primary_10_1007_s11427_020_1657_9
crossref_primary_10_1016_j_virol_2022_04_001
crossref_primary_10_1371_journal_ppat_1010931
crossref_primary_10_1016_j_micpath_2022_105561
crossref_primary_10_1016_j_ijbiomac_2023_128111
crossref_primary_10_3389_fvets_2023_1093440
crossref_primary_10_1186_s12985_023_02111_1
crossref_primary_10_3390_v13060986
crossref_primary_10_1186_s13567_024_01386_8
crossref_primary_10_3390_vaccines11040846
crossref_primary_10_1128_jvi_00231_24
crossref_primary_10_3390_pathogens10050521
crossref_primary_10_1038_s41467_024_50981_y
crossref_primary_10_1038_s41541_024_00845_9
crossref_primary_10_3389_fvets_2023_1286906
crossref_primary_10_1038_s41467_024_45842_7
crossref_primary_10_3390_vetsci9080417
crossref_primary_10_3389_fmicb_2018_02534
crossref_primary_10_3389_fimmu_2022_947180
crossref_primary_10_1016_j_virusres_2024_199465
crossref_primary_10_3389_fvets_2021_766533
crossref_primary_10_3390_vaccines9010029
crossref_primary_10_3390_v13010039
crossref_primary_10_3390_pathogens11070797
crossref_primary_10_1016_j_vetmic_2024_110067
crossref_primary_10_1128_mBio_00789_20
crossref_primary_10_1007_s42770_024_01439_2
crossref_primary_10_3390_vaccines8030531
crossref_primary_10_1073_pnas_1922523117
crossref_primary_10_1016_j_jviromet_2023_114823
crossref_primary_10_1016_j_virol_2024_110237
crossref_primary_10_3390_v15010131
crossref_primary_10_1111_tbed_14242
crossref_primary_10_3390_pr12122705
crossref_primary_10_1016_j_ijbiomac_2024_136747
crossref_primary_10_3390_vaccines12111278
crossref_primary_10_1016_j_virusres_2021_198621
crossref_primary_10_1128_jvi_01957_21
crossref_primary_10_3389_fmicb_2022_1017792
crossref_primary_10_3390_pathogens13070537
crossref_primary_10_1128_JVI_01340_21
crossref_primary_10_1016_j_ijbiomac_2023_123264
crossref_primary_10_1016_j_virusres_2024_199359
crossref_primary_10_1016_j_ijbiomac_2023_127724
crossref_primary_10_3389_fvets_2022_921481
crossref_primary_10_1016_j_virusres_2023_199190
crossref_primary_10_1016_j_vetmic_2019_08_003
crossref_primary_10_1016_j_jmgm_2024_108846
crossref_primary_10_3389_fimmu_2021_715582
crossref_primary_10_3389_fvets_2020_00215
crossref_primary_10_3390_ijms25168906
crossref_primary_10_3390_cimb46080488
crossref_primary_10_1186_s13567_024_01407_6
crossref_primary_10_3389_fimmu_2022_1015224
crossref_primary_10_3390_v14010010
crossref_primary_10_1128_JVI_00119_20
crossref_primary_10_1111_tbed_14018
crossref_primary_10_3389_fvets_2022_936978
Cites_doi 10.1111/tbed.12989
10.1128/JVI.01333-09
10.1074/mcp.M500061-MCP200
10.1128/JVI.00600-10
10.1016/j.virusres.2013.10.017
10.1021/ac950914h
10.1016/0042-6822(90)90432-Q
10.1016/0042-6822(80)90493-6
10.1093/nar/21.10.2423
10.1006/viro.1995.1149
10.1111/j.1462-5822.2006.00750.x
10.1016/j.virol.2012.08.019
10.1128/JVI.75.6.2535-2543.2001
10.1128/JVI.00115-15
10.1006/viro.1995.1039
10.1128/JVI.01468-06
10.1074/jbc.M006844200
10.1128/JVI.01173-13
10.1099/0022-1317-32-3-471
10.1128/JVI.78.15.7990-8001.2004
10.1128/JVI.75.23.11720-11734.2001
10.1371/journal.pone.0123714
10.1021/bi047706g
10.1128/JVI.01858-09
10.1128/JVI.80.5.2127-2140.2006
10.1128/JVI.02338-16
10.1128/jvi.69.3.1785-1793.1995
10.3390/v4050688
10.1016/j.tvjl.2017.12.025
10.1128/jvi.67.9.5463-5471.1993
10.1128/JVI.01906-16
10.1128/jvi.71.8.5799-5804.1997
10.1016/0042-6822(86)90384-3
10.1128/jvi.71.3.2331-2341.1997
10.1128/JVI.73.11.8934-8943.1999
10.1016/j.virusres.2016.07.013
10.1128/JVI.01994-10
10.1016/0378-1119(93)90090-P
10.1128/JVI.00969-15
10.1016/j.virusres.2012.10.020
10.1073/pnas.0509239102
10.1074/jbc.272.49.30899
10.1128/JVI.72.4.3185-3195.1998
10.1007/BF01318999
10.1006/viro.1993.1128
10.1371/journal.ppat.1005595
10.1128/JVI.72.11.8988-9001.1998
10.1128/jvi.54.2.337-344.1985
10.1128/JVI.80.7.3157-3166.2006
10.1016/j.virusres.2012.09.016
10.1099/0022-1317-79-5-1179
10.1128/JVI.72.4.2881-2889.1998
10.1128/JVI.80.10.4847-4857.2006
10.1128/jvi.65.5.2283-2289.1991
10.1128/JVI.78.8.4299-4313.2004
10.1128/jvi.67.9.5312-5320.1993
10.1128/JVI.77.10.5571-5577.2003
10.1016/0042-6822(91)90490-3
10.1006/viro.1999.0080
10.1016/j.virol.2014.05.029
10.1128/jvi.68.11.7244-7252.1994
10.1099/0022-1317-40-2-499
10.1128/JVI.76.24.12473-12482.2002
10.1128/JVI.75.15.6758-6768.2001
10.1128/JVI.02498-16
10.1099/0022-1317-74-9-1969
10.1002/j.1460-2075.1993.tb05960.x
10.1093/nar/21.12.2940
10.1016/j.virusres.2006.01.009
10.1099/0022-1317-77-5-941
10.1128/JVI.76.19.9991-9999.2002
10.1128/jvi.67.5.2475-2485.1993
10.1016/j.virusres.2012.09.014
10.1016/0042-6822(81)90176-8
10.1006/viro.1997.8481
10.1099/0022-1317-74-11-2317
10.1016/0042-6822(92)90718-5
10.1016/j.virol.2006.08.025
10.1128/JVI.76.6.2654-2666.2002
10.1006/viro.1995.0083
10.1128/jvi.67.8.4549-4556.1993
10.1111/cmi.12468
ContentType Journal Article
Copyright Copyright © 2018 American Society for Microbiology.
Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology
Copyright_xml – notice: Copyright © 2018 American Society for Microbiology.
– notice: Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1128/JVI.01293-18
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate ASFV Proteome
EISSN 1098-5514
ExternalDocumentID PMC6232493
30185597
10_1128_JVI_01293_18
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
NPM
RHF
UCJ
7X8
5PM
ID FETCH-LOGICAL-c450t-b5d791fcc8187c9bd9fc6d01507a8e5537978668187fccf8808c4371cac28ae93
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 17:41:52 EDT 2025
Thu Aug 28 07:11:38 EDT 2025
Wed Feb 19 02:36:29 EST 2025
Tue Jul 01 01:02:57 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords giant virus
NCLDV
immunoelectron microscopy
virus composition
African swine fever virus
mass spectrometry
virus structure
proteome
proteomic analysis
Language English
License Copyright © 2018 American Society for Microbiology.
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-b5d791fcc8187c9bd9fc6d01507a8e5537978668187fccf8808c4371cac28ae93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Alejo A, Matamoros T, Guerra M, Andrés G. 2018. A proteomic atlas of the African swine fever virus particle. J Virol 92:e01293-18. https://doi.org/10.1128/JVI.01293-18.
A.A. and T.M. contributed equally to this article.
ORCID 0000-0003-0265-5409
OpenAccessLink https://jvi.asm.org/content/jvi/92/23/e01293-18.full.pdf
PMID 30185597
PQID 2100334343
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232493
proquest_miscellaneous_2100334343
pubmed_primary_30185597
crossref_primary_10_1128_JVI_01293_18
crossref_citationtrail_10_1128_JVI_01293_18
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2018
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_80_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
References_xml – ident: e_1_3_2_3_2
  doi: 10.1111/tbed.12989
– ident: e_1_3_2_45_2
  doi: 10.1128/JVI.01333-09
– ident: e_1_3_2_24_2
  doi: 10.1074/mcp.M500061-MCP200
– ident: e_1_3_2_32_2
  doi: 10.1128/JVI.00600-10
– ident: e_1_3_2_55_2
  doi: 10.1016/j.virusres.2013.10.017
– ident: e_1_3_2_75_2
  doi: 10.1021/ac950914h
– ident: e_1_3_2_76_2
  doi: 10.1016/0042-6822(90)90432-Q
– ident: e_1_3_2_52_2
  doi: 10.1016/0042-6822(80)90493-6
– ident: e_1_3_2_78_2
  doi: 10.1093/nar/21.10.2423
– ident: e_1_3_2_6_2
  doi: 10.1006/viro.1995.1149
– ident: e_1_3_2_70_2
  doi: 10.1111/j.1462-5822.2006.00750.x
– ident: e_1_3_2_71_2
  doi: 10.1016/j.virol.2012.08.019
– ident: e_1_3_2_63_2
  doi: 10.1128/JVI.75.6.2535-2543.2001
– ident: e_1_3_2_23_2
  doi: 10.1128/JVI.00115-15
– ident: e_1_3_2_43_2
  doi: 10.1006/viro.1995.1039
– ident: e_1_3_2_30_2
  doi: 10.1128/JVI.01468-06
– ident: e_1_3_2_37_2
  doi: 10.1074/jbc.M006844200
– ident: e_1_3_2_59_2
  doi: 10.1128/JVI.01173-13
– ident: e_1_3_2_73_2
  doi: 10.1099/0022-1317-32-3-471
– ident: e_1_3_2_16_2
  doi: 10.1128/JVI.78.15.7990-8001.2004
– ident: e_1_3_2_4_2
  doi: 10.1128/JVI.75.23.11720-11734.2001
– ident: e_1_3_2_48_2
  doi: 10.1371/journal.pone.0123714
– ident: e_1_3_2_57_2
  doi: 10.1021/bi047706g
– ident: e_1_3_2_36_2
  doi: 10.1128/JVI.01858-09
– ident: e_1_3_2_20_2
  doi: 10.1128/JVI.80.5.2127-2140.2006
– ident: e_1_3_2_8_2
  doi: 10.1128/JVI.02338-16
– ident: e_1_3_2_26_2
  doi: 10.1128/jvi.69.3.1785-1793.1995
– ident: e_1_3_2_72_2
  doi: 10.3390/v4050688
– ident: e_1_3_2_2_2
  doi: 10.1016/j.tvjl.2017.12.025
– ident: e_1_3_2_44_2
  doi: 10.1128/jvi.67.9.5463-5471.1993
– ident: e_1_3_2_10_2
  doi: 10.1128/JVI.01906-16
– ident: e_1_3_2_34_2
  doi: 10.1128/jvi.71.8.5799-5804.1997
– ident: e_1_3_2_19_2
  doi: 10.1016/0042-6822(86)90384-3
– ident: e_1_3_2_15_2
  doi: 10.1128/jvi.71.3.2331-2341.1997
– ident: e_1_3_2_60_2
  doi: 10.1128/JVI.73.11.8934-8943.1999
– ident: e_1_3_2_80_2
  doi: 10.1016/j.virusres.2016.07.013
– ident: e_1_3_2_51_2
  doi: 10.1128/JVI.01994-10
– ident: e_1_3_2_77_2
  doi: 10.1016/0378-1119(93)90090-P
– ident: e_1_3_2_69_2
  doi: 10.1128/JVI.00969-15
– ident: e_1_3_2_7_2
  doi: 10.1016/j.virusres.2012.10.020
– ident: e_1_3_2_49_2
  doi: 10.1073/pnas.0509239102
– ident: e_1_3_2_58_2
  doi: 10.1074/jbc.272.49.30899
– ident: e_1_3_2_28_2
  doi: 10.1128/JVI.72.4.3185-3195.1998
– ident: e_1_3_2_39_2
  doi: 10.1007/BF01318999
– ident: e_1_3_2_54_2
  doi: 10.1006/viro.1993.1128
– ident: e_1_3_2_11_2
  doi: 10.1371/journal.ppat.1005595
– ident: e_1_3_2_14_2
  doi: 10.1128/JVI.72.11.8988-9001.1998
– ident: e_1_3_2_18_2
  doi: 10.1128/jvi.54.2.337-344.1985
– ident: e_1_3_2_68_2
  doi: 10.1128/JVI.80.7.3157-3166.2006
– ident: e_1_3_2_9_2
  doi: 10.1016/j.virusres.2012.09.016
– ident: e_1_3_2_27_2
  doi: 10.1099/0022-1317-79-5-1179
– ident: e_1_3_2_46_2
  doi: 10.1128/JVI.72.4.2881-2889.1998
– ident: e_1_3_2_56_2
  doi: 10.1128/JVI.80.10.4847-4857.2006
– ident: e_1_3_2_41_2
  doi: 10.1128/jvi.65.5.2283-2289.1991
– ident: e_1_3_2_31_2
  doi: 10.1128/JVI.78.8.4299-4313.2004
– ident: e_1_3_2_47_2
  doi: 10.1128/jvi.67.9.5312-5320.1993
– ident: e_1_3_2_38_2
  doi: 10.1128/JVI.77.10.5571-5577.2003
– ident: e_1_3_2_50_2
  doi: 10.1016/0042-6822(91)90490-3
– ident: e_1_3_2_74_2
  doi: 10.1006/viro.1999.0080
– ident: e_1_3_2_22_2
  doi: 10.1016/j.virol.2014.05.029
– ident: e_1_3_2_82_2
  doi: 10.1128/jvi.68.11.7244-7252.1994
– ident: e_1_3_2_17_2
  doi: 10.1099/0022-1317-40-2-499
– ident: e_1_3_2_25_2
  doi: 10.1128/JVI.76.24.12473-12482.2002
– ident: e_1_3_2_29_2
  doi: 10.1128/JVI.75.15.6758-6768.2001
– ident: e_1_3_2_40_2
  doi: 10.1128/JVI.02498-16
– ident: e_1_3_2_79_2
  doi: 10.1099/0022-1317-74-9-1969
– ident: e_1_3_2_33_2
  doi: 10.1002/j.1460-2075.1993.tb05960.x
– ident: e_1_3_2_83_2
  doi: 10.1093/nar/21.12.2940
– ident: e_1_3_2_5_2
  doi: 10.1016/j.virusres.2006.01.009
– ident: e_1_3_2_42_2
  doi: 10.1099/0022-1317-77-5-941
– ident: e_1_3_2_66_2
  doi: 10.1128/JVI.76.19.9991-9999.2002
– ident: e_1_3_2_65_2
  doi: 10.1128/jvi.67.5.2475-2485.1993
– ident: e_1_3_2_12_2
  doi: 10.1016/j.virusres.2012.09.014
– ident: e_1_3_2_53_2
  doi: 10.1016/0042-6822(81)90176-8
– ident: e_1_3_2_62_2
  doi: 10.1006/viro.1997.8481
– ident: e_1_3_2_64_2
  doi: 10.1099/0022-1317-74-11-2317
– ident: e_1_3_2_81_2
  doi: 10.1016/0042-6822(92)90718-5
– ident: e_1_3_2_21_2
  doi: 10.1016/j.virol.2006.08.025
– ident: e_1_3_2_35_2
  doi: 10.1128/JVI.76.6.2654-2666.2002
– ident: e_1_3_2_61_2
  doi: 10.1006/viro.1995.0083
– ident: e_1_3_2_67_2
  doi: 10.1128/jvi.67.8.4549-4556.1993
– ident: e_1_3_2_13_2
  doi: 10.1111/cmi.12468
SSID ssj0014464
Score 2.6682649
Snippet African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the...
African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Structure and Assembly
Title A Proteomic Atlas of the African Swine Fever Virus Particle
URI https://www.ncbi.nlm.nih.gov/pubmed/30185597
https://www.proquest.com/docview/2100334343
https://pubmed.ncbi.nlm.nih.gov/PMC6232493
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCLQXxDflS0aCpyqjSZzYFk8RYoxJ5amb9hY5tjOK2nRKUyH467mzkzSlTAJeoja5uKp_l8vd-X4-Qt7EUpWTpEgCw1gUsIIV8EgZHthQo3eOZEjkDk-_pCdn7PQiudi2uXPskqY40j__yCv5H1ThHOCKLNl_QLYfFE7AZ8AXjoAwHP8K4wzr_BuLxOJx1izUulvx991_4Mn9jk7ksYV_Nj6f15s1eIyDYfadUmS9DfPs2cJ-a4kwbkm9rw-eqkYtV7Uv0pupat6b908bW7vmRePpfKEuQWSbajDtwnybjq-X7mtYDXMPoRjUcVhvL3E7UnS6hgZVRgPF8WzifUMdIfng9PzzEWbC4sAb4QFmV0sHGtgfgUHP9nXVFxF2l26SWxHECHGXqmmXkCDOZR3TIRLvhj91SO50N--6I3sxxu-lsgPfY3aP3G3xoZmH7j65YasH5LZvI_rjIXmf0V4PqNMDuiop6AFt9YA6PaBOD6jTA9rpwSNydvxx9uEkaJtiBJolkyYoEsNlWGoNnhbXsjCy1KnBvBVXwiZJzCUXaYpXQagE8yw0i3molY6EsjJ-TA6qVWWfEmqYmsgytNIwwZSB20GMR6HRQnE5sSMy7uYm1-2O8di4ZJG7yDESOUxq7iY1D8WIvO2lr_xOKdfIve6mOQdThutTqrKrzTqPQuwsiFTnEXnip70fqcNrRPgOIL0AbpO-e6Waf3XbpacYNMj42bVjPieHW-V-QQ6aemNfgqvZFK-cSv0C8Xx6Yg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Proteomic+Atlas+of+the+African+Swine+Fever+Virus+Particle&rft.jtitle=Journal+of+virology&rft.au=Alejo%2C+Al%C3%AD&rft.au=Matamoros%2C+Tania&rft.au=Guerra%2C+Milagros&rft.au=Andr%C3%A9s%2C+Germ%C3%A1n&rft.date=2018-12-01&rft.eissn=1098-5514&rft.volume=92&rft.issue=23&rft_id=info:doi/10.1128%2FJVI.01293-18&rft_id=info%3Apmid%2F30185597&rft.externalDocID=30185597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon