Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine

Site-specific weed management can reduce the amount of herbicides used in comparison to classical broadcast applications. The ability to apply herbicides on weed patches within the field requires automation. This study focuses on the automatic detection of different species with imaging sensors. Ima...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 80; pp. 89 - 96
Main Authors Rumpf, Till, Römer, Christoph, Weis, Martin, Sökefeld, Markus, Gerhards, Roland, Plümer, Lutz
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Site-specific weed management can reduce the amount of herbicides used in comparison to classical broadcast applications. The ability to apply herbicides on weed patches within the field requires automation. This study focuses on the automatic detection of different species with imaging sensors. Image processing algorithms determine shape features for the plants in the images. With these shape descriptions classification algorithms can be trained to identify the weed and crop species. Since weeds differ in their economic loss due to their yield effect and are controlled by different herbicides, it is necessary to correctly distinguish between the species. Image series of different measurements with plant samples at different growth stages were analysed. For the classification a sequential classification approach was chosen, involving three different support vector machine (SVM) models. In a first step groups of similar plant species were successfully identified (monocotyledons, dicotyledons and barley). Distinctions within the class of dicotyledons proved to be particularly difficult. For that purpose species in this group were subject to a second and third classification step. For each of these steps different features were found to be most important. Feature weighting was done with the RELIEF-F algorithm and SVM-Weighting. The focus was on the early identification of the two most harmful species Cirsium arvense and Galium aparine, with optimal accuracy than using a non-sequential classification approach. An overall classification accuracy of 97.7% was achieved in the first step. For the two subsequent classifiers accuracy rates of 80% and more were obtained for C. arvense and G. aparine.
AbstractList Site-specific weed management can reduce the amount of herbicides used in comparison to classical broadcast applications. The ability to apply herbicides on weed patches within the field requires automation. This study focuses on the automatic detection of different species with imaging sensors. Image processing algorithms determine shape features for the plants in the images. With these shape descriptions classification algorithms can be trained to identify the weed and crop species. Since weeds differ in their economic loss due to their yield effect and are controlled by different herbicides, it is necessary to correctly distinguish between the species. Image series of different measurements with plant samples at different growth stages were analysed. For the classification a sequential classification approach was chosen, involving three different support vector machine (SVM) models. In a first step groups of similar plant species were successfully identified (monocotyledons, dicotyledons and barley). Distinctions within the class of dicotyledons proved to be particularly difficult. For that purpose species in this group were subject to a second and third classification step. For each of these steps different features were found to be most important. Feature weighting was done with the RELIEF-F algorithm and SVM-Weighting. The focus was on the early identification of the two most harmful species Cirsium arvense and Galium aparine, with optimal accuracy than using a non-sequential classification approach. An overall classification accuracy of 97.7% was achieved in the first step. For the two subsequent classifiers accuracy rates of 80% and more were obtained for C. arvense and G. aparine.
► Image processing combined with machine learning for separation of weeds and crops. ► Weed species are grouped with regard to separability and economic thresholds. ► Classification of hardly separable dicotyledons using a sequential classification. ► Different features prove to be relevant for successive classification steps. ► Specialised classifiers lead to robust weed separation. Site-specific weed management can reduce the amount of herbicides used in comparison to classical broadcast applications. The ability to apply herbicides on weed patches within the field requires automation. This study focuses on the automatic detection of different species with imaging sensors. Image processing algorithms determine shape features for the plants in the images. With these shape descriptions classification algorithms can be trained to identify the weed and crop species. Since weeds differ in their economic loss due to their yield effect and are controlled by different herbicides, it is necessary to correctly distinguish between the species. Image series of different measurements with plant samples at different growth stages were analysed. For the classification a sequential classification approach was chosen, involving three different support vector machine (SVM) models. In a first step groups of similar plant species were successfully identified (monocotyledons, dicotyledons and barley). Distinctions within the class of dicotyledons proved to be particularly difficult. For that purpose species in this group were subject to a second and third classification step. For each of these steps different features were found to be most important. Feature weighting was done with the RELIEF-F algorithm and SVM-Weighting. The focus was on the early identification of the two most harmful species Cirsium arvense and Galium aparine, with optimal accuracy than using a non-sequential classification approach. An overall classification accuracy of 97.7% was achieved in the first step. For the two subsequent classifiers accuracy rates of 80% and more were obtained for C. arvense and G. aparine.
Author Gerhards, Roland
Plümer, Lutz
Römer, Christoph
Weis, Martin
Rumpf, Till
Sökefeld, Markus
Author_xml – sequence: 1
  fullname: Rumpf, Till
– sequence: 2
  fullname: Römer, Christoph
– sequence: 3
  fullname: Weis, Martin
– sequence: 4
  fullname: Sökefeld, Markus
– sequence: 5
  fullname: Gerhards, Roland
– sequence: 6
  fullname: Plümer, Lutz
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25403603$$DView record in Pascal Francis
BookMark eNqFksFu1DAQhiNUJLaFN0DCFyQuWcaOkzgckNAKClIlDqVna9aZbL1KnGBnt-qL8LzMNuXCoT1ZHn__7_H8Ps_Owhgoy95KWEuQ1cf92o3DhLu1Aim5tAZpXmQraWqV1xLqs2zFmMll1TSvsvOU9sD7xtSr7M81_T5QmD32Ih2maYyzOJKbxygGdLc-kHA9puQ773D2YxAdH6UB-z7fRfRB3BG1Ik3kPCXR-uSiH3xY2Ds_3y5nbB9ph7EV8yg2PiZ_GATGI4VEAkMrLrF_KE0Y-dLX2csO-0RvHteL7Obb11-b7_nVz8sfmy9XudMlzDk6p1ssqKwIsFY1Gmp1C1ApKDW4xjjConauVaqDSmq9dUhqa8DJrVZ6W1xkHxbfKY48hzTbgV9AfY-BxkOysmQRVNpUz6MgwRhTlw2j7x9RTA77LmJwPtmJJ4Px3iruraigYO7Twrk4phSps87PD5ObebQ9W55cK7u3S772lO-pyvmyWP8n_uf_jOzdIutwtLiL3NfNNQMaALRS8DShiqY6EZ8Xgjiao6doE6cfHLU-8t-x7eifbuIvyR7ZQQ
CODEN CEAGE6
CitedBy_id crossref_primary_10_1007_s11119_014_9372_7
crossref_primary_10_3390_agriengineering2030032
crossref_primary_10_3390_agronomy14122838
crossref_primary_10_54480_slrm_v2i2_21
crossref_primary_10_1016_j_eswa_2015_02_047
crossref_primary_10_1016_j_inpa_2019_12_002
crossref_primary_10_3390_s21113647
crossref_primary_10_1007_s43154_020_00001_w
crossref_primary_10_3390_rs13091704
crossref_primary_10_1088_1757_899X_1129_1_012056
crossref_primary_10_1002_ps_3677
crossref_primary_10_3389_fpls_2022_992700
crossref_primary_10_3389_fpls_2022_837726
crossref_primary_10_1016_j_biosystemseng_2017_11_015
crossref_primary_10_1016_j_engappai_2013_09_019
crossref_primary_10_1016_j_compag_2012_12_012
crossref_primary_10_3390_s20020455
crossref_primary_10_3390_rs12081246
crossref_primary_10_1016_j_compag_2022_106699
crossref_primary_10_1038_s41598_022_23399_z
crossref_primary_10_1016_j_isprsjprs_2012_11_004
crossref_primary_10_1016_j_measurement_2018_05_037
crossref_primary_10_1016_j_compag_2012_07_008
crossref_primary_10_1016_j_landusepol_2021_105289
crossref_primary_10_3390_s21072328
crossref_primary_10_1007_s11119_013_9320_y
crossref_primary_10_1016_j_compag_2012_05_015
crossref_primary_10_3390_s20030935
crossref_primary_10_17221_76_2024_PPS
crossref_primary_10_3390_rs10101530
crossref_primary_10_1016_j_cropro_2012_04_024
crossref_primary_10_3390_computers9010006
crossref_primary_10_1016_j_compag_2019_02_005
crossref_primary_10_1016_j_jag_2015_08_008
crossref_primary_10_1016_j_isprsjprs_2015_03_003
crossref_primary_10_3390_app12031308
crossref_primary_10_48084_etasr_1647
crossref_primary_10_1002_ps_3545
crossref_primary_10_1016_j_atech_2024_100497
crossref_primary_10_1016_j_atech_2024_100552
crossref_primary_10_1016_j_compag_2013_03_009
crossref_primary_10_1016_j_compag_2023_108576
crossref_primary_10_1016_j_biosystemseng_2020_11_005
crossref_primary_10_1109_ACCESS_2021_3056577
crossref_primary_10_1016_j_jafr_2022_100308
Cites_doi 10.1017/S0043174500094571
10.1111/j.1365-3180.2006.00504.x
10.1111/j.1365-3180.1988.tb01606.x
10.1016/j.biosystemseng.2004.12.012
10.1109/TIT.1962.1057692
10.3920/9789086865147_033
10.1046/j.1365-3180.2003.00349.x
10.1023/A:1012487302797
10.1162/089976698300017467
10.1016/j.asoc.2010.01.011
10.1006/bioe.2002.0117
10.1109/78.650102
10.1109/ICICISYS.2009.5357638
10.1007/BF00994018
10.13031/2013.2723
10.1111/j.1365-3180.2009.00696.x
10.1137/1035044
10.1016/S0168-1699(99)00068-X
10.1006/bioe.2002.0109
10.1016/0261-2194(90)90001-N
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2011.10.018
DatabaseName AGRIS
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
EndPage 96
ExternalDocumentID 25403603
10_1016_j_compag_2011_10_018
US201400042208
US201400023968
S0168169911002468
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
IQODW
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c450t-acc4da3e56e0a727a8ed4d00620540c98cea37ccd22f06144bcae2b80c1b424b3
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Sun Aug 24 03:48:52 EDT 2025
Fri Jul 11 04:47:30 EDT 2025
Mon Jul 21 09:14:47 EDT 2025
Tue Jul 01 05:17:37 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Wed Dec 27 19:12:46 EST 2023
Wed Dec 27 19:21:33 EST 2023
Fri Feb 23 02:29:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector machines
Feature selection
Sequential classification
Early weed detection
Cirsium arvense
Galium aparine
Grains
Weed
Support vector machine
Compositae
Discrimination
Sequential
Dicotyledones
Angiospermae
Rubiaceae
Classification
Spermatophyta
Species
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-acc4da3e56e0a727a8ed4d00620540c98cea37ccd22f06144bcae2b80c1b424b3
Notes http://dx.doi.org/10.1016/j.compag.2011.10.018
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1010888759
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1514406486
proquest_miscellaneous_1010888759
pascalfrancis_primary_25403603
crossref_citationtrail_10_1016_j_compag_2011_10_018
crossref_primary_10_1016_j_compag_2011_10_018
fao_agris_US201400042208
fao_agris_US201400023968
elsevier_sciencedirect_doi_10_1016_j_compag_2011_10_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012
2012-1-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Gerhards, Sökefeld (b0070) 2003; 1
Blasco, Aleixos, Roger, Rabatel, Moltó (b0010) 2002; 83
Christensen, Heisel (b0045) 1998; XVI
Gerhards, Oebel (b0065) 2006; 46
Párez, López, Benlloch, Christensen (b0115) 2000; 25
Cortes, Vapnik (b0055) 1995; 20
Pallutt, Flatter (b0110) 1998; XVI
Johnson, Mortensen, Gotway (b0090) 1996; 44
Christensen, Søgaard, Kudsk, Nørremark, Lund, Nadimi, Jørgensen (b0050) 2009; 49
Rockafellar (b0120) 1993; 35
Weis, Gerhards (b0170) 2007; vol. 6
Schulze-Lammers, Vondricka (b0140) 2010
Weis, Sökefeld (b0175) 2010
Gerhards, Christensen (b0060) 2003; 43
Schölkopf, Smola (b0125) 2002
Schölkopf, Smola, Müller (b0130) 1998; 10
Tellaeche, Pajares, Burgos-Artizzu, Ribeiro (b0155) 2011; 11
Åstrand, B., Baerveldt, A.-J., 2004. Plant recognition and localization using context information. In: Proceedings of Mechatronics and Robotics 2004 (MechRob2004). Sascha Eysoldt Verlag, Aachen, Germany, Special Session Autonomous Machines in Agriculture, pp. 1191–1196.
Vapnik (b0160) 1998
Schölkopf, Sung, Burges, Girosi, Niyogi, Poggio, Vapnik (b0135) 1997; 45
Gerowitt, Heitefuss (b0075) 1990; 9
Vapnik (b0165) 2000
Burger, Burge (b0020) 2009
Zhu, W., Zhu, X., 2009. The application of support vector machine in weed classification. In: Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on, vol. 4., pp. 532–536.
Burks, Shearer, Heath, Donohue (b0025) 2005; 91
Hu (b0085) 1962; 8
Sökefeld, Gerhards, Oebel, Therburg (b0150) 2007; vol. 6
Boyd, Vandenberghe (b0015) 2004
Sökefeld (b0145) 2010
Burks, T.F., Shearer, S.A., Payne, F.A., 2000. Classification of weed species using color texture features and discriminant analysis. In: Transactions of the ASAE, vol. 43. American Society of Agricultural Engineers, pp. 441–448.
Guyon, Weston, Barnhill, Vapnik (b0080) 2002; 46
Kira, Rendell (b0095) 1992
Kononenko (b0100) 1994
Cho, Lee, Jeong (b0040) 2002; 83
Marshall (b0105) 1998; 28
Börner (b0035) 1995
Kira (10.1016/j.compag.2011.10.018_b0095) 1992
10.1016/j.compag.2011.10.018_b0180
Gerhards (10.1016/j.compag.2011.10.018_b0065) 2006; 46
Schölkopf (10.1016/j.compag.2011.10.018_b0130) 1998; 10
Schölkopf (10.1016/j.compag.2011.10.018_b0135) 1997; 45
Weis (10.1016/j.compag.2011.10.018_b0170) 2007; vol. 6
Rockafellar (10.1016/j.compag.2011.10.018_b0120) 1993; 35
Pallutt (10.1016/j.compag.2011.10.018_b0110) 1998; XVI
Kononenko (10.1016/j.compag.2011.10.018_b0100) 1994
Börner (10.1016/j.compag.2011.10.018_b0035) 1995
Guyon (10.1016/j.compag.2011.10.018_b0080) 2002; 46
Boyd (10.1016/j.compag.2011.10.018_b0015) 2004
Schulze-Lammers (10.1016/j.compag.2011.10.018_b0140) 2010
Christensen (10.1016/j.compag.2011.10.018_b0045) 1998; XVI
Christensen (10.1016/j.compag.2011.10.018_b0050) 2009; 49
Cortes (10.1016/j.compag.2011.10.018_b0055) 1995; 20
Blasco (10.1016/j.compag.2011.10.018_b0010) 2002; 83
Cho (10.1016/j.compag.2011.10.018_b0040) 2002; 83
Burger (10.1016/j.compag.2011.10.018_b0020) 2009
Vapnik (10.1016/j.compag.2011.10.018_b0165) 2000
Gerowitt (10.1016/j.compag.2011.10.018_b0075) 1990; 9
Hu (10.1016/j.compag.2011.10.018_b0085) 1962; 8
Tellaeche (10.1016/j.compag.2011.10.018_b0155) 2011; 11
Gerhards (10.1016/j.compag.2011.10.018_b0070) 2003; 1
Vapnik (10.1016/j.compag.2011.10.018_b0160) 1998
Johnson (10.1016/j.compag.2011.10.018_b0090) 1996; 44
Burks (10.1016/j.compag.2011.10.018_b0025) 2005; 91
10.1016/j.compag.2011.10.018_b0030
Schölkopf (10.1016/j.compag.2011.10.018_b0125) 2002
Gerhards (10.1016/j.compag.2011.10.018_b0060) 2003; 43
Sökefeld (10.1016/j.compag.2011.10.018_b0145) 2010
Marshall (10.1016/j.compag.2011.10.018_b0105) 1998; 28
Sökefeld (10.1016/j.compag.2011.10.018_b0150) 2007; vol. 6
Weis (10.1016/j.compag.2011.10.018_b0175) 2010
10.1016/j.compag.2011.10.018_b0005
Párez (10.1016/j.compag.2011.10.018_b0115) 2000; 25
References_xml – year: 1995
  ident: b0035
  article-title: Unkrautbekämpfung
– reference: Åstrand, B., Baerveldt, A.-J., 2004. Plant recognition and localization using context information. In: Proceedings of Mechatronics and Robotics 2004 (MechRob2004). Sascha Eysoldt Verlag, Aachen, Germany, Special Session Autonomous Machines in Agriculture, pp. 1191–1196.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0055
  article-title: Support-vector networks
  publication-title: Machine Learning
– reference: Zhu, W., Zhu, X., 2009. The application of support vector machine in weed classification. In: Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on, vol. 4., pp. 532–536.
– volume: 8
  start-page: 179
  year: 1962
  end-page: 187
  ident: b0085
  article-title: Visual pattern recognition by moment invariants
  publication-title: IRE Transactions Information Theory
– start-page: 171
  year: 1994
  end-page: 182
  ident: b0100
  article-title: Estimating attributes: analysis and extensions of relief
  publication-title: Proceedings of the European Conference on Machine Learning
– volume: 91
  start-page: 293
  year: 2005
  end-page: 304
  ident: b0025
  article-title: Evaluation of neural-network classifiers for weed species discrimination
  publication-title: Biosystems Engineering
– year: 2000
  ident: b0165
  article-title: The nature of statistical learning theory, Statistics for engineering and information science
– start-page: 129
  year: 1992
  end-page: 134
  ident: b0095
  article-title: The feature selection problem: traditional methods and a new algorithm
  publication-title: Proceedings of the 10th National Conference on Artificial Intelligence, AAAI’92
– volume: 25
  start-page: 197
  year: 2000
  end-page: 212
  ident: b0115
  article-title: Colour and shape analysis techniques for weed detection in cereal fields
  publication-title: Computers and Electronics in Agriculture
– volume: 11
  start-page: 908
  year: 2011
  end-page: 915
  ident: b0155
  article-title: A computer vision approach for weeds identification through support vector machines
  publication-title: Applied Soft Computing
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: b0080
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine Learning
– volume: 43
  start-page: 385
  year: 2003
  end-page: 392
  ident: b0060
  article-title: Real-time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley
  publication-title: Weed Research
– volume: 45
  start-page: 2758
  year: 1997
  end-page: 2765
  ident: b0135
  article-title: Comparing support vector machines with gaussian kernels to radial basis function classifiers
  publication-title: IEEE Transactions on Signal Processing
– volume: 44
  start-page: 704
  year: 1996
  end-page: 710
  ident: b0090
  article-title: Spatial and temporal analysis of weed seedling populations using geostatistics
  publication-title: Weed Science
– volume: 35
  start-page: 183
  year: 1993
  end-page: 238
  ident: b0120
  article-title: Lagrange multipliers and optimality
  publication-title: SIAM Review
– start-page: 295
  year: 2010
  end-page: 310
  ident: b0140
  article-title: Precision crop protection-the challenge and use of heterogeneity
  publication-title: Direct Injection Sprayer
– volume: vol. 6
  start-page: 537
  year: 2007
  end-page: 545
  ident: b0170
  article-title: Feature extraction for the identification of weed species in digital images for the purpose of site-specific weed control
  publication-title: Precision Agriculture ’07
– reference: Burks, T.F., Shearer, S.A., Payne, F.A., 2000. Classification of weed species using color texture features and discriminant analysis. In: Transactions of the ASAE, vol. 43. American Society of Agricultural Engineers, pp. 441–448.
– volume: XVI
  start-page: 257
  year: 1998
  end-page: 263
  ident: b0045
  article-title: Patch spraying using historical, manual and real-time monitoring of weeds in cereals
  publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft
– start-page: 335
  year: 2010
  end-page: 347
  ident: b0145
  article-title: Precision crop protection-the challenge and use of heterogeneity
  publication-title: Variable Rate Technology for Herbicide Application
– start-page: 119
  year: 2010
  end-page: 134
  ident: b0175
  article-title: Precision crop protection-the challenge and use of heterogeneity
  publication-title: Detection and Identification of Weeds
– year: 2009
  ident: b0020
  article-title: Principles of Digital Image Processing Core Algorithms Undergraduate Topics in Computer Science
– volume: 46
  start-page: 185
  year: 2006
  end-page: 193
  ident: b0065
  article-title: Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying
  publication-title: Weed Research
– year: 2002
  ident: b0125
  article-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond: Support Vector Machines, Regularization, Optimization, and Beyond (reprint) Edition
– volume: 83
  start-page: 275
  year: 2002
  end-page: 280
  ident: b0040
  article-title: Weed–plant discrimination by machine vision and artificial neural network
  publication-title: Biosystems Engineering
– volume: 9
  start-page: 323
  year: 1990
  end-page: 331
  ident: b0075
  article-title: Weed economic thresholds in the F R. Germany
  publication-title: Crop Protection
– year: 1998
  ident: b0160
  article-title: Statistical learning theory
– volume: XVI
  start-page: 333
  year: 1998
  end-page: 344
  ident: b0110
  article-title: Variabilität der Konkurrenz von Unkräutern in Getreide und daraus resultierende Auswirkungen auf die Sicherheit von Schwellenwerten
  publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: b0130
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Computation
– volume: vol. 6
  start-page: 523
  year: 2007
  end-page: 529
  ident: b0150
  article-title: Image acquisition for weed detection and identification by digital image analysis
  publication-title: Precision Agriculture ’07
– volume: 83
  start-page: 149
  year: 2002
  end-page: 157
  ident: b0010
  article-title: Ae-automation and emerging technologies, Robotic weed control using machine vision
  publication-title: Biosystems Engineering
– volume: 1
  start-page: 229
  year: 2003
  end-page: 234
  ident: b0070
  article-title: Precision farming in weed control – system components and economic benefits
  publication-title: Precision Agriculture
– year: 2004
  ident: b0015
  article-title: Convex Optimization
– volume: 49
  start-page: 233
  year: 2009
  end-page: 241
  ident: b0050
  article-title: Site-specific weed control technologies
  publication-title: Weed Research
– volume: 28
  start-page: 191
  year: 1998
  end-page: 198
  ident: b0105
  article-title: Field-scale estimates of grass populations in arable land
  publication-title: Weed Research
– volume: 44
  start-page: 704
  year: 1996
  ident: 10.1016/j.compag.2011.10.018_b0090
  article-title: Spatial and temporal analysis of weed seedling populations using geostatistics
  publication-title: Weed Science
  doi: 10.1017/S0043174500094571
– volume: 46
  start-page: 185
  issue: 3
  year: 2006
  ident: 10.1016/j.compag.2011.10.018_b0065
  article-title: Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying
  publication-title: Weed Research
  doi: 10.1111/j.1365-3180.2006.00504.x
– volume: 28
  start-page: 191
  year: 1998
  ident: 10.1016/j.compag.2011.10.018_b0105
  article-title: Field-scale estimates of grass populations in arable land
  publication-title: Weed Research
  doi: 10.1111/j.1365-3180.1988.tb01606.x
– year: 2004
  ident: 10.1016/j.compag.2011.10.018_b0015
– volume: 91
  start-page: 293
  issue: 3
  year: 2005
  ident: 10.1016/j.compag.2011.10.018_b0025
  article-title: Evaluation of neural-network classifiers for weed species discrimination
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2004.12.012
– volume: XVI
  start-page: 333
  year: 1998
  ident: 10.1016/j.compag.2011.10.018_b0110
  article-title: Variabilität der Konkurrenz von Unkräutern in Getreide und daraus resultierende Auswirkungen auf die Sicherheit von Schwellenwerten
  publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft
– year: 1998
  ident: 10.1016/j.compag.2011.10.018_b0160
– volume: vol. 6
  start-page: 537
  year: 2007
  ident: 10.1016/j.compag.2011.10.018_b0170
  article-title: Feature extraction for the identification of weed species in digital images for the purpose of site-specific weed control
– volume: 8
  start-page: 179
  issue: 2
  year: 1962
  ident: 10.1016/j.compag.2011.10.018_b0085
  article-title: Visual pattern recognition by moment invariants
  publication-title: IRE Transactions Information Theory
  doi: 10.1109/TIT.1962.1057692
– year: 2002
  ident: 10.1016/j.compag.2011.10.018_b0125
– start-page: 295
  year: 2010
  ident: 10.1016/j.compag.2011.10.018_b0140
  article-title: Precision crop protection-the challenge and use of heterogeneity
– start-page: 119
  year: 2010
  ident: 10.1016/j.compag.2011.10.018_b0175
  article-title: Precision crop protection-the challenge and use of heterogeneity
– volume: 1
  start-page: 229
  year: 2003
  ident: 10.1016/j.compag.2011.10.018_b0070
  article-title: Precision farming in weed control – system components and economic benefits
  publication-title: Precision Agriculture
  doi: 10.3920/9789086865147_033
– start-page: 129
  year: 1992
  ident: 10.1016/j.compag.2011.10.018_b0095
  article-title: The feature selection problem: traditional methods and a new algorithm
– year: 2009
  ident: 10.1016/j.compag.2011.10.018_b0020
– volume: 43
  start-page: 385
  issue: 6
  year: 2003
  ident: 10.1016/j.compag.2011.10.018_b0060
  article-title: Real-time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley
  publication-title: Weed Research
  doi: 10.1046/j.1365-3180.2003.00349.x
– ident: 10.1016/j.compag.2011.10.018_b0005
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.compag.2011.10.018_b0080
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine Learning
  doi: 10.1023/A:1012487302797
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  ident: 10.1016/j.compag.2011.10.018_b0130
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Computation
  doi: 10.1162/089976698300017467
– volume: 11
  start-page: 908
  issue: 1
  year: 2011
  ident: 10.1016/j.compag.2011.10.018_b0155
  article-title: A computer vision approach for weeds identification through support vector machines
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.01.011
– volume: 83
  start-page: 275
  year: 2002
  ident: 10.1016/j.compag.2011.10.018_b0040
  article-title: Weed–plant discrimination by machine vision and artificial neural network
  publication-title: Biosystems Engineering
  doi: 10.1006/bioe.2002.0117
– volume: 45
  start-page: 2758
  year: 1997
  ident: 10.1016/j.compag.2011.10.018_b0135
  article-title: Comparing support vector machines with gaussian kernels to radial basis function classifiers
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.650102
– volume: vol. 6
  start-page: 523
  year: 2007
  ident: 10.1016/j.compag.2011.10.018_b0150
  article-title: Image acquisition for weed detection and identification by digital image analysis
– year: 1995
  ident: 10.1016/j.compag.2011.10.018_b0035
– year: 2000
  ident: 10.1016/j.compag.2011.10.018_b0165
– ident: 10.1016/j.compag.2011.10.018_b0180
  doi: 10.1109/ICICISYS.2009.5357638
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.compag.2011.10.018_b0055
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– ident: 10.1016/j.compag.2011.10.018_b0030
  doi: 10.13031/2013.2723
– volume: XVI
  start-page: 257
  year: 1998
  ident: 10.1016/j.compag.2011.10.018_b0045
  article-title: Patch spraying using historical, manual and real-time monitoring of weeds in cereals
  publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft
– volume: 49
  start-page: 233
  issue: 3
  year: 2009
  ident: 10.1016/j.compag.2011.10.018_b0050
  article-title: Site-specific weed control technologies
  publication-title: Weed Research
  doi: 10.1111/j.1365-3180.2009.00696.x
– volume: 35
  start-page: 183
  issue: 2
  year: 1993
  ident: 10.1016/j.compag.2011.10.018_b0120
  article-title: Lagrange multipliers and optimality
  publication-title: SIAM Review
  doi: 10.1137/1035044
– volume: 25
  start-page: 197
  year: 2000
  ident: 10.1016/j.compag.2011.10.018_b0115
  article-title: Colour and shape analysis techniques for weed detection in cereal fields
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/S0168-1699(99)00068-X
– start-page: 171
  year: 1994
  ident: 10.1016/j.compag.2011.10.018_b0100
  article-title: Estimating attributes: analysis and extensions of relief
– start-page: 335
  year: 2010
  ident: 10.1016/j.compag.2011.10.018_b0145
  article-title: Precision crop protection-the challenge and use of heterogeneity
– volume: 83
  start-page: 149
  year: 2002
  ident: 10.1016/j.compag.2011.10.018_b0010
  article-title: Ae-automation and emerging technologies, Robotic weed control using machine vision
  publication-title: Biosystems Engineering
  doi: 10.1006/bioe.2002.0109
– volume: 9
  start-page: 323
  year: 1990
  ident: 10.1016/j.compag.2011.10.018_b0075
  article-title: Weed economic thresholds in the F R. Germany
  publication-title: Crop Protection
  doi: 10.1016/0261-2194(90)90001-N
SSID ssj0016987
Score 2.2373502
Snippet ► Image processing combined with machine learning for separation of weeds and crops. ► Weed species are grouped with regard to separability and economic...
Site-specific weed management can reduce the amount of herbicides used in comparison to classical broadcast applications. The ability to apply herbicides on...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 89
SubjectTerms Accuracy
Agronomy. Soil science and plant productions
Algorithms
automatic detection
barley
Biological and medical sciences
Cirsium arvense
Classification
developmental stages
Early weed detection
Feature selection
Fundamental and applied biological sciences. Psychology
Galium aparine
Herbicides
image analysis
Liliopsida
Mathematical models
Parasitic plants. Weeds
Phytopathology. Animal pests. Plant and forest protection
Sequential classification
Support vector machines
weed control
Weeds
Title Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine
URI https://dx.doi.org/10.1016/j.compag.2011.10.018
https://www.proquest.com/docview/1010888759
https://www.proquest.com/docview/1514406486
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbGeIEHNGBoha0yEq9ZU9txkseq2lZA7KVU2pvlOJdqqE2rpoW3_Yz9Xu7spNLEYBKPsS-Rkzv7vnO-8zH2SegEhsKmkasw0lFZUkUWUWlkC-XQH8u4yCnf-du1nszUl5vk5oCNu1wYolW2a39Y0_1q3bYM2q85WN_eDqYIVrKhRnxDp4gqTQm_SqVk5ed3e5oHCmQhZVpjtITSXfqc53h5nvc8HORJHC8q_fG4e3pW2RXxJm2Dn64KNS_-WL69T7o8Yq9aMMlHYbyv2QHUb9jL0XzTHqgBb9n91HOlcR4veLNbE9rmP_1OPV96HiVwRwCaGENeSRxRLG-WdrGI5lQ-gv9C_8YpIRNjak5JvKEQmJelXdzQh4_fwBzNjW9XfExbIbslt8SmbIDbuuRXCPipiaoe1nDMZpcX38eTqK3FEDmVxNvIOqdKKyHREFvEPDaDUpWUgUmYz-WZAytT50ohKh9kFs6CKLLYDQslVCHfscN6VcMJ4zmVFpY6Bp1JBUlZxGWOIAI9aSU1pMMek50KjGsPKqd6GQvTMdJ-mKA4Q4qjVlRcj0X7u9bhoI4n5NNOu-aBwRn0JU_ceYLGYCwqszGzqaAY1ecI6790KSFi7Oo_MJ79IDFCRxQRyx772FmTwSlO_21sDatdQyNBX4CBZf4PmYT-0muV6ff__WIf2Au8EmGD6ZQdbjc7OEPItS36fk712fPR56-T69_MDCrI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBba9LDtMOyJZus6DdjViCPLinwMgrXp2uaSBuhNkGU66JA4QZxs_2S_d6RkByi2tUCvegSKSYkfpY8kY1-FSqEv7CByJXo6UqdlZBGVRjaXDu1xEucZxTtfT9R4Jr_fprcHbNTGwhCtsjn7w5nuT-umpdd8zd767q43RbCi-wrxDWURlUofsiPKTpV22NHw4nI82T8mqEyHqGmFDhNOaCPoPM3LU73nIZcn0byo-se_LdRhaVdEnbQ1fr0ylL346wT3ZunsFXvZ4Ek-DEt-zQ6gesNeDOebJqcGvGW_p54ujVt5wevdmgA3_-kv6_nSUymBO8LQRBrycuIIZHm9tItFNKcKEvwXmjhOMZnoVnOK4w21wPxYusgNffjzG5ijxvHtio_oNmS35JYIlTVwWxX8HDE_NVHhwwresdnZt5vROGrKMUROpvE2ss7JwiaQKogtwh6roZAFBWES7HOZdmCTgXOFEKX3M3NnQeQ6dv1cCpkn71mnWlVwzHhG1YUTFYPSiYS0yOMiQxyBxrRMFAz6XZa0IjCuyVVOJTMWpiWl_TBBcIYER60ouC6L9rPWIVfHI-MHrXTNPZ0zaE4emXmMymAsCrM2s6kgN9WHCav_dEkhYuw6vac8-0Wik45AIk667EurTQZ3OT3d2ApWu5pWguYAfcvsgTEpPdQrqdWHJ_-xz-zZ-Ob6ylxdTC4_sufYI8J90wnrbDc7-IQIbJufNjvsD_CRLXk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+support+vector+machine+classification+for+small-grain+weed+species+discrimination+with+special+regard+to+Cirsium+arvense+and+Galium+aparine&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=RUMPF%2C+Till&rft.au=R%C3%96MER%2C+Christoph&rft.au=WEIS%2C+Martin&rft.au=S%C3%96KEFELD%2C+Markus&rft.date=2012&rft.pub=Elsevier&rft.issn=0168-1699&rft.volume=80&rft.spage=89&rft.epage=96&rft_id=info:doi/10.1016%2Fj.compag.2011.10.018&rft.externalDBID=n%2Fa&rft.externalDocID=25403603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon