Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine
Site-specific weed management can reduce the amount of herbicides used in comparison to classical broadcast applications. The ability to apply herbicides on weed patches within the field requires automation. This study focuses on the automatic detection of different species with imaging sensors. Ima...
Saved in:
Published in | Computers and electronics in agriculture Vol. 80; pp. 89 - 96 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Site-specific weed management can reduce the amount of herbicides used in comparison to classical broadcast applications. The ability to apply herbicides on weed patches within the field requires automation. This study focuses on the automatic detection of different species with imaging sensors. Image processing algorithms determine shape features for the plants in the images. With these shape descriptions classification algorithms can be trained to identify the weed and crop species. Since weeds differ in their economic loss due to their yield effect and are controlled by different herbicides, it is necessary to correctly distinguish between the species. Image series of different measurements with plant samples at different growth stages were analysed. For the classification a sequential classification approach was chosen, involving three different support vector machine (SVM) models. In a first step groups of similar plant species were successfully identified (monocotyledons, dicotyledons and barley). Distinctions within the class of dicotyledons proved to be particularly difficult. For that purpose species in this group were subject to a second and third classification step. For each of these steps different features were found to be most important. Feature weighting was done with the RELIEF-F algorithm and SVM-Weighting. The focus was on the early identification of the two most harmful species Cirsium arvense and Galium aparine, with optimal accuracy than using a non-sequential classification approach. An overall classification accuracy of 97.7% was achieved in the first step. For the two subsequent classifiers accuracy rates of 80% and more were obtained for C. arvense and G. aparine. |
---|---|
AbstractList | Site-specific weed management can reduce the amount of herbicides used in comparison to classical broadcast applications. The ability to apply herbicides on weed patches within the field requires automation. This study focuses on the automatic detection of different species with imaging sensors. Image processing algorithms determine shape features for the plants in the images. With these shape descriptions classification algorithms can be trained to identify the weed and crop species. Since weeds differ in their economic loss due to their yield effect and are controlled by different herbicides, it is necessary to correctly distinguish between the species. Image series of different measurements with plant samples at different growth stages were analysed. For the classification a sequential classification approach was chosen, involving three different support vector machine (SVM) models. In a first step groups of similar plant species were successfully identified (monocotyledons, dicotyledons and barley). Distinctions within the class of dicotyledons proved to be particularly difficult. For that purpose species in this group were subject to a second and third classification step. For each of these steps different features were found to be most important. Feature weighting was done with the RELIEF-F algorithm and SVM-Weighting. The focus was on the early identification of the two most harmful species Cirsium arvense and Galium aparine, with optimal accuracy than using a non-sequential classification approach. An overall classification accuracy of 97.7% was achieved in the first step. For the two subsequent classifiers accuracy rates of 80% and more were obtained for C. arvense and G. aparine. ► Image processing combined with machine learning for separation of weeds and crops. ► Weed species are grouped with regard to separability and economic thresholds. ► Classification of hardly separable dicotyledons using a sequential classification. ► Different features prove to be relevant for successive classification steps. ► Specialised classifiers lead to robust weed separation. Site-specific weed management can reduce the amount of herbicides used in comparison to classical broadcast applications. The ability to apply herbicides on weed patches within the field requires automation. This study focuses on the automatic detection of different species with imaging sensors. Image processing algorithms determine shape features for the plants in the images. With these shape descriptions classification algorithms can be trained to identify the weed and crop species. Since weeds differ in their economic loss due to their yield effect and are controlled by different herbicides, it is necessary to correctly distinguish between the species. Image series of different measurements with plant samples at different growth stages were analysed. For the classification a sequential classification approach was chosen, involving three different support vector machine (SVM) models. In a first step groups of similar plant species were successfully identified (monocotyledons, dicotyledons and barley). Distinctions within the class of dicotyledons proved to be particularly difficult. For that purpose species in this group were subject to a second and third classification step. For each of these steps different features were found to be most important. Feature weighting was done with the RELIEF-F algorithm and SVM-Weighting. The focus was on the early identification of the two most harmful species Cirsium arvense and Galium aparine, with optimal accuracy than using a non-sequential classification approach. An overall classification accuracy of 97.7% was achieved in the first step. For the two subsequent classifiers accuracy rates of 80% and more were obtained for C. arvense and G. aparine. |
Author | Gerhards, Roland Plümer, Lutz Römer, Christoph Weis, Martin Rumpf, Till Sökefeld, Markus |
Author_xml | – sequence: 1 fullname: Rumpf, Till – sequence: 2 fullname: Römer, Christoph – sequence: 3 fullname: Weis, Martin – sequence: 4 fullname: Sökefeld, Markus – sequence: 5 fullname: Gerhards, Roland – sequence: 6 fullname: Plümer, Lutz |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25403603$$DView record in Pascal Francis |
BookMark | eNqFksFu1DAQhiNUJLaFN0DCFyQuWcaOkzgckNAKClIlDqVna9aZbL1KnGBnt-qL8LzMNuXCoT1ZHn__7_H8Ps_Owhgoy95KWEuQ1cf92o3DhLu1Aim5tAZpXmQraWqV1xLqs2zFmMll1TSvsvOU9sD7xtSr7M81_T5QmD32Ih2maYyzOJKbxygGdLc-kHA9puQ773D2YxAdH6UB-z7fRfRB3BG1Ik3kPCXR-uSiH3xY2Ds_3y5nbB9ph7EV8yg2PiZ_GATGI4VEAkMrLrF_KE0Y-dLX2csO-0RvHteL7Obb11-b7_nVz8sfmy9XudMlzDk6p1ssqKwIsFY1Gmp1C1ApKDW4xjjConauVaqDSmq9dUhqa8DJrVZ6W1xkHxbfKY48hzTbgV9AfY-BxkOysmQRVNpUz6MgwRhTlw2j7x9RTA77LmJwPtmJJ4Px3iruraigYO7Twrk4phSps87PD5ObebQ9W55cK7u3S772lO-pyvmyWP8n_uf_jOzdIutwtLiL3NfNNQMaALRS8DShiqY6EZ8Xgjiao6doE6cfHLU-8t-x7eifbuIvyR7ZQQ |
CODEN | CEAGE6 |
CitedBy_id | crossref_primary_10_1007_s11119_014_9372_7 crossref_primary_10_3390_agriengineering2030032 crossref_primary_10_3390_agronomy14122838 crossref_primary_10_54480_slrm_v2i2_21 crossref_primary_10_1016_j_eswa_2015_02_047 crossref_primary_10_1016_j_inpa_2019_12_002 crossref_primary_10_3390_s21113647 crossref_primary_10_1007_s43154_020_00001_w crossref_primary_10_3390_rs13091704 crossref_primary_10_1088_1757_899X_1129_1_012056 crossref_primary_10_1002_ps_3677 crossref_primary_10_3389_fpls_2022_992700 crossref_primary_10_3389_fpls_2022_837726 crossref_primary_10_1016_j_biosystemseng_2017_11_015 crossref_primary_10_1016_j_engappai_2013_09_019 crossref_primary_10_1016_j_compag_2012_12_012 crossref_primary_10_3390_s20020455 crossref_primary_10_3390_rs12081246 crossref_primary_10_1016_j_compag_2022_106699 crossref_primary_10_1038_s41598_022_23399_z crossref_primary_10_1016_j_isprsjprs_2012_11_004 crossref_primary_10_1016_j_measurement_2018_05_037 crossref_primary_10_1016_j_compag_2012_07_008 crossref_primary_10_1016_j_landusepol_2021_105289 crossref_primary_10_3390_s21072328 crossref_primary_10_1007_s11119_013_9320_y crossref_primary_10_1016_j_compag_2012_05_015 crossref_primary_10_3390_s20030935 crossref_primary_10_17221_76_2024_PPS crossref_primary_10_3390_rs10101530 crossref_primary_10_1016_j_cropro_2012_04_024 crossref_primary_10_3390_computers9010006 crossref_primary_10_1016_j_compag_2019_02_005 crossref_primary_10_1016_j_jag_2015_08_008 crossref_primary_10_1016_j_isprsjprs_2015_03_003 crossref_primary_10_3390_app12031308 crossref_primary_10_48084_etasr_1647 crossref_primary_10_1002_ps_3545 crossref_primary_10_1016_j_atech_2024_100497 crossref_primary_10_1016_j_atech_2024_100552 crossref_primary_10_1016_j_compag_2013_03_009 crossref_primary_10_1016_j_compag_2023_108576 crossref_primary_10_1016_j_biosystemseng_2020_11_005 crossref_primary_10_1109_ACCESS_2021_3056577 crossref_primary_10_1016_j_jafr_2022_100308 |
Cites_doi | 10.1017/S0043174500094571 10.1111/j.1365-3180.2006.00504.x 10.1111/j.1365-3180.1988.tb01606.x 10.1016/j.biosystemseng.2004.12.012 10.1109/TIT.1962.1057692 10.3920/9789086865147_033 10.1046/j.1365-3180.2003.00349.x 10.1023/A:1012487302797 10.1162/089976698300017467 10.1016/j.asoc.2010.01.011 10.1006/bioe.2002.0117 10.1109/78.650102 10.1109/ICICISYS.2009.5357638 10.1007/BF00994018 10.13031/2013.2723 10.1111/j.1365-3180.2009.00696.x 10.1137/1035044 10.1016/S0168-1699(99)00068-X 10.1006/bioe.2002.0109 10.1016/0261-2194(90)90001-N |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
DOI | 10.1016/j.compag.2011.10.018 |
DatabaseName | AGRIS CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
EndPage | 96 |
ExternalDocumentID | 25403603 10_1016_j_compag_2011_10_018 US201400042208 US201400023968 S0168169911002468 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS IQODW 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c450t-acc4da3e56e0a727a8ed4d00620540c98cea37ccd22f06144bcae2b80c1b424b3 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Sun Aug 24 03:48:52 EDT 2025 Fri Jul 11 04:47:30 EDT 2025 Mon Jul 21 09:14:47 EDT 2025 Tue Jul 01 05:17:37 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 Wed Dec 27 19:12:46 EST 2023 Wed Dec 27 19:21:33 EST 2023 Fri Feb 23 02:29:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Support vector machines Feature selection Sequential classification Early weed detection Cirsium arvense Galium aparine Grains Weed Support vector machine Compositae Discrimination Sequential Dicotyledones Angiospermae Rubiaceae Classification Spermatophyta Species |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-acc4da3e56e0a727a8ed4d00620540c98cea37ccd22f06144bcae2b80c1b424b3 |
Notes | http://dx.doi.org/10.1016/j.compag.2011.10.018 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1010888759 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1514406486 proquest_miscellaneous_1010888759 pascalfrancis_primary_25403603 crossref_citationtrail_10_1016_j_compag_2011_10_018 crossref_primary_10_1016_j_compag_2011_10_018 fao_agris_US201400042208 fao_agris_US201400023968 elsevier_sciencedirect_doi_10_1016_j_compag_2011_10_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012 2012-1-00 20120101 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Gerhards, Sökefeld (b0070) 2003; 1 Blasco, Aleixos, Roger, Rabatel, Moltó (b0010) 2002; 83 Christensen, Heisel (b0045) 1998; XVI Gerhards, Oebel (b0065) 2006; 46 Párez, López, Benlloch, Christensen (b0115) 2000; 25 Cortes, Vapnik (b0055) 1995; 20 Pallutt, Flatter (b0110) 1998; XVI Johnson, Mortensen, Gotway (b0090) 1996; 44 Christensen, Søgaard, Kudsk, Nørremark, Lund, Nadimi, Jørgensen (b0050) 2009; 49 Rockafellar (b0120) 1993; 35 Weis, Gerhards (b0170) 2007; vol. 6 Schulze-Lammers, Vondricka (b0140) 2010 Weis, Sökefeld (b0175) 2010 Gerhards, Christensen (b0060) 2003; 43 Schölkopf, Smola (b0125) 2002 Schölkopf, Smola, Müller (b0130) 1998; 10 Tellaeche, Pajares, Burgos-Artizzu, Ribeiro (b0155) 2011; 11 Åstrand, B., Baerveldt, A.-J., 2004. Plant recognition and localization using context information. In: Proceedings of Mechatronics and Robotics 2004 (MechRob2004). Sascha Eysoldt Verlag, Aachen, Germany, Special Session Autonomous Machines in Agriculture, pp. 1191–1196. Vapnik (b0160) 1998 Schölkopf, Sung, Burges, Girosi, Niyogi, Poggio, Vapnik (b0135) 1997; 45 Gerowitt, Heitefuss (b0075) 1990; 9 Vapnik (b0165) 2000 Burger, Burge (b0020) 2009 Zhu, W., Zhu, X., 2009. The application of support vector machine in weed classification. In: Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on, vol. 4., pp. 532–536. Burks, Shearer, Heath, Donohue (b0025) 2005; 91 Hu (b0085) 1962; 8 Sökefeld, Gerhards, Oebel, Therburg (b0150) 2007; vol. 6 Boyd, Vandenberghe (b0015) 2004 Sökefeld (b0145) 2010 Burks, T.F., Shearer, S.A., Payne, F.A., 2000. Classification of weed species using color texture features and discriminant analysis. In: Transactions of the ASAE, vol. 43. American Society of Agricultural Engineers, pp. 441–448. Guyon, Weston, Barnhill, Vapnik (b0080) 2002; 46 Kira, Rendell (b0095) 1992 Kononenko (b0100) 1994 Cho, Lee, Jeong (b0040) 2002; 83 Marshall (b0105) 1998; 28 Börner (b0035) 1995 Kira (10.1016/j.compag.2011.10.018_b0095) 1992 10.1016/j.compag.2011.10.018_b0180 Gerhards (10.1016/j.compag.2011.10.018_b0065) 2006; 46 Schölkopf (10.1016/j.compag.2011.10.018_b0130) 1998; 10 Schölkopf (10.1016/j.compag.2011.10.018_b0135) 1997; 45 Weis (10.1016/j.compag.2011.10.018_b0170) 2007; vol. 6 Rockafellar (10.1016/j.compag.2011.10.018_b0120) 1993; 35 Pallutt (10.1016/j.compag.2011.10.018_b0110) 1998; XVI Kononenko (10.1016/j.compag.2011.10.018_b0100) 1994 Börner (10.1016/j.compag.2011.10.018_b0035) 1995 Guyon (10.1016/j.compag.2011.10.018_b0080) 2002; 46 Boyd (10.1016/j.compag.2011.10.018_b0015) 2004 Schulze-Lammers (10.1016/j.compag.2011.10.018_b0140) 2010 Christensen (10.1016/j.compag.2011.10.018_b0045) 1998; XVI Christensen (10.1016/j.compag.2011.10.018_b0050) 2009; 49 Cortes (10.1016/j.compag.2011.10.018_b0055) 1995; 20 Blasco (10.1016/j.compag.2011.10.018_b0010) 2002; 83 Cho (10.1016/j.compag.2011.10.018_b0040) 2002; 83 Burger (10.1016/j.compag.2011.10.018_b0020) 2009 Vapnik (10.1016/j.compag.2011.10.018_b0165) 2000 Gerowitt (10.1016/j.compag.2011.10.018_b0075) 1990; 9 Hu (10.1016/j.compag.2011.10.018_b0085) 1962; 8 Tellaeche (10.1016/j.compag.2011.10.018_b0155) 2011; 11 Gerhards (10.1016/j.compag.2011.10.018_b0070) 2003; 1 Vapnik (10.1016/j.compag.2011.10.018_b0160) 1998 Johnson (10.1016/j.compag.2011.10.018_b0090) 1996; 44 Burks (10.1016/j.compag.2011.10.018_b0025) 2005; 91 10.1016/j.compag.2011.10.018_b0030 Schölkopf (10.1016/j.compag.2011.10.018_b0125) 2002 Gerhards (10.1016/j.compag.2011.10.018_b0060) 2003; 43 Sökefeld (10.1016/j.compag.2011.10.018_b0145) 2010 Marshall (10.1016/j.compag.2011.10.018_b0105) 1998; 28 Sökefeld (10.1016/j.compag.2011.10.018_b0150) 2007; vol. 6 Weis (10.1016/j.compag.2011.10.018_b0175) 2010 10.1016/j.compag.2011.10.018_b0005 Párez (10.1016/j.compag.2011.10.018_b0115) 2000; 25 |
References_xml | – year: 1995 ident: b0035 article-title: Unkrautbekämpfung – reference: Åstrand, B., Baerveldt, A.-J., 2004. Plant recognition and localization using context information. In: Proceedings of Mechatronics and Robotics 2004 (MechRob2004). Sascha Eysoldt Verlag, Aachen, Germany, Special Session Autonomous Machines in Agriculture, pp. 1191–1196. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0055 article-title: Support-vector networks publication-title: Machine Learning – reference: Zhu, W., Zhu, X., 2009. The application of support vector machine in weed classification. In: Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on, vol. 4., pp. 532–536. – volume: 8 start-page: 179 year: 1962 end-page: 187 ident: b0085 article-title: Visual pattern recognition by moment invariants publication-title: IRE Transactions Information Theory – start-page: 171 year: 1994 end-page: 182 ident: b0100 article-title: Estimating attributes: analysis and extensions of relief publication-title: Proceedings of the European Conference on Machine Learning – volume: 91 start-page: 293 year: 2005 end-page: 304 ident: b0025 article-title: Evaluation of neural-network classifiers for weed species discrimination publication-title: Biosystems Engineering – year: 2000 ident: b0165 article-title: The nature of statistical learning theory, Statistics for engineering and information science – start-page: 129 year: 1992 end-page: 134 ident: b0095 article-title: The feature selection problem: traditional methods and a new algorithm publication-title: Proceedings of the 10th National Conference on Artificial Intelligence, AAAI’92 – volume: 25 start-page: 197 year: 2000 end-page: 212 ident: b0115 article-title: Colour and shape analysis techniques for weed detection in cereal fields publication-title: Computers and Electronics in Agriculture – volume: 11 start-page: 908 year: 2011 end-page: 915 ident: b0155 article-title: A computer vision approach for weeds identification through support vector machines publication-title: Applied Soft Computing – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: b0080 article-title: Gene selection for cancer classification using support vector machines publication-title: Machine Learning – volume: 43 start-page: 385 year: 2003 end-page: 392 ident: b0060 article-title: Real-time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley publication-title: Weed Research – volume: 45 start-page: 2758 year: 1997 end-page: 2765 ident: b0135 article-title: Comparing support vector machines with gaussian kernels to radial basis function classifiers publication-title: IEEE Transactions on Signal Processing – volume: 44 start-page: 704 year: 1996 end-page: 710 ident: b0090 article-title: Spatial and temporal analysis of weed seedling populations using geostatistics publication-title: Weed Science – volume: 35 start-page: 183 year: 1993 end-page: 238 ident: b0120 article-title: Lagrange multipliers and optimality publication-title: SIAM Review – start-page: 295 year: 2010 end-page: 310 ident: b0140 article-title: Precision crop protection-the challenge and use of heterogeneity publication-title: Direct Injection Sprayer – volume: vol. 6 start-page: 537 year: 2007 end-page: 545 ident: b0170 article-title: Feature extraction for the identification of weed species in digital images for the purpose of site-specific weed control publication-title: Precision Agriculture ’07 – reference: Burks, T.F., Shearer, S.A., Payne, F.A., 2000. Classification of weed species using color texture features and discriminant analysis. In: Transactions of the ASAE, vol. 43. American Society of Agricultural Engineers, pp. 441–448. – volume: XVI start-page: 257 year: 1998 end-page: 263 ident: b0045 article-title: Patch spraying using historical, manual and real-time monitoring of weeds in cereals publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft – start-page: 335 year: 2010 end-page: 347 ident: b0145 article-title: Precision crop protection-the challenge and use of heterogeneity publication-title: Variable Rate Technology for Herbicide Application – start-page: 119 year: 2010 end-page: 134 ident: b0175 article-title: Precision crop protection-the challenge and use of heterogeneity publication-title: Detection and Identification of Weeds – year: 2009 ident: b0020 article-title: Principles of Digital Image Processing Core Algorithms Undergraduate Topics in Computer Science – volume: 46 start-page: 185 year: 2006 end-page: 193 ident: b0065 article-title: Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying publication-title: Weed Research – year: 2002 ident: b0125 article-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond: Support Vector Machines, Regularization, Optimization, and Beyond (reprint) Edition – volume: 83 start-page: 275 year: 2002 end-page: 280 ident: b0040 article-title: Weed–plant discrimination by machine vision and artificial neural network publication-title: Biosystems Engineering – volume: 9 start-page: 323 year: 1990 end-page: 331 ident: b0075 article-title: Weed economic thresholds in the F R. Germany publication-title: Crop Protection – year: 1998 ident: b0160 article-title: Statistical learning theory – volume: XVI start-page: 333 year: 1998 end-page: 344 ident: b0110 article-title: Variabilität der Konkurrenz von Unkräutern in Getreide und daraus resultierende Auswirkungen auf die Sicherheit von Schwellenwerten publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft – volume: 10 start-page: 1299 year: 1998 end-page: 1319 ident: b0130 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Computation – volume: vol. 6 start-page: 523 year: 2007 end-page: 529 ident: b0150 article-title: Image acquisition for weed detection and identification by digital image analysis publication-title: Precision Agriculture ’07 – volume: 83 start-page: 149 year: 2002 end-page: 157 ident: b0010 article-title: Ae-automation and emerging technologies, Robotic weed control using machine vision publication-title: Biosystems Engineering – volume: 1 start-page: 229 year: 2003 end-page: 234 ident: b0070 article-title: Precision farming in weed control – system components and economic benefits publication-title: Precision Agriculture – year: 2004 ident: b0015 article-title: Convex Optimization – volume: 49 start-page: 233 year: 2009 end-page: 241 ident: b0050 article-title: Site-specific weed control technologies publication-title: Weed Research – volume: 28 start-page: 191 year: 1998 end-page: 198 ident: b0105 article-title: Field-scale estimates of grass populations in arable land publication-title: Weed Research – volume: 44 start-page: 704 year: 1996 ident: 10.1016/j.compag.2011.10.018_b0090 article-title: Spatial and temporal analysis of weed seedling populations using geostatistics publication-title: Weed Science doi: 10.1017/S0043174500094571 – volume: 46 start-page: 185 issue: 3 year: 2006 ident: 10.1016/j.compag.2011.10.018_b0065 article-title: Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying publication-title: Weed Research doi: 10.1111/j.1365-3180.2006.00504.x – volume: 28 start-page: 191 year: 1998 ident: 10.1016/j.compag.2011.10.018_b0105 article-title: Field-scale estimates of grass populations in arable land publication-title: Weed Research doi: 10.1111/j.1365-3180.1988.tb01606.x – year: 2004 ident: 10.1016/j.compag.2011.10.018_b0015 – volume: 91 start-page: 293 issue: 3 year: 2005 ident: 10.1016/j.compag.2011.10.018_b0025 article-title: Evaluation of neural-network classifiers for weed species discrimination publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2004.12.012 – volume: XVI start-page: 333 year: 1998 ident: 10.1016/j.compag.2011.10.018_b0110 article-title: Variabilität der Konkurrenz von Unkräutern in Getreide und daraus resultierende Auswirkungen auf die Sicherheit von Schwellenwerten publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft – year: 1998 ident: 10.1016/j.compag.2011.10.018_b0160 – volume: vol. 6 start-page: 537 year: 2007 ident: 10.1016/j.compag.2011.10.018_b0170 article-title: Feature extraction for the identification of weed species in digital images for the purpose of site-specific weed control – volume: 8 start-page: 179 issue: 2 year: 1962 ident: 10.1016/j.compag.2011.10.018_b0085 article-title: Visual pattern recognition by moment invariants publication-title: IRE Transactions Information Theory doi: 10.1109/TIT.1962.1057692 – year: 2002 ident: 10.1016/j.compag.2011.10.018_b0125 – start-page: 295 year: 2010 ident: 10.1016/j.compag.2011.10.018_b0140 article-title: Precision crop protection-the challenge and use of heterogeneity – start-page: 119 year: 2010 ident: 10.1016/j.compag.2011.10.018_b0175 article-title: Precision crop protection-the challenge and use of heterogeneity – volume: 1 start-page: 229 year: 2003 ident: 10.1016/j.compag.2011.10.018_b0070 article-title: Precision farming in weed control – system components and economic benefits publication-title: Precision Agriculture doi: 10.3920/9789086865147_033 – start-page: 129 year: 1992 ident: 10.1016/j.compag.2011.10.018_b0095 article-title: The feature selection problem: traditional methods and a new algorithm – year: 2009 ident: 10.1016/j.compag.2011.10.018_b0020 – volume: 43 start-page: 385 issue: 6 year: 2003 ident: 10.1016/j.compag.2011.10.018_b0060 article-title: Real-time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley publication-title: Weed Research doi: 10.1046/j.1365-3180.2003.00349.x – ident: 10.1016/j.compag.2011.10.018_b0005 – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.compag.2011.10.018_b0080 article-title: Gene selection for cancer classification using support vector machines publication-title: Machine Learning doi: 10.1023/A:1012487302797 – volume: 10 start-page: 1299 issue: 5 year: 1998 ident: 10.1016/j.compag.2011.10.018_b0130 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Computation doi: 10.1162/089976698300017467 – volume: 11 start-page: 908 issue: 1 year: 2011 ident: 10.1016/j.compag.2011.10.018_b0155 article-title: A computer vision approach for weeds identification through support vector machines publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.01.011 – volume: 83 start-page: 275 year: 2002 ident: 10.1016/j.compag.2011.10.018_b0040 article-title: Weed–plant discrimination by machine vision and artificial neural network publication-title: Biosystems Engineering doi: 10.1006/bioe.2002.0117 – volume: 45 start-page: 2758 year: 1997 ident: 10.1016/j.compag.2011.10.018_b0135 article-title: Comparing support vector machines with gaussian kernels to radial basis function classifiers publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.650102 – volume: vol. 6 start-page: 523 year: 2007 ident: 10.1016/j.compag.2011.10.018_b0150 article-title: Image acquisition for weed detection and identification by digital image analysis – year: 1995 ident: 10.1016/j.compag.2011.10.018_b0035 – year: 2000 ident: 10.1016/j.compag.2011.10.018_b0165 – ident: 10.1016/j.compag.2011.10.018_b0180 doi: 10.1109/ICICISYS.2009.5357638 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.compag.2011.10.018_b0055 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – ident: 10.1016/j.compag.2011.10.018_b0030 doi: 10.13031/2013.2723 – volume: XVI start-page: 257 year: 1998 ident: 10.1016/j.compag.2011.10.018_b0045 article-title: Patch spraying using historical, manual and real-time monitoring of weeds in cereals publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft – volume: 49 start-page: 233 issue: 3 year: 2009 ident: 10.1016/j.compag.2011.10.018_b0050 article-title: Site-specific weed control technologies publication-title: Weed Research doi: 10.1111/j.1365-3180.2009.00696.x – volume: 35 start-page: 183 issue: 2 year: 1993 ident: 10.1016/j.compag.2011.10.018_b0120 article-title: Lagrange multipliers and optimality publication-title: SIAM Review doi: 10.1137/1035044 – volume: 25 start-page: 197 year: 2000 ident: 10.1016/j.compag.2011.10.018_b0115 article-title: Colour and shape analysis techniques for weed detection in cereal fields publication-title: Computers and Electronics in Agriculture doi: 10.1016/S0168-1699(99)00068-X – start-page: 171 year: 1994 ident: 10.1016/j.compag.2011.10.018_b0100 article-title: Estimating attributes: analysis and extensions of relief – start-page: 335 year: 2010 ident: 10.1016/j.compag.2011.10.018_b0145 article-title: Precision crop protection-the challenge and use of heterogeneity – volume: 83 start-page: 149 year: 2002 ident: 10.1016/j.compag.2011.10.018_b0010 article-title: Ae-automation and emerging technologies, Robotic weed control using machine vision publication-title: Biosystems Engineering doi: 10.1006/bioe.2002.0109 – volume: 9 start-page: 323 year: 1990 ident: 10.1016/j.compag.2011.10.018_b0075 article-title: Weed economic thresholds in the F R. Germany publication-title: Crop Protection doi: 10.1016/0261-2194(90)90001-N |
SSID | ssj0016987 |
Score | 2.2373502 |
Snippet | ► Image processing combined with machine learning for separation of weeds and crops. ► Weed species are grouped with regard to separability and economic... Site-specific weed management can reduce the amount of herbicides used in comparison to classical broadcast applications. The ability to apply herbicides on... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 89 |
SubjectTerms | Accuracy Agronomy. Soil science and plant productions Algorithms automatic detection barley Biological and medical sciences Cirsium arvense Classification developmental stages Early weed detection Feature selection Fundamental and applied biological sciences. Psychology Galium aparine Herbicides image analysis Liliopsida Mathematical models Parasitic plants. Weeds Phytopathology. Animal pests. Plant and forest protection Sequential classification Support vector machines weed control Weeds |
Title | Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine |
URI | https://dx.doi.org/10.1016/j.compag.2011.10.018 https://www.proquest.com/docview/1010888759 https://www.proquest.com/docview/1514406486 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbGeIEHNGBoha0yEq9ZU9txkseq2lZA7KVU2pvlOJdqqE2rpoW3_Yz9Xu7spNLEYBKPsS-Rkzv7vnO-8zH2SegEhsKmkasw0lFZUkUWUWlkC-XQH8u4yCnf-du1nszUl5vk5oCNu1wYolW2a39Y0_1q3bYM2q85WN_eDqYIVrKhRnxDp4gqTQm_SqVk5ed3e5oHCmQhZVpjtITSXfqc53h5nvc8HORJHC8q_fG4e3pW2RXxJm2Dn64KNS_-WL69T7o8Yq9aMMlHYbyv2QHUb9jL0XzTHqgBb9n91HOlcR4veLNbE9rmP_1OPV96HiVwRwCaGENeSRxRLG-WdrGI5lQ-gv9C_8YpIRNjak5JvKEQmJelXdzQh4_fwBzNjW9XfExbIbslt8SmbIDbuuRXCPipiaoe1nDMZpcX38eTqK3FEDmVxNvIOqdKKyHREFvEPDaDUpWUgUmYz-WZAytT50ohKh9kFs6CKLLYDQslVCHfscN6VcMJ4zmVFpY6Bp1JBUlZxGWOIAI9aSU1pMMek50KjGsPKqd6GQvTMdJ-mKA4Q4qjVlRcj0X7u9bhoI4n5NNOu-aBwRn0JU_ceYLGYCwqszGzqaAY1ecI6790KSFi7Oo_MJ79IDFCRxQRyx772FmTwSlO_21sDatdQyNBX4CBZf4PmYT-0muV6ff__WIf2Au8EmGD6ZQdbjc7OEPItS36fk712fPR56-T69_MDCrI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBba9LDtMOyJZus6DdjViCPLinwMgrXp2uaSBuhNkGU66JA4QZxs_2S_d6RkByi2tUCvegSKSYkfpY8kY1-FSqEv7CByJXo6UqdlZBGVRjaXDu1xEucZxTtfT9R4Jr_fprcHbNTGwhCtsjn7w5nuT-umpdd8zd767q43RbCi-wrxDWURlUofsiPKTpV22NHw4nI82T8mqEyHqGmFDhNOaCPoPM3LU73nIZcn0byo-se_LdRhaVdEnbQ1fr0ylL346wT3ZunsFXvZ4Ek-DEt-zQ6gesNeDOebJqcGvGW_p54ujVt5wevdmgA3_-kv6_nSUymBO8LQRBrycuIIZHm9tItFNKcKEvwXmjhOMZnoVnOK4w21wPxYusgNffjzG5ijxvHtio_oNmS35JYIlTVwWxX8HDE_NVHhwwresdnZt5vROGrKMUROpvE2ss7JwiaQKogtwh6roZAFBWES7HOZdmCTgXOFEKX3M3NnQeQ6dv1cCpkn71mnWlVwzHhG1YUTFYPSiYS0yOMiQxyBxrRMFAz6XZa0IjCuyVVOJTMWpiWl_TBBcIYER60ouC6L9rPWIVfHI-MHrXTNPZ0zaE4emXmMymAsCrM2s6kgN9WHCav_dEkhYuw6vac8-0Wik45AIk667EurTQZ3OT3d2ApWu5pWguYAfcvsgTEpPdQrqdWHJ_-xz-zZ-Ob6ylxdTC4_sufYI8J90wnrbDc7-IQIbJufNjvsD_CRLXk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+support+vector+machine+classification+for+small-grain+weed+species+discrimination+with+special+regard+to+Cirsium+arvense+and+Galium+aparine&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=RUMPF%2C+Till&rft.au=R%C3%96MER%2C+Christoph&rft.au=WEIS%2C+Martin&rft.au=S%C3%96KEFELD%2C+Markus&rft.date=2012&rft.pub=Elsevier&rft.issn=0168-1699&rft.volume=80&rft.spage=89&rft.epage=96&rft_id=info:doi/10.1016%2Fj.compag.2011.10.018&rft.externalDBID=n%2Fa&rft.externalDocID=25403603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |