Antimicrobial resistance and COVID-19 syndemic: Impact on public health
The COVID -19 pandemic has had a catastrophic impact on the global economy and the healthcare industry. Unfortunately, the scientific community still hasn't discovered a definite cure for this virus. Also, owing to the unscrupulous use of antibiotics in wake of the current situation, another on...
Saved in:
Published in | Drug Discoveries & Therapeutics Vol. 15; no. 3; pp. 124 - 129 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
International Research and Cooperation Association for Bio & Socio-Sciences Advancement
30.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The COVID -19 pandemic has had a catastrophic impact on the global economy and the healthcare industry. Unfortunately, the scientific community still hasn't discovered a definite cure for this virus. Also, owing to the unscrupulous use of antibiotics in wake of the current situation, another ongoing pandemic of antimicrobial resistance (AMR) has been entirely eclipsed. However, increased compliance to infection control measures like hand hygiene (both at hospital and community level), and restricted travel might be favorable. It is evident that the AMR strategies will be impacted disproportionately varying with the respective policies followed by the countries and hospitals to deal with the pandemic. The vaccination drive initiated globally has provided a glimmer of hope. In this article, the possible reciprocity between the two contemporaneous pandemics has been addressed. The world needs to be vigilant to punctuate the symphony between these lethal threats to global health. The restraint to combat against AMR will be boosted as our discernment of the problem also changes with the epidemiological interplay becoming more apparent in near future. |
---|---|
AbstractList | The COVID -19 pandemic has had a catastrophic impact on the global economy and the healthcare industry. Unfortunately, the scientific community still hasn't discovered a definite cure for this virus. Also, owing to the unscrupulous use of antibiotics in wake of the current situation, another ongoing pandemic of antimicrobial resistance (AMR) has been entirely eclipsed. However, increased compliance to infection control measures like hand hygiene (both at hospital and community level), and restricted travel might be favorable. It is evident that the AMR strategies will be impacted disproportionately varying with the respective policies followed by the countries and hospitals to deal with the pandemic. The vaccination drive initiated globally has provided a glimmer of hope. In this article, the possible reciprocity between the two contemporaneous pandemics has been addressed. The world needs to be vigilant to punctuate the symphony between these lethal threats to global health. The restraint to combat against AMR will be boosted as our discernment of the problem also changes with the epidemiological interplay becoming more apparent in near future. |
ArticleNumber | 2021.01052 |
Author | Chaudhry, Rama Vidyarthi, Ashima Jain Das, Arghya |
Author_xml | – sequence: 1 fullname: Vidyarthi, Ashima Jain organization: Department of Microbiology, All India Institute of Medical Sciences, New Delh, India – sequence: 2 fullname: Das, Arghya organization: Department of Microbiology, All India Institute of Medical Sciences, New Delh, India – sequence: 3 fullname: Chaudhry, Rama organization: Department of Microbiology, All India Institute of Medical Sciences, New Delh, India |
BookMark | eNpFUMFOwzAMjdCQGGNXzvmBlqRpmpTbtMGoNGkXQNyiNHVZpi6bknDY35NtaPhgW8_vWfa7RyO3d4DQIyU557J46rqYF6SgOaGEFzdoTKWkmZDl1-jaM3qHpiFsSQpeSir5GC1nLtqdNX7fWj1gD8GGqJ0BrF2H5-vPZpHRGoej6yDRnnGzO2gT8d7hw087WIM3oIe4eUC3vR4CTP_qBH28vrzP37LVetnMZ6vMlJzETHMNRGrBoRBdggyTQhgqeiNYV9V1awB6USXECGgLUuuK121ZUqaJaSvBJii_7E0Xh-ChVwdvd9ofFSXq5IRKTqiTE-rsRBIsLoJt-usbrnTtozUDnOmUK3ZK_7Lr2Gy0V-DYL1Siaps |
CitedBy_id | crossref_primary_10_1017_ice_2022_194 crossref_primary_10_1016_j_phrs_2024_107188 crossref_primary_10_1016_j_ijregi_2023_11_012 crossref_primary_10_1002_hsr2_1566 |
Cites_doi | 10.1016/j.arcmed.2020.10.010 10.1016/j.ijantimicag.2016.06.014 10.3389/fmicb.2020.01020 10.1016/S0140-6736(20)31022-9 10.1093/jacamr/dlaa049 10.1128/microbiolspec.ARBA-0009-2017 10.1046/j.1365-2672.92.5s1.4.x 10.1128/CMR.00042-16 10.1016/j.ijantimicag.2012.01.011 10.1093/jacamr/dlaa051 10.14745/ccdr.v44i11a02 10.1371/journal.pone.0023606 10.1016/j.cmi.2020.07.016 10.1016/S1473-3099(15)00424-7 10.1093/cid/ciaa530 10.1186/s12864-015-2153-5 10.1007/s11908-018-0634-9 10.1016/S0924-8579(02)00363-1 10.1093/jacamr/dlaa053 10.1016/S0140-6736(20)30211-7 10.1056/NEJMoa2005412 10.1056/NEJMx200021 10.1056/NEJMoa1914433 10.1016/j.cmi.2020.08.022 10.3389/fimmu.2018.01068 10.1093/jac/dkv109 10.1056/NEJMc2008043 |
ContentType | Journal Article |
Copyright | 2021 International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
Copyright_xml | – notice: 2021 International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
DBID | AAYXX CITATION |
DOI | 10.5582/ddt.2021.01052 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1881-784X |
EndPage | 129 |
ExternalDocumentID | 10_5582_ddt_2021_01052 article_ddt_15_3_15_2021_01052_article_char_en |
GroupedDBID | --- 53G ABDBF ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL DIK EBD EMOBN ESX F5P JSF JSH KQ8 MK0 OK1 P2P RJT RZJ SV3 TUS 7.U AAYXX CITATION |
ID | FETCH-LOGICAL-c450t-a5ae08a75e27dc45c3877c17fc73d699bceef76c17c7eb209a659b4413a0cb673 |
ISSN | 1881-7831 |
IngestDate | Thu Sep 26 18:46:23 EDT 2024 Sun Jul 28 05:07:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-a5ae08a75e27dc45c3877c17fc73d699bceef76c17c7eb209a659b4413a0cb673 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ddt/15/3/15_2021.01052/_article/-char/en |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_5582_ddt_2021_01052 jstage_primary_article_ddt_15_3_15_2021_01052_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2021/06/30 |
PublicationDateYYYYMMDD | 2021-06-30 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021/06/30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Drug Discoveries & Therapeutics |
PublicationTitleAlternate | DD&T |
PublicationYear | 2021 |
Publisher | International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
Publisher_xml | – name: International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
References | 6. Tagliabue A, Rappuoli R. Changing priorities in vaccinology: Antibiotic resistance moving to the top. Front Immunol. 2018; 9:1068. 22. Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, Satta G, Cooke G, Holmes A. Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020; 71:2459-2468. 5. O'Neil J. Tackling drug-resistant infections globally: final report and recommendations. In Review on Antimicrobial Resistance. Government of United Kingdom: May 2016. https://apo.org.au/sites/default/files/resource-files/2016-05/apo-nid63983.pdf (accessed March 31, 2021). 23. McMichael TM, Currie DW, Clark S, et al. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020; 382:2005-2011. 1. World Health Organization. World Health Organization Coronavirus Disease (COVID-19) dashboard. https://covid19.who.int/ (accessed June 9, 2021). 12. Murray AK. The novel coronavirus COVID-19 outbreak: Global implications for antimicrobial resistance. Front Microbiol. 2020; 11:1020. 15. Schwartz KL, Morris SK. Travel and the spread of drug-resistant bacteria. Curr Infect Dis Rep. 2018; 20:29. 34. Alvarez MR, Vidal YL, Hernandez JLS, Novales MGM, Moreno KF, Rosales SPL. COVID-19: Clouds over the antimicrobial resistance landscape. Arch Med Res. 2021; 52:123-126. 24. Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N Engl J Med. 2020; 383:2041-2052. 8. Indian Council of Medical Research. Annual report - Antimicrobial Resistance Surveillance and Research Network January 2019 to December 2019. AMR surveillance Network, Indian Council of Medical Research, 2019. http://iamrsn.icmr.org.in/index.php/resources/amr-icmr-data (accessed March 31, 2021). 27. Jernigan JA, Hatfield KM, Wolford H, Nelson RE, Olubajo B, Reddy SC, McCarthy N, Paul P, McDonald LC, Kallen A, Fiore A, Craig M, Baggs J. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012-2017. N Engl J Med. 2020; 382:1309-1319. 20. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020; 395:1569-1578. 26. Gonzalez-Zorn B. Antibiotic use in the COVID-19 crisis in Spain. Clin Microbiol Infect. 2020:S1198-743X(20)30609-1. 30. Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. Symp Ser Soc Appl Microbiol. 2002; 31:65S-71S. 2. van Duin D, Barlow G, Nathwani D. The impact of the COVID-19 pandemic on antimicrobial resistance: a debate. JAC Antimicrob Resist. 2020; 2:dlaa053. 4. Collignon P, Beggs JJ. CON: COVID-19 will not result in increased antimicrobial resistance prevalence. JAC Antimicrob Resist. 2020; 2:dlaa051. 9. Queenan K, Häsler B, Rushton J. A One Health approach to antimicrobial resistance surveillance: is there a business case for it? Int J Antimicrob Agents. 2016; 48:422-427. 10. McEwen SA, Collignon PJ. Antimicrobial resistance: a One Health perspective. Microbiol Spectr. 2018; doi: 10.1128/microbiolspec.ARBA-0009-2017. 29. Bataillon SB, Tattevin P, Mallet MB, Gougeon AJ. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds–a critical review. Int J Antimicrob Agents. 2012; 39:381-389. 11. Wellcome The Global Response to AMR: Momentum, success, and critical gaps. 2020. https://cms.wellcome.org/sites/default/files/2020-11/wellcome-global-response-amr-report.pdf (accessed March 31, 2021). 32. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics. 2015; 16:964. 31. Maillard JY. Antimicrobial biocides in the healthcare environment: efficacy, usage, policies, and perceived problems. Ther Clin Risk Manag. 2005; 1:307-320. 25. Fiolet T, Guihur A, Rebeaud ME, Mulot M, Peiffer-Smadja N, Mahamat-Saleh Y. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis. Clin Microbiol Infect. 2021; 27:19-27. 19. Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020; 382:1787-1799. 28. Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev. 2017; 30:1-22. 17. Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016; 16:161-168. 16. Liang Z, Li L, Wang Y, Chen L, Kong X, Hong Y, Lan L, Zheng M, Yang CG, Liu H, Shen X, Luo C, Li KK, Chen K, Jiang H. Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS One. 2011; 6:e23606. 13. Langford BJ, Schwartz KL. Bringing home unwelcome souvenirs: Travel and drug-resistant bacteria. Can Commun Dis Rep. 2018; 44:277-282. 14. Memish ZA, Venkatesh S, Shibl AM. Impact of travel on international spread of antimicrobial resistance. Int J Antimicrob Agents. 2003; 21:135-142. 18. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T , Zhang X , Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395:507-513. 3. Clancy CJ, Buehrle DJ, Nguyen MH. PRO: The COVID-19 pandemic will result in increased antimicrobial resistance rates. JAC Antimicrob Resist. 2020; 2:dlaa049. 21. Langford BJ, So M, Raybardhan S, Leung V, Westwood D, MacFadden DR, Soucy JPR, Daneman N. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. 2020; 26:1622-1629. 33. Webber MA, Whitehead RN, Mount M, Loman NJ, Pallen MJ, Piddock LJ. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. J Antimicrob Chemother. 2015; 70:2241-2248. 7. National Action Plan on Antimicrobial Resistance (NAP-AMR) 2017 – 2021. Ministry of Health & Family Welfare, Government of India. April 2017. https://ncdc.gov.in/WriteReadData/l892s/File645.pdf (accessed March 31, 2021). 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 34 doi: 10.1016/j.arcmed.2020.10.010 – ident: 9 doi: 10.1016/j.ijantimicag.2016.06.014 – ident: 12 doi: 10.3389/fmicb.2020.01020 – ident: 20 doi: 10.1016/S0140-6736(20)31022-9 – ident: 3 doi: 10.1093/jacamr/dlaa049 – ident: 10 doi: 10.1128/microbiolspec.ARBA-0009-2017 – ident: 30 doi: 10.1046/j.1365-2672.92.5s1.4.x – ident: 31 – ident: 28 doi: 10.1128/CMR.00042-16 – ident: 29 doi: 10.1016/j.ijantimicag.2012.01.011 – ident: 7 – ident: 26 – ident: 4 doi: 10.1093/jacamr/dlaa051 – ident: 13 doi: 10.14745/ccdr.v44i11a02 – ident: 16 doi: 10.1371/journal.pone.0023606 – ident: 21 doi: 10.1016/j.cmi.2020.07.016 – ident: 17 doi: 10.1016/S1473-3099(15)00424-7 – ident: 22 doi: 10.1093/cid/ciaa530 – ident: 32 doi: 10.1186/s12864-015-2153-5 – ident: 15 doi: 10.1007/s11908-018-0634-9 – ident: 5 – ident: 14 doi: 10.1016/S0924-8579(02)00363-1 – ident: 1 – ident: 2 doi: 10.1093/jacamr/dlaa053 – ident: 18 doi: 10.1016/S0140-6736(20)30211-7 – ident: 11 – ident: 23 doi: 10.1056/NEJMoa2005412 – ident: 24 doi: 10.1056/NEJMx200021 – ident: 27 doi: 10.1056/NEJMoa1914433 – ident: 25 doi: 10.1016/j.cmi.2020.08.022 – ident: 6 doi: 10.3389/fimmu.2018.01068 – ident: 33 doi: 10.1093/jac/dkv109 – ident: 8 – ident: 19 doi: 10.1056/NEJMc2008043 |
SSID | ssj0000548185 |
Score | 2.266623 |
SecondaryResourceType | review_article |
Snippet | The COVID -19 pandemic has had a catastrophic impact on the global economy and the healthcare industry. Unfortunately, the scientific community still hasn't... |
SourceID | crossref jstage |
SourceType | Aggregation Database Publisher |
StartPage | 124 |
SubjectTerms | antimicrobial resistance (AMR) COVID-19 MDR pandemic |
Title | Antimicrobial resistance and COVID-19 syndemic: Impact on public health |
URI | https://www.jstage.jst.go.jp/article/ddt/15/3/15_2021.01052/_article/-char/en |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Drug Discoveries & Therapeutics, 2021/06/30, Vol.15(3), pp.124-129 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9cwFG8UPHgxEjWiSHow8UCG67qumwmHL3xF4KCJAcJt6dqOjYRhvux7wL-e1x_r9iUc0EuzdG239X32-mn73itCn7WuagpEPxKE6ihVdRwJbowA6ljkinOaCBvt82d2dJaeXLCL0azIepf01a78-6hfyf9IFfJArsZL9h8kGxqFDLgG-UIKEob0STKedX173dpQSjY-_60hg4MLwMGv8-N5RAoblMCYwJvJ_7F3iuxW4ls3U4o6Xywvzb6NNMadrV2VzXYmblqBhJ-36g5eyp4KDGJu2muxcyLagLa58xWbLS6bu9EeqBFL1bi9-9_CDwp-1SEhg4lcUJR5TiKeew2up3nO4jJoVzZBEZ2oSuJ8p_2oS9y6x0OFzlhuAsQqZcxeE7JrzvNMxqFr2K5_MKIFO0OY4ZgWSqhfmvqlrf8crSeglkAfrs_25_uHYU0O6KvhL2aOPnyei_NpGvm6-hIrPObFFYh3MAO0zOT0NXrlpxR45vCxgZ7p7g36sYINPGIDAzbwgA08YOMbdsjANx12yMAOGW_R2eH304OjyB-aEcmUxX0kmNBxLjjTCVeQJWnOuSS8lpyqrCgqYEU1zyBHcl0lcSEyVlRAiqmIZZVx-g6tdTedfo-wUrUyd0gsWAqNFhLKAIVNoWGtEr6JvgxdUP5xsVHKx3t8E-25Hgrl_D9jyxFWUpOM5cNt43oIf_qHJz_pI3o5wnULrfWLpf4EtLGvtr207wGmQGt3 |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+resistance+and+COVID-19+syndemic%3A+Impact+on+public+health&rft.jtitle=Drug+discoveries+%26+therapeutics&rft.au=Vidyarthi%2C+Ashima+Jain&rft.au=Das%2C+Arghya&rft.au=Chaudhry%2C+Rama&rft.date=2021-06-30&rft.issn=1881-7831&rft.eissn=1881-784X&rft.volume=15&rft.issue=3&rft.spage=124&rft.epage=129&rft_id=info:doi/10.5582%2Fddt.2021.01052&rft.externalDBID=n%2Fa&rft.externalDocID=10_5582_ddt_2021_01052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7831&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7831&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7831&client=summon |