Antimicrobial resistance and COVID-19 syndemic: Impact on public health

The COVID -19 pandemic has had a catastrophic impact on the global economy and the healthcare industry. Unfortunately, the scientific community still hasn't discovered a definite cure for this virus. Also, owing to the unscrupulous use of antibiotics in wake of the current situation, another on...

Full description

Saved in:
Bibliographic Details
Published inDrug Discoveries & Therapeutics Vol. 15; no. 3; pp. 124 - 129
Main Authors Vidyarthi, Ashima Jain, Das, Arghya, Chaudhry, Rama
Format Journal Article
LanguageEnglish
Published International Research and Cooperation Association for Bio & Socio-Sciences Advancement 30.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The COVID -19 pandemic has had a catastrophic impact on the global economy and the healthcare industry. Unfortunately, the scientific community still hasn't discovered a definite cure for this virus. Also, owing to the unscrupulous use of antibiotics in wake of the current situation, another ongoing pandemic of antimicrobial resistance (AMR) has been entirely eclipsed. However, increased compliance to infection control measures like hand hygiene (both at hospital and community level), and restricted travel might be favorable. It is evident that the AMR strategies will be impacted disproportionately varying with the respective policies followed by the countries and hospitals to deal with the pandemic. The vaccination drive initiated globally has provided a glimmer of hope. In this article, the possible reciprocity between the two contemporaneous pandemics has been addressed. The world needs to be vigilant to punctuate the symphony between these lethal threats to global health. The restraint to combat against AMR will be boosted as our discernment of the problem also changes with the epidemiological interplay becoming more apparent in near future.
AbstractList The COVID -19 pandemic has had a catastrophic impact on the global economy and the healthcare industry. Unfortunately, the scientific community still hasn't discovered a definite cure for this virus. Also, owing to the unscrupulous use of antibiotics in wake of the current situation, another ongoing pandemic of antimicrobial resistance (AMR) has been entirely eclipsed. However, increased compliance to infection control measures like hand hygiene (both at hospital and community level), and restricted travel might be favorable. It is evident that the AMR strategies will be impacted disproportionately varying with the respective policies followed by the countries and hospitals to deal with the pandemic. The vaccination drive initiated globally has provided a glimmer of hope. In this article, the possible reciprocity between the two contemporaneous pandemics has been addressed. The world needs to be vigilant to punctuate the symphony between these lethal threats to global health. The restraint to combat against AMR will be boosted as our discernment of the problem also changes with the epidemiological interplay becoming more apparent in near future.
ArticleNumber 2021.01052
Author Chaudhry, Rama
Vidyarthi, Ashima Jain
Das, Arghya
Author_xml – sequence: 1
  fullname: Vidyarthi, Ashima Jain
  organization: Department of Microbiology, All India Institute of Medical Sciences, New Delh, India
– sequence: 2
  fullname: Das, Arghya
  organization: Department of Microbiology, All India Institute of Medical Sciences, New Delh, India
– sequence: 3
  fullname: Chaudhry, Rama
  organization: Department of Microbiology, All India Institute of Medical Sciences, New Delh, India
BookMark eNpFUMFOwzAMjdCQGGNXzvmBlqRpmpTbtMGoNGkXQNyiNHVZpi6bknDY35NtaPhgW8_vWfa7RyO3d4DQIyU557J46rqYF6SgOaGEFzdoTKWkmZDl1-jaM3qHpiFsSQpeSir5GC1nLtqdNX7fWj1gD8GGqJ0BrF2H5-vPZpHRGoej6yDRnnGzO2gT8d7hw087WIM3oIe4eUC3vR4CTP_qBH28vrzP37LVetnMZ6vMlJzETHMNRGrBoRBdggyTQhgqeiNYV9V1awB6USXECGgLUuuK121ZUqaJaSvBJii_7E0Xh-ChVwdvd9ofFSXq5IRKTqiTE-rsRBIsLoJt-usbrnTtozUDnOmUK3ZK_7Lr2Gy0V-DYL1Siaps
CitedBy_id crossref_primary_10_1017_ice_2022_194
crossref_primary_10_1016_j_phrs_2024_107188
crossref_primary_10_1016_j_ijregi_2023_11_012
crossref_primary_10_1002_hsr2_1566
Cites_doi 10.1016/j.arcmed.2020.10.010
10.1016/j.ijantimicag.2016.06.014
10.3389/fmicb.2020.01020
10.1016/S0140-6736(20)31022-9
10.1093/jacamr/dlaa049
10.1128/microbiolspec.ARBA-0009-2017
10.1046/j.1365-2672.92.5s1.4.x
10.1128/CMR.00042-16
10.1016/j.ijantimicag.2012.01.011
10.1093/jacamr/dlaa051
10.14745/ccdr.v44i11a02
10.1371/journal.pone.0023606
10.1016/j.cmi.2020.07.016
10.1016/S1473-3099(15)00424-7
10.1093/cid/ciaa530
10.1186/s12864-015-2153-5
10.1007/s11908-018-0634-9
10.1016/S0924-8579(02)00363-1
10.1093/jacamr/dlaa053
10.1016/S0140-6736(20)30211-7
10.1056/NEJMoa2005412
10.1056/NEJMx200021
10.1056/NEJMoa1914433
10.1016/j.cmi.2020.08.022
10.3389/fimmu.2018.01068
10.1093/jac/dkv109
10.1056/NEJMc2008043
ContentType Journal Article
Copyright 2021 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Copyright_xml – notice: 2021 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
DBID AAYXX
CITATION
DOI 10.5582/ddt.2021.01052
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 1881-784X
EndPage 129
ExternalDocumentID 10_5582_ddt_2021_01052
article_ddt_15_3_15_2021_01052_article_char_en
GroupedDBID ---
53G
ABDBF
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
EBD
EMOBN
ESX
F5P
JSF
JSH
KQ8
MK0
OK1
P2P
RJT
RZJ
SV3
TUS
7.U
AAYXX
CITATION
ID FETCH-LOGICAL-c450t-a5ae08a75e27dc45c3877c17fc73d699bceef76c17c7eb209a659b4413a0cb673
ISSN 1881-7831
IngestDate Thu Sep 26 18:46:23 EDT 2024
Sun Jul 28 05:07:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-a5ae08a75e27dc45c3877c17fc73d699bceef76c17c7eb209a659b4413a0cb673
OpenAccessLink https://www.jstage.jst.go.jp/article/ddt/15/3/15_2021.01052/_article/-char/en
PageCount 6
ParticipantIDs crossref_primary_10_5582_ddt_2021_01052
jstage_primary_article_ddt_15_3_15_2021_01052_article_char_en
PublicationCentury 2000
PublicationDate 2021/06/30
PublicationDateYYYYMMDD 2021-06-30
PublicationDate_xml – month: 06
  year: 2021
  text: 2021/06/30
  day: 30
PublicationDecade 2020
PublicationTitle Drug Discoveries & Therapeutics
PublicationTitleAlternate DD&T
PublicationYear 2021
Publisher International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Publisher_xml – name: International Research and Cooperation Association for Bio & Socio-Sciences Advancement
References 6. Tagliabue A, Rappuoli R. Changing priorities in vaccinology: Antibiotic resistance moving to the top. Front Immunol. 2018; 9:1068.
22. Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, Satta G, Cooke G, Holmes A. Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020; 71:2459-2468.
5. O'Neil J. Tackling drug-resistant infections globally: final report and recommendations. In Review on Antimicrobial Resistance. Government of United Kingdom: May 2016. https://apo.org.au/sites/default/files/resource-files/2016-05/apo-nid63983.pdf (accessed March 31, 2021).
23. McMichael TM, Currie DW, Clark S, et al. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020; 382:2005-2011.
1. World Health Organization. World Health Organization Coronavirus Disease (COVID-19) dashboard. https://covid19.who.int/ (accessed June 9, 2021).
12. Murray AK. The novel coronavirus COVID-19 outbreak: Global implications for antimicrobial resistance. Front Microbiol. 2020; 11:1020.
15. Schwartz KL, Morris SK. Travel and the spread of drug-resistant bacteria. Curr Infect Dis Rep. 2018; 20:29.
34. Alvarez MR, Vidal YL, Hernandez JLS, Novales MGM, Moreno KF, Rosales SPL. COVID-19: Clouds over the antimicrobial resistance landscape. Arch Med Res. 2021; 52:123-126.
24. Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N Engl J Med. 2020; 383:2041-2052.
8. Indian Council of Medical Research. Annual report - Antimicrobial Resistance Surveillance and Research Network January 2019 to December 2019. AMR surveillance Network, Indian Council of Medical Research, 2019. http://iamrsn.icmr.org.in/index.php/resources/amr-icmr-data (accessed March 31, 2021).
27. Jernigan JA, Hatfield KM, Wolford H, Nelson RE, Olubajo B, Reddy SC, McCarthy N, Paul P, McDonald LC, Kallen A, Fiore A, Craig M, Baggs J. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012-2017. N Engl J Med. 2020; 382:1309-1319.
20. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020; 395:1569-1578.
26. Gonzalez-Zorn B. Antibiotic use in the COVID-19 crisis in Spain. Clin Microbiol Infect. 2020:S1198-743X(20)30609-1.
30. Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. Symp Ser Soc Appl Microbiol. 2002; 31:65S-71S.
2. van Duin D, Barlow G, Nathwani D. The impact of the COVID-19 pandemic on antimicrobial resistance: a debate. JAC Antimicrob Resist. 2020; 2:dlaa053.
4. Collignon P, Beggs JJ. CON: COVID-19 will not result in increased antimicrobial resistance prevalence. JAC Antimicrob Resist. 2020; 2:dlaa051.
9. Queenan K, Häsler B, Rushton J. A One Health approach to antimicrobial resistance surveillance: is there a business case for it? Int J Antimicrob Agents. 2016; 48:422-427.
10. McEwen SA, Collignon PJ. Antimicrobial resistance: a One Health perspective. Microbiol Spectr. 2018; doi: 10.1128/microbiolspec.ARBA-0009-2017.
29. Bataillon SB, Tattevin P, Mallet MB, Gougeon AJ. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds–a critical review. Int J Antimicrob Agents. 2012; 39:381-389.
11. Wellcome The Global Response to AMR: Momentum, success, and critical gaps. 2020. https://cms.wellcome.org/sites/default/files/2020-11/wellcome-global-response-amr-report.pdf (accessed March 31, 2021).
32. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics. 2015; 16:964.
31. Maillard JY. Antimicrobial biocides in the healthcare environment: efficacy, usage, policies, and perceived problems. Ther Clin Risk Manag. 2005; 1:307-320.
25. Fiolet T, Guihur A, Rebeaud ME, Mulot M, Peiffer-Smadja N, Mahamat-Saleh Y. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis. Clin Microbiol Infect. 2021; 27:19-27.
19. Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020; 382:1787-1799.
28. Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev. 2017; 30:1-22.
17. Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016; 16:161-168.
16. Liang Z, Li L, Wang Y, Chen L, Kong X, Hong Y, Lan L, Zheng M, Yang CG, Liu H, Shen X, Luo C, Li KK, Chen K, Jiang H. Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS One. 2011; 6:e23606.
13. Langford BJ, Schwartz KL. Bringing home unwelcome souvenirs: Travel and drug-resistant bacteria. Can Commun Dis Rep. 2018; 44:277-282.
14. Memish ZA, Venkatesh S, Shibl AM. Impact of travel on international spread of antimicrobial resistance. Int J Antimicrob Agents. 2003; 21:135-142.
18. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T , Zhang X , Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395:507-513.
3. Clancy CJ, Buehrle DJ, Nguyen MH. PRO: The COVID-19 pandemic will result in increased antimicrobial resistance rates. JAC Antimicrob Resist. 2020; 2:dlaa049.
21. Langford BJ, So M, Raybardhan S, Leung V, Westwood D, MacFadden DR, Soucy JPR, Daneman N. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. 2020; 26:1622-1629.
33. Webber MA, Whitehead RN, Mount M, Loman NJ, Pallen MJ, Piddock LJ. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. J Antimicrob Chemother. 2015; 70:2241-2248.
7. National Action Plan on Antimicrobial Resistance (NAP-AMR) 2017 – 2021. Ministry of Health & Family Welfare, Government of India. April 2017. https://ncdc.gov.in/WriteReadData/l892s/File645.pdf (accessed March 31, 2021).
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 34
  doi: 10.1016/j.arcmed.2020.10.010
– ident: 9
  doi: 10.1016/j.ijantimicag.2016.06.014
– ident: 12
  doi: 10.3389/fmicb.2020.01020
– ident: 20
  doi: 10.1016/S0140-6736(20)31022-9
– ident: 3
  doi: 10.1093/jacamr/dlaa049
– ident: 10
  doi: 10.1128/microbiolspec.ARBA-0009-2017
– ident: 30
  doi: 10.1046/j.1365-2672.92.5s1.4.x
– ident: 31
– ident: 28
  doi: 10.1128/CMR.00042-16
– ident: 29
  doi: 10.1016/j.ijantimicag.2012.01.011
– ident: 7
– ident: 26
– ident: 4
  doi: 10.1093/jacamr/dlaa051
– ident: 13
  doi: 10.14745/ccdr.v44i11a02
– ident: 16
  doi: 10.1371/journal.pone.0023606
– ident: 21
  doi: 10.1016/j.cmi.2020.07.016
– ident: 17
  doi: 10.1016/S1473-3099(15)00424-7
– ident: 22
  doi: 10.1093/cid/ciaa530
– ident: 32
  doi: 10.1186/s12864-015-2153-5
– ident: 15
  doi: 10.1007/s11908-018-0634-9
– ident: 5
– ident: 14
  doi: 10.1016/S0924-8579(02)00363-1
– ident: 1
– ident: 2
  doi: 10.1093/jacamr/dlaa053
– ident: 18
  doi: 10.1016/S0140-6736(20)30211-7
– ident: 11
– ident: 23
  doi: 10.1056/NEJMoa2005412
– ident: 24
  doi: 10.1056/NEJMx200021
– ident: 27
  doi: 10.1056/NEJMoa1914433
– ident: 25
  doi: 10.1016/j.cmi.2020.08.022
– ident: 6
  doi: 10.3389/fimmu.2018.01068
– ident: 33
  doi: 10.1093/jac/dkv109
– ident: 8
– ident: 19
  doi: 10.1056/NEJMc2008043
SSID ssj0000548185
Score 2.266623
SecondaryResourceType review_article
Snippet The COVID -19 pandemic has had a catastrophic impact on the global economy and the healthcare industry. Unfortunately, the scientific community still hasn't...
SourceID crossref
jstage
SourceType Aggregation Database
Publisher
StartPage 124
SubjectTerms antimicrobial resistance (AMR)
COVID-19
MDR
pandemic
Title Antimicrobial resistance and COVID-19 syndemic: Impact on public health
URI https://www.jstage.jst.go.jp/article/ddt/15/3/15_2021.01052/_article/-char/en
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Drug Discoveries & Therapeutics, 2021/06/30, Vol.15(3), pp.124-129
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9cwFG8UPHgxEjWiSHow8UCG67qumwmHL3xF4KCJAcJt6dqOjYRhvux7wL-e1x_r9iUc0EuzdG239X32-mn73itCn7WuagpEPxKE6ihVdRwJbowA6ljkinOaCBvt82d2dJaeXLCL0azIepf01a78-6hfyf9IFfJArsZL9h8kGxqFDLgG-UIKEob0STKedX173dpQSjY-_60hg4MLwMGv8-N5RAoblMCYwJvJ_7F3iuxW4ls3U4o6Xywvzb6NNMadrV2VzXYmblqBhJ-36g5eyp4KDGJu2muxcyLagLa58xWbLS6bu9EeqBFL1bi9-9_CDwp-1SEhg4lcUJR5TiKeew2up3nO4jJoVzZBEZ2oSuJ8p_2oS9y6x0OFzlhuAsQqZcxeE7JrzvNMxqFr2K5_MKIFO0OY4ZgWSqhfmvqlrf8crSeglkAfrs_25_uHYU0O6KvhL2aOPnyei_NpGvm6-hIrPObFFYh3MAO0zOT0NXrlpxR45vCxgZ7p7g36sYINPGIDAzbwgA08YOMbdsjANx12yMAOGW_R2eH304OjyB-aEcmUxX0kmNBxLjjTCVeQJWnOuSS8lpyqrCgqYEU1zyBHcl0lcSEyVlRAiqmIZZVx-g6tdTedfo-wUrUyd0gsWAqNFhLKAIVNoWGtEr6JvgxdUP5xsVHKx3t8E-25Hgrl_D9jyxFWUpOM5cNt43oIf_qHJz_pI3o5wnULrfWLpf4EtLGvtr207wGmQGt3
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+resistance+and+COVID-19+syndemic%3A+Impact+on+public+health&rft.jtitle=Drug+discoveries+%26+therapeutics&rft.au=Vidyarthi%2C+Ashima+Jain&rft.au=Das%2C+Arghya&rft.au=Chaudhry%2C+Rama&rft.date=2021-06-30&rft.issn=1881-7831&rft.eissn=1881-784X&rft.volume=15&rft.issue=3&rft.spage=124&rft.epage=129&rft_id=info:doi/10.5582%2Fddt.2021.01052&rft.externalDBID=n%2Fa&rft.externalDocID=10_5582_ddt_2021_01052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7831&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7831&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7831&client=summon