Neutrophil phenotypes and functions in cancer: A consensus statement
Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however,...
Saved in:
Published in | The Journal of experimental medicine Vol. 219; no. 6 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
06.06.2022
|
Series | Cancer Focus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer. |
---|---|
AbstractList | There is a growing appreciation for the vastness of neutrophil functional states in cancer. Quail et al. provide a consensus statement on mechanisms governing neutrophil heterogeneity in the context of malignancy and discuss controversies and solutions in neutrophil research.
Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer. Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer. Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer. |
Author | Huttenlocher, Anna Kaplan, Mariana J. Aziz, Monowar Malanchi, Ilaria Udalova, Irina A. Granot, Zvi Wagner, Denisa D. Zychlinsky, Arturo Meylan, Etienne Mittal, Vivek Pittet, Mikael J. de Visser, Karin E. Fridlender, Zvi G. Kubes, Paul Eruslanov, Evgeniy Amulic, Borko Hidalgo, Andrés Wang, Ping Merghoub, Taha van den Berg, Timo K. Rubio-Ponce, Andrea Barnes, Betsy J. Quail, Daniela F. Egeblad, Mikala Goodridge, Helen S. |
AuthorAffiliation | 7 Hadassah Medical Center, Institute of Pulmonary Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 20 Lung Cancer and Immuno-Oncology Laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, Université Libre de Bruxelles, Anderlecht, Belgium 5 Departments of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 21 Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium 13 Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 23 Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 35 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1 Rosalind and Morris Goodman Cancer Institute, Department of Physiology, McGill University, Montreal, Quebec, Canada 38 Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada 9 Department of Developmental |
AuthorAffiliation_xml | – name: 27 AGORA Cancer Research Center, Lausanne, Switzerland – name: 4 Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY – name: 19 Weill Cornell Medical College, New York, NY – name: 11 Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain – name: 28 University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK – name: 29 Laboratory of Immunotherapy, Sanquin Research, Amsterdam, Netherlands – name: 21 Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium – name: 6 Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA – name: 8 Board of Governors Regenerative Medicine Institute and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA – name: 35 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY – name: 7 Hadassah Medical Center, Institute of Pulmonary Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel – name: 22 Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY – name: 31 Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA – name: 20 Lung Cancer and Immuno-Oncology Laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, Université Libre de Bruxelles, Anderlecht, Belgium – name: 24 Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland – name: 3 Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY – name: 23 Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY – name: 17 Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY – name: 37 Banbury Center meeting organizers, Diverse Functions of Neutrophils in Cancer, Cold Spring Harbor Laboratory, New York, NY – name: 25 Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland – name: 2 Cellular and Molecular Medicine, University of Bristol, Bristol, UK – name: 12 Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI – name: 33 Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands – name: 36 Department of Pharmacology and Physiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada – name: 9 Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel – name: 16 Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY – name: 5 Departments of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY – name: 15 Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK – name: 38 Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada – name: 10 Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT – name: 13 Department of Pediatrics, University of Wisconsin-Madison, Madison, WI – name: 14 Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD – name: 18 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY – name: 26 Department of Oncology, Geneva University Hospitals, Geneva, Switzerland – name: 32 Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany – name: 39 Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada – name: 30 Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands – name: 1 Rosalind and Morris Goodman Cancer Institute, Department of Physiology, McGill University, Montreal, Quebec, Canada – name: 34 Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands |
Author_xml | – sequence: 1 givenname: Daniela F. orcidid: 0000-0002-6969-3250 surname: Quail fullname: Quail, Daniela F. – sequence: 2 givenname: Borko orcidid: 0000-0002-8518-8393 surname: Amulic fullname: Amulic, Borko – sequence: 3 givenname: Monowar orcidid: 0000-0002-8195-4505 surname: Aziz fullname: Aziz, Monowar – sequence: 4 givenname: Betsy J. orcidid: 0000-0001-6766-4352 surname: Barnes fullname: Barnes, Betsy J. – sequence: 5 givenname: Evgeniy orcidid: 0000-0003-0743-5026 surname: Eruslanov fullname: Eruslanov, Evgeniy – sequence: 6 givenname: Zvi G. orcidid: 0000-0002-6122-1988 surname: Fridlender fullname: Fridlender, Zvi G. – sequence: 7 givenname: Helen S. orcidid: 0000-0001-8097-2413 surname: Goodridge fullname: Goodridge, Helen S. – sequence: 8 givenname: Zvi orcidid: 0000-0001-9692-5785 surname: Granot fullname: Granot, Zvi – sequence: 9 givenname: Andrés orcidid: 0000-0001-5513-555X surname: Hidalgo fullname: Hidalgo, Andrés – sequence: 10 givenname: Anna orcidid: 0000-0001-7940-6254 surname: Huttenlocher fullname: Huttenlocher, Anna – sequence: 11 givenname: Mariana J. orcidid: 0000-0003-2968-0815 surname: Kaplan fullname: Kaplan, Mariana J. – sequence: 12 givenname: Ilaria orcidid: 0000-0003-4867-3311 surname: Malanchi fullname: Malanchi, Ilaria – sequence: 13 givenname: Taha orcidid: 0000-0002-1518-5111 surname: Merghoub fullname: Merghoub, Taha – sequence: 14 givenname: Etienne orcidid: 0000-0002-0899-2230 surname: Meylan fullname: Meylan, Etienne – sequence: 15 givenname: Vivek orcidid: 0000-0002-4764-7413 surname: Mittal fullname: Mittal, Vivek – sequence: 16 givenname: Mikael J. orcidid: 0000-0002-2060-4691 surname: Pittet fullname: Pittet, Mikael J. – sequence: 17 givenname: Andrea orcidid: 0000-0002-4275-8835 surname: Rubio-Ponce fullname: Rubio-Ponce, Andrea – sequence: 18 givenname: Irina A. orcidid: 0000-0002-6716-2528 surname: Udalova fullname: Udalova, Irina A. – sequence: 19 givenname: Timo K. orcidid: 0000-0002-2052-3904 surname: van den Berg fullname: van den Berg, Timo K. – sequence: 20 givenname: Denisa D. orcidid: 0000-0002-4494-413X surname: Wagner fullname: Wagner, Denisa D. – sequence: 21 givenname: Ping orcidid: 0000-0002-1557-0394 surname: Wang fullname: Wang, Ping – sequence: 22 givenname: Arturo orcidid: 0000-0001-6018-193X surname: Zychlinsky fullname: Zychlinsky, Arturo – sequence: 23 givenname: Karin E. orcidid: 0000-0002-0293-868X surname: de Visser fullname: de Visser, Karin E. – sequence: 24 givenname: Mikala orcidid: 0000-0002-3371-1445 surname: Egeblad fullname: Egeblad, Mikala – sequence: 25 givenname: Paul orcidid: 0000-0002-2835-4244 surname: Kubes fullname: Kubes, Paul |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35522219$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LxDAQxYOs6Lp68yw9erDrTNp0Ww-C-A2LXvQc0nTWzdImtWkF_3sj7oqKp4GZ37wH7-2xkXWWGDtEmCLk6emKmikHzgEQt9gYRQpxIZJ8xMYQ1jECzHbZnverQKSpyHbYbiIE5xyLMbt6oKHvXLs0ddQuybr-vSUfKVtFi8Hq3jjrI2Mjraym7iy6iHTYkPWDj3yvemrI9vtse6FqTwfrOWHPN9dPl3fx_PH2_vJiHutUQB-rJCkLrESOVJR8hiqrCHmeQcUTJL7QGWilM8WxVGUx4ylVSVpoLnSelAIgmbDzL912KBuqdLDuVC3bzjSqe5dOGfn7Ys1Svrg3WUCeCcAgcLwW6NzrQL6XjfGa6lpZcoOXPMsQZjnHNKBHP72-TTbRBYB_Abpz3ne0kNqEQEJgwdrUEkF-9iNDP3LTT3g6-fO00f0X_wA_4ZH0 |
CitedBy_id | crossref_primary_10_1016_j_ccell_2023_02_001 crossref_primary_10_1016_j_drup_2024_101170 crossref_primary_10_3390_cancers16142507 crossref_primary_10_3389_fimmu_2024_1466762 crossref_primary_10_1186_s13287_024_03882_2 crossref_primary_10_3390_ijms25052929 crossref_primary_10_1042_EBC20220245 crossref_primary_10_1016_j_ccell_2023_02_009 crossref_primary_10_1038_s41392_024_01937_7 crossref_primary_10_3390_cancers15245814 crossref_primary_10_1016_j_bbamcr_2023_119493 crossref_primary_10_3389_fimmu_2022_1003871 crossref_primary_10_1007_s10495_024_01947_4 crossref_primary_10_3390_ijms242115990 crossref_primary_10_1016_j_ijrobp_2024_07_2141 crossref_primary_10_3389_fimmu_2023_1167404 crossref_primary_10_1016_j_trecan_2024_03_007 crossref_primary_10_1111_imr_13158 crossref_primary_10_1136_gutjnl_2022_327953 crossref_primary_10_34133_bmr_0114 crossref_primary_10_1111_imr_13153 crossref_primary_10_1111_imr_13154 crossref_primary_10_1111_odi_14863 crossref_primary_10_1016_j_trecan_2022_07_002 crossref_primary_10_31857_S0006302923030146 crossref_primary_10_1038_s41598_023_47824_z crossref_primary_10_1097_TA_0000000000003823 crossref_primary_10_1186_s12967_022_03723_x crossref_primary_10_1016_j_tcb_2024_09_001 crossref_primary_10_1038_s41467_024_45802_1 crossref_primary_10_1186_s13058_023_01676_7 crossref_primary_10_1038_s41586_022_05400_x crossref_primary_10_1158_0008_5472_CAN_21_4025 crossref_primary_10_1158_2326_6066_CIR_23_0642 crossref_primary_10_1172_JCI164585 crossref_primary_10_1039_D3BM00544E crossref_primary_10_1097_MD_0000000000039342 crossref_primary_10_1016_j_immuni_2024_12_009 crossref_primary_10_1186_s12916_025_03968_5 crossref_primary_10_1038_s41586_023_06511_9 crossref_primary_10_1111_all_15505 crossref_primary_10_1111_imr_13146 crossref_primary_10_3390_ijms26010006 crossref_primary_10_3389_fnut_2023_1094189 crossref_primary_10_3390_cells11213521 crossref_primary_10_1016_j_intimp_2024_111936 crossref_primary_10_1186_s13058_023_01707_3 crossref_primary_10_3389_fimmu_2022_1041010 crossref_primary_10_1111_cpr_13725 crossref_primary_10_1038_s41598_024_71954_7 crossref_primary_10_3389_fgene_2023_1206141 crossref_primary_10_3389_fimmu_2023_1161848 crossref_primary_10_3389_fimmu_2025_1530053 crossref_primary_10_3389_fimmu_2024_1326753 crossref_primary_10_3390_biomedicines10082040 crossref_primary_10_1038_s41467_023_37361_8 crossref_primary_10_3892_ol_2025_14943 crossref_primary_10_1016_j_molimm_2024_11_009 crossref_primary_10_1111_imcb_12728 crossref_primary_10_3389_fonc_2022_1038177 crossref_primary_10_1186_s12943_023_01843_6 crossref_primary_10_1002_tox_24082 crossref_primary_10_1093_jleuko_qiad123 crossref_primary_10_1146_annurev_pathmechdis_051222_015009 crossref_primary_10_1186_s12885_024_12509_x crossref_primary_10_17709_2410_1893_2023_10_4_1 crossref_primary_10_1093_jleuko_qiae057 crossref_primary_10_1016_j_trecan_2024_01_010 crossref_primary_10_1002_jcp_31288 crossref_primary_10_1186_s12967_024_05389_z crossref_primary_10_1186_s13046_024_03122_8 crossref_primary_10_3389_fimmu_2023_1123344 crossref_primary_10_1038_s41423_024_01244_9 crossref_primary_10_1038_s41590_024_02029_y crossref_primary_10_1038_s41590_022_01311_1 crossref_primary_10_1038_s41423_023_01032_x crossref_primary_10_3390_medicina58101398 crossref_primary_10_1515_oncologie_2024_0493 crossref_primary_10_1097_JS9_0000000000001050 crossref_primary_10_1002_advs_202205613 crossref_primary_10_3389_fimmu_2022_961601 crossref_primary_10_3390_ijms24065995 crossref_primary_10_1038_s41467_022_34467_3 crossref_primary_10_2147_IJGM_S414567 crossref_primary_10_1111_gtc_13051 crossref_primary_10_1016_j_cellsig_2023_110941 crossref_primary_10_1093_jleuko_qiae220 crossref_primary_10_3389_fimmu_2023_1118721 crossref_primary_10_3389_fimmu_2023_1178817 crossref_primary_10_1093_jmcb_mjae034 crossref_primary_10_1080_10937404_2024_2431692 crossref_primary_10_1016_j_tranon_2024_102224 crossref_primary_10_1016_j_heliyon_2024_e40881 crossref_primary_10_3389_fonc_2022_1074779 crossref_primary_10_3389_fimmu_2025_1524038 crossref_primary_10_1038_s43018_024_00878_y crossref_primary_10_1016_j_isci_2023_106872 crossref_primary_10_1016_j_xcrm_2023_101380 crossref_primary_10_1038_s43018_025_00924_3 crossref_primary_10_1016_j_cell_2023_02_032 crossref_primary_10_3892_ol_2023_14024 crossref_primary_10_1016_j_biopha_2023_115954 crossref_primary_10_1038_s41568_024_00761_z crossref_primary_10_3390_metabo13060734 crossref_primary_10_1002_ctm2_1534 crossref_primary_10_1038_s41577_024_01062_0 crossref_primary_10_1002_jgm_3588 crossref_primary_10_1084_jem_20220509 crossref_primary_10_1097_MD_0000000000038160 crossref_primary_10_1186_s13046_023_02935_3 crossref_primary_10_1097_SHK_0000000000002019 crossref_primary_10_1016_j_cell_2023_08_043 crossref_primary_10_1002_advs_202400370 crossref_primary_10_1016_j_apsb_2024_06_029 crossref_primary_10_1016_j_diagmicrobio_2024_116322 crossref_primary_10_3389_fonc_2024_1488668 crossref_primary_10_1007_s00262_024_03653_1 crossref_primary_10_1038_s41467_023_43765_3 crossref_primary_10_3390_ijms242417583 crossref_primary_10_1016_j_cjca_2024_09_015 crossref_primary_10_2147_ITT_S485672 crossref_primary_10_3389_fimmu_2024_1397469 crossref_primary_10_1038_s41416_024_02710_x crossref_primary_10_1126_sciadv_adl1710 crossref_primary_10_1134_S0006350923030089 crossref_primary_10_1002_advs_202403414 crossref_primary_10_1016_j_celrep_2024_113934 crossref_primary_10_1186_s12967_024_05337_x crossref_primary_10_3389_fimmu_2023_1105103 crossref_primary_10_1111_all_16246 crossref_primary_10_1016_j_immuni_2023_11_002 crossref_primary_10_1182_blood_2022017345 crossref_primary_10_1016_j_canlet_2023_216468 crossref_primary_10_3390_cancers15133327 crossref_primary_10_1158_2159_8290_CD_23_0299 crossref_primary_10_12677_ACM_2023_131051 crossref_primary_10_2147_JIR_S388990 crossref_primary_10_3389_fimmu_2023_1111344 crossref_primary_10_1097_MD_0000000000040611 crossref_primary_10_1016_j_xcrm_2024_101915 crossref_primary_10_1111_imr_13176 crossref_primary_10_1111_imr_13177 crossref_primary_10_1111_imr_13178 crossref_primary_10_3390_cancers15102856 crossref_primary_10_4049_jimmunol_2400149 crossref_primary_10_1016_j_cellimm_2022_104576 crossref_primary_10_1016_j_jcis_2024_05_175 crossref_primary_10_1016_j_ccell_2023_02_016 crossref_primary_10_1038_s41568_024_00752_0 crossref_primary_10_1002_btm2_10704 crossref_primary_10_1016_j_ccell_2023_02_018 crossref_primary_10_2147_JIR_S474162 crossref_primary_10_1186_s12943_024_02171_z crossref_primary_10_1002_cac2_12613 crossref_primary_10_1093_procel_pwae015 crossref_primary_10_1186_s12967_023_04486_9 crossref_primary_10_1186_s12943_024_02004_z crossref_primary_10_1186_s12957_024_03313_9 crossref_primary_10_1038_s41598_023_45289_8 crossref_primary_10_1152_physrev_00062_2021 crossref_primary_10_1146_annurev_immunol_081022_113627 crossref_primary_10_1183_13993003_00787_2023 crossref_primary_10_1242_jcs_260768 crossref_primary_10_1016_j_cmet_2023_09_004 crossref_primary_10_1371_journal_pone_0276095 |
Cites_doi | 10.1016/j.cell.2017.11.034 10.1016/S1470-2045(21)00546-5 10.1038/nri.2016.49 10.1038/nm.2084 10.1189/jlb.3AB0815-379RR 10.1016/j.cell.2015.05.025 10.1016/j.immuni.2017.08.005 10.1182/blood-2010-10-310532 10.1016/j.ccell.2015.11.005 10.1016/j.celrep.2020.108164 10.1084/jem.20161621 10.1038/s41586-019-0915-y 10.3390/cells10061510 10.1038/ni.3324 10.1016/j.ccr.2012.04.025 10.1016/j.immuni.2020.06.005 10.1126/scitranslmed.3007974 10.1016/j.neo.2015.04.003 10.1016/j.ccell.2015.07.006 10.3389/fimmu.2021.683803 10.1126/science.abb5920 10.1016/j.immuni.2005.01.011 10.1182/blood-2012-07-445619 10.1096/fj.201902467R 10.1038/s41590-018-0276-y 10.1056/NEJMra1213566 10.1172/JCI124616 10.4049/jimmunol.2000022 10.1002/art.1780291105 10.1007/s12195-020-00655-8 10.1038/s41467-017-00910-z 10.1126/sciimmunol.aaf8943 10.1158/0008-5472.CAN-12-4124 10.4049/jimmunol.1400762 10.1126/sciimmunol.aaw0336 10.1172/jci.insight.138999 10.1038/nrc.2016.54 10.1038/ncb3493 10.1038/s41586-020-03045-2 10.1016/j.celrep.2014.12.039 10.1016/j.thromres.2016.01.009 10.1056/NEJMoa021423 10.1111/imr.12527 10.1038/nri.2017.105 10.1038/s41586-020-2394-6 10.4049/jimmunol.1601855 10.1038/s41577-021-00571-6 10.1016/j.ccr.2011.08.012 10.1016/j.ccr.2004.09.028 10.1245/s10434-013-3267-0 10.1073/pnas.1113744109 10.1111/imcb.12046 10.1038/ni1008-1091 10.1038/s41568-020-0281-y 10.1016/j.isci.2020.101699 10.1073/pnas.0503280102 10.4049/jimmunol.0902497 10.1016/j.immuni.2014.03.013 10.15252/embj.201490147 10.1038/ni.3412 10.1002/ijc.30635 10.1101/2021.03.15.434949 10.1172/jci.insight.124020 10.1073/pnas.1200419109 10.1126/science.1092385 10.1189/jlb.1HI0715-289R 10.4049/jimmunol.172.5.2731 10.1038/nm.3542 10.1038/s41590-020-0736-z 10.1002/art.41796 10.1038/nmeth.3322 10.1038/s41418-021-00805-z 10.1158/1078-0432.CCR-15-1823 10.1158/0008-5472.CAN-18-0540 10.1038/srep39804 10.1172/JCI41649 10.4049/jimmunol.1800314 10.1182/blood-2018-11-844555 10.1158/2326-6066.CIR-16-0188 10.1084/jem.20200652 10.1007/s00262-019-02474-x 10.1038/nri3024 10.1126/science.aan3706 10.1038/s41591-020-0856-x 10.1038/nm.2847 10.1016/j.ccr.2007.12.004 10.1056/NEJMsr1606602 10.1038/s41556-019-0298-1 10.1080/2162402X.2019.1624129 10.1073/pnas.1506254112 10.1016/j.ccell.2016.06.001 10.1084/jem.20120532 10.1182/blood.V46.6.913.913 10.1038/s41577-019-0141-8 10.1172/jci.insight.126853 10.4049/jimmunol.179.12.8274 10.1038/s41577-020-00490-y 10.1038/ijo.2014.194 10.1038/s41590-020-0783-5 10.1189/jlb.0310162 10.1073/pnas.1414055112 10.1038/nature16140 10.1073/pnas.1301059110 10.1016/j.cell.2004.10.010 10.1002/JLB.3A0817-327RR 10.1016/j.immuni.2019.11.001 10.1038/nm.4463 10.1038/nrc.2016.52 10.1016/j.immuni.2019.03.009 10.1126/sciimmunol.aat4579 10.1084/jem.20100239 10.1182/blood-2006-06-031856 10.1158/1078-0432.CCR-13-3203 10.1016/j.cmet.2016.12.018 10.1001/jamainternmed.2015.4838 10.1073/pnas.88.16.7190 10.1073/pnas.2003603117 10.3389/fimmu.2018.01573 10.1073/pnas.1015855107 10.1016/j.imlet.2019.06.006 10.1016/j.cell.2020.09.058 10.1038/nri3712 10.4049/jimmunol.162.10.5728 10.1016/j.immuni.2020.03.001 10.1038/s42255-019-0152-6 10.1080/2162402X.2015.1134073 10.1074/jbc.M111.237123 10.1016/j.immuni.2018.02.002 10.1016/j.celrep.2018.08.018 10.1073/pnas.1908576116 10.1016/j.cmet.2019.06.001 10.1126/science.aao4227 10.1038/ncb3355 10.1016/j.it.2012.08.006 10.1111/jth.13002 10.1038/ncomms11037 10.1002/jlb.67.1.40 10.1182/blood-2018-11-844548 10.1016/j.immuni.2021.04.004 10.4049/jimmunol.148.4.1102 10.1038/ncb3578 10.4049/jimmunol.170.1.270 10.1158/0008-5472.CAN-15-1591 10.1038/s43587-021-00086-8 10.4049/jimmunol.2000091 10.1038/s41586-019-1487-6 10.1016/j.cell.2020.11.009 10.1101/2020.04.09.20059626 10.1038/s41591-020-0860-1 10.1038/nri3660 10.1158/2326-6066.CIR-15-0036 10.1084/jem.20151876 10.1016/j.ccr.2009.06.017 10.1016/j.celrep.2018.07.097 10.1016/j.celrep.2019.12.028 10.1038/s41591-020-0944-y 10.1038/s41467-021-24591-x 10.1038/s41571-019-0222-4 10.1038/nature12942 10.1016/j.trecan.2016.12.006 10.1001/jamanetworkopen.2021.3520 10.1083/jcb.202103054 10.1007/s11033-018-4279-4 10.4049/jimmunol.1000675 10.1101/498881 10.1038/s41467-021-22973-9 10.1016/j.cell.2021.02.048 10.1016/j.cell.2017.12.031 10.1158/1078-0432.CCR-18-1226 10.1126/science.aam9690 10.1001/jamainternmed.2016.1548 10.1016/j.jhep.2018.11.034 10.1371/journal.pone.0022043 10.1126/science.aan4236 10.1038/nature14282 10.1038/s41586-020-2227-7 10.1016/s1074-7613(00)80173-9 10.1158/2159-8290.CD-12-0476 10.1073/pnas.1507294112 10.1038/s41590-021-00922-4 10.1002/JLB.3HI0620-416R 10.1016/j.ccr.2013.10.009 10.1080/2162402X.2017.1344804 10.1016/j.cell.2017.12.013 10.1038/ncomms12150 10.3390/cancers13174261 10.1016/j.cell.2015.02.022 10.1038/nature19348 10.1182/blood-2010-01-259028 10.1126/science.abf3363 10.1158/1078-0432.CCR-15-2463 10.1146/annurev-immunol-020711-074942 10.1172/jci.insight.128008 10.1097/SHK.0000000000001257 10.1038/s41586-019-1118-2 10.1182/blood-2006-06-032599 10.1038/s43018-021-00194-9 10.1002/JLB.1RU1219-504RR 10.1016/j.chom.2014.02.006 10.1158/2326-6066.CIR-20-0491 10.1002/JLB.4HI0517-210R 10.1158/2159-8290.CD-15-1157 10.1172/jci.insight.139163 10.1016/j.isci.2020.101277 10.1016/j.cell.2013.04.040 10.1016/j.cmet.2006.05.011 10.1038/s41467-020-16596-9 10.1016/j.smim.2021.101546 10.1038/s41590-019-0571-2 10.3389/fimmu.2019.01710 10.7554/eLife.24437 10.1158/0008-5472.CAN-20-2870 10.1158/2159-8290.CD-16-0502 10.1126/sciimmunol.aay6017 10.1038/srep41749 10.1172/JCI77053 10.1038/s41467-018-07505-2 10.1016/j.immuni.2017.10.021 10.1016/j.cell.2021.04.016 10.1038/s41577-020-0285-6 10.1016/j.cell.2017.12.026 10.1084/jem.20181952 10.1172/JCI67484 10.1136/jitc-2019-000473 10.1016/j.smim.2021.101538 10.1111/j.1600-0609.2006.00658.x 10.1189/jlb.1211601 10.1038/nm.4027 10.1038/ni.2194 10.1002/hep.30166 10.1182/blood-2004-07-2521 10.1126/scitranslmed.3005580 10.1038/nm1565 10.1038/nm.3368 10.1056/NEJMoa066603 10.1038/nm.4332 10.1016/j.ccell.2020.12.012 10.1038/nature15367 10.1016/j.cmet.2014.03.029 10.1016/j.celrep.2020.107602 10.1016/S0049-3848(16)30133-5 10.1016/j.celrep.2018.05.082 10.1182/blood.2020007008 10.1038/s41467-020-20733-9 10.1084/jem.20160530 10.1038/nm.4294 10.1038/s41590-021-00968-4 10.1182/blood.V61.6.1116.1116 10.1016/j.immuni.2016.12.012 10.1038/s41590-019-0589-5 10.1038/cdd.2009.96 10.3389/fimmu.2018.03143 10.1016/s1074-7613(03)00263-2 10.1136/jitc-2020-002259 10.1038/s41591-019-0377-7 10.1091/mbc.E21-02-0060 10.1056/NEJMoa066254 10.1038/s41590-019-0402-5 10.1016/j.cell.2013.05.039 10.1189/jlb.4MR1114-524R 10.1096/fj.202000482R 10.1126/scitranslmed.aad5653 10.1016/j.ccell.2016.04.014 10.1038/nm.2087 10.1073/pnas.1901562116 10.1016/j.cell.2020.10.003 10.1111/acel.12222 10.1016/j.chom.2017.11.009 10.1016/j.immuni.2020.07.017 10.1016/j.canlet.2020.08.020 10.1158/2326-6066.CIR-20-0839 10.1158/0008-5472.CAN-17-3614 10.1073/pnas.1909546117 10.2139/ssrn.3596599 10.1210/endocr/bqab095 10.1038/nri.2016.90 10.1182/blood.V61.6.1105.1105 10.1083/jcb.200606027 10.1126/sciimmunol.abi7083 10.1371/journal.ppat.1004546 10.1073/pnas.1424927112 10.1038/s41590-018-0229-5 10.1126/scitranslmed.aag1711 10.1016/j.ccell.2016.06.021 10.1038/ni.2984 10.1016/j.celrep.2019.05.091 10.1073/pnas.1116110108 10.1038/nm.2514 10.1038/nchembio.1735 10.1038/s41467-020-19288-6 10.1126/science.aao3290 10.1038/s41586-019-1450-6 10.1084/jem.20181468 10.7150/jca.63159 10.1016/j.cell.2019.05.054 10.1084/jem.20201803 10.1126/science.aal5081 |
ContentType | Journal Article |
Copyright | 2022 Quail et al. 2022 Quail et al. 2022 |
Copyright_xml | – notice: 2022 Quail et al. – notice: 2022 Quail et al. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1084/jem.20220011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Neutrophil heterogeneity in cancer |
EISSN | 1540-9538 |
ExternalDocumentID | PMC9086501 35522219 10_1084_jem_20220011 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Wellcome Trust grantid: FC001112 – fundername: NCI NIH HHS grantid: R01 CA187392 – fundername: NCI NIH HHS grantid: R01 CA218579 – fundername: NCI NIH HHS grantid: R01 CA056821 – fundername: NCI NIH HHS grantid: P01 CA240239 – fundername: European Research Council grantid: ERC CoG-H2020-725492 – fundername: NIGMS NIH HHS grantid: R35GM118337 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NIAID NIH HHS grantid: R01 AI134987 – fundername: Medical Research Council grantid: MR/R02149x/1 – fundername: ; – fundername: ; grantid: W81XWH-18-1-0674; W81XWH-15-1-0717; W81XWH2010753 – fundername: ; grantid: 861878 – fundername: ; grantid: R35GM118337 – fundername: ; grantid: 310030_179324 – fundername: ; grantid: NWO-VICI 91819616 – fundername: ; grantid: MR/R02149x/1 – fundername: ; grantid: 1708/20; 405/18 – fundername: ; grantid: FC001112; 209422/Z/17/Z – fundername: ; grantid: R01AI134987 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EMB F5P F9R GX1 H13 HYE IH2 KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c450t-a33b91d581e9b271a6de12860d231e2fc60cac6a21bab9724ed349c25c83b5003 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 17:42:44 EDT 2025 Fri Jul 11 04:48:43 EDT 2025 Sat May 31 02:11:14 EDT 2025 Tue Jul 01 00:41:16 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2022 Quail et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-a33b91d581e9b271a6de12860d231e2fc60cac6a21bab9724ed349c25c83b5003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 T.K. van den Berg’s present address is Byondis BV, Nijmegen, Netherlands. Disclosures: E. Eruslanov reported a patent to the use of HLA-DR+CD32hiCD64hi hybrid neutrophils with characteristics of antigen-presenting cells to augment therapy for cancer or infectious diseases pending. Z.G. Fridlender reported “other” from Immunyx outside the submitted work; in addition, Z.G. Fridlender had a patent to ID - 6494-1 licensed "Immunyx." Z. Granot reported personal fees from Immunyx Pharma outside the submitted work. A. Hidalgo is a paid consultant for Flagship Pioneering, which is not related to this work. M.J. Pittet reported personal fees from AstraZeneca, Debiopharm, Elstar Therapeutics, ImmuneOncia, KSQ Therapeutics, MaxiVax, Merck, Molecular Partners, Third Rock Ventures, and Tidal outside the submitted work; in addition, M.J. Pittet has been a consultant for Aileron Therapeutics, Cygnal Therapeutics, and Siamab Therapeutics. T.K van den Berg is an inventor on patent application WO2009/131453 A1, owned by Sanquin Blood Supply Organization, licensed to Byondis BV, related to the targeting of CD47-SIRPα in cancer. D.D. Wagner reported personal fees from Takeda Pharmaceutical and “other” from Neutrolis, SAB during the conduct of the study. K.E. de Visser reported grants from Roche/Genentech and personal fees from Macomics outside the submitted work. M. Egeblad is a member of the research advisory board for brensocatib for Insmed, Inc, a member of the scientific advisory board for Vividion Therapeutics, Inc., and a consultant for Protalix, Inc outside the submitted work. T. Merghoub is a co-founder and holds equity in IMVAQ Therapeutics. He is a consultant of Immunos Therapeutics, ImmunoGenesis, and Pfizer. In addition, T Merghoub has research support from Bristol-Myers Squibb, Surface Oncology, Kyn Therapeutics, Infinity Pharmaceuticals Inc., Peregrine Pharmaceuticals Inc., Adaptive Biotechnologies, Leap Therapeutics Inc., and Aprea. He has patents on applications related to work on oncolytic viral therapy, α-virus-based vaccine, neo antigen modeling, CD40, GITR, OX40, PD-1, and CTLA-4. No other disclosures were reported. |
ORCID | 0000-0002-4764-7413 0000-0003-4867-3311 0000-0002-8195-4505 0000-0002-8518-8393 0000-0002-6716-2528 0000-0002-6969-3250 0000-0002-2052-3904 0000-0002-1518-5111 0000-0002-4275-8835 0000-0003-2968-0815 0000-0001-6766-4352 0000-0001-7940-6254 0000-0002-0293-868X 0000-0002-1557-0394 0000-0002-6122-1988 0000-0002-2060-4691 0000-0002-4494-413X 0000-0002-3371-1445 0000-0001-5513-555X 0000-0001-9692-5785 0000-0003-0743-5026 0000-0001-8097-2413 0000-0001-6018-193X 0000-0002-2835-4244 0000-0002-0899-2230 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9086501 |
PMID | 35522219 |
PQID | 2661078214 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9086501 proquest_miscellaneous_2661078214 pubmed_primary_35522219 crossref_citationtrail_10_1084_jem_20220011 crossref_primary_10_1084_jem_20220011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-06 |
PublicationDateYYYYMMDD | 2022-06-06 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationSeriesTitle | Cancer Focus |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2022 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Klemm (2023072707151057300_bib142) 2021; 32 Li (2023072707151057300_bib154) 2020; 21 Wculek (2023072707151057300_bib272) 2020; 23 Velten (2023072707151057300_bib264) 2017; 19 Gupta (2023072707151057300_bib97) 2020; 117 Mestas (2023072707151057300_bib172) 2004; 172 Blanco (2023072707151057300_bib28) 2021; 73 Gershkovitz (2023072707151057300_bib85) 2018; 78 Mantovani (2023072707151057300_bib160) 2011; 11 Baek (2023072707151057300_bib16) 2021; 162 Faget (2023072707151057300_bib81) 2018 Condamine (2023072707151057300_bib58) 2016; 1 Hasenberg (2023072707151057300_bib103) 2015; 12 Schalper (2023072707151057300_bib225) 2020; 26 Albrengues (2023072707151057300_bib7) 2018; 361 Grassi (2023072707151057300_bib92) 2018; 24 Casanova-Acebes (2023072707151057300_bib42) 2013; 153 El Rayes (2023072707151057300_bib75) 2015; 112 Hsu (2023072707151057300_bib122) 2019; 27 Yuen (2023072707151057300_bib291) 2020; 26 Lopez-Otin (2023072707151057300_bib157) 2013; 153 Tavazoie (2023072707151057300_bib246) 2018; 172 Cortez-Retamozo (2023072707151057300_bib60) 2012; 109 Gershkovitz (2023072707151057300_bib86) 2018; 78 Pillay (2023072707151057300_bib206) 2010; 116 Stark (2023072707151057300_bib238) 2005; 22 Shaul (2023072707151057300_bib227) 2020; 34 Knackstedt (2023072707151057300_bib143) 2019; 4 Haider (2023072707151057300_bib99) 2019; 69 Nie (2023072707151057300_bib189) 2019; 25 Hell (2023072707151057300_bib107) 2016; 140 Jenne (2023072707151057300_bib127) 2015; 11 Toussaint (2023072707151057300_bib257) 2017; 23 Alshetaiwi (2023072707151057300_bib10) 2020; 5 Bayne (2023072707151057300_bib24) 2012; 21 Ginhoux (2023072707151057300_bib88) 2016; 17 Lee (2023072707151057300_bib149) 2018; 23 Routy (2023072707151057300_bib220) 2018; 359 Tohme (2023072707151057300_bib254) 2016; 76 Clarke (2023072707151057300_bib53) 2010; 16 Hazeldine (2023072707151057300_bib104) 2014; 13 Jaillon (2023072707151057300_bib125) 2020; 20 Cubillos-Ruiz (2023072707151057300_bib61) 2015; 161 Peiseler (2023072707151057300_bib200) 2019; 129 Bezzi (2023072707151057300_bib25) 2018; 24 Houseright (2023072707151057300_bib121) 2021; 220 Vats (2023072707151057300_bib260) 2006; 4 Matlung (2023072707151057300_bib169) 2017; 276 Cui (2023072707151057300_bib62) 2021; 184 Quail (2023072707151057300_bib212) 2017; 19 Manz (2023072707151057300_bib161) 2014; 14 Eruslanov (2023072707151057300_bib78) 2014; 124 Li (2023072707151057300_bib153) 2010; 207 Mistry (2023072707151057300_bib174) 2019; 116 Fujii (2023072707151057300_bib84) 2021; 12 Moses (2023072707151057300_bib177) 2016; 99 Veglia (2023072707151057300_bib261) 2021; 218 Casanova-Acebes (2023072707151057300_bib41) 2018; 215 Adrover (2023072707151057300_bib3) 2020; 21 Martinez Sanz (2023072707151057300_bib163) 2021; 9 Munder (2023072707151057300_bib179) 2005; 105 Chen (2023072707151057300_bib48) 2014; 15 Papayannopoulos (2023072707151057300_bib194) 2018; 18 Bouti (2023072707151057300_bib32) 2021; 9 Harvie (2023072707151057300_bib102) 2015; 98 Balmer (2023072707151057300_bib20) 2014; 193 Martínez-Sanz (2023072707151057300_bib164) 2021; 13 Murao (2023072707151057300_bib181) 2020; 34 Vijay (2023072707151057300_bib265) 2020; 2 Ley (2023072707151057300_bib151) 2018; 3 Xie (2023072707151057300_bib283) 2020; 21 Parker (2023072707151057300_bib197) 2012; 92 Najmeh (2023072707151057300_bib185) 2017; 140 Demers (2023072707151057300_bib66) 2012; 109 Guiducci (2023072707151057300_bib95) 2018; 9 Yipp (2023072707151057300_bib289) 2012; 18 Lauby-Secretan (2023072707151057300_bib148) 2016; 375 Aran (2023072707151057300_bib299) 2019; 20 Mysore (2023072707151057300_bib182) 2021; 12 Thalin (2023072707151057300_bib248) 2016; 139 Sanmamed (2023072707151057300_bib223) 2014; 20 Dinh (2023072707151057300_bib70) 2020; 53 Adrover (2023072707151057300_bib4) 2019; 51 Christ (2023072707151057300_bib50) 2018; 172 Ode (2023072707151057300_bib190) 2018; 103 Cools-Lartigue (2023072707151057300_bib59) 2013; 123 Pfirschke (2023072707151057300_bib204) 2020; 32 Li (2023072707151057300_bib152) 2020; 5 Passegue (2023072707151057300_bib198) 2004; 119 Qiang (2023072707151057300_bib211) 2013; 19 Alfaro (2023072707151057300_bib8) 2016; 22 Bogoslowski (2023072707151057300_bib30) 2020; 204 Yousefi (2023072707151057300_bib290) 2009; 16 Hosseinzadeh (2023072707151057300_bib119) 2016; 100 Hemmers (2023072707151057300_bib109) 2011; 6 Sagiv (2023072707151057300_bib221) 2015; 10 Wenisch (2023072707151057300_bib277) 2000; 67 Ali (2023072707151057300_bib9) 2018; 45 Shaul (2023072707151057300_bib229) 2021; 9 de Oliveira (2023072707151057300_bib65) 2016; 16 Wculek (2023072707151057300_bib273) 2015; 528 Zuo (2023072707151057300_bib297) 2020; 5 Amulic (2023072707151057300_bib11) 2012; 30 Hestdal (2023072707151057300_bib112) 1993; 21 Khoyratty (2023072707151057300_bib139) 2021; 22 Lewis (2023072707151057300_bib150) 2015; 11 Park (2023072707151057300_bib196) 2015; 17 Park (2023072707151057300_bib195) 2016; 8 Zhu (2023072707151057300_bib294) 2020; 8 Barnes (2023072707151057300_bib21) 2020; 217 Pilsczek (2023072707151057300_bib207) 2010; 185 Khosravi (2023072707151057300_bib138) 2014; 15 Petrelli (2023072707151057300_bib203) 2021; 4 Baruch (2023072707151057300_bib23) 2021; 371 Tsourouktsoglou (2023072707151057300_bib258) 2020; 31 Martinod (2023072707151057300_bib165) 2013; 110 Fridlender (2023072707151057300_bib82) 2009; 16 Engblom (2023072707151057300_bib76) 2016; 16 Hedrick (2023072707151057300_bib105) 2022; 22 Coffelt (2023072707151057300_bib57) 2016; 16 Clark (2023072707151057300_bib52) 2007; 13 Matlung (2023072707151057300_bib168) 2018; 23 Khandpur (2023072707151057300_bib137) 2013; 5 Ringel (2023072707151057300_bib217) 2020; 183 Hildreth (2023072707151057300_bib114) 2021; 22 Ancey (2023072707151057300_bib12) 2021; 81 Tofts (2023072707151057300_bib253) 2011; 117 Guglietta (2023072707151057300_bib94) 2016; 7 Wilk (2023072707151057300_bib278) 2020; 26 Hirschhorn-Cymerman (2023072707151057300_bib117) 2020 Wang (2023072707151057300_bib269) 2020; 5 Thiam (2023072707151057300_bib249) 2020; 117 Yang (2023072707151057300_bib287) 2008; 13 Keller (2023072707151057300_bib134) 1991; 88 Lu (2023072707151057300_bib158) 2021; 1 Caielli (2023072707151057300_bib39) 2016; 213 Netea (2023072707151057300_bib186) 2020; 20 Coffelt (2023072707151057300_bib56) 2015; 522 Herishanu (2023072707151057300_bib111) 2006; 76 Martin (2023072707151057300_bib162) 2003; 19 Ai (2023072707151057300_bib5) 2020; 107 Blaisdell (2023072707151057300_bib27) 2015; 28 Martinod (2023072707151057300_bib166) 2017; 214 Rossi (2023072707151057300_bib219) 2005; 102 Granot (2023072707151057300_bib90) 2019; 10 Ackermann (2023072707151057300_bib1) 2021; 28 Engblom (2023072707151057300_bib77) 2017; 358 Casbon (2023072707151057300_bib43) 2015; 112 Katoh (2023072707151057300_bib132) 2013; 24 de Oliveira (2023072707151057300_bib64) 2019; 70 Szczerba (2023072707151057300_bib243) 2019; 566 Kalafati (2023072707151057300_bib131) 2020; 183 Vitale (2023072707151057300_bib266) 2019; 30 Mitroulis (2023072707151057300_bib175) 2018; 172 Jin (2023072707151057300_bib128) 2019; 51 Ma (2023072707151057300_bib159) 2020; 493 Adams (2023072707151057300_bib2) 2007; 357 Puga (2023072707151057300_bib209) 2011; 13 Wu (2023072707151057300_bib280) 2014; 40 Tilley (2023072707151057300_bib251) 2021 Kohanbash (2023072707151057300_bib144) 2013; 73 Hamarsheh (2023072707151057300_bib100) 2020; 11 Takizawa (2023072707151057300_bib244) 2021; 109 Tkalcevic (2023072707151057300_bib252) 2000; 12 Jacobsen (2023072707151057300_bib124) 2007; 109 Grieshaber-Bouyer (2023072707151057300_bib93) 2021; 12 Phillipson (2023072707151057300_bib205) 2011; 17 Chavakis (2023072707151057300_bib47) 2019; 20 McDowell (2023072707151057300_bib171) 2021; 2 Duits (2023072707151057300_bib73) 2021 Smith (2023072707151057300_bib235) 2007; 179 Guilliams (2023072707151057300_bib96) 2014; 14 Riffelmacher (2023072707151057300_bib216) 2017; 47 Antonio (2023072707151057300_bib14) 2015; 34 Kowanetz (2023072707151057300_bib146) 2010; 107 Boivin (2023072707151057300_bib31) 2020; 11 Blazkova (2023072707151057300_bib29) 2017; 198 Nicolas-Avila (2023072707151057300_bib188) 2017; 46 Chen (2023072707151057300_bib49) 2021; 206 Al-Khami (2023072707151057300_bib6) 2017; 6 Jorch (2023072707151057300_bib129) 2017; 23 Kaczanowska (2023072707151057300_bib130) 2021; 184 Moore (2023072707151057300_bib176) 2016; 176 Bronte (2023072707151057300_bib36) 2016; 7 Christophorou (2023072707151057300_bib51) 2014; 507 Drissen (2023072707151057300_bib72) 2016; 17 Evrard (2023072707151057300_bib80) 2018; 48 Celada (2023072707151057300_bib45) 1992; 148 Kim (2023072707151057300_bib140) 2017; 7 Kourtis (2023072707151057300_bib145) 2014; 370 Rayes (2023072707151057300_bib214) 2019; 5 Kaufmann (2023072707151057300_bib133) 2018; 172 Salvagno (2023072707151057300_bib222) 2019; 21 Zuo (2023072707151057300_bib298) 2020 Hirschhorn-Cymerman (2023072707151057300_bib116) 2012; 209 Khan (2023072707151057300_bib136) 2017; 7 Munzer (2023072707151057300_bib180) 2021; 12 Demers (2023072707151057300_bib67) 2016; 5 Singhal (2023072707151057300_bib230) 2016; 30 Chao (2023072707151057300_bib46) 2016; 4 Rausch (2023072707151057300_bib213) 1975; 46 Fuchs (2023072707151057300_bib83) 2007; 176 Lood (2023072707151057300_bib156) 2016; 22 Heng (2023072707151057300_bib110) 2008; 9 Helmink (2023072707151057300_bib108) 2019; 25 Kenny (2023072707151057300_bib135) 2017; 6 Pember (2023072707151057300_bib202) 1983; 61 Xiao (2023072707151057300_bib282) 2021; 39 Veglia (2023072707151057300_bib262) 2021; 21 Schmielau (2023072707151057300_bib226) 2001; 61 Barros-Becker (2023072707151057300_bib22) 2020; 23 Olsson (2023072707151057300_bib191) 2016; 537 Middleton (2023072707151057300_bib173) 2020; 136 Hind (2023072707151057300_bib115) 2021; 14 Tyagi (2023072707151057300_bib259) 2021; 12 Brandau (2023072707151057300_bib33) 2011; 89 Qian (2023072707151057300_bib210) 2021; 22 Calle (2023072707151057300_bib40) 2003; 348 Siwicki (2023072707151057300_bib233) 2021 Douda (2023072707151057300_bib71) 2015; 112 Teijeira (2023072707151057300_bib247) 2020; 52 Wang (2023072707151057300_bib270) 2016; 8 Zhu (2023072707151057300_bib295) 2018; 24 Davar (2023072707151057300_bib63) 2021; 371 Yanez (2023072707151057300_b |
References_xml | – volume: 172 start-page: 147 year: 2018 ident: 2023072707151057300_bib175 article-title: Modulation of myelopoiesis progenitors is an integral component of trained immunity publication-title: Cell doi: 10.1016/j.cell.2017.11.034 – volume: 22 start-page: 1777 year: 2021 ident: 2023072707151057300_bib210 article-title: Effect of immunotherapy time-of-day infusion on overall survival among patients with advanced melanoma in the USA (MEMOIR): A propensity score-matched analysis of a single-centre, longitudinal study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(21)00546-5 – volume: 16 start-page: 378 year: 2016 ident: 2023072707151057300_bib65 article-title: Neutrophil migration in infection and wound repair: Going forward in reverse publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.49 – volume: 16 start-page: 219 year: 2010 ident: 2023072707151057300_bib120 article-title: Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth publication-title: Nat. Med. doi: 10.1038/nm.2084 – volume: 100 start-page: 1105 year: 2016 ident: 2023072707151057300_bib119 article-title: Nicotine induces neutrophil extracellular traps publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.3AB0815-379RR – volume: 161 start-page: 1527 year: 2015 ident: 2023072707151057300_bib61 article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis publication-title: Cell doi: 10.1016/j.cell.2015.05.025 – volume: 47 start-page: 466 year: 2017 ident: 2023072707151057300_bib216 article-title: Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation publication-title: Immunity doi: 10.1016/j.immuni.2017.08.005 – volume: 117 start-page: 6050 year: 2011 ident: 2023072707151057300_bib253 article-title: Doubts concerning the recently reported human neutrophil lifespan of 5.4 days publication-title: Blood doi: 10.1182/blood-2010-10-310532 – volume: 28 start-page: 785 year: 2015 ident: 2023072707151057300_bib27 article-title: Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.11.005 – volume: 32 start-page: 108164 year: 2020 ident: 2023072707151057300_bib204 article-title: Tumor-promoting ly-6G+ SiglecFhigh cells are mature and long-lived neutrophils publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108164 – volume: 214 start-page: 1333 year: 2017 ident: 2023072707151057300_bib68 article-title: Splenic Ly6G(high) mature and Ly6G(int) immature neutrophils contribute to eradication of S. pneumoniae publication-title: J. Exp. Med. doi: 10.1084/jem.20161621 – volume: 566 start-page: 553 year: 2019 ident: 2023072707151057300_bib243 article-title: Neutrophils escort circulating tumour cells to enable cell cycle progression publication-title: Nature doi: 10.1038/s41586-019-0915-y – volume: 10 start-page: 1510 year: 2021 ident: 2023072707151057300_bib285 article-title: The PD-L1/PD-1 axis blocks neutrophil cytotoxicity in cancer publication-title: Cells doi: 10.3390/cells10061510 – volume: 17 start-page: 34 year: 2016 ident: 2023072707151057300_bib88 article-title: New insights into the multidimensional concept of macrophage ontogeny, activation and function publication-title: Nat. Immunol. doi: 10.1038/ni.3324 – volume: 21 start-page: 822 year: 2012 ident: 2023072707151057300_bib24 article-title: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.04.025 – volume: 53 start-page: 303 year: 2020 ident: 2023072707151057300_bib147 article-title: Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor publication-title: Immunity doi: 10.1016/j.immuni.2020.06.005 – volume: 6 start-page: 237ra67 year: 2014 ident: 2023072707151057300_bib113 article-title: Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy publication-title: Sci. Transl Med. doi: 10.1126/scitranslmed.3007974 – volume: 17 start-page: 421 year: 2015 ident: 2023072707151057300_bib196 article-title: Presence of insulin-like growth factor binding proteins correlates with tumor-promoting effects of matrix metalloproteinase 9 in breast cancer publication-title: Neoplasia doi: 10.1016/j.neo.2015.04.003 – volume: 28 start-page: 253 year: 2015 ident: 2023072707151057300_bib240 article-title: RORC1 regulates tumor-promoting “emergency” granulo-monocytopoiesis publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.07.006 – volume: 12 start-page: 683803 year: 2021 ident: 2023072707151057300_bib180 article-title: NLRP3 inflammasome assembly in neutrophils is supported by PAD4 and promotes NETosis under sterile conditions publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.683803 – volume: 371 start-page: 602 year: 2021 ident: 2023072707151057300_bib23 article-title: Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients publication-title: Science doi: 10.1126/science.abb5920 – volume: 22 start-page: 285 year: 2005 ident: 2023072707151057300_bib238 article-title: Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17 publication-title: Immunity doi: 10.1016/j.immuni.2005.01.011 – volume: 120 start-page: 3385 year: 2012 ident: 2023072707151057300_bib18 article-title: Activation of neutrophil respiratory burst by fungal particles requires phosphatidylinositol 3-phosphate binding to p40(phox) in humans but not in mice publication-title: Blood doi: 10.1182/blood-2012-07-445619 – volume: 34 start-page: 4204 year: 2020 ident: 2023072707151057300_bib227 article-title: Circulating neutrophil subsets in advanced lung cancer patients exhibit unique immune signature and relate to prognosis publication-title: FASEB J. doi: 10.1096/fj.201902467R – volume: 20 start-page: 163 year: 2019 ident: 2023072707151057300_bib299 article-title: Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage publication-title: Nat. Immunol doi: 10.1038/s41590-018-0276-y – volume: 370 start-page: 2211 year: 2014 ident: 2023072707151057300_bib145 article-title: Pregnancy and infection publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1213566 – volume: 129 start-page: 2629 year: 2019 ident: 2023072707151057300_bib200 article-title: More friend than foe: The emerging role of neutrophils in tissue repair publication-title: J. Clin. Invest. doi: 10.1172/JCI124616 – volume: 204 start-page: 2552 year: 2020 ident: 2023072707151057300_bib30 article-title: Neutrophils recirculate through lymph nodes to survey tissues for pathogens publication-title: J. Immunol. doi: 10.4049/jimmunol.2000022 – volume: 29 start-page: 1334 year: 1986 ident: 2023072707151057300_bib98 article-title: Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever publication-title: Arthritis Rheum. doi: 10.1002/art.1780291105 – volume: 14 start-page: 133 year: 2021 ident: 2023072707151057300_bib115 article-title: Immune cell paracrine signaling drives the neutrophil response to A. fumigatus in an infection-on-a-chip model publication-title: Cell Mol Bioeng. doi: 10.1007/s12195-020-00655-8 – volume: 8 start-page: 864 year: 2017 ident: 2023072707151057300_bib17 article-title: The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-00910-z – volume: 1 start-page: aaf8943 year: 2016 ident: 2023072707151057300_bib58 article-title: Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aaf8943 – volume: 73 start-page: 6413 year: 2013 ident: 2023072707151057300_bib144 article-title: GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-4124 – volume: 193 start-page: 5273 year: 2014 ident: 2023072707151057300_bib20 article-title: Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling publication-title: J. Immunol. doi: 10.4049/jimmunol.1400762 – volume: 4 year: 2019 ident: 2023072707151057300_bib143 article-title: Neutrophil extracellular traps drive inflammatory pathogenesis in malaria publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aaw0336 – volume: 5 year: 2020 ident: 2023072707151057300_bib297 article-title: Neutrophil extracellular traps in COVID-19 publication-title: JCI Insight doi: 10.1172/jci.insight.138999 – volume: 16 start-page: 447 year: 2016 ident: 2023072707151057300_bib76 article-title: The role of myeloid cells in cancer therapies publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.54 – volume: 19 start-page: 271 year: 2017 ident: 2023072707151057300_bib264 article-title: Human haematopoietic stem cell lineage commitment is a continuous process publication-title: Nat. Cell Biol. doi: 10.1038/ncb3493 – volume: 591 start-page: 645 year: 2021 ident: 2023072707151057300_bib271 article-title: Metabolic support of tumour-infiltrating regulatory T cells by lactic acid publication-title: Nature doi: 10.1038/s41586-020-03045-2 – volume: 10 start-page: 562 year: 2015 ident: 2023072707151057300_bib221 article-title: Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.039 – volume: 139 start-page: 56 year: 2016 ident: 2023072707151057300_bib248 article-title: NETosis promotes cancer-associated arterial microthrombosis presenting as ischemic stroke with troponin elevation publication-title: Thromb. Res. doi: 10.1016/j.thromres.2016.01.009 – volume: 348 start-page: 1625 year: 2003 ident: 2023072707151057300_bib40 article-title: Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa021423 – volume: 276 start-page: 145 year: 2017 ident: 2023072707151057300_bib169 article-title: The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer publication-title: Immunol. Rev. doi: 10.1111/imr.12527 – volume: 18 start-page: 134 year: 2018 ident: 2023072707151057300_bib194 article-title: Neutrophil extracellular traps in immunity and disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.105 – volume: 583 start-page: 133 year: 2020 ident: 2023072707151057300_bib288 article-title: DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25 publication-title: Nature doi: 10.1038/s41586-020-2394-6 – volume: 198 start-page: 2479 year: 2017 ident: 2023072707151057300_bib29 article-title: Multicenter systems analysis of human blood reveals immature neutrophils in males and during pregnancy publication-title: J. Immunol. doi: 10.4049/jimmunol.1601855 – volume: 22 start-page: 173 year: 2022 ident: 2023072707151057300_bib105 article-title: Neutrophils in cancer: Heterogeneous and multifaceted publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00571-6 – volume: 20 start-page: 300 year: 2011 ident: 2023072707151057300_bib91 article-title: Tumor entrained neutrophils inhibit seeding in the premetastatic lung publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.08.012 – volume: 6 start-page: 447 year: 2004 ident: 2023072707151057300_bib236 article-title: Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis publication-title: Cancer Cell doi: 10.1016/j.ccr.2004.09.028 – volume: 20 start-page: 4063 year: 2013 ident: 2023072707151057300_bib224 article-title: Association between postoperative complications and clinical cancer outcomes publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-013-3267-0 – volume: 109 start-page: 2491 year: 2012 ident: 2023072707151057300_bib60 article-title: Origins of tumor-associated macrophages and neutrophils publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1113744109 – volume: 96 start-page: 831 year: 2018 ident: 2023072707151057300_bib256 article-title: Aged neutrophils accumulate in lymphoid tissues from healthy elderly mice and infiltrate T- and B-cell zones publication-title: Immunol. Cell Biol. doi: 10.1111/imcb.12046 – volume: 9 start-page: 1091 year: 2008 ident: 2023072707151057300_bib110 article-title: The Immunological Genome Project: Networks of gene expression in immune cells publication-title: Nat. Immunol. doi: 10.1038/ni1008-1091 – volume: 20 start-page: 485 year: 2020 ident: 2023072707151057300_bib125 article-title: Neutrophil diversity and plasticity in tumour progression and therapy publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-020-0281-y – volume: 23 start-page: 101699 year: 2020 ident: 2023072707151057300_bib22 article-title: Distinct tissue damage and microbial cues drive neutrophil and macrophage recruitment to thermal injury publication-title: iScience doi: 10.1016/j.isci.2020.101699 – volume: 102 start-page: 9194 year: 2005 ident: 2023072707151057300_bib219 article-title: Cell intrinsic alterations underlie hematopoietic stem cell aging publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0503280102 – volume: 183 start-page: 7441 year: 2009 ident: 2023072707151057300_bib245 article-title: Neutrophils ameliorate lung injury and the development of severe disease during influenza infection publication-title: J. Immunol. doi: 10.4049/jimmunol.0902497 – volume: 40 start-page: 785 year: 2014 ident: 2023072707151057300_bib280 article-title: γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer publication-title: Immunity doi: 10.1016/j.immuni.2014.03.013 – volume: 34 start-page: 2219 year: 2015 ident: 2023072707151057300_bib14 article-title: The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer publication-title: EMBO J. doi: 10.15252/embj.201490147 – volume: 17 start-page: 666 year: 2016 ident: 2023072707151057300_bib72 article-title: Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing publication-title: Nat. Immunol. doi: 10.1038/ni.3412 – volume: 140 start-page: 2321 year: 2017 ident: 2023072707151057300_bib185 article-title: Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions publication-title: Int. J. Cancer doi: 10.1002/ijc.30635 – year: 2021 ident: 2023072707151057300_bib251 article-title: Histone H3 clipping is a novel signature of human neutrophil extracellular traps publication-title: bioRxiv doi: 10.1101/2021.03.15.434949 – volume: 5 start-page: 124020 year: 2020 ident: 2023072707151057300_bib152 article-title: IRF5 genetic risk variants drive myeloid-specific IRF5 hyperactivation and presymptomatic SLE publication-title: JCI Insight doi: 10.1172/jci.insight.124020 – volume: 109 start-page: 13076 year: 2012 ident: 2023072707151057300_bib66 article-title: Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1200419109 – volume: 303 start-page: 1532 year: 2004 ident: 2023072707151057300_bib35 article-title: Neutrophil extracellular traps kill bacteria publication-title: Science doi: 10.1126/science.1092385 – volume: 99 start-page: 811 year: 2016 ident: 2023072707151057300_bib177 article-title: Survival of residual neutrophils and accelerated myelopoiesis limit the efficacy of antibody-mediated depletion of Ly-6G+ cells in tumor-bearing mice publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1HI0715-289R – volume: 172 start-page: 2731 year: 2004 ident: 2023072707151057300_bib172 article-title: Of mice and not men: Differences between mouse and human immunology publication-title: J. Immunol. doi: 10.4049/jimmunol.172.5.2731 – volume: 20 start-page: 524 year: 2014 ident: 2023072707151057300_bib69 article-title: The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice publication-title: Nat. Med. doi: 10.1038/nm.3542 – volume: 21 start-page: 1119 year: 2020 ident: 2023072707151057300_bib283 article-title: Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0736-z – volume: 73 start-page: 2282 year: 2021 ident: 2023072707151057300_bib28 article-title: RNA externalized by neutrophil extracellular traps promotes inflammatory pathways in endothelial cells publication-title: Arthritis Rheumatol. doi: 10.1002/art.41796 – volume: 12 start-page: 445 year: 2015 ident: 2023072707151057300_bib103 article-title: Catchup: A mouse model for imaging-based tracking and modulation of neutrophil granulocytes publication-title: Nat. Methods doi: 10.1038/nmeth.3322 – volume: 28 start-page: 3125 year: 2021 ident: 2023072707151057300_bib1 article-title: Patients with COVID-19: In the dark-NETs of neutrophils publication-title: Cell Death Differ. doi: 10.1038/s41418-021-00805-z – volume: 23 start-page: 2346 year: 2017 ident: 2023072707151057300_bib184 article-title: Myeloid-derived suppressor cell subset accumulation in renal cell carcinoma parenchyma is associated with intratumoral expression of IL1β, IL8, CXCL5, and mip-1α publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-1823 – volume: 78 start-page: 5050 year: 2018 ident: 2023072707151057300_bib86 article-title: Microenvironmental cues determine tumor cell susceptibility to neutrophil cytotoxicity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-0540 – volume: 7 start-page: 39804 year: 2017 ident: 2023072707151057300_bib140 article-title: A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis publication-title: Sci. Rep. doi: 10.1038/srep39804 – volume: 120 start-page: 2423 year: 2010 ident: 2023072707151057300_bib74 article-title: CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow publication-title: J. Clin. Invest. doi: 10.1172/JCI41649 – volume: 201 start-page: 1241 year: 2018 ident: 2023072707151057300_bib54 article-title: Role of peptidylarginine deiminase 4 in neutrophil extracellular trap formation and host defense during Klebsiella pneumoniae- induced pneumonia-derived sepsis publication-title: J. Immunol. doi: 10.4049/jimmunol.1800314 – volume: 133 start-page: 2168 year: 2019 ident: 2023072707151057300_bib293 article-title: Cross talk between neutrophils and the microbiota publication-title: Blood doi: 10.1182/blood-2018-11-844555 – volume: 4 start-page: 968 year: 2016 ident: 2023072707151057300_bib46 article-title: CXCR2-Dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-16-0188 – volume: 217 year: 2020 ident: 2023072707151057300_bib21 article-title: Targeting potential drivers of COVID-19: Neutrophil extracellular traps publication-title: J. Exp. Med. doi: 10.1084/jem.20200652 – volume: 69 start-page: 199 year: 2020 ident: 2023072707151057300_bib15 article-title: NETosis in cancer: A critical analysis of the impact of cancer on neutrophil extracellular trap (NET) release in lung cancer patients vs. mice publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-019-02474-x – volume: 11 start-page: 519 year: 2011 ident: 2023072707151057300_bib160 article-title: Neutrophils in the activation and regulation of innate and adaptive immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3024 – volume: 359 start-page: 91 year: 2018 ident: 2023072707151057300_bib220 article-title: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors publication-title: Science doi: 10.1126/science.aan3706 – volume: 26 start-page: 688 year: 2020 ident: 2023072707151057300_bib225 article-title: Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors publication-title: Nat. Med. doi: 10.1038/s41591-020-0856-x – volume: 18 start-page: 1386 year: 2012 ident: 2023072707151057300_bib289 article-title: Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo publication-title: Nat. Med. doi: 10.1038/nm.2847 – volume: 13 start-page: 23 year: 2008 ident: 2023072707151057300_bib287 article-title: Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.12.004 – volume: 375 start-page: 794 year: 2016 ident: 2023072707151057300_bib148 article-title: Body fatness and cancer--viewpoint of the IARC working group publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsr1606602 – volume: 21 start-page: 511 year: 2019 ident: 2023072707151057300_bib222 article-title: Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0298-1 – volume: 8 year: 2019 ident: 2023072707151057300_bib231 article-title: Neutrophil cathepsin G and tumor cell RAGE facilitate neutrophil anti-tumor cytotoxicity publication-title: Oncoimmunology doi: 10.1080/2162402X.2019.1624129 – volume: 112 start-page: 11001 year: 2015 ident: 2023072707151057300_bib274 article-title: IRF5 controls both acute and chronic inflammation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1506254112 – volume: 30 start-page: 120 year: 2016 ident: 2023072707151057300_bib230 article-title: Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.001 – volume: 209 start-page: 2113 year: 2012 ident: 2023072707151057300_bib116 article-title: Induction of tumoricidal function in CD4+ T cells is associated with concomitant memory and terminally differentiated phenotype publication-title: J. Exp. Med. doi: 10.1084/jem.20120532 – volume: 46 start-page: 913 year: 1975 ident: 2023072707151057300_bib213 article-title: Granule enzymes of polymorphonuclear neutrophils: A phylogenetic comparison publication-title: Blood doi: 10.1182/blood.V46.6.913.913 – volume: 19 start-page: 255 year: 2019 ident: 2023072707151057300_bib187 article-title: Heterogeneity of neutrophils publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0141-8 – volume: 4 year: 2019 ident: 2023072707151057300_bib241 article-title: Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy publication-title: JCI Insight doi: 10.1172/jci.insight.126853 – volume: 179 start-page: 8274 year: 2007 ident: 2023072707151057300_bib235 article-title: IL-23 is required for neutrophil homeostasis in normal and neutrophilic mice publication-title: J. Immunol. doi: 10.4049/jimmunol.179.12.8274 – volume: 21 start-page: 485 year: 2021 ident: 2023072707151057300_bib262 article-title: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-00490-y – volume: 39 start-page: 26 year: 2015 ident: 2023072707151057300_bib284 article-title: Obesity is associated with more activated neutrophils in African American male youth publication-title: Int. J. Obes. (Lond.) doi: 10.1038/ijo.2014.194 – volume: 21 start-page: 1444 year: 2020 ident: 2023072707151057300_bib154 article-title: Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0783-5 – volume: 89 start-page: 311 year: 2011 ident: 2023072707151057300_bib33 article-title: Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0310162 – volume: 112 start-page: 2817 year: 2015 ident: 2023072707151057300_bib71 article-title: SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1414055112 – volume: 528 start-page: 413 year: 2015 ident: 2023072707151057300_bib273 article-title: Neutrophils support lung colonization of metastasis-initiating breast cancer cells publication-title: Nature doi: 10.1038/nature16140 – volume: 110 start-page: 8674 year: 2013 ident: 2023072707151057300_bib165 article-title: Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1301059110 – volume: 119 start-page: 431 year: 2004 ident: 2023072707151057300_bib198 article-title: JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells publication-title: Cell doi: 10.1016/j.cell.2004.10.010 – volume: 103 start-page: 693 year: 2018 ident: 2023072707151057300_bib190 article-title: CIRP increases ICAM-1+ phenotype of neutrophils exhibiting elevated iNOS and NETs in sepsis publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.3A0817-327RR – volume: 51 start-page: 966 year: 2019 ident: 2023072707151057300_bib4 article-title: A neutrophil timer coordinates immune defense and vascular protection publication-title: Immunity doi: 10.1016/j.immuni.2019.11.001 – volume: 24 start-page: 165 year: 2018 ident: 2023072707151057300_bib25 article-title: Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms publication-title: Nat. Med. doi: 10.1038/nm.4463 – volume: 16 start-page: 431 year: 2016 ident: 2023072707151057300_bib57 article-title: Neutrophils in cancer: Neutral no more publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.52 – volume: 50 start-page: 1317 year: 2019 ident: 2023072707151057300_bib296 article-title: Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species publication-title: Immunity doi: 10.1016/j.immuni.2019.03.009 – volume: 3 year: 2018 ident: 2023072707151057300_bib151 article-title: Neutrophils: New insights and open questions publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aat4579 – volume: 207 start-page: 1853 year: 2010 ident: 2023072707151057300_bib153 article-title: PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps publication-title: J. Exp. Med. doi: 10.1084/jem.20100239 – volume: 109 start-page: 1568 year: 2007 ident: 2023072707151057300_bib218 article-title: L-arginine availability regulates T-lymphocyte cell-cycle progression publication-title: Blood doi: 10.1182/blood-2006-06-031856 – volume: 20 start-page: 5697 year: 2014 ident: 2023072707151057300_bib223 article-title: Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-3203 – volume: 25 start-page: 1282 year: 2017 ident: 2023072707151057300_bib13 article-title: Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.12.018 – volume: 175 start-page: 1752 year: 2015 ident: 2023072707151057300_bib255 article-title: Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: A randomized clinical trial publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2015.4838 – volume: 88 start-page: 7190 year: 1991 ident: 2023072707151057300_bib134 article-title: Stimulation of granulopoiesis by transforming growth factor beta: Synergy with granulocyte/macrophage-colony-stimulating factor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.16.7190 – volume: 117 start-page: 16481 year: 2020 ident: 2023072707151057300_bib97 article-title: Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2003603117 – volume: 9 start-page: 1573 year: 2018 ident: 2023072707151057300_bib95 article-title: Candida albicans-induced NETosis is independent of peptidylarginine deiminase 4 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01573 – volume: 107 start-page: 21248 year: 2010 ident: 2023072707151057300_bib146 article-title: Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1015855107 – volume: 212 start-page: 30 year: 2019 ident: 2023072707151057300_bib208 article-title: Limitations of neutrophil depletion by anti-Ly6G antibodies in two heterogenic immunological models publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2019.06.006 – volume: 183 start-page: 771 year: 2020 ident: 2023072707151057300_bib131 article-title: Innate immune training of granulopoiesis promotes anti-tumor activity publication-title: Cell doi: 10.1016/j.cell.2020.09.058 – volume: 14 start-page: 571 year: 2014 ident: 2023072707151057300_bib96 article-title: Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3712 – volume: 162 start-page: 5728 year: 1999 ident: 2023072707151057300_bib37 article-title: Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation publication-title: J. Immunol. doi: 10.4049/jimmunol.162.10.5728 – volume: 52 start-page: 856 year: 2020 ident: 2023072707151057300_bib247 article-title: CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity publication-title: Immunity doi: 10.1016/j.immuni.2020.03.001 – volume: 2 start-page: 97 year: 2020 ident: 2023072707151057300_bib265 article-title: Single-cell analysis of human adipose tissue identifies depot and disease specific cell types publication-title: Nat. Metab. doi: 10.1038/s42255-019-0152-6 – volume: 5 year: 2016 ident: 2023072707151057300_bib67 article-title: Priming of neutrophils toward NETosis promotes tumor growth publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1134073 – volume: 286 start-page: 23591 year: 2011 ident: 2023072707151057300_bib281 article-title: Gr-1+ CD11b+ myeloid-derived suppressor cells suppress inflammation and promote insulin sensitivity in obesity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.237123 – volume: 48 start-page: 364 year: 2018 ident: 2023072707151057300_bib80 article-title: Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions publication-title: Immunity doi: 10.1016/j.immuni.2018.02.002 – volume: 24 start-page: 2784 year: 2018 ident: 2023072707151057300_bib92 article-title: Dynamics of transcription regulation in human bone marrow myeloid differentiation to mature blood neutrophils publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.08.018 – volume: 116 start-page: 25222 year: 2019 ident: 2023072707151057300_bib174 article-title: Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1908576116 – volume: 30 start-page: 36 year: 2019 ident: 2023072707151057300_bib266 article-title: Macrophages and metabolism in the tumor microenvironment publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.06.001 – volume: 361 year: 2018 ident: 2023072707151057300_bib7 article-title: Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice publication-title: Science doi: 10.1126/science.aao4227 – volume: 18 start-page: 632 year: 2016 ident: 2023072707151057300_bib276 article-title: Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation publication-title: Nat. Cell Biol. doi: 10.1038/ncb3355 – volume: 34 start-page: 81 year: 2013 ident: 2023072707151057300_bib101 article-title: Colony stimulating factors and myeloid cell biology in health and disease publication-title: Trends Immunol. doi: 10.1016/j.it.2012.08.006 – volume: 13 start-page: 1310 year: 2015 ident: 2023072707151057300_bib250 article-title: Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice publication-title: J. Thromb. Haemost. doi: 10.1111/jth.13002 – volume: 7 start-page: 11037 year: 2016 ident: 2023072707151057300_bib94 article-title: Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis publication-title: Nat. Commun. doi: 10.1038/ncomms11037 – volume: 67 start-page: 40 year: 2000 ident: 2023072707151057300_bib277 article-title: Effect of age on human neutrophil function publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.67.1.40 – volume: 133 start-page: 2159 year: 2019 ident: 2023072707151057300_bib87 article-title: Neutrophil plasticity in the tumor microenvironment publication-title: Blood doi: 10.1182/blood-2018-11-844548 – volume: 54 start-page: 875 year: 2021 ident: 2023072707151057300_bib106 article-title: MDSC: Markers, development, states, and unaddressed complexity publication-title: Immunity doi: 10.1016/j.immuni.2021.04.004 – volume: 148 start-page: 1102 year: 1992 ident: 2023072707151057300_bib45 article-title: Transforming growth factor-beta enhances the M-CSF and GM-CSF-stimulated proliferation of macrophages publication-title: J. Immunol. doi: 10.4049/jimmunol.148.4.1102 – volume: 19 start-page: 974 year: 2017 ident: 2023072707151057300_bib212 article-title: Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF publication-title: Nat. Cell Biol. doi: 10.1038/ncb3578 – volume: 170 start-page: 270 year: 2003 ident: 2023072707151057300_bib38 article-title: IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice publication-title: J. Immunol. doi: 10.4049/jimmunol.170.1.270 – volume: 76 start-page: 1367 year: 2016 ident: 2023072707151057300_bib254 article-title: Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1591 – volume: 1 start-page: 715 year: 2021 ident: 2023072707151057300_bib158 article-title: Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex- and age-related functional regulation publication-title: Nat. Aging doi: 10.1038/s43587-021-00086-8 – volume: 206 start-page: 797 year: 2021 ident: 2023072707151057300_bib49 article-title: Inhibition of efferocytosis by extracellular CIRP-induced neutrophil extracellular traps publication-title: J. Immunol. doi: 10.4049/jimmunol.2000091 – volume: 572 start-page: 603 year: 2019 ident: 2023072707151057300_bib192 article-title: Metastatic-niche labelling reveals parenchymal cells with stem features publication-title: Nature doi: 10.1038/s41586-019-1487-6 – volume: 183 start-page: 1848 year: 2020 ident: 2023072707151057300_bib217 article-title: Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity publication-title: Cell doi: 10.1016/j.cell.2020.11.009 – year: 2020 ident: 2023072707151057300_bib298 article-title: Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19 publication-title: medRxiv doi: 10.1101/2020.04.09.20059626 – volume: 26 start-page: 693 year: 2020 ident: 2023072707151057300_bib291 article-title: High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade publication-title: Nat. Med. doi: 10.1038/s41591-020-0860-1 – volume: 14 start-page: 302 year: 2014 ident: 2023072707151057300_bib161 article-title: Emergency granulopoiesis publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3660 – volume: 3 start-page: 1236 year: 2015 ident: 2023072707151057300_bib118 article-title: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-15-0036 – volume: 213 start-page: 697 year: 2016 ident: 2023072707151057300_bib39 article-title: Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus publication-title: J. Exp. Med. doi: 10.1084/jem.20151876 – volume: 16 start-page: 183 year: 2009 ident: 2023072707151057300_bib82 article-title: Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.06.017 – volume: 24 start-page: 2329 year: 2018 ident: 2023072707151057300_bib295 article-title: Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.07.097 – volume: 30 start-page: 481 year: 2020 ident: 2023072707151057300_bib26 article-title: Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.12.028 – volume: 26 start-page: 1070 year: 2020 ident: 2023072707151057300_bib278 article-title: A single-cell atlas of the peripheral immune response in patients with severe COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0944-y – volume: 12 start-page: 4791 year: 2021 ident: 2023072707151057300_bib182 article-title: FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity publication-title: Nat. Commun. doi: 10.1038/s41467-021-24591-x – volume: 16 start-page: 601 year: 2019 ident: 2023072707151057300_bib228 article-title: Tumour-associated neutrophils in patients with cancer publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-019-0222-4 – volume: 507 start-page: 104 year: 2014 ident: 2023072707151057300_bib51 article-title: Citrullination regulates pluripotency and histone H1 binding to chromatin publication-title: Nature doi: 10.1038/nature12942 – volume: 3 start-page: 149 year: 2017 ident: 2023072707151057300_bib79 article-title: Mouse versus human neutrophils in cancer: A major knowledge gap publication-title: Trends Cancer doi: 10.1016/j.trecan.2016.12.006 – volume: 4 year: 2021 ident: 2023072707151057300_bib203 article-title: Association of obesity with survival outcomes in patients with cancer: A systematic review and meta-analysis publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2021.3520 – volume: 220 year: 2021 ident: 2023072707151057300_bib121 article-title: Myeloid-derived growth factor regulates neutrophil motility in interstitial tissue damage publication-title: J. Cell Biol. doi: 10.1083/jcb.202103054 – volume: 45 start-page: 1245 year: 2018 ident: 2023072707151057300_bib9 article-title: Neutrophil elastase and myeloperoxidase mRNA expression in overweight and obese subjects publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-018-4279-4 – volume: 185 start-page: 7413 year: 2010 ident: 2023072707151057300_bib207 article-title: A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus publication-title: J. Immunol. doi: 10.4049/jimmunol.1000675 – year: 2018 ident: 2023072707151057300_bib81 article-title: Efficient and specific Ly6G+ cell depletion: A change in the current practices toward more relevant functional analyses of neutrophils publication-title: bioRxiv doi: 10.1101/498881 – volume: 12 start-page: 2856 year: 2021 ident: 2023072707151057300_bib93 article-title: The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments publication-title: Nat. Commun. doi: 10.1038/s41467-021-22973-9 – volume: 184 start-page: 2033 year: 2021 ident: 2023072707151057300_bib130 article-title: Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis publication-title: Cell doi: 10.1016/j.cell.2021.02.048 – volume: 172 start-page: 176 year: 2018 ident: 2023072707151057300_bib133 article-title: BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis publication-title: Cell doi: 10.1016/j.cell.2017.12.031 – volume: 25 start-page: 1867 year: 2019 ident: 2023072707151057300_bib189 article-title: Neutrophil extracellular traps induced by IL8 promote diffuse large B-cell lymphoma progression via the TLR9 signaling publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-1226 – volume: 358 start-page: 111 year: 2017 ident: 2023072707151057300_bib268 article-title: Visualizing the function and fate of neutrophils in sterile injury and repair publication-title: Science doi: 10.1126/science.aam9690 – volume: 176 start-page: 816 year: 2016 ident: 2023072707151057300_bib176 article-title: Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2016.1548 – volume: 70 start-page: 710 year: 2019 ident: 2023072707151057300_bib64 article-title: Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.11.034 – volume: 6 year: 2011 ident: 2023072707151057300_bib109 article-title: PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection publication-title: PLoS One doi: 10.1371/journal.pone.0022043 – volume: 359 start-page: 97 year: 2018 ident: 2023072707151057300_bib89 article-title: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients publication-title: Science doi: 10.1126/science.aan4236 – volume: 522 start-page: 345 year: 2015 ident: 2023072707151057300_bib56 article-title: IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis publication-title: Nature doi: 10.1038/nature14282 – volume: 582 start-page: 109 year: 2020 ident: 2023072707151057300_bib178 article-title: Mouse models of neutropenia reveal progenitor-stage-specific defects publication-title: Nature doi: 10.1038/s41586-020-2227-7 – volume: 12 start-page: 201 year: 2000 ident: 2023072707151057300_bib252 article-title: Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G publication-title: Immunity doi: 10.1016/s1074-7613(00)80173-9 – volume: 3 start-page: 578 year: 2013 ident: 2023072707151057300_bib44 article-title: Bone marrow-derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-12-0476 – volume: 112 start-page: 16000 year: 2015 ident: 2023072707151057300_bib75 article-title: Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1507294112 – volume: 22 start-page: 639 year: 2021 ident: 2023072707151057300_bib114 article-title: Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity publication-title: Nat. Immunol. doi: 10.1038/s41590-021-00922-4 – volume: 109 start-page: 1019 year: 2021 ident: 2023072707151057300_bib244 article-title: Frontline Science: Extracellular CIRP generates a proinflammatory Ly6G(+) CD11b(hi) subset of low-density neutrophils in sepsis publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.3HI0620-416R – volume: 24 start-page: 631 year: 2013 ident: 2023072707151057300_bib132 article-title: CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.10.009 – volume: 6 year: 2017 ident: 2023072707151057300_bib6 article-title: Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1344804 – volume: 172 start-page: 162 year: 2018 ident: 2023072707151057300_bib50 article-title: Western diet triggers NLRP3-dependent innate immune reprogramming publication-title: Cell doi: 10.1016/j.cell.2017.12.013 – volume: 7 start-page: 12150 year: 2016 ident: 2023072707151057300_bib36 article-title: Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards publication-title: Nat. Commun. doi: 10.1038/ncomms12150 – volume: 13 start-page: 4261 year: 2021 ident: 2023072707151057300_bib164 article-title: CD47-SIRPα checkpoint inhibition enhances neutrophil-mediated killing of dinutuximab-opsonized neuroblastoma cells publication-title: Cancers (Basel) doi: 10.3390/cancers13174261 – volume: 161 start-page: 146 year: 2015 ident: 2023072707151057300_bib34 article-title: Immune regulation of metabolic homeostasis in health and disease publication-title: Cell doi: 10.1016/j.cell.2015.02.022 – volume: 537 start-page: 698 year: 2016 ident: 2023072707151057300_bib191 article-title: Single-cell analysis of mixed-lineage states leading to a binary cell fate choice publication-title: Nature doi: 10.1038/nature19348 – volume: 116 start-page: 625 year: 2010 ident: 2023072707151057300_bib206 article-title: In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days publication-title: Blood doi: 10.1182/blood-2010-01-259028 – volume: 371 start-page: 595 year: 2021 ident: 2023072707151057300_bib63 article-title: Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients publication-title: Science doi: 10.1126/science.abf3363 – volume: 22 start-page: 3924 year: 2016 ident: 2023072707151057300_bib8 article-title: Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs) publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-2463 – volume: 30 start-page: 459 year: 2012 ident: 2023072707151057300_bib11 article-title: Neutrophil function: From mechanisms to disease publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-020711-074942 – volume: 5 year: 2019 ident: 2023072707151057300_bib214 article-title: Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects publication-title: JCI Insight doi: 10.1172/jci.insight.128008 – volume: 51 start-page: 548 year: 2019 ident: 2023072707151057300_bib128 article-title: CIRP induces neutrophil reverse transendothelial migration in sepsis publication-title: Shock doi: 10.1097/SHK.0000000000001257 – volume: 569 start-page: 73 year: 2019 ident: 2023072707151057300_bib263 article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer publication-title: Nature doi: 10.1038/s41586-019-1118-2 – volume: 109 start-page: 3084 year: 2007 ident: 2023072707151057300_bib124 article-title: Arginase 1 is expressed in myelocytes/metamyelocytes and localized in gelatinase granules of human neutrophils publication-title: Blood doi: 10.1182/blood-2006-06-032599 – volume: 2 start-page: 545 year: 2021 ident: 2023072707151057300_bib171 article-title: Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration publication-title: Nat. Cancer doi: 10.1038/s43018-021-00194-9 – volume: 107 start-page: 419 year: 2020 ident: 2023072707151057300_bib5 article-title: Transcriptional regulation of neutrophil differentiation and function during inflammation publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.1RU1219-504RR – volume: 15 start-page: 374 year: 2014 ident: 2023072707151057300_bib138 article-title: Gut microbiota promote hematopoiesis to control bacterial infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.02.006 – volume: 9 start-page: 147 year: 2021 ident: 2023072707151057300_bib32 article-title: Kindlin3-dependent CD11b/CD18-integrin activation is required for potentiation of neutrophil cytotoxicity by CD47-SIRPα checkpoint disruption publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-20-0491 – volume: 103 start-page: 395 year: 2018 ident: 2023072707151057300_bib55 article-title: Frontline science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.4HI0517-210R – volume: 6 start-page: 630 year: 2016 ident: 2023072707151057300_bib237 article-title: Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-1157 – volume: 5 year: 2020 ident: 2023072707151057300_bib269 article-title: ROS-producing immature neutrophils in giant cell arteritis are linked to vascular pathologies publication-title: JCI Insight doi: 10.1172/jci.insight.139163 – volume: 23 start-page: 101277 year: 2020 ident: 2023072707151057300_bib272 article-title: Early neutrophil responses to chemical carcinogenesis shape long-term lung cancer susceptibility publication-title: iScience doi: 10.1016/j.isci.2020.101277 – volume: 153 start-page: 1025 year: 2013 ident: 2023072707151057300_bib42 article-title: Rhythmic modulation of the hematopoietic niche through neutrophil clearance publication-title: Cell doi: 10.1016/j.cell.2013.04.040 – volume: 4 start-page: 13 year: 2006 ident: 2023072707151057300_bib260 article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.05.011 – volume: 11 start-page: 2762 year: 2020 ident: 2023072707151057300_bib31 article-title: Durable and controlled depletion of neutrophils in mice publication-title: Nat. Commun. doi: 10.1038/s41467-020-16596-9 – start-page: 101546 year: 2021 ident: 2023072707151057300_bib73 article-title: Impact of cancer cell-intrinsic features on neutrophil behavior publication-title: Semin. Immunol. doi: 10.1016/j.smim.2021.101546 – volume: 61 start-page: 4756 year: 2001 ident: 2023072707151057300_bib226 article-title: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients publication-title: Cancer Res. – volume: 21 start-page: 135 year: 2020 ident: 2023072707151057300_bib3 article-title: Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0571-2 – volume: 10 start-page: 1710 year: 2019 ident: 2023072707151057300_bib90 article-title: Neutrophils as a therapeutic target in cancer publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01710 – volume: 6 year: 2017 ident: 2023072707151057300_bib135 article-title: Diverse stimuli engage different neutrophil extracellular trap pathways publication-title: Elife doi: 10.7554/eLife.24437 – volume: 81 start-page: 2345 year: 2021 ident: 2023072707151057300_bib12 article-title: GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-20-2870 – volume: 7 start-page: 72 year: 2017 ident: 2023072707151057300_bib242 article-title: Tumor cell-independent estrogen signaling drives disease progression through mobilization of myeloid-derived suppressor cells publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-0502 – volume: 5 year: 2020 ident: 2023072707151057300_bib10 article-title: Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aay6017 – volume: 7 start-page: 41749 year: 2017 ident: 2023072707151057300_bib136 article-title: Transcriptional firing helps to drive NETosis publication-title: Sci. Rep. doi: 10.1038/srep41749 – volume: 124 start-page: 5466 year: 2014 ident: 2023072707151057300_bib78 article-title: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer publication-title: J. Clin. Invest. doi: 10.1172/JCI77053 – volume: 21 start-page: 799 year: 1993 ident: 2023072707151057300_bib112 article-title: Increased granulopoiesis after sequential administration of transforming growth factor-beta 1 and granulocyte-macrophage colony-stimulating factor publication-title: Exp. Hematol. – volume: 9 start-page: 5099 year: 2018 ident: 2023072707151057300_bib215 article-title: Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression publication-title: Nat. Commun. doi: 10.1038/s41467-018-07505-2 – volume: 47 start-page: 890 year: 2017 ident: 2023072707151057300_bib286 article-title: Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes publication-title: Immunity doi: 10.1016/j.immuni.2017.10.021 – volume: 184 start-page: 3163 year: 2021 ident: 2023072707151057300_bib62 article-title: Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis publication-title: Cell doi: 10.1016/j.cell.2021.04.016 – volume: 20 start-page: 375 year: 2020 ident: 2023072707151057300_bib186 article-title: Defining trained immunity and its role in health and disease publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0285-6 – volume: 172 start-page: 825 year: 2018 ident: 2023072707151057300_bib246 article-title: LXR/ApoE activation restricts innate immune suppression in cancer publication-title: Cell doi: 10.1016/j.cell.2017.12.026 – volume: 216 start-page: 2150 year: 2019 ident: 2023072707151057300_bib167 article-title: Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs publication-title: J. Exp. Med. doi: 10.1084/jem.20181952 – volume: 123 start-page: 3446 year: 2013 ident: 2023072707151057300_bib59 article-title: Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis publication-title: J. Clin. Invest. doi: 10.1172/JCI67484 – volume: 8 year: 2020 ident: 2023072707151057300_bib294 article-title: CyTOF mass cytometry reveals phenotypically distinct human blood neutrophil populations differentially correlated with melanoma stage publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2019-000473 – start-page: 101538 year: 2021 ident: 2023072707151057300_bib233 article-title: Versatile neutrophil functions in cancer publication-title: Semin. Immunol. doi: 10.1016/j.smim.2021.101538 – volume: 76 start-page: 516 year: 2006 ident: 2023072707151057300_bib111 article-title: Leukocytosis in obese individuals: Possible link in patients with unexplained persistent neutrophilia publication-title: Eur. J. Haematol. doi: 10.1111/j.1600-0609.2006.00658.x – volume: 92 start-page: 841 year: 2012 ident: 2023072707151057300_bib197 article-title: Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1211601 – volume: 22 start-page: 146 year: 2016 ident: 2023072707151057300_bib156 article-title: Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease publication-title: Nat. Med. doi: 10.1038/nm.4027 – volume: 13 start-page: 170 year: 2011 ident: 2023072707151057300_bib209 article-title: B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen publication-title: Nat. Immunol. doi: 10.1038/ni.2194 – volume: 69 start-page: 222 year: 2019 ident: 2023072707151057300_bib99 article-title: Transforming growth factor-β and Axl induce CXCL5 and neutrophil recruitment in hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.30166 – volume: 105 start-page: 2549 year: 2005 ident: 2023072707151057300_bib179 article-title: Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity publication-title: Blood doi: 10.1182/blood-2004-07-2521 – volume: 5 start-page: 178ra40 year: 2013 ident: 2023072707151057300_bib137 article-title: NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3005580 – volume: 13 start-page: 463 year: 2007 ident: 2023072707151057300_bib52 article-title: Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood publication-title: Nat. Med. doi: 10.1038/nm1565 – volume: 19 start-page: 1489 year: 2013 ident: 2023072707151057300_bib211 article-title: Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis publication-title: Nat. Med. doi: 10.1038/nm.3368 – volume: 357 start-page: 753 year: 2007 ident: 2023072707151057300_bib2 article-title: Long-term mortality after gastric bypass surgery publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa066603 – volume: 23 start-page: 681 year: 2017 ident: 2023072707151057300_bib257 article-title: Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation publication-title: Nat. Med. doi: 10.1038/nm.4332 – volume: 39 start-page: 423 year: 2021 ident: 2023072707151057300_bib282 article-title: Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.12.012 – volume: 525 start-page: 528 year: 2015 ident: 2023072707151057300_bib292 article-title: Neutrophil ageing is regulated by the microbiome publication-title: Nature doi: 10.1038/nature15367 – volume: 19 start-page: 821 year: 2014 ident: 2023072707151057300_bib183 article-title: Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.03.029 – volume: 31 start-page: 107602 year: 2020 ident: 2023072707151057300_bib258 article-title: Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107602 – volume: 140 start-page: S174 year: 2016 ident: 2023072707151057300_bib107 article-title: OC-16-Neutrophil extracellular traps and tissue factor-bearing microvesicles: A liaison dangereuse causing overt DIC in cancer patients? publication-title: Thromb. Res. doi: 10.1016/S0049-3848(16)30133-5 – volume: 23 start-page: 3946 year: 2018 ident: 2023072707151057300_bib168 article-title: Neutrophils kill antibody-opsonized cancer cells by trogoptosis publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.082 – volume: 136 start-page: 1169 year: 2020 ident: 2023072707151057300_bib173 article-title: Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome publication-title: Blood doi: 10.1182/blood.2020007008 – volume: 12 start-page: 474 year: 2021 ident: 2023072707151057300_bib259 article-title: Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung publication-title: Nat. Commun. doi: 10.1038/s41467-020-20733-9 – volume: 214 start-page: 439 year: 2017 ident: 2023072707151057300_bib166 article-title: Peptidylarginine deiminase 4 promotes age-related organ fibrosis publication-title: J. Exp. Med. doi: 10.1084/jem.20160530 – volume: 23 start-page: 279 year: 2017 ident: 2023072707151057300_bib129 article-title: An emerging role for neutrophil extracellular traps in noninfectious disease publication-title: Nat. Med. doi: 10.1038/nm.4294 – volume: 22 start-page: 1093 year: 2021 ident: 2023072707151057300_bib139 article-title: Distinct transcription factor networks control neutrophil-driven inflammation publication-title: Nat. Immunol. doi: 10.1038/s41590-021-00968-4 – volume: 61 start-page: 1116 year: 1983 ident: 2023072707151057300_bib202 article-title: Differences in myeloperoxidase activity from neutrophilic polymorphonuclear leukocytes of differing density: Relationship to selective exocytosis of distinct forms of the enzyme publication-title: Blood doi: 10.1182/blood.V61.6.1116.1116 – volume: 46 start-page: 15 year: 2017 ident: 2023072707151057300_bib188 article-title: Neutrophils in homeostasis, immunity, and cancer publication-title: Immunity doi: 10.1016/j.immuni.2016.12.012 – volume: 21 start-page: 298 year: 2020 ident: 2023072707151057300_bib267 article-title: CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0589-5 – volume: 16 start-page: 1438 year: 2009 ident: 2023072707151057300_bib290 article-title: Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps publication-title: Cell Death Differ. doi: 10.1038/cdd.2009.96 – volume: 9 start-page: 3143 year: 2018 ident: 2023072707151057300_bib123 article-title: Control of leukocyte trafficking by stress-associated hormones publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.03143 – volume: 19 start-page: 583 year: 2003 ident: 2023072707151057300_bib162 article-title: Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence publication-title: Immunity doi: 10.1016/s1074-7613(03)00263-2 – volume: 9 year: 2021 ident: 2023072707151057300_bib163 article-title: G-CSF as a suitable alternative to GM-CSF to boost dinutuximab-mediated neutrophil cytotoxicity in neuroblastoma treatment publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2020-002259 – volume: 25 start-page: 377 year: 2019 ident: 2023072707151057300_bib108 article-title: The microbiome, cancer, and cancer therapy publication-title: Nat. Med. doi: 10.1038/s41591-019-0377-7 – volume: 32 start-page: 1545 year: 2021 ident: 2023072707151057300_bib142 article-title: Centriole and Golgi microtubule nucleation are dispensable for the migration of human neutrophil-like cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E21-02-0060 – volume: 357 start-page: 741 year: 2007 ident: 2023072707151057300_bib234 article-title: Effects of bariatric surgery on mortality in Swedish obese subjects publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa066254 – volume: 20 start-page: 802 year: 2019 ident: 2023072707151057300_bib47 article-title: Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0402-5 – volume: 153 start-page: 1194 year: 2013 ident: 2023072707151057300_bib157 article-title: The hallmarks of aging publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – volume: 98 start-page: 523 year: 2015 ident: 2023072707151057300_bib102 article-title: Neutrophils in host defense: New insights from zebrafish publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.4MR1114-524R – volume: 34 start-page: 9771 year: 2020 ident: 2023072707151057300_bib181 article-title: Extracellular CIRP and TREM-1 axis promotes ICAM-1-Rho-mediated NETosis in sepsis publication-title: FASEB J. doi: 10.1096/fj.202000482R – volume: 8 start-page: 329ra34 year: 2016 ident: 2023072707151057300_bib270 article-title: Development of a prosaposin-derived therapeutic cyclic peptide that targets ovarian cancer via the tumor microenvironment publication-title: Sci. Transl Med. doi: 10.1126/scitranslmed.aad5653 – volume: 29 start-page: 832 year: 2016 ident: 2023072707151057300_bib239 article-title: CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.04.014 – volume: 16 start-page: 228 year: 2010 ident: 2023072707151057300_bib53 article-title: Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity publication-title: Nat. Med. doi: 10.1038/nm.2087 – volume: 116 start-page: 18584 year: 2019 ident: 2023072707151057300_bib279 article-title: Neutrophils promote tumor resistance to radiation therapy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1901562116 – volume: 183 start-page: 1282 year: 2020 ident: 2023072707151057300_bib19 article-title: Co-option of neutrophil fates by tissue environments publication-title: Cell doi: 10.1016/j.cell.2020.10.003 – volume: 13 start-page: 690 year: 2014 ident: 2023072707151057300_bib104 article-title: Impaired neutrophil extracellular trap formation: A novel defect in the innate immune system of aged individuals publication-title: Aging Cell doi: 10.1111/acel.12222 – volume: 23 start-page: 121 year: 2018 ident: 2023072707151057300_bib149 article-title: Leukotriene B4-mediated neutrophil recruitment causes pulmonary capillaritis during lethal fungal sepsis publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.11.009 – volume: 53 start-page: 319 year: 2020 ident: 2023072707151057300_bib70 article-title: Coexpression of CD71 and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow publication-title: Immunity doi: 10.1016/j.immuni.2020.07.017 – volume: 493 start-page: 266 year: 2020 ident: 2023072707151057300_bib159 article-title: 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression publication-title: Cancer Lett. doi: 10.1016/j.canlet.2020.08.020 – volume: 9 start-page: 811 year: 2021 ident: 2023072707151057300_bib229 article-title: Tumor-associated neutrophils drive B-cell recruitment and their differentiation to plasma cells publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-20-0839 – volume: 78 start-page: 2680 year: 2018 ident: 2023072707151057300_bib85 article-title: TRPM2 mediates neutrophil killing of disseminated tumor cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-3614 – volume: 117 start-page: 7326 year: 2020 ident: 2023072707151057300_bib249 article-title: NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1909546117 – year: 2020 ident: 2023072707151057300_bib117 article-title: T cell immunotherapies trigger neutrophil activation to eliminate tumor antigen escape variants publication-title: SSRN doi: 10.2139/ssrn.3596599 – volume: 162 start-page: bqab095 year: 2021 ident: 2023072707151057300_bib16 article-title: The cholesterol metabolite 27HC increases secretion of extracellular vesicles which promote breast cancer progression publication-title: Endocrinology doi: 10.1210/endocr/bqab095 – volume: 16 start-page: 626 year: 2016 ident: 2023072707151057300_bib141 article-title: Sex differences in immune responses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.90 – volume: 61 start-page: 1105 year: 1983 ident: 2023072707151057300_bib201 article-title: Density heterogeneity of neutrophilic polymorphonuclear leukocytes: Gradient fractionation and relationship to chemotactic stimulation publication-title: Blood doi: 10.1182/blood.V61.6.1105.1105 – volume: 176 start-page: 231 year: 2007 ident: 2023072707151057300_bib83 article-title: Novel cell death program leads to neutrophil extracellular traps publication-title: J. Cell Biol. doi: 10.1083/jcb.200606027 – volume: 6 year: 2021 ident: 2023072707151057300_bib232 article-title: Resident Kupffer cells and neutrophils drive liver toxicity in cancer immunotherapy publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abi7083 – volume: 11 year: 2015 ident: 2023072707151057300_bib127 article-title: Virus-induced NETs–critical component of host defense or pathogenic mediator? publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004546 – volume: 112 start-page: E566 year: 2015 ident: 2023072707151057300_bib43 article-title: Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1424927112 – volume: 19 start-page: 1236 year: 2018 ident: 2023072707151057300_bib199 article-title: Unique pattern of neutrophil migration and function during tumor progression publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0229-5 – volume: 8 start-page: 361ra138 year: 2016 ident: 2023072707151057300_bib195 article-title: Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps publication-title: Sci. Transl Med. doi: 10.1126/scitranslmed.aag1711 – volume: 30 start-page: 243 year: 2016 ident: 2023072707151057300_bib155 article-title: Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.021 – volume: 15 start-page: 938 year: 2014 ident: 2023072707151057300_bib48 article-title: Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion publication-title: Nat. Immunol. doi: 10.1038/ni.2984 – volume: 27 start-page: 3902 year: 2019 ident: 2023072707151057300_bib122 article-title: Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.05.091 – volume: 108 start-page: 20012 year: 2011 ident: 2023072707151057300_bib193 article-title: Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1116110108 – volume: 17 start-page: 1381 year: 2011 ident: 2023072707151057300_bib205 article-title: The neutrophil in vascular inflammation publication-title: Nat. Med. doi: 10.1038/nm.2514 – volume: 11 start-page: 189 year: 2015 ident: 2023072707151057300_bib150 article-title: Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1735 – volume: 11 start-page: 5439 year: 2020 ident: 2023072707151057300_bib100 article-title: Immune modulatory effects of oncogenic KRAS in cancer publication-title: Nat. Commun. doi: 10.1038/s41467-020-19288-6 – volume: 359 start-page: 104 year: 2018 ident: 2023072707151057300_bib170 article-title: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients publication-title: Science doi: 10.1126/science.aao3290 – volume: 572 start-page: 538 year: 2019 ident: 2023072707151057300_bib275 article-title: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis publication-title: Nature doi: 10.1038/s41586-019-1450-6 – volume: 215 start-page: 2778 year: 2018 ident: 2023072707151057300_bib41 article-title: Neutrophils instruct homeostatic and pathological states in naive tissues publication-title: J. Exp. Med. doi: 10.1084/jem.20181468 – volume: 12 start-page: 5687 year: 2021 ident: 2023072707151057300_bib84 article-title: Treatment with granulocyte-colony stimulating factor (G-CSF) is not associated with increased risk of brain metastasis in patients with de novo stage IV breast cancer publication-title: J. Cancer doi: 10.7150/jca.63159 – volume: 178 start-page: 686 year: 2019 ident: 2023072707151057300_bib126 article-title: Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner publication-title: Cell doi: 10.1016/j.cell.2019.05.054 – volume: 218 year: 2021 ident: 2023072707151057300_bib261 article-title: Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice publication-title: J. Exp. Med. doi: 10.1084/jem.20201803 – volume: 358 year: 2017 ident: 2023072707151057300_bib77 article-title: Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils publication-title: Science doi: 10.1126/science.aal5081 |
SSID | ssj0014456 |
Score | 2.6928506 |
SecondaryResourceType | review_article |
Snippet | Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of... There is a growing appreciation for the vastness of neutrophil functional states in cancer. Quail et al. provide a consensus statement on mechanisms governing... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Cancer Focus Humans Immunity, Innate Inflammation Innate immunity and inflammation Neoplasms - genetics Neutrophils Phenotype Review Tumor immunology |
Title | Neutrophil phenotypes and functions in cancer: A consensus statement |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35522219 https://www.proquest.com/docview/2661078214 https://pubmed.ncbi.nlm.nih.gov/PMC9086501 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbbFEIupe9uH0GF9rS49UOS5d42j5IWEigksDcjyVriNrUXr31ofn1HtizbSQNtL2axtWPQNzv7afTNCKF3PI45ZREwtzUNPaK08KSIlBdItmZrxdY6MrXDp2fs5IJ8XdHVbPZlpFpqavlBXf-xruR_UIV7gKupkv0HZJ1RuAGfAV-4AsJw_SuMz3RTV-XmMr9aGKlWafKpXc9l83flVOLKIFt1NejKqKeLbbNdtKVETvfyffCaEUed9P-_uQ3_rRFdArkrUxeDSHhpNFft0ekHZfWjdLev8zZdDXHEiHWHJGplzws40PX2l92ospkIWMSaZITtY22jJ_HNfjAfh9c-JOZDsLwVtn1OTNjWpjVAaFRewXgYzM_mZwshkCPgM9bgtE12_-geuh_CiqGt-145tQ8sGymzdQ_wso_jV-2h3f7LU3Jya8VxUzg7YiLnD9EDCw9edv7wCM108Rjtnlp0nqCjwS3w4BYY3AI7t8B5gTu3-ISX2DkFdk7xFF18Pj4_PPHsYRmeItSvPRFFMgkyygOdyDAOBMs0cA_mZ8DgdQg_O18JxUQYSCGTOCQ6i0iiQqp4JCnE9mdopygL_QJhEWSx5JqShAuSyIyDPUKVYAlYkKE_R4t-llJlO8mbA02u0lbRwEkK05v20ztH793oTddB5Y5xb_sJTyHEmX0rUeiy2aaGQxomG5A5et4B4Cz1yM1RPIHGDTDt06dPivyybaOewGqe-sHLO22-QnuDm79GO3XV6DdAQWu53zrXb1ItiXA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutrophil+phenotypes+and+functions+in+cancer%3A+A+consensus+statement&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Quail%2C+Daniela+F&rft.au=Amulic%2C+Borko&rft.au=Aziz%2C+Monowar&rft.au=Barnes%2C+Betsy+J&rft.date=2022-06-06&rft.eissn=1540-9538&rft.volume=219&rft.issue=6&rft_id=info:doi/10.1084%2Fjem.20220011&rft_id=info%3Apmid%2F35522219&rft.externalDocID=35522219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |