Deep Learning-Based Image Segmentation on Multimodal Medical Imaging

Multimodality medical imaging techniques have been increasingly applied in clinical practice and research studies. Corresponding multimodal image analysis and ensemble learning schemes have seen rapid growth and bring unique value to medical applications. Motivated by the recent success of applying...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on radiation and plasma medical sciences Vol. 3; no. 2; pp. 162 - 169
Main Authors Guo, Zhe, Li, Xiang, Huang, Heng, Guo, Ning, Li, Quanzheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multimodality medical imaging techniques have been increasingly applied in clinical practice and research studies. Corresponding multimodal image analysis and ensemble learning schemes have seen rapid growth and bring unique value to medical applications. Motivated by the recent success of applying deep learning methods to medical image processing, we first propose an algorithmic architecture for supervised multimodal image analysis with cross-modality fusion at the feature learning level, classifier level, and decision-making level. We then design and implement an image segmentation system based on deep convolutional neural networks to contour the lesions of soft tissue sarcomas using multimodal images, including those from magnetic resonance imaging, computed tomography, and positron emission tomography. The network trained with multimodal images shows superior performance compared to networks trained with single-modal images. For the task of tumor segmentation, performing image fusion within the network (i.e., fusing at convolutional or fully connected layers) is generally better than fusing images at the network output (i.e., voting). This paper provides empirical guidance for the design and application of multimodal image analysis.
AbstractList Multimodality medical imaging techniques have been increasingly applied in clinical practice and research studies. Corresponding multimodal image analysis and ensemble learning schemes have seen rapid growth and bring unique value to medical applications. Motivated by the recent success of applying deep learning methods to medical image processing, we first propose an algorithmic architecture for supervised multimodal image analysis with cross-modality fusion at the feature learning level, classifier level, and decision-making level. We then design and implement an image segmentation system based on deep convolutional neural networks to contour the lesions of soft tissue sarcomas using multimodal images, including those from magnetic resonance imaging, computed tomography, and positron emission tomography. The network trained with multimodal images shows superior performance compared to networks trained with single-modal images. For the task of tumor segmentation, performing image fusion within the network (i.e., fusing at convolutional or fully connected layers) is generally better than fusing images at the network output (i.e., voting). This paper provides empirical guidance for the design and application of multimodal image analysis.
Multi-modality medical imaging techniques have been increasingly applied in clinical practice and research studies. Corresponding multi-modal image analysis and ensemble learning schemes have seen rapid growth and bring unique value to medical applications. Motivated by the recent success of applying deep learning methods to medical image processing, we first propose an algorithmic architecture for supervised multi-modal image analysis with cross-modality fusion at the feature learning level, classifier level, and decision-making level. We then design and implement an image segmentation system based on deep Convolutional Neural Networks (CNN) to contour the lesions of soft tissue sarcomas using multi-modal images, including those from Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET). The network trained with multi-modal images shows superior performance compared to networks trained with single-modal images. For the task of tumor segmentation, performing image fusion within the network (i.e. fusing at convolutional or fully connected layers) is generally better than fusing images at the network output (i.e. voting). This study provides empirical guidance for the design and application of multi-modal image analysis.
Multi-modality medical imaging techniques have been increasingly applied in clinical practice and research studies. Corresponding multi-modal image analysis and ensemble learning schemes have seen rapid growth and bring unique value to medical applications. Motivated by the recent success of applying deep learning methods to medical image processing, we first propose an algorithmic architecture for supervised multi-modal image analysis with cross-modality fusion at the feature learning level, classifier level, and decision-making level. We then design and implement an image segmentation system based on deep Convolutional Neural Networks (CNN) to contour the lesions of soft tissue sarcomas using multi-modal images, including those from Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET). The network trained with multi-modal images shows superior performance compared to networks trained with single-modal images. For the task of tumor segmentation, performing image fusion within the network (i.e. fusing at convolutional or fully connected layers) is generally better than fusing images at the network output (i.e. voting). This study provides empirical guidance for the design and application of multi-modal image analysis.Multi-modality medical imaging techniques have been increasingly applied in clinical practice and research studies. Corresponding multi-modal image analysis and ensemble learning schemes have seen rapid growth and bring unique value to medical applications. Motivated by the recent success of applying deep learning methods to medical image processing, we first propose an algorithmic architecture for supervised multi-modal image analysis with cross-modality fusion at the feature learning level, classifier level, and decision-making level. We then design and implement an image segmentation system based on deep Convolutional Neural Networks (CNN) to contour the lesions of soft tissue sarcomas using multi-modal images, including those from Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET). The network trained with multi-modal images shows superior performance compared to networks trained with single-modal images. For the task of tumor segmentation, performing image fusion within the network (i.e. fusing at convolutional or fully connected layers) is generally better than fusing images at the network output (i.e. voting). This study provides empirical guidance for the design and application of multi-modal image analysis.
Author Guo, Zhe
Huang, Heng
Li, Xiang
Guo, Ning
Li, Quanzheng
Author_xml – sequence: 1
  givenname: Zhe
  orcidid: 0000-0003-4080-2449
  surname: Guo
  fullname: Guo, Zhe
  email: guo_zion@bit.edu.cn
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Xiang
  orcidid: 0000-0002-9851-6376
  surname: Li
  fullname: Li, Xiang
  email: xli60@mgh.harvard.edu
  organization: Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
– sequence: 3
  givenname: Heng
  surname: Huang
  fullname: Huang, Heng
  email: heng.huang@pitt.edu
  organization: Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 4
  givenname: Ning
  surname: Guo
  fullname: Guo, Ning
  email: guo.ning@mgh.harvard.edu
  organization: Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
– sequence: 5
  givenname: Quanzheng
  orcidid: 0000-0002-9651-5820
  surname: Li
  fullname: Li, Quanzheng
  email: li.quanzheng@mgh.harvard.edu
  organization: Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34722958$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtLwzAYhoMoHvcHFKTgjTedOTRtciPoPA02FN19iM23GWmT2bSC_97MzaFeCIEvJM_7nd49tOm8A4QOCe4TguXZ5PFh_NSnmIg-FRIzLjfQLs1ymRYMs831nZAd1AvhFWNMCkFlxrfRDssKSiUXu-jqCmCejEA3zrpZeqkDmGRY6xkkTzCrwbW6td4l8Yy7qrW1N7pKxmBsGeMCjLIDtDXVVYDeKu6jyc31ZHCXju5vh4OLUVpmHLep1KzgWSEMSKEFphxn5plTbYBzPgUtBZPcYEZKJqZxsNxIBnzxlIPJC7aPzpdp591zDaaMzTW6UvPG1rr5UF5b9fvH2Rc18-9KcM4wxTHB6SpB4986CK2qbSihqrQD3wVFuSSUCJblET35g776rnFxOhU3lxNCcioidfyzo3Ur3_uNAF0CZeNDaGC6RghWCx_Vl49q4aNa-RhF4o-otEsb4lS2-l96tJRaAFjXElxKXAj2CY_qqX0
CODEN ITRPFI
CitedBy_id crossref_primary_10_1109_JBHI_2023_3262548
crossref_primary_10_1016_j_ejso_2025_109760
crossref_primary_10_1038_s41598_024_51329_8
crossref_primary_10_1109_ACCESS_2019_2946582
crossref_primary_10_1177_20552076241291306
crossref_primary_10_1049_iet_ipr_2019_0900
crossref_primary_10_1016_j_engappai_2023_105955
crossref_primary_10_1002_mp_16703
crossref_primary_10_2174_1573405616666200218130043
crossref_primary_10_1016_j_chaos_2020_110225
crossref_primary_10_1007_s00259_023_06299_w
crossref_primary_10_1016_j_gsf_2020_07_007
crossref_primary_10_1016_j_media_2021_102135
crossref_primary_10_1186_s13007_023_01015_z
crossref_primary_10_1053_j_semnuclmed_2020_09_002
crossref_primary_10_1016_j_cobme_2022_100382
crossref_primary_10_1007_s40747_022_00660_6
crossref_primary_10_1007_s00259_021_05624_5
crossref_primary_10_1021_acsnano_0c09685
crossref_primary_10_1109_TRPMS_2020_3033172
crossref_primary_10_1016_j_bspc_2021_103212
crossref_primary_10_3389_fonc_2022_950706
crossref_primary_10_1038_s41598_019_51096_x
crossref_primary_10_1007_s42979_022_01088_y
crossref_primary_10_1007_s13246_023_01359_9
crossref_primary_10_1109_ACCESS_2022_3182055
crossref_primary_10_1109_TRPMS_2024_3417901
crossref_primary_10_3390_app10155032
crossref_primary_10_1016_j_stlm_2021_100034
crossref_primary_10_1109_JBHI_2020_3030853
crossref_primary_10_3390_diagnostics10110904
crossref_primary_10_1016_j_inffus_2022_12_010
crossref_primary_10_1109_TRPMS_2022_3221471
crossref_primary_10_23736_S1824_4785_19_03213_8
crossref_primary_10_1108_DTA_08_2022_0330
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_1007_s10462_023_10621_1
crossref_primary_10_1007_s40747_024_01708_5
crossref_primary_10_1145_3468506
crossref_primary_10_1016_j_asoc_2022_109631
crossref_primary_10_3390_ijms22084159
crossref_primary_10_1007_s41871_024_00223_y
crossref_primary_10_1016_j_mri_2024_04_028
crossref_primary_10_1111_cgf_15250
crossref_primary_10_1109_TRPMS_2021_3059780
crossref_primary_10_1007_s11831_023_09940_x
crossref_primary_10_1109_ACCESS_2025_3550015
crossref_primary_10_3390_app14177776
crossref_primary_10_1080_21681163_2024_2332398
crossref_primary_10_1007_s00259_019_04373_w
crossref_primary_10_1109_TRPMS_2024_3380090
crossref_primary_10_1109_OJSP_2024_3389812
crossref_primary_10_1007_s40995_024_01729_2
crossref_primary_10_1007_s11227_022_04631_z
crossref_primary_10_1002_rob_22219
crossref_primary_10_3389_fpubh_2023_1273253
crossref_primary_10_1109_ACCESS_2020_2964111
crossref_primary_10_1016_j_cag_2023_08_030
crossref_primary_10_1002_mp_14847
crossref_primary_10_1007_s11760_022_02439_1
crossref_primary_10_1007_s10278_024_01062_5
crossref_primary_10_1016_j_semcancer_2020_04_002
crossref_primary_10_1016_j_cbpa_2021_102111
crossref_primary_10_1002_jmri_28519
crossref_primary_10_1109_TRPMS_2020_3025071
crossref_primary_10_1109_ACCESS_2021_3052791
crossref_primary_10_2106_JBJS_RVW_24_00057
crossref_primary_10_1016_j_eswa_2024_126239
crossref_primary_10_3390_s24020715
crossref_primary_10_1227_neu_0000000000002018
crossref_primary_10_1016_j_isprsjprs_2021_04_012
crossref_primary_10_1109_TCBB_2019_2963873
crossref_primary_10_1016_j_cmpb_2023_107875
crossref_primary_10_3233_JIFS_237994
crossref_primary_10_24113_ijoscience_v7i4_387
crossref_primary_10_3390_brainsci11081055
crossref_primary_10_1007_s11633_022_1329_0
crossref_primary_10_1007_s11042_020_09271_0
crossref_primary_10_1088_1361_6579_ac10ab
crossref_primary_10_3390_s22020523
crossref_primary_10_2174_2666255816666230601150351
crossref_primary_10_1016_j_fraope_2024_100149
crossref_primary_10_1007_s00330_024_11167_8
crossref_primary_10_3390_electronics10222855
crossref_primary_10_1109_TCBB_2023_3281638
crossref_primary_10_1109_TRPMS_2021_3066428
crossref_primary_10_1109_JBHI_2024_3426664
crossref_primary_10_1088_1361_6560_ac72f0
crossref_primary_10_1016_j_compbiomed_2020_103669
crossref_primary_10_1098_rsta_2020_0400
crossref_primary_10_1016_j_bspc_2020_102395
crossref_primary_10_1016_j_patcog_2022_108956
crossref_primary_10_1016_j_bspc_2023_105658
crossref_primary_10_1016_j_bspc_2021_103319
crossref_primary_10_1002_smtd_202001025
crossref_primary_10_1002_ima_22381
crossref_primary_10_3389_fpsyg_2021_741665
crossref_primary_10_3390_s24186054
crossref_primary_10_1007_s13139_022_00745_7
crossref_primary_10_1016_j_cmpb_2021_106043
crossref_primary_10_32604_iasc_2023_031470
crossref_primary_10_1088_1742_6596_1828_1_012036
crossref_primary_10_1007_s00500_023_09417_w
crossref_primary_10_1049_ipr2_12434
crossref_primary_10_3390_s22124530
crossref_primary_10_1080_0284186X_2021_1994645
crossref_primary_10_1007_s00432_023_04787_y
crossref_primary_10_32604_cmc_2024_054558
crossref_primary_10_1007_s00138_021_01261_y
crossref_primary_10_1016_j_jocs_2024_102384
crossref_primary_10_1016_j_compeleceng_2022_108545
crossref_primary_10_1007_s13721_024_00491_0
crossref_primary_10_1016_j_compbiomed_2024_108827
crossref_primary_10_1016_j_patcog_2022_108858
crossref_primary_10_1007_s11220_021_00330_w
crossref_primary_10_1145_3627707
crossref_primary_10_1515_biol_2022_0665
crossref_primary_10_1109_TMI_2022_3210113
crossref_primary_10_1007_s12350_022_03007_3
crossref_primary_10_1007_s00259_021_05244_z
crossref_primary_10_1007_s11760_020_01768_3
crossref_primary_10_1109_ACCESS_2024_3480271
crossref_primary_10_1007_s00259_022_05891_w
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_1186_s12859_023_05486_8
crossref_primary_10_1088_1361_6560_ac6d9c
crossref_primary_10_1007_s12350_022_03010_8
crossref_primary_10_1109_JIOT_2021_3051414
crossref_primary_10_1109_JBHI_2022_3220788
crossref_primary_10_1016_j_knosys_2024_112536
crossref_primary_10_1002_mp_16338
crossref_primary_10_1109_TBME_2023_3297249
crossref_primary_10_1007_s00259_021_05341_z
crossref_primary_10_3169_itej_76_78
crossref_primary_10_2352_J_ImagingSci_Technol_2020_64_6_060402
crossref_primary_10_3390_bdcc6010029
crossref_primary_10_1016_j_compscitech_2022_109853
crossref_primary_10_1109_TRPMS_2020_2983391
crossref_primary_10_3390_jsan13060080
crossref_primary_10_1155_2020_8866700
crossref_primary_10_1016_j_bbe_2024_05_004
crossref_primary_10_2174_1573405616999200817103920
crossref_primary_10_1109_TRPMS_2020_2986414
crossref_primary_10_1038_s41598_020_62414_z
crossref_primary_10_1016_j_bioactmat_2024_11_021
crossref_primary_10_1109_TRPMS_2019_2911597
crossref_primary_10_1117_1_JMI_11_6_062608
crossref_primary_10_1016_j_bspc_2022_104344
crossref_primary_10_1109_ACCESS_2019_2942937
crossref_primary_10_3389_fnins_2022_801769
crossref_primary_10_1109_TRPMS_2023_3332619
crossref_primary_10_1016_j_metrad_2024_100080
crossref_primary_10_1109_TGRS_2021_3079294
crossref_primary_10_1109_TRPMS_2023_3239520
crossref_primary_10_1007_s11042_024_19333_2
crossref_primary_10_3390_diagnostics12092031
crossref_primary_10_1002_jmri_28126
crossref_primary_10_3390_app15062987
crossref_primary_10_1016_j_ejmp_2021_04_016
crossref_primary_10_2174_1573405616666210108122048
crossref_primary_10_1016_j_compbiomed_2023_106715
crossref_primary_10_1155_2022_9640177
crossref_primary_10_1016_j_csbj_2025_02_024
crossref_primary_10_1016_j_eswa_2023_122567
crossref_primary_10_1016_j_neunet_2023_11_006
crossref_primary_10_1007_s11042_023_16490_8
crossref_primary_10_3233_XST_230429
crossref_primary_10_4103_jmp_jmp_52_22
crossref_primary_10_1007_s11042_024_18206_y
crossref_primary_10_1093_jamia_ocaa302
crossref_primary_10_26701_ems_1262875
crossref_primary_10_3390_jimaging9070138
crossref_primary_10_1088_1361_6560_ab440d
crossref_primary_10_3390_life14010145
crossref_primary_10_1038_s41598_024_63739_9
crossref_primary_10_1016_j_jrras_2024_101210
crossref_primary_10_1038_s41598_025_94267_9
crossref_primary_10_1002_mp_16615
crossref_primary_10_1007_s00371_020_02014_0
crossref_primary_10_1016_j_eswa_2022_117006
crossref_primary_10_32604_cmc_2022_020561
crossref_primary_10_1016_j_array_2019_100004
crossref_primary_10_1016_j_scs_2020_102589
crossref_primary_10_1038_s41598_023_42880_x
crossref_primary_10_1016_j_measurement_2025_116701
crossref_primary_10_1088_1361_6641_abd925
crossref_primary_10_1016_j_apacoust_2023_109278
crossref_primary_10_32604_csse_2023_036455
crossref_primary_10_1007_s10278_023_00900_2
crossref_primary_10_1016_j_ebiom_2019_08_054
crossref_primary_10_1109_TRPMS_2020_3030611
crossref_primary_10_1016_j_bspc_2024_106876
crossref_primary_10_1007_s00521_022_07583_w
crossref_primary_10_1007_s10489_022_03610_4
crossref_primary_10_1002_mp_14903
crossref_primary_10_1007_s10143_023_02014_3
crossref_primary_10_3390_bioengineering11030278
crossref_primary_10_1155_2024_4678554
crossref_primary_10_1007_s40846_021_00615_1
crossref_primary_10_2478_amns_2025_0210
crossref_primary_10_1109_TRPMS_2020_3030045
crossref_primary_10_1016_j_jceh_2024_101397
crossref_primary_10_1109_ACCESS_2020_2987848
crossref_primary_10_1007_s10278_024_01105_x
crossref_primary_10_1007_s12652_022_03749_5
crossref_primary_10_1109_ACCESS_2024_3525183
crossref_primary_10_1109_TRPMS_2024_3398360
crossref_primary_10_1186_s12880_022_00933_z
crossref_primary_10_1109_TRPMS_2020_2995717
crossref_primary_10_1007_s11042_024_20239_2
crossref_primary_10_2967_jnumed_118_220582
crossref_primary_10_1007_s12530_024_09648_8
Cites_doi 10.1109/ICBBE.2010.5517037
10.1109/TMI.2016.2538465
10.1016/j.neuroimage.2010.01.062
10.1016/j.inffus.2013.12.002
10.1007/978-3-030-00937-3_79
10.1093/annonc/mdu254
10.1016/j.media.2017.06.014
10.1109/ICDM.2012.24
10.1118/1.4948498
10.1006/nimg.2002.1071
10.1016/j.media.2017.07.005
10.1016/j.media.2013.05.004
10.1109/34.709601
10.1109/TMI.2014.2377694
10.1016/j.eswa.2014.09.020
10.1007/978-3-319-46723-8_14
10.1007/s10462-009-9124-7
10.1007/978-3-319-24574-4_78
10.1016/j.inffus.2012.09.005
10.1145/2487575.2487612
10.1007/s10278-013-9622-7
10.1155/2010/506182
10.1023/A:1010933404324
10.1109/TMM.2013.2244870
10.1118/1.2842076
10.1007/978-3-319-66179-7_65
10.1038/nature14539
10.1016/j.jacr.2017.12.026
10.1016/j.asoc.2016.03.028
10.1146/annurev-bioeng-071516-044442
10.1109/TBME.2015.2466616
10.1109/TCBB.2014.2377729
10.1088/0031-9155/60/14/5471
10.1007/978-3-319-46723-8_48
10.1002/mp.12918
10.1109/TMI.2013.2265603
10.2307/1932409
10.1109/ISBI.2007.356923
10.1007/BF00116037
10.1038/srep22161
10.1016/j.neuroimage.2014.06.077
10.1016/j.media.2016.05.004
10.1186/1471-2121-8-40
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1109/TRPMS.2018.2890359
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2469-7303
EndPage 169
ExternalDocumentID PMC8553020
34722958
10_1109_TRPMS_2018_2890359
8599078
Genre orig-research
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: 1P41EB022544-01A1
  funderid: 10.13039/100000070
– fundername: National Institutes of Health
  grantid: C06 CA059267
  funderid: 10.13039/100000002
– fundername: National Institute on Aging
  grantid: 1RF1AG052653-01A1
  funderid: 10.13039/100000049
– fundername: NCI NIH HHS
  grantid: C06 CA059267
– fundername: NIA NIH HHS
  grantid: RF1 AG052653
– fundername: NIBIB NIH HHS
  grantid: P41 EB022544
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
NPM
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c450t-9a375478de98a802504db52ade555fea98395d031c38f0186d93e595d06ed673
IEDL.DBID RIE
ISSN 2469-7311
IngestDate Thu Aug 21 18:08:12 EDT 2025
Fri Jul 11 02:30:31 EDT 2025
Mon Jun 30 17:58:49 EDT 2025
Thu Apr 03 06:53:25 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Tue Jul 01 03:04:14 EDT 2025
Wed Aug 27 02:29:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Convolutional Neural Network
Computed Tomography (CT)
Magnetic Resonance Imaging (MRI)
Multi-modal Image
Positron Emission Tomography (PET)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-9a375478de98a802504db52ade555fea98395d031c38f0186d93e595d06ed673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Co-first authors, these authors contribute equally.
ORCID 0000-0003-4080-2449
0000-0002-9651-5820
0000-0002-9851-6376
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8553020
PMID 34722958
PQID 2296111628
PQPubID 4437208
PageCount 8
ParticipantIDs pubmed_primary_34722958
crossref_primary_10_1109_TRPMS_2018_2890359
ieee_primary_8599078
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8553020
proquest_journals_2296111628
crossref_citationtrail_10_1109_TRPMS_2018_2890359
proquest_miscellaneous_2591218346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on radiation and plasma medical sciences
PublicationTitleAbbrev TRPMS
PublicationTitleAlternate IEEE Trans Radiat Plasma Med Sci
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
group (ref39) 2014; 25
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref17
ref38
ref16
ref18
ref46
ref24
ref48
ref26
ref47
ref25
ref42
ho (ref41) 1998; 20
ronneberger (ref45) 2015
ref22
ref44
ref21
ref43
beyer (ref1) 2000; 41
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
zhu (ref23) 2014
lorenzi (ref29) 2016; 6
ref40
wang (ref20) 2015; 37
ngiam (ref19) 2011
References_xml – ident: ref33
  doi: 10.1109/ICBBE.2010.5517037
– ident: ref13
  doi: 10.1109/TMI.2016.2538465
– ident: ref28
  doi: 10.1016/j.neuroimage.2010.01.062
– ident: ref7
  doi: 10.1016/j.inffus.2013.12.002
– ident: ref46
  doi: 10.1007/978-3-030-00937-3_79
– volume: 25
  start-page: 102
  year: 2014
  ident: ref39
  article-title: Soft tissue and visceral sarcomas: ESMO Clinical practice guidelines for diagnosis, treatment and follow-up
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdu254
– ident: ref16
  doi: 10.1016/j.media.2017.06.014
– ident: ref21
  doi: 10.1109/ICDM.2012.24
– ident: ref4
  doi: 10.1118/1.4948498
– ident: ref3
  doi: 10.1006/nimg.2002.1071
– ident: ref8
  doi: 10.1016/j.media.2017.07.005
– ident: ref2
  doi: 10.1016/j.media.2013.05.004
– volume: 20
  start-page: 832
  year: 1998
  ident: ref41
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– ident: ref5
  doi: 10.1109/TMI.2014.2377694
– ident: ref15
  doi: 10.1016/j.eswa.2014.09.020
– start-page: 1
  year: 2011
  ident: ref19
  article-title: Multimodal deep learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref25
  doi: 10.1007/978-3-319-46723-8_14
– volume: 37
  start-page: 1083
  year: 2015
  ident: ref20
  article-title: On deep multi-view representation learning
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– ident: ref6
  doi: 10.1007/s10462-009-9124-7
– ident: ref24
  doi: 10.1007/978-3-319-24574-4_78
– ident: ref32
  doi: 10.1016/j.inffus.2012.09.005
– ident: ref22
  doi: 10.1145/2487575.2487612
– ident: ref38
  doi: 10.1007/s10278-013-9622-7
– ident: ref40
  doi: 10.1155/2010/506182
– ident: ref42
  doi: 10.1023/A:1010933404324
– ident: ref31
  doi: 10.1109/TMM.2013.2244870
– ident: ref35
  doi: 10.1118/1.2842076
– volume: 41
  start-page: 1369
  year: 2000
  ident: ref1
  article-title: A combined PET/CT scanner for clinical oncology
  publication-title: J Nucl Med
– start-page: 1
  year: 2014
  ident: ref23
  article-title: Multi-view perceptron: A deep model for learning face identity and view representations
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1007/978-3-319-66179-7_65
– ident: ref9
  doi: 10.1038/nature14539
– ident: ref11
  doi: 10.1016/j.jacr.2017.12.026
– ident: ref30
  doi: 10.1016/j.asoc.2016.03.028
– ident: ref10
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: ref34
  doi: 10.1109/TBME.2015.2466616
– ident: ref27
  doi: 10.1109/TCBB.2014.2377729
– ident: ref37
  doi: 10.1088/0031-9155/60/14/5471
– ident: ref14
  doi: 10.1007/978-3-319-46723-8_48
– ident: ref18
  doi: 10.1002/mp.12918
– ident: ref48
  doi: 10.1109/TMI.2013.2265603
– ident: ref43
  doi: 10.2307/1932409
– ident: ref36
  doi: 10.1109/ISBI.2007.356923
– ident: ref44
  doi: 10.1007/BF00116037
– volume: 6
  year: 2016
  ident: ref29
  article-title: Multimodal image analysis in Alzheimer's disease via statistical modelling of non-local intensity correlations
  publication-title: Sci Rep
  doi: 10.1038/srep22161
– ident: ref26
  doi: 10.1016/j.neuroimage.2014.06.077
– ident: ref12
  doi: 10.1016/j.media.2016.05.004
– start-page: 234
  year: 2015
  ident: ref45
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Med Image Comput Comput -Assist Intervent (MICCAI)
– ident: ref47
  doi: 10.1186/1471-2121-8-40
SSID ssj0001782945
Score 2.5659351
Snippet Multimodality medical imaging techniques have been increasingly applied in clinical practice and research studies. Corresponding multimodal image analysis and...
Multi-modality medical imaging techniques have been increasingly applied in clinical practice and research studies. Corresponding multi-modal image analysis...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 162
SubjectTerms Artificial neural networks
Biomedical imaging
Clinical decision making
Computed tomography
Computed tomography (CT)
Computer vision
convolutional neural network (CNN)
Decision making
Deep learning
Empirical analysis
Feature extraction
Image analysis
Image processing
Image segmentation
Imaging techniques
Machine learning
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Medical imaging
Medical research
multimodal image
Neural networks
Positron emission
Positron emission tomography
positron emission tomography (PET)
Soft tissues
Tomography
Tumors
Title Deep Learning-Based Image Segmentation on Multimodal Medical Imaging
URI https://ieeexplore.ieee.org/document/8599078
https://www.ncbi.nlm.nih.gov/pubmed/34722958
https://www.proquest.com/docview/2296111628
https://www.proquest.com/docview/2591218346
https://pubmed.ncbi.nlm.nih.gov/PMC8553020
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UELz4ftQXFbxp13bTNMnRJyroxRW8lbSZVdHtiu5e_PVO0rQ-EBFKKc20NJlJZqaZ-QZgl0x4wcixiPqFwCg1SkeKLGc68QJJfZXCYeldXWfnt-nlHb-bgP02FwYRXfAZduyl28s3w3Jsf5UdSE5rp5CTMEmOW52r9fk_hVSdcjWJu-TxRYIlSZMjE6uDHjnxNzaQS3bszhrjFi2UWaBEZYu9f1FJrsbKb-bmz6jJL2robA6umg7U0SdPnfGo6JTvP7Ad_9vDeZj19mh4WAvQAkxgtQjTLi60fFuCkxPEl9CDsN5HR6TzTHgxoEUovMH7gU9cqkI6XCrvYGjobX73xxHSY8vQOzvtHZ9HvvBCVKY8HkVK28K4QhpUUkuHcmYK3tWGuMf7qBVZVdzQclAy2acxzYxiyO2tDE0m2ApMVcMK1yAsjTQx14nGfpHGrCjIHEtMKg3TQiRdHUDSDH1eelByWxvjOXfOSaxyx7ncci73nAtgr33mpYbk-JN6yQ5zS-lHOIDNhsO5n7VvOUlDRmt_1qXmnbaZ5pvdRNEVDsdEw1Vizco0C2C1Foj23Y1ABSC-iUpLYLG8v7dUjw8O01u68k3x-u9fuwEz1CdVx75twtTodYxbZAyNim03Cz4AvdACaA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9Bp2m8wDYGZGNbJu1tS0niOLYfYQyVjfJCJ_EWOfEVEDRFtH3hr-fsOOFDaEKKoii-WLHv7Dvbd78D-E4mvGC0sIjGpcAoM0pHiixnuvESSX1VwmHpDY_zwb_szyk_XYKfXSwMIjrnM-zbR3eWb6bVwm6V7UhOc6eQy_CK9D5Pm2it-x0VUnbKZSVOac0XCZYkbZRMrHZGtIw_sa5csm_P1hi3eKHMQiUqm-79gVJyWVaeMzif-k0-UEQHazBsm9D4n1z2F_OyX90-QXd8aRvfwqq3SMPdRoTewRLW7-G18wytZuuwv494HXoY1rNoj7SeCQ8nNA2FJ3g28aFLdUiXC-adTA3V5s9_HCF99gFGB79HvwaRT70QVRmP55HSNjWukAaV1NLhnJmSp9oQ__gYtSK7ihuaEComx9SnuVEMuX2Vo8kF24BePa1xC8LKSBNznWgcl1nMypIMssRk0jAtRJLqAJK264vKw5Lb7BhXhVuexKpwnCss5wrPuQB-dN9cN6Ac_6Vet93cUfoeDmC75XDhx-2sIGnIafbPUyr-1hXTiLPHKLrG6YJouEqsYZnlAWw2AtHV3QpUAOKRqHQEFs37cUl9ce5QvaVL4BR_fP5vv8KbwWh4VBwdHv_9BCvUPtV4wm1Db36zwM9kGs3LL25E3AFdOwWy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-based+Image+Segmentation+on+Multimodal+Medical+Imaging&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Guo%2C+Zhe&rft.au=Li%2C+Xiang&rft.au=Huang%2C+Heng&rft.au=Guo%2C+Ning&rft.date=2019-03-01&rft.issn=2469-7311&rft.volume=3&rft.issue=2&rft.spage=162&rft_id=info:doi/10.1109%2Ftrpms.2018.2890359&rft_id=info%3Apmid%2F34722958&rft.externalDocID=34722958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon