The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies

Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynam...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 10; no. 5; p. 837
Main Authors Mulens-Arias, Vladimir, Rojas, José Manuel, Barber, Domingo F.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 27.04.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
AbstractList Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
Author Rojas, José Manuel
Mulens-Arias, Vladimir
Barber, Domingo F.
AuthorAffiliation 2 Animal Health Research Center (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, 28049 Madrid, Spain; rojas.jose@inia.es
1 Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain; vmulens@cnb.csic.es
AuthorAffiliation_xml – name: 2 Animal Health Research Center (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, 28049 Madrid, Spain; rojas.jose@inia.es
– name: 1 Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain; vmulens@cnb.csic.es
Author_xml – sequence: 1
  givenname: Vladimir
  orcidid: 0000-0003-3549-0700
  surname: Mulens-Arias
  fullname: Mulens-Arias, Vladimir
– sequence: 2
  givenname: José Manuel
  orcidid: 0000-0002-4055-3967
  surname: Rojas
  fullname: Rojas, José Manuel
– sequence: 3
  givenname: Domingo F.
  orcidid: 0000-0001-8824-5405
  surname: Barber
  fullname: Barber, Domingo F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32349362$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNUREvpjTPykQMLYzuOYw5IsOIjUkUv7dly7MnWVdYOdha19_7wetkt2iJ88ce887wej19WRyEGrKrXFN5zruBDMCFSAAEtl8-qEwZSLWql6NHB-rg6y_kGylCUt4K_qI4547XiDTup7i-vkXRhTj5kb8kXH8e48taMpHMYZj97zCQOpEsxkItb75D8LJ6TSbO3Y4mZ4Ehh-ESW0cw-rPJHchXwdhpjwhLClPwc0x0Z4lay7n0wZe-LQ0lLZioGr6rngxkznu3n0-rq29fL5Y_F-cX3bvn5fGFrAfNC1QPj3AxMNbIVtAFUaKVDUBJMKZQKrKVzxkmBvbUApqgEBSOss71j_LTqdlwXzY2ekl-bdKej8frPQUwrva9LCwuIDBppuah536hWCWGbcgFgoIworE871rTp1-hseaxkxifQp5Hgr_Uq_tZSUtYCFMDbPSDFXxvMs177bHEcTcC4yZpx1bQNMLqVvjn0-mvy2MYiYDuBTTHnhIO2fi7diFtrP2oKevtd9OF3KUnv_kl65P5X_gCNHMMj
CitedBy_id crossref_primary_10_26724_2079_8334_2021_3_77_194_198
crossref_primary_10_1016_j_cbi_2024_111150
crossref_primary_10_1016_j_physrep_2023_10_003
crossref_primary_10_1021_acs_accounts_0c00355
crossref_primary_10_3390_nano11082076
crossref_primary_10_1007_s11696_024_03373_x
crossref_primary_10_1016_j_jes_2024_01_034
crossref_primary_10_1186_s40360_023_00725_3
crossref_primary_10_3390_pharmaceutics15061711
crossref_primary_10_1021_acsami_0c20066
crossref_primary_10_2147_IJN_S475323
crossref_primary_10_1080_17435390_2022_2025467
crossref_primary_10_1007_s11274_024_03925_z
crossref_primary_10_1016_j_rechem_2024_101992
crossref_primary_10_1016_j_nano_2023_102675
crossref_primary_10_1039_D3TB02560H
crossref_primary_10_1186_s12951_021_01059_0
crossref_primary_10_1039_D3RA07733K
crossref_primary_10_3390_jfb15060169
crossref_primary_10_1186_s12951_022_01747_5
crossref_primary_10_1002_tqem_22172
crossref_primary_10_3390_nano10081551
crossref_primary_10_3389_fnano_2020_588915
crossref_primary_10_1080_10495398_2020_1842751
crossref_primary_10_3390_pharmaceutics15020552
crossref_primary_10_3390_pharmaceutics13091414
Cites_doi 10.35248/2157-7439.19.10.533
10.3389/fonc.2018.00547
10.20944/preprints201809.0148.v1
10.1002/smll.201201531
10.1021/nn4061012
10.1371/journal.pone.0196921
10.1021/bc7003928
10.1039/C4CC07644C
10.1186/s13287-017-0523-4
10.1182/blood-2011-02-337212
10.1016/j.biomaterials.2011.08.048
10.2147/IJN.S194352
10.1038/s41598-019-42370-z
10.1002/smll.201202111
10.1016/j.nano.2018.07.013
10.1021/acs.molpharmaceut.7b01103
10.1093/neuonc/nov171
10.2147/IJN.S193583
10.1038/jcbfm.2010.45
10.1371/journal.pone.0129008
10.1086/689590
10.1016/j.cellsig.2014.07.029
10.1038/s41598-018-29736-5
10.1182/blood-2014-12-567776
10.1016/j.canlet.2016.02.031
10.1002/jat.3606
10.3390/nano9111631
10.1021/am503909q
10.1186/s12989-019-0314-4
10.1002/jbm.a.36893
10.1016/j.biomaterials.2013.01.094
10.1182/blood-2016-06-721571
10.2147/IJN.S141582
10.2147/IJN.S215055
10.1002/jcp.1041490118
10.1002/jcp.26954
10.1684/ecn.2019.0431
10.1016/j.biomaterials.2010.08.003
10.1016/j.biomaterials.2019.02.026
10.1039/c0dt00689k
10.1186/s12951-015-0073-9
10.1002/ppsc.201700418
10.1089/ars.2011.3999
10.1021/acsami.8b17474
10.1093/rb/rbz024
10.1002/adma.201807211
10.1002/cam4.1670
10.1016/j.jhazmat.2015.10.041
10.3389/fimmu.2017.00073
10.1016/j.freeradbiomed.2018.10.411
10.1093/abbs/gmv063
10.1002/ijc.2910030402
10.1007/s11064-019-02790-9
10.1016/j.msec.2016.09.016
10.1016/j.smim.2013.01.001
10.1021/acs.molpharmaceut.9b00632
10.1002/eji.200939889
10.2174/0929867053764635
10.3389/fmicb.2019.01121
10.1182/blood-2017-12-822619
10.1007/s10856-007-3015-8
10.1146/annurev-physiol-021014-071649
10.3233/CH-151998
10.1016/j.jcis.2019.08.060
10.1177/0885328218817939
10.1186/s12885-016-2228-y
10.1089/ars.2017.7176
10.1007/s00109-015-1362-3
10.1016/j.it.2011.03.007
10.1038/s41577-019-0210-z
10.1186/s11671-018-2802-0
10.1371/journal.pone.0043403
10.1002/smll.201900224
10.1002/jcp.26360
10.1016/j.biomaterials.2010.08.111
10.7150/ntno.30052
10.1111/pin.12598
10.3892/or.2016.4660
10.1007/s11515-012-1217-z
10.1038/nri3863
10.1007/s11051-013-1874-0
10.1172/jci.insight.132964
10.1007/s13204-013-0216-y
10.1016/j.nano.2015.11.020
10.3390/molecules25051025
10.1038/bjc.1968.62
10.1182/blood-2016-07-729822
10.1088/0957-4484/14/7/201
10.1016/j.bbagen.2008.09.004
10.1016/j.nano.2015.08.005
10.1172/JCI44490
10.1016/j.molcel.2017.01.021
10.1136/bmj.1.5295.1800
10.1136/svn-2016-000042
10.1088/1361-6528/ab0ed0
10.1016/j.tibtech.2016.08.011
10.1136/bmj.1.5398.1588
10.1016/j.actbio.2017.05.047
10.1016/j.freeradbiomed.2018.06.037
10.1074/jbc.M116.739821
10.1021/acsami.5b05744
10.1093/rb/rbx032
10.1111/febs.14847
10.1007/s12026-010-8199-1
10.1007/s00018-012-1031-4
10.1016/j.abb.2019.108186
10.1016/j.biomaterials.2019.119464
10.3389/fphar.2018.00831
10.1007/s00109-019-01845-2
10.1186/s11671-019-3209-2
10.1016/j.actbio.2014.07.027
10.5045/br.2019.54.1.10
10.1021/acsami.9b08318
10.1136/bmj.1.5127.947
10.1039/C8NR03364A
10.1038/nnano.2016.168
10.1016/j.cellimm.2019.03.005
10.1097/ALN.0000000000001653
10.3389/fchem.2018.00619
10.1136/postgradmedj-2012-131342
10.1039/C9NR04976B
10.3389/fphar.2019.00825
10.3390/v3060920
10.1016/j.jconrel.2013.07.019
10.1016/j.biomaterials.2015.02.068
10.1097/01.rli.0000101027.57021.28
10.1038/s41556-018-0244-7
10.1016/j.jceh.2015.08.001
10.1182/blood-2003-03-0672
10.1089/ars.2019.7991
10.1371/journal.pone.0175871
10.1038/nrm.2017.132
10.1155/2019/5153268
10.1007/s10534-012-9538-6
10.2147/IJN.S215087
10.1002/jcp.29219
10.1111/eci.12870
10.1039/C8NR08614A
10.1089/ars.2019.7962
10.1038/ng1658
10.1074/jbc.RA119.011519
10.1177/0271678X18783372
10.3390/ph12020094
10.1038/s41598-018-19628-z
10.1021/nl900031y
10.2147/IJN.S192214
10.7150/thno.29746
10.1016/j.neuron.2014.07.027
10.1021/jacs.8b10904
10.1038/onc.2017.11
10.3762/bjnano.6.16
10.1155/2012/948098
10.1021/la035648e
10.1038/s41467-019-12470-5
10.1016/j.biomaterials.2010.09.049
10.1021/acsnano.9b08061
10.1039/C9NR08261A
10.1517/17425240802662795
10.1039/C8AN00282G
10.1007/s11064-013-1234-6
10.1038/ni.3253
10.1002/wnan.1206
10.1021/nn9006994
10.2147/IJN.S235518
10.1186/s12885-015-1564-7
10.1146/annurev.biochem.78.081307.110540
10.1111/j.1600-0854.2009.00878.x
10.1128/MCB.24.18.8055-8068.2004
10.1039/C5NR03780H
10.1080/713609210
10.1002/jbm.a.34580
10.1038/s41598-018-37670-9
10.1007/s11427-011-4215-5
10.3389/fonc.2019.01148
10.15171/bi.2018.14
10.3390/nano10020266
10.3390/ijms20153673
10.1002/jat.3933
10.1101/cshperspect.a016758
10.3389/fimmu.2017.01479
10.1158/0008-5472.CAN-11-1870
10.1016/j.nano.2019.102063
10.1073/pnas.1221743110
10.1016/j.jconrel.2015.08.009
10.1186/1477-3155-10-28
10.1002/cplu.201700052
10.1021/acsnano.6b02876
10.3390/ijms20040935
10.1038/s41467-017-00350-9
10.1021/acsami.7b18648
10.3390/ph11040137
10.1039/C8NR05946B
10.1146/annurev-pathol-011811-132445
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/nano10050837
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_5c0ee2067c3543b698955c6f230209a5
PMC7712800
32349362
10_3390_nano10050837
Genre Journal Article
Review
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación
  grantid: Juan de La Cierva-Incorporación Contract (IJCI-2017-31447)
– fundername: Ministerio de Ciencia e Innovación
  grantid: SAF-2014-54057-R
– fundername: Ministerio de Ciencia e Innovación
  grantid: SAF-2017-82223-R
– fundername: European Commission
  grantid: VetBioNet INFRAIA-731014 project
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7X8
PQGLB
PUEGO
5PM
ID FETCH-LOGICAL-c450t-94f233af296785160e9ec7de0970a99115e47ddad75ebcc00a851510a5cdcbd23
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:21:41 EDT 2025
Thu Aug 21 18:33:35 EDT 2025
Sun Aug 24 04:00:22 EDT 2025
Wed Feb 19 02:30:52 EST 2025
Thu Apr 24 22:58:54 EDT 2025
Tue Jul 01 01:16:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords nanoparticle–tumor cell interaction
nanoparticle–endothelial cell interaction
iron oxide nanoparticles
nanoparticle coatings
nanoparticle–macrophage interaction
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-94f233af296785160e9ec7de0970a99115e47ddad75ebcc00a851510a5cdcbd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8824-5405
0000-0003-3549-0700
0000-0002-4055-3967
OpenAccessLink https://doaj.org/article/5c0ee2067c3543b698955c6f230209a5
PMID 32349362
PQID 2396860210
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5c0ee2067c3543b698955c6f230209a5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7712800
proquest_miscellaneous_2396860210
pubmed_primary_32349362
crossref_citationtrail_10_3390_nano10050837
crossref_primary_10_3390_nano10050837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200427
PublicationDateYYYYMMDD 2020-04-27
PublicationDate_xml – month: 4
  year: 2020
  text: 20200427
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_137
Li (ref_177) 2019; 31
ref_138
Free (ref_139) 2009; 3
Liu (ref_103) 2018; 35
ref_99
Kaksonen (ref_110) 2018; 19
Chaves (ref_132) 2017; 12
ref_97
Lee (ref_201) 2019; 14
Lawrence (ref_91) 2019; 21
Feng (ref_116) 2018; 8
Petters (ref_124) 2014; 39
Villegas (ref_167) 2019; 338
Reichel (ref_200) 2019; 3
Mikhaylova (ref_24) 2004; 20
Astanina (ref_189) 2014; 10
Lunov (ref_127) 2011; 32
Lam (ref_104) 2017; 82
Luo (ref_179) 2019; 223
Price (ref_9) 2018; 6
Ashby (ref_98) 2014; 6
Safi (ref_107) 2011; 32
Dybas (ref_38) 2018; 143
Wculek (ref_180) 2020; 20
Grover (ref_4) 2015; 5
Zou (ref_18) 2020; 12
Knutson (ref_144) 2003; 38
Arandjelovic (ref_113) 2015; 16
Cairo (ref_142) 2011; 32
Masui (ref_73) 2019; 294
Jin (ref_158) 2019; 203
Katsu (ref_53) 2010; 30
Liu (ref_160) 2018; 10
Wen (ref_188) 2019; 16
Chanmee (ref_194) 2016; 375
Castoldi (ref_72) 2012; 69
ref_79
Nguyen (ref_82) 2020; 98
ref_78
Li (ref_123) 2016; 23
ref_153
Rojas (ref_163) 2016; 12
Perrault (ref_26) 2009; 9
Polyak (ref_6) 2009; 6
Mazuel (ref_92) 2016; 10
Ganz (ref_145) 2003; 102
Weidner (ref_94) 2019; 30
ref_157
Silva (ref_7) 2017; 8
Aghanejad (ref_20) 2018; 8
Yuan (ref_193) 2016; 35
Yang (ref_166) 2016; 291
McCarthy (ref_49) 2012; 25
ref_148
Raub (ref_48) 1991; 149
Wang (ref_192) 2018; 22
Hu (ref_84) 2019; 2019
Bolandparvaz (ref_14) 2020; 108
ref_140
ref_87
ref_143
Yigit (ref_19) 2008; 19
Odio (ref_16) 2019; 11
Arosio (ref_44) 2009; 1790
Shaw (ref_85) 2020; 235
Recalcati (ref_146) 2010; 40
Fielding (ref_60) 1962; 1
Soriano (ref_133) 2010; 26
Xu (ref_155) 2019; 14
Tang (ref_45) 2018; 233
Lu (ref_102) 2019; 10
Garton (ref_52) 2016; 1
Udali (ref_74) 2018; 48
Ling (ref_2) 2013; 9
Poller (ref_135) 2018; 14
Doherty (ref_112) 2009; 78
Zhao (ref_173) 2018; 8
Lunov (ref_93) 2010; 31
Zhao (ref_184) 2018; 15
Li (ref_63) 2017; 67
Lazarovits (ref_25) 2015; 51
Cherayil (ref_33) 2011; 50
Kerins (ref_86) 2018; 29
Basuli (ref_68) 2017; 36
Parak (ref_23) 2003; 14
Su (ref_22) 2019; 14
Kawabata (ref_115) 2019; 133
Dalzon (ref_168) 2019; 11
Zanganeh (ref_176) 2016; 11
Zhao (ref_67) 2018; 15
Liu (ref_164) 2012; 7
Hartwig (ref_197) 2017; 65
Ruiz (ref_136) 2015; 7
Gao (ref_171) 2013; 34
ref_105
Fadeel (ref_28) 2013; 5
Passi (ref_196) 2019; 286
Wu (ref_42) 2019; 10
Haddow (ref_59) 1964; 1
Rezaei (ref_27) 2019; 556
Klei (ref_32) 2017; 8
Tucci (ref_198) 2019; 9
Chen (ref_161) 2018; 38
Hao (ref_178) 2012; 2012
Zhou (ref_147) 2018; 7
Gu (ref_162) 2019; 141
Wang (ref_75) 2017; 8
Xu (ref_90) 2015; 77
Zhang (ref_187) 2016; 304
ref_17
Zhao (ref_15) 2020; 15
Lesniak (ref_108) 2010; 31
Mazzolini (ref_106) 2016; 231
Koch (ref_56) 2017; 129
Gu (ref_131) 2011; 54
Moise (ref_12) 2018; 10
Yang (ref_170) 2017; 19
Yu (ref_21) 2020; 21
Caracciolo (ref_29) 2017; 35
Philpott (ref_35) 2019; 133
Forest (ref_117) 2017; 70
Rojas (ref_89) 2017; 58
Fukai (ref_81) 2011; 15
Pagani (ref_149) 2011; 118
Wang (ref_175) 2019; 14
Ganz (ref_34) 2015; 15
Rojas (ref_119) 2019; 21
Raynal (ref_125) 2004; 39
Babu (ref_71) 2016; 94
Mayor (ref_109) 2014; 6
Imai (ref_51) 2019; 9
Sindrilaru (ref_151) 2011; 121
Schladt (ref_3) 2011; 40
Shokrgozar (ref_36) 2019; 54
Liu (ref_183) 2018; 13
Albanese (ref_30) 2014; 8
Zhang (ref_69) 2014; 26
Schweiger (ref_118) 2012; 10
Matuszak (ref_190) 2015; 61
Vela (ref_66) 2018; 8
Ma (ref_130) 2007; 18
Bohmer (ref_120) 2015; 6
Berry (ref_13) 2019; 9
Mody (ref_10) 2014; 4
Ryter (ref_41) 2019; 678
Chang (ref_11) 2018; 9
Currie (ref_5) 2013; 89
Rojas (ref_122) 2015; 216
Hoeft (ref_150) 2017; 127
Breckwoldt (ref_199) 2017; 8
Stepien (ref_100) 2018; 10
Ma (ref_101) 2015; 7
Lozano (ref_95) 2019; 14
Zhu (ref_96) 2019; 11
Recalcati (ref_141) 2012; 24
ref_181
Donaldson (ref_77) 1997; 105
Shen (ref_182) 2018; 5
Guo (ref_70) 2015; 47
Pedro (ref_156) 2019; 15
Ohgami (ref_54) 2005; 37
Canali (ref_55) 2017; 129
Salas (ref_88) 2013; 171
Maraloiu (ref_134) 2016; 12
Flannagan (ref_114) 2012; 7
Zhao (ref_83) 2019; 30
Ayala (ref_129) 2013; 15
Ganguli (ref_80) 2019; 10
Rojas (ref_121) 2015; 52
ref_64
Chiou (ref_50) 2018; 39
ref_62
Xu (ref_169) 2019; 14
Li (ref_128) 2013; 101
Calero (ref_126) 2015; 13
Duan (ref_186) 2019; 6
Valko (ref_76) 2005; 12
ref_195
Miller (ref_65) 2011; 71
Seibenhener (ref_165) 2004; 24
ref_31
Kroner (ref_152) 2014; 83
Kerr (ref_111) 2009; 10
Xia (ref_191) 2016; 18
Wang (ref_174) 2019; 16
Liu (ref_1) 2013; 9
Korolnek (ref_37) 2015; 125
Zhang (ref_159) 2019; 33
Kheirkhah (ref_8) 2018; 8
Langvad (ref_61) 1968; 3
Cheng (ref_154) 2019; 11
ref_46
ref_185
ref_43
RICHMOND (ref_57) 1959; 1
ref_40
Carter (ref_58) 1968; 22
Youssef (ref_39) 2018; 131
Zini (ref_172) 2018; 233
Musci (ref_47) 2014; 5
References_xml – ident: ref_105
  doi: 10.35248/2157-7439.19.10.533
– volume: 8
  start-page: 547
  year: 2018
  ident: ref_66
  article-title: Iron Metabolism in Prostate Cancer; From Basic Science to New Therapeutic Strategies
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2018.00547
– ident: ref_46
  doi: 10.20944/preprints201809.0148.v1
– volume: 9
  start-page: 1533
  year: 2013
  ident: ref_1
  article-title: Applications and potential toxicity of magnetic iron oxide nanoparticles
  publication-title: Small
  doi: 10.1002/smll.201201531
– volume: 8
  start-page: 5515
  year: 2014
  ident: ref_30
  article-title: Secreted Biomolecules Alter the Biological Identity and Cellular Interactions of Nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn4061012
– ident: ref_148
  doi: 10.1371/journal.pone.0196921
– volume: 19
  start-page: 412
  year: 2008
  ident: ref_19
  article-title: MRI Detection of Thrombin with Aptamer Functionalized Superparamagnetic Iron Oxide Nanoparticles
  publication-title: Bioconj. Chem.
  doi: 10.1021/bc7003928
– volume: 51
  start-page: 2756
  year: 2015
  ident: ref_25
  article-title: Nanoparticle–blood interactions: The implications on solid tumour targeting
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07644C
– volume: 19
  start-page: 364
  year: 2017
  ident: ref_170
  article-title: MRI monitoring of monocytes to detect immune stimulating treatment response in brain tumor
  publication-title: Neuro. Oncol.
– volume: 8
  start-page: 58
  year: 2017
  ident: ref_7
  article-title: Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-017-0523-4
– volume: 118
  start-page: 736
  year: 2011
  ident: ref_149
  article-title: Low hepcidin accounts for the proinflammatory status associated with iron deficiency
  publication-title: Blood
  doi: 10.1182/blood-2011-02-337212
– volume: 32
  start-page: 9353
  year: 2011
  ident: ref_107
  article-title: The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.048
– volume: 14
  start-page: 8235
  year: 2019
  ident: ref_201
  article-title: Enhanced anti-tumor immunotherapy by silica-coated magnetic nanoparticles conjugated with ovalbumin
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S194352
– volume: 9
  start-page: 6228
  year: 2019
  ident: ref_51
  article-title: Intracellular Fe2+ accumulation in endothelial cells and pericytes induces blood-brain barrier dysfunction in secondary brain injury after brain hemorrhage
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42370-z
– volume: 9
  start-page: 1450
  year: 2013
  ident: ref_2
  article-title: Chemical design of biocompatible iron oxide nanoparticles for medical applications
  publication-title: Small
  doi: 10.1002/smll.201202111
– volume: 14
  start-page: 2575
  year: 2018
  ident: ref_135
  article-title: Very small superparamagnetic iron oxide nanoparticles: Long-term fate and metabolic processing in atherosclerotic mice
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2018.07.013
– volume: 15
  start-page: 1791
  year: 2018
  ident: ref_184
  article-title: Iron Oxide Nanoparticles-Based Vaccine Delivery for Cancer Treatment
  publication-title: Mol. Pharmaceut.
  doi: 10.1021/acs.molpharmaceut.7b01103
– volume: 18
  start-page: 507
  year: 2016
  ident: ref_191
  article-title: Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation
  publication-title: Neuro. Oncol.
  doi: 10.1093/neuonc/nov171
– volume: 14
  start-page: 4503
  year: 2019
  ident: ref_175
  article-title: Ferumoxytol. and CpG oligodeoxynucleotide 2395 synergistically enhance antitumor activity of macrophages against NSCLC with EGFR(L858R/T790M) mutation
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S193583
– volume: 30
  start-page: 1939
  year: 2010
  ident: ref_53
  article-title: Hemoglobin-Induced Oxidative Stress Contributes to Matrix Metalloproteinase Activation and Blood–Brain Barrier Dysfunction in vivo
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2010.45
– ident: ref_97
  doi: 10.1371/journal.pone.0129008
– volume: 231
  start-page: 40
  year: 2016
  ident: ref_106
  article-title: Protein Corona Modulates Uptake and Toxicity of Nanoceria via Clathrin-Mediated Endocytosis
  publication-title: Biol. Bull.
  doi: 10.1086/689590
– volume: 26
  start-page: 2539
  year: 2014
  ident: ref_69
  article-title: Disordered hepcidin–ferroportin signaling promotes breast cancer growth
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2014.07.029
– volume: 8
  start-page: 11417
  year: 2018
  ident: ref_8
  article-title: Magnetic Drug Targeting: A Novel Treatment for Intramedullary Spinal Cord Tumors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29736-5
– volume: 125
  start-page: 2893
  year: 2015
  ident: ref_37
  article-title: Macrophages and iron trafficking at the birth and death of red cells
  publication-title: Blood
  doi: 10.1182/blood-2014-12-567776
– volume: 375
  start-page: 20
  year: 2016
  ident: ref_194
  article-title: Hyaluronan: A modulator of the tumor microenvironment
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2016.02.031
– volume: 38
  start-page: 978
  year: 2018
  ident: ref_161
  article-title: Size-dependent superparamagnetic iron oxide nanoparticles dictate interleukin-1β release from mouse bone marrow-derived macrophages
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.3606
– ident: ref_140
  doi: 10.3390/nano9111631
– volume: 6
  start-page: 15412
  year: 2014
  ident: ref_98
  article-title: Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am503909q
– volume: 22
  start-page: 3855
  year: 2018
  ident: ref_192
  article-title: Tumor microenvironment: Recent advances in various cancer treatments
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 16
  start-page: 30
  year: 2019
  ident: ref_188
  article-title: Iron oxide nanoparticles induce reversible endothelial-to-mesenchymal transition in vascular endothelial cells at acutely non-cytotoxic concentrations
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/s12989-019-0314-4
– volume: 108
  start-page: 1186
  year: 2020
  ident: ref_14
  article-title: Biodistribution and toxicity of epitope-functionalized dextran iron oxide nanoparticles in a pregnant murine model
  publication-title: J. Biomed. Mater. Res. Part. A
  doi: 10.1002/jbm.a.36893
– volume: 34
  start-page: 3688
  year: 2013
  ident: ref_171
  article-title: Efficacy of MRI visible iron oxide nanoparticles in delivering minicircle DNA into liver via intrabiliary infusion
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.094
– volume: 129
  start-page: 405
  year: 2017
  ident: ref_55
  article-title: Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice
  publication-title: Blood
  doi: 10.1182/blood-2016-06-721571
– volume: 12
  start-page: 5511
  year: 2017
  ident: ref_132
  article-title: Exploring cellular uptake of iron oxide nanoparticles associated with rhodium citrate in breast cancer cells
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S141582
– volume: 14
  start-page: 6779
  year: 2019
  ident: ref_155
  article-title: SPIONs enhances IL-10-producing macrophages to relieve sepsis via Cav1-Notch1/HES1-mediated autophagy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S215055
– volume: 149
  start-page: 141
  year: 1991
  ident: ref_48
  article-title: Recycling kinetics and transcytosis of transferrin in primary cultures of bovine brain microvessel endothelial cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041490118
– volume: 233
  start-page: 9179
  year: 2018
  ident: ref_45
  article-title: Ferritinophagy/ferroptosis: Iron-related newcomers in human diseases
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26954
– volume: 30
  start-page: 88
  year: 2019
  ident: ref_83
  article-title: Dexmedetomidine alleviates hepatic injury via the inhibition of oxidative stress and activation of the Nrf2/HO-1 signaling pathway
  publication-title: Eur. Cytok. Netw.
  doi: 10.1684/ecn.2019.0431
– volume: 31
  start-page: 9015
  year: 2010
  ident: ref_93
  article-title: Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.003
– volume: 203
  start-page: 23
  year: 2019
  ident: ref_158
  article-title: Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.02.026
– volume: 40
  start-page: 6315
  year: 2011
  ident: ref_3
  article-title: Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt00689k
– volume: 13
  start-page: 16
  year: 2015
  ident: ref_126
  article-title: Characterization of interaction of magnetic nanoparticles with breast cancer cells
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-015-0073-9
– volume: 35
  start-page: 1700418
  year: 2018
  ident: ref_103
  article-title: Static Magnetic Field Dictates Protein Corona Formation on the Surface of Glutamine-Modified Superparamagnetic Iron Oxide Nanoparticles
  publication-title: Part. Part. Syst. Char.
  doi: 10.1002/ppsc.201700418
– volume: 15
  start-page: 1583
  year: 2011
  ident: ref_81
  article-title: Superoxide dismutases: Role in redox signaling, vascular function, and diseases
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2011.3999
– volume: 10
  start-page: 41197
  year: 2018
  ident: ref_160
  article-title: Impact of Morphology on Iron Oxide Nanoparticles-Induced Inflammasome Activation in Macrophages
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17474
– volume: 6
  start-page: 221
  year: 2019
  ident: ref_186
  article-title: Iron oxide nanoparticles promote vascular endothelial cells survival from oxidative stress by enhancement of autophagy
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbz024
– volume: 31
  start-page: 1807211
  year: 2019
  ident: ref_177
  article-title: Artificially Reprogrammed Macrophages as Tumor-Tropic Immunosuppression-Resistant Biologics to Realize Therapeutics Production and Immune Activation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807211
– volume: 7
  start-page: 4012
  year: 2018
  ident: ref_147
  article-title: Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway
  publication-title: Cancer Med.
  doi: 10.1002/cam4.1670
– volume: 304
  start-page: 186
  year: 2016
  ident: ref_187
  article-title: Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.10.041
– volume: 8
  start-page: 73
  year: 2017
  ident: ref_32
  article-title: From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00073
– volume: 133
  start-page: 112
  year: 2019
  ident: ref_35
  article-title: The ins and outs of iron: Escorting iron through the mammalian cytosol
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.10.411
– volume: 47
  start-page: 703
  year: 2015
  ident: ref_70
  article-title: An important role of the hepcidin–ferroportin signaling in affecting tumor growth and metastasis
  publication-title: Acta Biochim. Biophys. Sin.
  doi: 10.1093/abbs/gmv063
– volume: 3
  start-page: 415
  year: 1968
  ident: ref_61
  article-title: Iron-dextran induction of distant tumours in mice
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910030402
– ident: ref_157
  doi: 10.1007/s11064-019-02790-9
– volume: 105
  start-page: 1285
  year: 1997
  ident: ref_77
  article-title: Free radical activity of PM10: Iron-mediated generation of hydroxyl radicals
  publication-title: Environ. Health Perspect.
– volume: 70
  start-page: 889
  year: 2017
  ident: ref_117
  article-title: Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: A too simplistic explanation that does not take into account the nanoparticle protein corona
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.09.016
– volume: 24
  start-page: 393
  year: 2012
  ident: ref_141
  article-title: Systemic and cellular consequences of macrophage control of iron metabolism
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2013.01.001
– volume: 16
  start-page: 4274
  year: 2019
  ident: ref_174
  article-title: Feraheme (Ferumoxytol) Is Recognized by Proinflammatory and Anti-inflammatory Macrophages via Scavenger Receptor Type AI/II
  publication-title: Mol. Pharmaceut.
  doi: 10.1021/acs.molpharmaceut.9b00632
– volume: 40
  start-page: 824
  year: 2010
  ident: ref_146
  article-title: Differential regulation of iron homeostasis during human macrophage polarized activation
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200939889
– volume: 12
  start-page: 1161
  year: 2005
  ident: ref_76
  article-title: Metals, Toxicity and Oxidative Stress
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867053764635
– volume: 10
  start-page: 1121
  year: 2019
  ident: ref_80
  article-title: Peroxisomes and Oxidative Stress: Their Implications in the Modulation of Cellular Immunity During Mycobacterial Infection
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01121
– volume: 131
  start-page: 2581
  year: 2018
  ident: ref_39
  article-title: Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion
  publication-title: Blood
  doi: 10.1182/blood-2017-12-822619
– volume: 18
  start-page: 2145
  year: 2007
  ident: ref_130
  article-title: Study on the endocytosis and the internalization mechanism of aminosilane-coated Fe3O4 nanoparticles in vitro
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-007-3015-8
– volume: 77
  start-page: 57
  year: 2015
  ident: ref_90
  article-title: Lysosomal physiology
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-021014-071649
– volume: 61
  start-page: 259
  year: 2015
  ident: ref_190
  article-title: Shell matters: Magnetic targeting of SPIONs and in vitro effects on endothelial and monocytic cell function
  publication-title: Clin. Hemorheol. Microcirc.
  doi: 10.3233/CH-151998
– volume: 556
  start-page: 476
  year: 2019
  ident: ref_27
  article-title: Synthetic and biological identities of polymeric nanoparticles influencing the cellular delivery: An immunological link
  publication-title: J. Coll. Interface Sci.
  doi: 10.1016/j.jcis.2019.08.060
– volume: 33
  start-page: 935
  year: 2019
  ident: ref_159
  article-title: In vitro inhibition of tumor growth by low-dose iron oxide nanoparticles activating macrophages
  publication-title: J. Biomater. Appl.
  doi: 10.1177/0885328218817939
– ident: ref_64
  doi: 10.1186/s12885-016-2228-y
– volume: 29
  start-page: 1756
  year: 2018
  ident: ref_86
  article-title: The Roles of NRF2 in Modulating Cellular Iron Homeostasis
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7176
– volume: 94
  start-page: 347
  year: 2016
  ident: ref_71
  article-title: miR-20a regulates expression of the iron exporter ferroportin in lung cancer
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-015-1362-3
– volume: 32
  start-page: 241
  year: 2011
  ident: ref_142
  article-title: Iron trafficking and metabolism in macrophages: Contribution to the polarized phenotype
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2011.03.007
– volume: 20
  start-page: 7
  year: 2020
  ident: ref_180
  article-title: Dendritic cells in cancer immunology and immunotherapy
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0210-z
– volume: 15
  start-page: 9953
  year: 2018
  ident: ref_67
  article-title: Role of hepcidin and iron metabolism in the onset of prostate cancer
  publication-title: Oncol. Lett.
– volume: 13
  start-page: 409
  year: 2018
  ident: ref_183
  article-title: SPIO Enhance the Cross-Presentation and Migration of DCs and Anionic SPIO Influence the Nanoadjuvant Effects Related to Interleukin-1β
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2802-0
– ident: ref_62
  doi: 10.1371/journal.pone.0043403
– volume: 26
  start-page: 533
  year: 2010
  ident: ref_133
  article-title: The endocytic penetration mechanism of iron oxide magnetic nanoparticles with positively charged cover: A morphological approach
  publication-title: Int. J. Mol. Med.
– volume: 15
  start-page: 1900224
  year: 2019
  ident: ref_156
  article-title: Impact of Locally Administered Carboxydextran-Coated Super-Paramagnetic Iron Nanoparticles on Cellular Immune Function
  publication-title: Small
  doi: 10.1002/smll.201900224
– volume: 233
  start-page: 5823
  year: 2018
  ident: ref_172
  article-title: USPIO-labeling in M1 and M2-polarized macrophages: An in vitro study using a clinical magnetic resonance scanner
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26360
– volume: 32
  start-page: 547
  year: 2011
  ident: ref_127
  article-title: Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.111
– volume: 3
  start-page: 66
  year: 2019
  ident: ref_200
  article-title: Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment
  publication-title: Nanotheranostics
  doi: 10.7150/ntno.30052
– volume: 67
  start-page: 564
  year: 2017
  ident: ref_63
  article-title: Fenton reaction-induced renal carcinogenesis in Mutyh-deficient mice exhibits less chromosomal aberrations than the rat model
  publication-title: Pathol. Int.
  doi: 10.1111/pin.12598
– volume: 35
  start-page: 2499
  year: 2016
  ident: ref_193
  article-title: Role of the tumor microenvironment in tumor progression and the clinical applications (Review)
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.4660
– volume: 7
  start-page: 189
  year: 2012
  ident: ref_164
  article-title: Sequestosome 1/p62: A multi-domain protein with multi-faceted functions
  publication-title: Front. Biol.
  doi: 10.1007/s11515-012-1217-z
– volume: 15
  start-page: 500
  year: 2015
  ident: ref_34
  article-title: Iron homeostasis in host defence and inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3863
– volume: 15
  start-page: 1874
  year: 2013
  ident: ref_129
  article-title: Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-013-1874-0
– ident: ref_31
  doi: 10.1172/jci.insight.132964
– volume: 4
  start-page: 385
  year: 2014
  ident: ref_10
  article-title: Magnetic nanoparticle drug delivery systems for targeting tumor
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-013-0216-y
– volume: 12
  start-page: 1127
  year: 2016
  ident: ref_163
  article-title: Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2015.11.020
– ident: ref_17
  doi: 10.3390/molecules25051025
– volume: 22
  start-page: 521
  year: 1968
  ident: ref_58
  article-title: Induction of tumours in mice and rats with ferric sodium gluconate and iron dextran glycerol glycoside
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1968.62
– volume: 129
  start-page: 415
  year: 2017
  ident: ref_56
  article-title: Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis
  publication-title: Blood
  doi: 10.1182/blood-2016-07-729822
– volume: 14
  start-page: R15
  year: 2003
  ident: ref_23
  article-title: Biological applications of colloidal nanocrystals
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/14/7/201
– volume: 1790
  start-page: 589
  year: 2009
  ident: ref_44
  article-title: Ferritins: A family of molecules for iron storage, antioxidation and more
  publication-title: Biochim. Biophys. Acta BBA
  doi: 10.1016/j.bbagen.2008.09.004
– volume: 12
  start-page: 191
  year: 2016
  ident: ref_134
  article-title: Multiscale investigation of USPIO nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2015.08.005
– volume: 121
  start-page: 985
  year: 2011
  ident: ref_151
  article-title: An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI44490
– volume: 65
  start-page: 730
  year: 2017
  ident: ref_197
  article-title: The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.01.021
– volume: 1
  start-page: 1800
  year: 1962
  ident: ref_60
  article-title: Sarcoma induction by iron-carbohydrate complexes
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.1.5295.1800
– volume: 1
  start-page: 172
  year: 2016
  ident: ref_52
  article-title: Brain iron overload following intracranial haemorrhage
  publication-title: Stroke Vasc. Neurol.
  doi: 10.1136/svn-2016-000042
– volume: 30
  start-page: 265707
  year: 2019
  ident: ref_94
  article-title: Protein corona formation and its constitutional changes on magnetic nanoparticles in serum featuring a polydehydroalanine coating: Effects of charge and incubation conditions
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab0ed0
– volume: 35
  start-page: 257
  year: 2017
  ident: ref_29
  article-title: Biological Identity of Nanoparticles In Vivo: Clinical Implications of the Protein Corona
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2016.08.011
– volume: 1
  start-page: 1593
  year: 1964
  ident: ref_59
  article-title: Induction of sarcomata in rabbits by intramuscular injection of iron-dextran (“imferon”)
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.1.5398.1588
– volume: 58
  start-page: 181
  year: 2017
  ident: ref_89
  article-title: Time-course assessment of the aggregation and metabolization of magnetic nanoparticles
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.05.047
– volume: 133
  start-page: 46
  year: 2019
  ident: ref_115
  article-title: Transferrin and transferrin receptors update
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.06.037
– volume: 291
  start-page: 18663
  year: 2016
  ident: ref_166
  article-title: Sequestosome 1/p62 Protein Is Associated with Autophagic Removal of Excess Hepatic Endoplasmic Reticulum in Mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.739821
– volume: 7
  start-page: 17614
  year: 2015
  ident: ref_101
  article-title: Monitoring of the Enzymatic Degradation of Protein Corona and Evaluating the Accompanying Cytotoxicity of Nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05744
– volume: 5
  start-page: 141
  year: 2018
  ident: ref_182
  article-title: Lactosylated N-Alkyl polyethylenimine coated iron oxide nanoparticles induced autophagy in mouse dendritic cells
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbx032
– volume: 286
  start-page: 2937
  year: 2019
  ident: ref_196
  article-title: Dissecting the role of hyaluronan synthases in the tumor microenvironment
  publication-title: FEBS J.
  doi: 10.1111/febs.14847
– volume: 50
  start-page: 1
  year: 2011
  ident: ref_33
  article-title: The role of iron in the immune response to bacterial infection
  publication-title: Immunol. Res.
  doi: 10.1007/s12026-010-8199-1
– volume: 69
  start-page: 3945
  year: 2012
  ident: ref_72
  article-title: Regulation of iron homeostasis by microRNAs
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-012-1031-4
– volume: 678
  start-page: 108186
  year: 2019
  ident: ref_41
  article-title: Heme oxygenase-1/carbon monoxide as modulators of autophagy and inflammation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2019.108186
– volume: 223
  start-page: 119464
  year: 2019
  ident: ref_179
  article-title: Engineered nano-immunopotentiators efficiently promote cancer immunotherapy for inhibiting and preventing lung metastasis of melanoma
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119464
– volume: 9
  start-page: 831
  year: 2018
  ident: ref_11
  article-title: Biologically Targeted Magnetic Hyperthermia: Potential and Limitations
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00831
– volume: 98
  start-page: 59
  year: 2020
  ident: ref_82
  article-title: Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-019-01845-2
– volume: 14
  start-page: 379
  year: 2019
  ident: ref_169
  article-title: Ferumoxytol. Attenuates the Function of MDSCs to Ameliorate LPS-Induced Immunosuppression in Sepsis
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-019-3209-2
– volume: 10
  start-page: 4896
  year: 2014
  ident: ref_189
  article-title: Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.07.027
– volume: 54
  start-page: 10
  year: 2019
  ident: ref_36
  article-title: Molecular perspective of iron uptake, related diseases, and treatments
  publication-title: Blood Res.
  doi: 10.5045/br.2019.54.1.10
– volume: 11
  start-page: 26648
  year: 2019
  ident: ref_16
  article-title: Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with αvβ3-Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b08318
– volume: 1
  start-page: 947
  year: 1959
  ident: ref_57
  article-title: Induction of sarcoma in the rat by iron-dextran complex
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.1.5127.947
– volume: 11
  start-page: 9341
  year: 2019
  ident: ref_168
  article-title: Utility of macrophages in an antitumor strategy based on the vectorization of iron oxide nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/C8NR03364A
– volume: 11
  start-page: 986
  year: 2016
  ident: ref_176
  article-title: Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.168
– volume: 338
  start-page: 51
  year: 2019
  ident: ref_167
  article-title: Poly(acrylic acid)-Coated Iron Oxide Nanoparticles interact with mononuclear phagocytes and decrease platelet aggregation
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2019.03.005
– volume: 127
  start-page: 121
  year: 2017
  ident: ref_150
  article-title: Iron Loading Exaggerates the Inflammatory Response to the Toll-like Receptor 4 Ligand Lipopolysaccharide by Altering Mitochondrial Homeostasis
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000001653
– volume: 6
  start-page: 619
  year: 2018
  ident: ref_9
  article-title: Magnetic Drug Delivery: Where the Field Is Going
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00619
– volume: 89
  start-page: 209
  year: 2013
  ident: ref_5
  article-title: Understanding MRI: Basic MR physics for physicians
  publication-title: Postgrad. Med. J.
  doi: 10.1136/postgradmedj-2012-131342
– volume: 12
  start-page: 4473
  year: 2020
  ident: ref_18
  article-title: Nanoparticles modified by triple single chain antibodies for MRI examination and targeted therapy in pancreatic cancer
  publication-title: Nanoscale
  doi: 10.1039/C9NR04976B
– volume: 10
  start-page: 825
  year: 2019
  ident: ref_42
  article-title: Heme Catabolic Pathway in Inflammation and Immune Disorders
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.00825
– ident: ref_181
  doi: 10.3390/v3060920
– volume: 171
  start-page: 225
  year: 2013
  ident: ref_88
  article-title: Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.07.019
– volume: 52
  start-page: 494
  year: 2015
  ident: ref_121
  article-title: Polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.02.068
– volume: 39
  start-page: 56
  year: 2004
  ident: ref_125
  article-title: Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: Mechanisms and comparison of ferumoxides and ferumoxtran-10
  publication-title: Invest. Radiol.
  doi: 10.1097/01.rli.0000101027.57021.28
– volume: 21
  start-page: 133
  year: 2019
  ident: ref_91
  article-title: The lysosome as a cellular centre for signalling, metabolism and quality control
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0244-7
– volume: 5
  start-page: 246
  year: 2015
  ident: ref_4
  article-title: Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians
  publication-title: J. Clin. Exp. Hepatol.
  doi: 10.1016/j.jceh.2015.08.001
– volume: 102
  start-page: 783
  year: 2003
  ident: ref_145
  article-title: Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation
  publication-title: Blood
  doi: 10.1182/blood-2003-03-0672
– ident: ref_40
  doi: 10.1089/ars.2019.7991
– ident: ref_99
  doi: 10.1371/journal.pone.0175871
– volume: 19
  start-page: 313
  year: 2018
  ident: ref_110
  article-title: Mechanisms of clathrin-mediated endocytosis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.132
– volume: 2019
  start-page: 5153268
  year: 2019
  ident: ref_84
  article-title: Reactive Oxygen Species and Nrf2: Functional and Transcriptional Regulators of Hematopoiesis
  publication-title: Oxid. Med. Cell Longev.
  doi: 10.1155/2019/5153268
– volume: 25
  start-page: 665
  year: 2012
  ident: ref_49
  article-title: Mechanistic analysis of iron accumulation by endothelial cells of the BBB
  publication-title: Biometals
  doi: 10.1007/s10534-012-9538-6
– volume: 21
  start-page: 181
  year: 2020
  ident: ref_21
  article-title: Antifibrotic effects of specific siRNA targeting connective tissue growth factor delivered by polyethyleneimine-functionalized magnetic iron oxide nanoparticles on LX-2 cells
  publication-title: Mol. Med. Rep.
– volume: 14
  start-page: 7549
  year: 2019
  ident: ref_22
  article-title: CD44-Targeted Magnetic Nanoparticles Kill Head And Neck Squamous Cell Carcinoma Stem Cells In An Alternating Magnetic Field
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S215087
– volume: 235
  start-page: 3119
  year: 2020
  ident: ref_85
  article-title: Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.29219
– volume: 48
  start-page: e12870
  year: 2018
  ident: ref_74
  article-title: Hepcidin and DNA promoter methylation in hepatocellular carcinoma
  publication-title: Eur. J. Clin. Investig.
  doi: 10.1111/eci.12870
– volume: 11
  start-page: 6817
  year: 2019
  ident: ref_96
  article-title: Dynamic protein corona influences immune-modulating osteogenesis in magnetic nanoparticle (MNP)-infiltrated bone regeneration scaffolds in vivo
  publication-title: Nanoscale
  doi: 10.1039/C8NR08614A
– ident: ref_78
  doi: 10.1089/ars.2019.7962
– volume: 37
  start-page: 1264
  year: 2005
  ident: ref_54
  article-title: Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng1658
– volume: 294
  start-page: 19740
  year: 2019
  ident: ref_73
  article-title: mTORC2 links growth factor signaling with epigenetic regulation of iron metabolism in glioblastoma
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.011519
– volume: 39
  start-page: 2117
  year: 2018
  ident: ref_50
  article-title: Endothelial cells are critical regulators of iron transport in a model of the human blood–brain barrier
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X18783372
– ident: ref_43
  doi: 10.3390/ph12020094
– volume: 8
  start-page: 2082
  year: 2018
  ident: ref_116
  article-title: Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19628-z
– volume: 9
  start-page: 1909
  year: 2009
  ident: ref_26
  article-title: Mediating tumor targeting efficiency of nanoparticles through design
  publication-title: Nano Lett.
  doi: 10.1021/nl900031y
– volume: 14
  start-page: 2055
  year: 2019
  ident: ref_95
  article-title: Plasma protein adsorption on Fe(3)O(4)-PEG nanoparticles activates the complement system and induces an inflammatory response
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S192214
– volume: 8
  start-page: 6307
  year: 2018
  ident: ref_173
  article-title: Anti-tumor macrophages activated by ferumoxytol. combined or surface-functionalized with the TLR3 agonist poly (I: C) promote melanoma regression
  publication-title: Theranostics
  doi: 10.7150/thno.29746
– volume: 83
  start-page: 1098
  year: 2014
  ident: ref_152
  article-title: TNF and Increased Intracellular Iron Alter Macrophage Polarization to a Detrimental M1 Phenotype in the Injured Spinal Cord
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.07.027
– volume: 141
  start-page: 6122
  year: 2019
  ident: ref_162
  article-title: Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10904
– volume: 36
  start-page: 4089
  year: 2017
  ident: ref_68
  article-title: Iron addiction: A novel therapeutic target in ovarian cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2017.11
– volume: 6
  start-page: 167
  year: 2015
  ident: ref_120
  article-title: Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.6.16
– volume: 2012
  start-page: 948098
  year: 2012
  ident: ref_178
  article-title: Macrophages in tumor microenvironments and the progression of tumors
  publication-title: Clin. Dev. Immunol.
  doi: 10.1155/2012/948098
– volume: 20
  start-page: 2472
  year: 2004
  ident: ref_24
  article-title: Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification
  publication-title: Langmuir
  doi: 10.1021/la035648e
– volume: 10
  start-page: 4520
  year: 2019
  ident: ref_102
  article-title: Tailoring the component of protein corona via simple chemistry
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12470-5
– volume: 31
  start-page: 9511
  year: 2010
  ident: ref_108
  article-title: Serum heat inactivation affects protein corona composition and nanoparticle uptake
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.09.049
– ident: ref_137
  doi: 10.1021/acsnano.9b08061
– volume: 11
  start-page: 22849
  year: 2019
  ident: ref_154
  article-title: The vacuolization of macrophages induced by large amounts of inorganic nanoparticle uptake to enhance the immune response
  publication-title: Nanoscale
  doi: 10.1039/C9NR08261A
– volume: 6
  start-page: 53
  year: 2009
  ident: ref_6
  article-title: Magnetic targeting for site-specific drug delivery: Applications and clinical potential
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425240802662795
– volume: 143
  start-page: 3489
  year: 2018
  ident: ref_38
  article-title: Raman imaging of heme metabolism in situ in macrophages and Kupffer cells
  publication-title: Analyst
  doi: 10.1039/C8AN00282G
– volume: 23
  start-page: 1726
  year: 2016
  ident: ref_123
  article-title: Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging
  publication-title: Drug Deliv.
– volume: 39
  start-page: 372
  year: 2014
  ident: ref_124
  article-title: Uptake of fluorescent iron oxide nanoparticles by oligodendroglial OLN-93 cells
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-013-1234-6
– volume: 16
  start-page: 907
  year: 2015
  ident: ref_113
  article-title: Phagocytosis of apoptotic cells in homeostasis
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3253
– volume: 5
  start-page: 111
  year: 2013
  ident: ref_28
  article-title: Bridge over troubled waters: Understanding the synthetic and biological identities of engineered nanomaterials
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1206
– volume: 3
  start-page: 2461
  year: 2009
  ident: ref_139
  article-title: Cathepsin L digestion of nanobioconjugates upon endocytosis
  publication-title: ACS Nano
  doi: 10.1021/nn9006994
– volume: 5
  start-page: 204
  year: 2014
  ident: ref_47
  article-title: Ceruloplasmin-ferroportin system of iron traffic in vertebrates
  publication-title: World J. Biol. Chem
– volume: 15
  start-page: 1321
  year: 2020
  ident: ref_15
  article-title: A Peptide-Functionalized Magnetic Nanoplatform-Loaded Melatonin for Targeted Amelioration of Fibrosis in Pressure Overload-Induced Cardiac Hypertrophy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S235518
– ident: ref_195
  doi: 10.1186/s12885-015-1564-7
– volume: 78
  start-page: 857
  year: 2009
  ident: ref_112
  article-title: Mechanisms of endocytosis
  publication-title: Annu Rev. Biochem.
  doi: 10.1146/annurev.biochem.78.081307.110540
– volume: 10
  start-page: 364
  year: 2009
  ident: ref_111
  article-title: Defining macropinocytosis
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2009.00878.x
– volume: 24
  start-page: 8055
  year: 2004
  ident: ref_165
  article-title: Sequestosome 1/p62 Is a Polyubiquitin Chain Binding Protein Involved in Ubiquitin Proteasome Degradation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.18.8055-8068.2004
– volume: 7
  start-page: 16321
  year: 2015
  ident: ref_136
  article-title: Biotransformation of magnetic nanoparticles as a function of coating in a rat model
  publication-title: Nanoscale
  doi: 10.1039/C5NR03780H
– volume: 38
  start-page: 61
  year: 2003
  ident: ref_144
  article-title: Iron Metabolism in the Reticuloendothelial System
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/713609210
– volume: 101
  start-page: 2846
  year: 2013
  ident: ref_128
  article-title: Mechanism of poly-l-lysine-modified iron oxide nanoparticles uptake into cells
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.34580
– volume: 9
  start-page: 1059
  year: 2019
  ident: ref_13
  article-title: Nanoparticle-mediated magnetic hyperthermia is an effective method for killing the human-infective protozoan parasite Leishmania mexicana in vitro
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37670-9
– volume: 54
  start-page: 793
  year: 2011
  ident: ref_131
  article-title: The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-011-4215-5
– volume: 9
  start-page: 1148
  year: 2019
  ident: ref_198
  article-title: Immune System Evasion as Hallmark of Melanoma Progression: The Role of Dendritic Cells
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.01148
– volume: 8
  start-page: 117
  year: 2018
  ident: ref_20
  article-title: Mucin-1 aptamer-armed superparamagnetic iron oxide nanoparticles for targeted delivery of doxorubicin to breast cancer cells
  publication-title: Bioimpacts
  doi: 10.15171/bi.2018.14
– ident: ref_153
  doi: 10.3390/nano10020266
– ident: ref_79
  doi: 10.3390/ijms20153673
– ident: ref_185
  doi: 10.1002/jat.3933
– volume: 6
  start-page: a016758
  year: 2014
  ident: ref_109
  article-title: Clathrin-independent pathways of endocytosis
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a016758
– volume: 8
  start-page: 1479
  year: 2017
  ident: ref_199
  article-title: Iron Induces Anti-tumor Activity in Tumor-Associated Macrophages
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.01479
– volume: 71
  start-page: 6728
  year: 2011
  ident: ref_65
  article-title: An iron regulatory gene signature predicts outcome in breast cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-1870
– volume: 21
  start-page: 102063
  year: 2019
  ident: ref_119
  article-title: Polyethylenimine-coated superparamagnetic iron oxide nanoparticles impair in vitro and in vivo angiogenesis
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2019.102063
– ident: ref_87
  doi: 10.1073/pnas.1221743110
– volume: 216
  start-page: 78
  year: 2015
  ident: ref_122
  article-title: Polyethylenimine-coated SPION exhibits potential intrinsic anti-metastatic properties inhibiting migration and invasion of pancreatic tumor cells
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.08.009
– volume: 10
  start-page: 28
  year: 2012
  ident: ref_118
  article-title: Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-10-28
– volume: 82
  start-page: 638
  year: 2017
  ident: ref_104
  article-title: Zwitterionic Modification of Ultrasmall Iron Oxide Nanoparticles for Reduced Protein Corona Formation
  publication-title: Chempluschem
  doi: 10.1002/cplu.201700052
– volume: 10
  start-page: 7627
  year: 2016
  ident: ref_92
  article-title: Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02876
– ident: ref_138
  doi: 10.3390/ijms20040935
– volume: 8
  start-page: 274
  year: 2017
  ident: ref_75
  article-title: G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00350-9
– volume: 10
  start-page: 4548
  year: 2018
  ident: ref_100
  article-title: Effect of Surface Chemistry and Associated Protein Corona on the Long-Term Biodegradation of Iron Oxide Nanoparticles In Vivo
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18648
– ident: ref_143
  doi: 10.3390/ph11040137
– volume: 10
  start-page: 20519
  year: 2018
  ident: ref_12
  article-title: The potential of magnetic hyperthermia for triggering the differentiation of cancer cells
  publication-title: Nanoscale
  doi: 10.1039/C8NR05946B
– volume: 7
  start-page: 61
  year: 2012
  ident: ref_114
  article-title: The cell biology of phagocytosis
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-011811-132445
SSID ssj0000913853
Score 2.2847786
SecondaryResourceType review_article
Snippet Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 837
SubjectTerms iron oxide nanoparticles
nanoparticle coatings
nanoparticle–endothelial cell interaction
nanoparticle–macrophage interaction
nanoparticle–tumor cell interaction
Review
Title The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies
URI https://www.ncbi.nlm.nih.gov/pubmed/32349362
https://www.proquest.com/docview/2396860210
https://pubmed.ncbi.nlm.nih.gov/PMC7712800
https://doaj.org/article/5c0ee2067c3543b698955c6f230209a5
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeBNaVkaCE4rq-Lnm1lZdWg4Foa7UW-TYs2IlcKrtVuIH8MM7k6SrLAJx4RqPZWtm7JlPnnzD2NtKoRtJUKW1AKXGFLb0SVZlY0MyEARUsSuQPbMnc_3pwlyMWn1RTVhPD9wrbt9EAUAc41EZrRrqd2hMtAtMnaXwoWMvxZg3AlPdHewrhYGor3RXiOv3c8htRWwnU2p5PopBHVX_n_LL38skR3Fn9og9HBJGftBv9DG7A_kJezCiEXzKfqGt-SnOXmbUOe_bS5Ly-fAbLqJh3i746arN_PPPZQKOlyqi5aEojoec-Dm9GPCjNlAd9NUHPs_QlecBDhF7Iz3Gc8xwUeQHomnC6ui6NG0VLnGBZ2w-Oz4_OimH7gpl1EasS69RhyospMd4ZSorwEN0CYR3ImDWWBnQLqWQnIEmRiECSuEJDiam2CSpnrOd3GZ4yXg0ViUPFm1rtZey0dNG-RRAhChDdAV7f6vvOg7U49QB43uNEISsU4-tU7B3G-nLnnLjL3KHZLqNDBFldx_QfepBg_W_3Kdgb24NX-PBoteSkKG9vqql8pYadFWiYC96R9gspaTSHkN_wdyWi2ztZXskL7915N3OYUYgxKv_sflddl8S_Be6lG6P7axX1_Aac6R1M2F3p7OPE3bv8Pjsy9dJdzhuAP9gE7E
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Intrinsic+Biological+Identities+of+Iron+Oxide+Nanoparticles+and+Their+Coatings%3A+Unexplored+Territory+for+Combinatorial+Therapies&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Mulens-Arias%2C+Vladimir&rft.au=Rojas%2C+Jos%C3%A9+Manuel&rft.au=Barber%2C+Domingo+F&rft.date=2020-04-27&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=10&rft.issue=5&rft_id=info:doi/10.3390%2Fnano10050837&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon