The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies
Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynam...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 10; no. 5; p. 837 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
27.04.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research. |
---|---|
AbstractList | Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research. Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research. |
Author | Rojas, José Manuel Mulens-Arias, Vladimir Barber, Domingo F. |
AuthorAffiliation | 2 Animal Health Research Center (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, 28049 Madrid, Spain; rojas.jose@inia.es 1 Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain; vmulens@cnb.csic.es |
AuthorAffiliation_xml | – name: 2 Animal Health Research Center (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, 28049 Madrid, Spain; rojas.jose@inia.es – name: 1 Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain; vmulens@cnb.csic.es |
Author_xml | – sequence: 1 givenname: Vladimir orcidid: 0000-0003-3549-0700 surname: Mulens-Arias fullname: Mulens-Arias, Vladimir – sequence: 2 givenname: José Manuel orcidid: 0000-0002-4055-3967 surname: Rojas fullname: Rojas, José Manuel – sequence: 3 givenname: Domingo F. orcidid: 0000-0001-8824-5405 surname: Barber fullname: Barber, Domingo F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32349362$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNUREvpjTPykQMLYzuOYw5IsOIjUkUv7dly7MnWVdYOdha19_7wetkt2iJ88ce887wej19WRyEGrKrXFN5zruBDMCFSAAEtl8-qEwZSLWql6NHB-rg6y_kGylCUt4K_qI4547XiDTup7i-vkXRhTj5kb8kXH8e48taMpHMYZj97zCQOpEsxkItb75D8LJ6TSbO3Y4mZ4Ehh-ESW0cw-rPJHchXwdhpjwhLClPwc0x0Z4lay7n0wZe-LQ0lLZioGr6rngxkznu3n0-rq29fL5Y_F-cX3bvn5fGFrAfNC1QPj3AxMNbIVtAFUaKVDUBJMKZQKrKVzxkmBvbUApqgEBSOss71j_LTqdlwXzY2ekl-bdKej8frPQUwrva9LCwuIDBppuah536hWCWGbcgFgoIworE871rTp1-hseaxkxifQp5Hgr_Uq_tZSUtYCFMDbPSDFXxvMs177bHEcTcC4yZpx1bQNMLqVvjn0-mvy2MYiYDuBTTHnhIO2fi7diFtrP2oKevtd9OF3KUnv_kl65P5X_gCNHMMj |
CitedBy_id | crossref_primary_10_26724_2079_8334_2021_3_77_194_198 crossref_primary_10_1016_j_cbi_2024_111150 crossref_primary_10_1016_j_physrep_2023_10_003 crossref_primary_10_1021_acs_accounts_0c00355 crossref_primary_10_3390_nano11082076 crossref_primary_10_1007_s11696_024_03373_x crossref_primary_10_1016_j_jes_2024_01_034 crossref_primary_10_1186_s40360_023_00725_3 crossref_primary_10_3390_pharmaceutics15061711 crossref_primary_10_1021_acsami_0c20066 crossref_primary_10_2147_IJN_S475323 crossref_primary_10_1080_17435390_2022_2025467 crossref_primary_10_1007_s11274_024_03925_z crossref_primary_10_1016_j_rechem_2024_101992 crossref_primary_10_1016_j_nano_2023_102675 crossref_primary_10_1039_D3TB02560H crossref_primary_10_1186_s12951_021_01059_0 crossref_primary_10_1039_D3RA07733K crossref_primary_10_3390_jfb15060169 crossref_primary_10_1186_s12951_022_01747_5 crossref_primary_10_1002_tqem_22172 crossref_primary_10_3390_nano10081551 crossref_primary_10_3389_fnano_2020_588915 crossref_primary_10_1080_10495398_2020_1842751 crossref_primary_10_3390_pharmaceutics15020552 crossref_primary_10_3390_pharmaceutics13091414 |
Cites_doi | 10.35248/2157-7439.19.10.533 10.3389/fonc.2018.00547 10.20944/preprints201809.0148.v1 10.1002/smll.201201531 10.1021/nn4061012 10.1371/journal.pone.0196921 10.1021/bc7003928 10.1039/C4CC07644C 10.1186/s13287-017-0523-4 10.1182/blood-2011-02-337212 10.1016/j.biomaterials.2011.08.048 10.2147/IJN.S194352 10.1038/s41598-019-42370-z 10.1002/smll.201202111 10.1016/j.nano.2018.07.013 10.1021/acs.molpharmaceut.7b01103 10.1093/neuonc/nov171 10.2147/IJN.S193583 10.1038/jcbfm.2010.45 10.1371/journal.pone.0129008 10.1086/689590 10.1016/j.cellsig.2014.07.029 10.1038/s41598-018-29736-5 10.1182/blood-2014-12-567776 10.1016/j.canlet.2016.02.031 10.1002/jat.3606 10.3390/nano9111631 10.1021/am503909q 10.1186/s12989-019-0314-4 10.1002/jbm.a.36893 10.1016/j.biomaterials.2013.01.094 10.1182/blood-2016-06-721571 10.2147/IJN.S141582 10.2147/IJN.S215055 10.1002/jcp.1041490118 10.1002/jcp.26954 10.1684/ecn.2019.0431 10.1016/j.biomaterials.2010.08.003 10.1016/j.biomaterials.2019.02.026 10.1039/c0dt00689k 10.1186/s12951-015-0073-9 10.1002/ppsc.201700418 10.1089/ars.2011.3999 10.1021/acsami.8b17474 10.1093/rb/rbz024 10.1002/adma.201807211 10.1002/cam4.1670 10.1016/j.jhazmat.2015.10.041 10.3389/fimmu.2017.00073 10.1016/j.freeradbiomed.2018.10.411 10.1093/abbs/gmv063 10.1002/ijc.2910030402 10.1007/s11064-019-02790-9 10.1016/j.msec.2016.09.016 10.1016/j.smim.2013.01.001 10.1021/acs.molpharmaceut.9b00632 10.1002/eji.200939889 10.2174/0929867053764635 10.3389/fmicb.2019.01121 10.1182/blood-2017-12-822619 10.1007/s10856-007-3015-8 10.1146/annurev-physiol-021014-071649 10.3233/CH-151998 10.1016/j.jcis.2019.08.060 10.1177/0885328218817939 10.1186/s12885-016-2228-y 10.1089/ars.2017.7176 10.1007/s00109-015-1362-3 10.1016/j.it.2011.03.007 10.1038/s41577-019-0210-z 10.1186/s11671-018-2802-0 10.1371/journal.pone.0043403 10.1002/smll.201900224 10.1002/jcp.26360 10.1016/j.biomaterials.2010.08.111 10.7150/ntno.30052 10.1111/pin.12598 10.3892/or.2016.4660 10.1007/s11515-012-1217-z 10.1038/nri3863 10.1007/s11051-013-1874-0 10.1172/jci.insight.132964 10.1007/s13204-013-0216-y 10.1016/j.nano.2015.11.020 10.3390/molecules25051025 10.1038/bjc.1968.62 10.1182/blood-2016-07-729822 10.1088/0957-4484/14/7/201 10.1016/j.bbagen.2008.09.004 10.1016/j.nano.2015.08.005 10.1172/JCI44490 10.1016/j.molcel.2017.01.021 10.1136/bmj.1.5295.1800 10.1136/svn-2016-000042 10.1088/1361-6528/ab0ed0 10.1016/j.tibtech.2016.08.011 10.1136/bmj.1.5398.1588 10.1016/j.actbio.2017.05.047 10.1016/j.freeradbiomed.2018.06.037 10.1074/jbc.M116.739821 10.1021/acsami.5b05744 10.1093/rb/rbx032 10.1111/febs.14847 10.1007/s12026-010-8199-1 10.1007/s00018-012-1031-4 10.1016/j.abb.2019.108186 10.1016/j.biomaterials.2019.119464 10.3389/fphar.2018.00831 10.1007/s00109-019-01845-2 10.1186/s11671-019-3209-2 10.1016/j.actbio.2014.07.027 10.5045/br.2019.54.1.10 10.1021/acsami.9b08318 10.1136/bmj.1.5127.947 10.1039/C8NR03364A 10.1038/nnano.2016.168 10.1016/j.cellimm.2019.03.005 10.1097/ALN.0000000000001653 10.3389/fchem.2018.00619 10.1136/postgradmedj-2012-131342 10.1039/C9NR04976B 10.3389/fphar.2019.00825 10.3390/v3060920 10.1016/j.jconrel.2013.07.019 10.1016/j.biomaterials.2015.02.068 10.1097/01.rli.0000101027.57021.28 10.1038/s41556-018-0244-7 10.1016/j.jceh.2015.08.001 10.1182/blood-2003-03-0672 10.1089/ars.2019.7991 10.1371/journal.pone.0175871 10.1038/nrm.2017.132 10.1155/2019/5153268 10.1007/s10534-012-9538-6 10.2147/IJN.S215087 10.1002/jcp.29219 10.1111/eci.12870 10.1039/C8NR08614A 10.1089/ars.2019.7962 10.1038/ng1658 10.1074/jbc.RA119.011519 10.1177/0271678X18783372 10.3390/ph12020094 10.1038/s41598-018-19628-z 10.1021/nl900031y 10.2147/IJN.S192214 10.7150/thno.29746 10.1016/j.neuron.2014.07.027 10.1021/jacs.8b10904 10.1038/onc.2017.11 10.3762/bjnano.6.16 10.1155/2012/948098 10.1021/la035648e 10.1038/s41467-019-12470-5 10.1016/j.biomaterials.2010.09.049 10.1021/acsnano.9b08061 10.1039/C9NR08261A 10.1517/17425240802662795 10.1039/C8AN00282G 10.1007/s11064-013-1234-6 10.1038/ni.3253 10.1002/wnan.1206 10.1021/nn9006994 10.2147/IJN.S235518 10.1186/s12885-015-1564-7 10.1146/annurev.biochem.78.081307.110540 10.1111/j.1600-0854.2009.00878.x 10.1128/MCB.24.18.8055-8068.2004 10.1039/C5NR03780H 10.1080/713609210 10.1002/jbm.a.34580 10.1038/s41598-018-37670-9 10.1007/s11427-011-4215-5 10.3389/fonc.2019.01148 10.15171/bi.2018.14 10.3390/nano10020266 10.3390/ijms20153673 10.1002/jat.3933 10.1101/cshperspect.a016758 10.3389/fimmu.2017.01479 10.1158/0008-5472.CAN-11-1870 10.1016/j.nano.2019.102063 10.1073/pnas.1221743110 10.1016/j.jconrel.2015.08.009 10.1186/1477-3155-10-28 10.1002/cplu.201700052 10.1021/acsnano.6b02876 10.3390/ijms20040935 10.1038/s41467-017-00350-9 10.1021/acsami.7b18648 10.3390/ph11040137 10.1039/C8NR05946B 10.1146/annurev-pathol-011811-132445 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/nano10050837 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_5c0ee2067c3543b698955c6f230209a5 PMC7712800 32349362 10_3390_nano10050837 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación grantid: Juan de La Cierva-Incorporación Contract (IJCI-2017-31447) – fundername: Ministerio de Ciencia e Innovación grantid: SAF-2014-54057-R – fundername: Ministerio de Ciencia e Innovación grantid: SAF-2017-82223-R – fundername: European Commission grantid: VetBioNet INFRAIA-731014 project |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7X8 PQGLB PUEGO 5PM |
ID | FETCH-LOGICAL-c450t-94f233af296785160e9ec7de0970a99115e47ddad75ebcc00a851510a5cdcbd23 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:21:41 EDT 2025 Thu Aug 21 18:33:35 EDT 2025 Sun Aug 24 04:00:22 EDT 2025 Wed Feb 19 02:30:52 EST 2025 Thu Apr 24 22:58:54 EDT 2025 Tue Jul 01 01:16:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | nanoparticle–tumor cell interaction nanoparticle–endothelial cell interaction iron oxide nanoparticles nanoparticle coatings nanoparticle–macrophage interaction |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-94f233af296785160e9ec7de0970a99115e47ddad75ebcc00a851510a5cdcbd23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8824-5405 0000-0003-3549-0700 0000-0002-4055-3967 |
OpenAccessLink | https://doaj.org/article/5c0ee2067c3543b698955c6f230209a5 |
PMID | 32349362 |
PQID | 2396860210 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c0ee2067c3543b698955c6f230209a5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7712800 proquest_miscellaneous_2396860210 pubmed_primary_32349362 crossref_citationtrail_10_3390_nano10050837 crossref_primary_10_3390_nano10050837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200427 |
PublicationDateYYYYMMDD | 2020-04-27 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200427 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | ref_137 Li (ref_177) 2019; 31 ref_138 Free (ref_139) 2009; 3 Liu (ref_103) 2018; 35 ref_99 Kaksonen (ref_110) 2018; 19 Chaves (ref_132) 2017; 12 ref_97 Lee (ref_201) 2019; 14 Lawrence (ref_91) 2019; 21 Feng (ref_116) 2018; 8 Petters (ref_124) 2014; 39 Villegas (ref_167) 2019; 338 Reichel (ref_200) 2019; 3 Mikhaylova (ref_24) 2004; 20 Astanina (ref_189) 2014; 10 Lunov (ref_127) 2011; 32 Lam (ref_104) 2017; 82 Luo (ref_179) 2019; 223 Price (ref_9) 2018; 6 Ashby (ref_98) 2014; 6 Safi (ref_107) 2011; 32 Dybas (ref_38) 2018; 143 Wculek (ref_180) 2020; 20 Grover (ref_4) 2015; 5 Zou (ref_18) 2020; 12 Knutson (ref_144) 2003; 38 Arandjelovic (ref_113) 2015; 16 Cairo (ref_142) 2011; 32 Masui (ref_73) 2019; 294 Jin (ref_158) 2019; 203 Katsu (ref_53) 2010; 30 Liu (ref_160) 2018; 10 Wen (ref_188) 2019; 16 Chanmee (ref_194) 2016; 375 Castoldi (ref_72) 2012; 69 ref_79 Nguyen (ref_82) 2020; 98 ref_78 Li (ref_123) 2016; 23 ref_153 Rojas (ref_163) 2016; 12 Perrault (ref_26) 2009; 9 Polyak (ref_6) 2009; 6 Mazuel (ref_92) 2016; 10 Ganz (ref_145) 2003; 102 Weidner (ref_94) 2019; 30 ref_157 Silva (ref_7) 2017; 8 Aghanejad (ref_20) 2018; 8 Yuan (ref_193) 2016; 35 Yang (ref_166) 2016; 291 McCarthy (ref_49) 2012; 25 ref_148 Raub (ref_48) 1991; 149 Wang (ref_192) 2018; 22 Hu (ref_84) 2019; 2019 Bolandparvaz (ref_14) 2020; 108 ref_140 ref_87 ref_143 Yigit (ref_19) 2008; 19 Odio (ref_16) 2019; 11 Arosio (ref_44) 2009; 1790 Shaw (ref_85) 2020; 235 Recalcati (ref_146) 2010; 40 Fielding (ref_60) 1962; 1 Soriano (ref_133) 2010; 26 Xu (ref_155) 2019; 14 Tang (ref_45) 2018; 233 Lu (ref_102) 2019; 10 Garton (ref_52) 2016; 1 Udali (ref_74) 2018; 48 Ling (ref_2) 2013; 9 Poller (ref_135) 2018; 14 Doherty (ref_112) 2009; 78 Zhao (ref_173) 2018; 8 Lunov (ref_93) 2010; 31 Zhao (ref_184) 2018; 15 Li (ref_63) 2017; 67 Lazarovits (ref_25) 2015; 51 Cherayil (ref_33) 2011; 50 Kerins (ref_86) 2018; 29 Basuli (ref_68) 2017; 36 Parak (ref_23) 2003; 14 Su (ref_22) 2019; 14 Kawabata (ref_115) 2019; 133 Dalzon (ref_168) 2019; 11 Zanganeh (ref_176) 2016; 11 Zhao (ref_67) 2018; 15 Liu (ref_164) 2012; 7 Hartwig (ref_197) 2017; 65 Ruiz (ref_136) 2015; 7 Gao (ref_171) 2013; 34 ref_105 Fadeel (ref_28) 2013; 5 Passi (ref_196) 2019; 286 Wu (ref_42) 2019; 10 Haddow (ref_59) 1964; 1 Rezaei (ref_27) 2019; 556 Klei (ref_32) 2017; 8 Tucci (ref_198) 2019; 9 Chen (ref_161) 2018; 38 Hao (ref_178) 2012; 2012 Zhou (ref_147) 2018; 7 Gu (ref_162) 2019; 141 Wang (ref_75) 2017; 8 Xu (ref_90) 2015; 77 Zhang (ref_187) 2016; 304 ref_17 Zhao (ref_15) 2020; 15 Lesniak (ref_108) 2010; 31 Mazzolini (ref_106) 2016; 231 Koch (ref_56) 2017; 129 Gu (ref_131) 2011; 54 Moise (ref_12) 2018; 10 Yang (ref_170) 2017; 19 Yu (ref_21) 2020; 21 Caracciolo (ref_29) 2017; 35 Philpott (ref_35) 2019; 133 Forest (ref_117) 2017; 70 Rojas (ref_89) 2017; 58 Fukai (ref_81) 2011; 15 Pagani (ref_149) 2011; 118 Wang (ref_175) 2019; 14 Ganz (ref_34) 2015; 15 Rojas (ref_119) 2019; 21 Raynal (ref_125) 2004; 39 Babu (ref_71) 2016; 94 Mayor (ref_109) 2014; 6 Imai (ref_51) 2019; 9 Sindrilaru (ref_151) 2011; 121 Schladt (ref_3) 2011; 40 Shokrgozar (ref_36) 2019; 54 Liu (ref_183) 2018; 13 Albanese (ref_30) 2014; 8 Zhang (ref_69) 2014; 26 Schweiger (ref_118) 2012; 10 Matuszak (ref_190) 2015; 61 Vela (ref_66) 2018; 8 Ma (ref_130) 2007; 18 Bohmer (ref_120) 2015; 6 Berry (ref_13) 2019; 9 Mody (ref_10) 2014; 4 Ryter (ref_41) 2019; 678 Chang (ref_11) 2018; 9 Currie (ref_5) 2013; 89 Rojas (ref_122) 2015; 216 Hoeft (ref_150) 2017; 127 Breckwoldt (ref_199) 2017; 8 Stepien (ref_100) 2018; 10 Ma (ref_101) 2015; 7 Lozano (ref_95) 2019; 14 Zhu (ref_96) 2019; 11 Recalcati (ref_141) 2012; 24 ref_181 Donaldson (ref_77) 1997; 105 Shen (ref_182) 2018; 5 Guo (ref_70) 2015; 47 Pedro (ref_156) 2019; 15 Ohgami (ref_54) 2005; 37 Canali (ref_55) 2017; 129 Salas (ref_88) 2013; 171 Maraloiu (ref_134) 2016; 12 Flannagan (ref_114) 2012; 7 Zhao (ref_83) 2019; 30 Ayala (ref_129) 2013; 15 Ganguli (ref_80) 2019; 10 Rojas (ref_121) 2015; 52 ref_64 Chiou (ref_50) 2018; 39 ref_62 Xu (ref_169) 2019; 14 Li (ref_128) 2013; 101 Calero (ref_126) 2015; 13 Duan (ref_186) 2019; 6 Valko (ref_76) 2005; 12 ref_195 Miller (ref_65) 2011; 71 Seibenhener (ref_165) 2004; 24 ref_31 Kroner (ref_152) 2014; 83 Kerr (ref_111) 2009; 10 Xia (ref_191) 2016; 18 Wang (ref_174) 2019; 16 Liu (ref_1) 2013; 9 Korolnek (ref_37) 2015; 125 Zhang (ref_159) 2019; 33 Kheirkhah (ref_8) 2018; 8 Langvad (ref_61) 1968; 3 Cheng (ref_154) 2019; 11 ref_46 ref_185 ref_43 RICHMOND (ref_57) 1959; 1 ref_40 Carter (ref_58) 1968; 22 Youssef (ref_39) 2018; 131 Zini (ref_172) 2018; 233 Musci (ref_47) 2014; 5 |
References_xml | – ident: ref_105 doi: 10.35248/2157-7439.19.10.533 – volume: 8 start-page: 547 year: 2018 ident: ref_66 article-title: Iron Metabolism in Prostate Cancer; From Basic Science to New Therapeutic Strategies publication-title: Front. Oncol. doi: 10.3389/fonc.2018.00547 – ident: ref_46 doi: 10.20944/preprints201809.0148.v1 – volume: 9 start-page: 1533 year: 2013 ident: ref_1 article-title: Applications and potential toxicity of magnetic iron oxide nanoparticles publication-title: Small doi: 10.1002/smll.201201531 – volume: 8 start-page: 5515 year: 2014 ident: ref_30 article-title: Secreted Biomolecules Alter the Biological Identity and Cellular Interactions of Nanoparticles publication-title: ACS Nano doi: 10.1021/nn4061012 – ident: ref_148 doi: 10.1371/journal.pone.0196921 – volume: 19 start-page: 412 year: 2008 ident: ref_19 article-title: MRI Detection of Thrombin with Aptamer Functionalized Superparamagnetic Iron Oxide Nanoparticles publication-title: Bioconj. Chem. doi: 10.1021/bc7003928 – volume: 51 start-page: 2756 year: 2015 ident: ref_25 article-title: Nanoparticle–blood interactions: The implications on solid tumour targeting publication-title: Chem. Commun. doi: 10.1039/C4CC07644C – volume: 19 start-page: 364 year: 2017 ident: ref_170 article-title: MRI monitoring of monocytes to detect immune stimulating treatment response in brain tumor publication-title: Neuro. Oncol. – volume: 8 start-page: 58 year: 2017 ident: ref_7 article-title: Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-017-0523-4 – volume: 118 start-page: 736 year: 2011 ident: ref_149 article-title: Low hepcidin accounts for the proinflammatory status associated with iron deficiency publication-title: Blood doi: 10.1182/blood-2011-02-337212 – volume: 32 start-page: 9353 year: 2011 ident: ref_107 article-title: The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.048 – volume: 14 start-page: 8235 year: 2019 ident: ref_201 article-title: Enhanced anti-tumor immunotherapy by silica-coated magnetic nanoparticles conjugated with ovalbumin publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S194352 – volume: 9 start-page: 6228 year: 2019 ident: ref_51 article-title: Intracellular Fe2+ accumulation in endothelial cells and pericytes induces blood-brain barrier dysfunction in secondary brain injury after brain hemorrhage publication-title: Sci. Rep. doi: 10.1038/s41598-019-42370-z – volume: 9 start-page: 1450 year: 2013 ident: ref_2 article-title: Chemical design of biocompatible iron oxide nanoparticles for medical applications publication-title: Small doi: 10.1002/smll.201202111 – volume: 14 start-page: 2575 year: 2018 ident: ref_135 article-title: Very small superparamagnetic iron oxide nanoparticles: Long-term fate and metabolic processing in atherosclerotic mice publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2018.07.013 – volume: 15 start-page: 1791 year: 2018 ident: ref_184 article-title: Iron Oxide Nanoparticles-Based Vaccine Delivery for Cancer Treatment publication-title: Mol. Pharmaceut. doi: 10.1021/acs.molpharmaceut.7b01103 – volume: 18 start-page: 507 year: 2016 ident: ref_191 article-title: Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation publication-title: Neuro. Oncol. doi: 10.1093/neuonc/nov171 – volume: 14 start-page: 4503 year: 2019 ident: ref_175 article-title: Ferumoxytol. and CpG oligodeoxynucleotide 2395 synergistically enhance antitumor activity of macrophages against NSCLC with EGFR(L858R/T790M) mutation publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S193583 – volume: 30 start-page: 1939 year: 2010 ident: ref_53 article-title: Hemoglobin-Induced Oxidative Stress Contributes to Matrix Metalloproteinase Activation and Blood–Brain Barrier Dysfunction in vivo publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2010.45 – ident: ref_97 doi: 10.1371/journal.pone.0129008 – volume: 231 start-page: 40 year: 2016 ident: ref_106 article-title: Protein Corona Modulates Uptake and Toxicity of Nanoceria via Clathrin-Mediated Endocytosis publication-title: Biol. Bull. doi: 10.1086/689590 – volume: 26 start-page: 2539 year: 2014 ident: ref_69 article-title: Disordered hepcidin–ferroportin signaling promotes breast cancer growth publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2014.07.029 – volume: 8 start-page: 11417 year: 2018 ident: ref_8 article-title: Magnetic Drug Targeting: A Novel Treatment for Intramedullary Spinal Cord Tumors publication-title: Sci. Rep. doi: 10.1038/s41598-018-29736-5 – volume: 125 start-page: 2893 year: 2015 ident: ref_37 article-title: Macrophages and iron trafficking at the birth and death of red cells publication-title: Blood doi: 10.1182/blood-2014-12-567776 – volume: 375 start-page: 20 year: 2016 ident: ref_194 article-title: Hyaluronan: A modulator of the tumor microenvironment publication-title: Cancer Lett. doi: 10.1016/j.canlet.2016.02.031 – volume: 38 start-page: 978 year: 2018 ident: ref_161 article-title: Size-dependent superparamagnetic iron oxide nanoparticles dictate interleukin-1β release from mouse bone marrow-derived macrophages publication-title: J. Appl. Toxicol. doi: 10.1002/jat.3606 – ident: ref_140 doi: 10.3390/nano9111631 – volume: 6 start-page: 15412 year: 2014 ident: ref_98 article-title: Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503909q – volume: 22 start-page: 3855 year: 2018 ident: ref_192 article-title: Tumor microenvironment: Recent advances in various cancer treatments publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 16 start-page: 30 year: 2019 ident: ref_188 article-title: Iron oxide nanoparticles induce reversible endothelial-to-mesenchymal transition in vascular endothelial cells at acutely non-cytotoxic concentrations publication-title: Part. Fibre Toxicol. doi: 10.1186/s12989-019-0314-4 – volume: 108 start-page: 1186 year: 2020 ident: ref_14 article-title: Biodistribution and toxicity of epitope-functionalized dextran iron oxide nanoparticles in a pregnant murine model publication-title: J. Biomed. Mater. Res. Part. A doi: 10.1002/jbm.a.36893 – volume: 34 start-page: 3688 year: 2013 ident: ref_171 article-title: Efficacy of MRI visible iron oxide nanoparticles in delivering minicircle DNA into liver via intrabiliary infusion publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.094 – volume: 129 start-page: 405 year: 2017 ident: ref_55 article-title: Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice publication-title: Blood doi: 10.1182/blood-2016-06-721571 – volume: 12 start-page: 5511 year: 2017 ident: ref_132 article-title: Exploring cellular uptake of iron oxide nanoparticles associated with rhodium citrate in breast cancer cells publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S141582 – volume: 14 start-page: 6779 year: 2019 ident: ref_155 article-title: SPIONs enhances IL-10-producing macrophages to relieve sepsis via Cav1-Notch1/HES1-mediated autophagy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S215055 – volume: 149 start-page: 141 year: 1991 ident: ref_48 article-title: Recycling kinetics and transcytosis of transferrin in primary cultures of bovine brain microvessel endothelial cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.1041490118 – volume: 233 start-page: 9179 year: 2018 ident: ref_45 article-title: Ferritinophagy/ferroptosis: Iron-related newcomers in human diseases publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26954 – volume: 30 start-page: 88 year: 2019 ident: ref_83 article-title: Dexmedetomidine alleviates hepatic injury via the inhibition of oxidative stress and activation of the Nrf2/HO-1 signaling pathway publication-title: Eur. Cytok. Netw. doi: 10.1684/ecn.2019.0431 – volume: 31 start-page: 9015 year: 2010 ident: ref_93 article-title: Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.08.003 – volume: 203 start-page: 23 year: 2019 ident: ref_158 article-title: Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.02.026 – volume: 40 start-page: 6315 year: 2011 ident: ref_3 article-title: Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment publication-title: Dalton Trans. doi: 10.1039/c0dt00689k – volume: 13 start-page: 16 year: 2015 ident: ref_126 article-title: Characterization of interaction of magnetic nanoparticles with breast cancer cells publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-015-0073-9 – volume: 35 start-page: 1700418 year: 2018 ident: ref_103 article-title: Static Magnetic Field Dictates Protein Corona Formation on the Surface of Glutamine-Modified Superparamagnetic Iron Oxide Nanoparticles publication-title: Part. Part. Syst. Char. doi: 10.1002/ppsc.201700418 – volume: 15 start-page: 1583 year: 2011 ident: ref_81 article-title: Superoxide dismutases: Role in redox signaling, vascular function, and diseases publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2011.3999 – volume: 10 start-page: 41197 year: 2018 ident: ref_160 article-title: Impact of Morphology on Iron Oxide Nanoparticles-Induced Inflammasome Activation in Macrophages publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17474 – volume: 6 start-page: 221 year: 2019 ident: ref_186 article-title: Iron oxide nanoparticles promote vascular endothelial cells survival from oxidative stress by enhancement of autophagy publication-title: Regen. Biomater. doi: 10.1093/rb/rbz024 – volume: 31 start-page: 1807211 year: 2019 ident: ref_177 article-title: Artificially Reprogrammed Macrophages as Tumor-Tropic Immunosuppression-Resistant Biologics to Realize Therapeutics Production and Immune Activation publication-title: Adv. Mater. doi: 10.1002/adma.201807211 – volume: 7 start-page: 4012 year: 2018 ident: ref_147 article-title: Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway publication-title: Cancer Med. doi: 10.1002/cam4.1670 – volume: 304 start-page: 186 year: 2016 ident: ref_187 article-title: Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.10.041 – volume: 8 start-page: 73 year: 2017 ident: ref_32 article-title: From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00073 – volume: 133 start-page: 112 year: 2019 ident: ref_35 article-title: The ins and outs of iron: Escorting iron through the mammalian cytosol publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.10.411 – volume: 47 start-page: 703 year: 2015 ident: ref_70 article-title: An important role of the hepcidin–ferroportin signaling in affecting tumor growth and metastasis publication-title: Acta Biochim. Biophys. Sin. doi: 10.1093/abbs/gmv063 – volume: 3 start-page: 415 year: 1968 ident: ref_61 article-title: Iron-dextran induction of distant tumours in mice publication-title: Int. J. Cancer doi: 10.1002/ijc.2910030402 – ident: ref_157 doi: 10.1007/s11064-019-02790-9 – volume: 105 start-page: 1285 year: 1997 ident: ref_77 article-title: Free radical activity of PM10: Iron-mediated generation of hydroxyl radicals publication-title: Environ. Health Perspect. – volume: 70 start-page: 889 year: 2017 ident: ref_117 article-title: Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: A too simplistic explanation that does not take into account the nanoparticle protein corona publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.09.016 – volume: 24 start-page: 393 year: 2012 ident: ref_141 article-title: Systemic and cellular consequences of macrophage control of iron metabolism publication-title: Semin. Immunol. doi: 10.1016/j.smim.2013.01.001 – volume: 16 start-page: 4274 year: 2019 ident: ref_174 article-title: Feraheme (Ferumoxytol) Is Recognized by Proinflammatory and Anti-inflammatory Macrophages via Scavenger Receptor Type AI/II publication-title: Mol. Pharmaceut. doi: 10.1021/acs.molpharmaceut.9b00632 – volume: 40 start-page: 824 year: 2010 ident: ref_146 article-title: Differential regulation of iron homeostasis during human macrophage polarized activation publication-title: Eur. J. Immunol. doi: 10.1002/eji.200939889 – volume: 12 start-page: 1161 year: 2005 ident: ref_76 article-title: Metals, Toxicity and Oxidative Stress publication-title: Curr. Med. Chem. doi: 10.2174/0929867053764635 – volume: 10 start-page: 1121 year: 2019 ident: ref_80 article-title: Peroxisomes and Oxidative Stress: Their Implications in the Modulation of Cellular Immunity During Mycobacterial Infection publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01121 – volume: 131 start-page: 2581 year: 2018 ident: ref_39 article-title: Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion publication-title: Blood doi: 10.1182/blood-2017-12-822619 – volume: 18 start-page: 2145 year: 2007 ident: ref_130 article-title: Study on the endocytosis and the internalization mechanism of aminosilane-coated Fe3O4 nanoparticles in vitro publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-007-3015-8 – volume: 77 start-page: 57 year: 2015 ident: ref_90 article-title: Lysosomal physiology publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021014-071649 – volume: 61 start-page: 259 year: 2015 ident: ref_190 article-title: Shell matters: Magnetic targeting of SPIONs and in vitro effects on endothelial and monocytic cell function publication-title: Clin. Hemorheol. Microcirc. doi: 10.3233/CH-151998 – volume: 556 start-page: 476 year: 2019 ident: ref_27 article-title: Synthetic and biological identities of polymeric nanoparticles influencing the cellular delivery: An immunological link publication-title: J. Coll. Interface Sci. doi: 10.1016/j.jcis.2019.08.060 – volume: 33 start-page: 935 year: 2019 ident: ref_159 article-title: In vitro inhibition of tumor growth by low-dose iron oxide nanoparticles activating macrophages publication-title: J. Biomater. Appl. doi: 10.1177/0885328218817939 – ident: ref_64 doi: 10.1186/s12885-016-2228-y – volume: 29 start-page: 1756 year: 2018 ident: ref_86 article-title: The Roles of NRF2 in Modulating Cellular Iron Homeostasis publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7176 – volume: 94 start-page: 347 year: 2016 ident: ref_71 article-title: miR-20a regulates expression of the iron exporter ferroportin in lung cancer publication-title: J. Mol. Med. doi: 10.1007/s00109-015-1362-3 – volume: 32 start-page: 241 year: 2011 ident: ref_142 article-title: Iron trafficking and metabolism in macrophages: Contribution to the polarized phenotype publication-title: Trends Immunol. doi: 10.1016/j.it.2011.03.007 – volume: 20 start-page: 7 year: 2020 ident: ref_180 article-title: Dendritic cells in cancer immunology and immunotherapy publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0210-z – volume: 15 start-page: 9953 year: 2018 ident: ref_67 article-title: Role of hepcidin and iron metabolism in the onset of prostate cancer publication-title: Oncol. Lett. – volume: 13 start-page: 409 year: 2018 ident: ref_183 article-title: SPIO Enhance the Cross-Presentation and Migration of DCs and Anionic SPIO Influence the Nanoadjuvant Effects Related to Interleukin-1β publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2802-0 – ident: ref_62 doi: 10.1371/journal.pone.0043403 – volume: 26 start-page: 533 year: 2010 ident: ref_133 article-title: The endocytic penetration mechanism of iron oxide magnetic nanoparticles with positively charged cover: A morphological approach publication-title: Int. J. Mol. Med. – volume: 15 start-page: 1900224 year: 2019 ident: ref_156 article-title: Impact of Locally Administered Carboxydextran-Coated Super-Paramagnetic Iron Nanoparticles on Cellular Immune Function publication-title: Small doi: 10.1002/smll.201900224 – volume: 233 start-page: 5823 year: 2018 ident: ref_172 article-title: USPIO-labeling in M1 and M2-polarized macrophages: An in vitro study using a clinical magnetic resonance scanner publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26360 – volume: 32 start-page: 547 year: 2011 ident: ref_127 article-title: Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.08.111 – volume: 3 start-page: 66 year: 2019 ident: ref_200 article-title: Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment publication-title: Nanotheranostics doi: 10.7150/ntno.30052 – volume: 67 start-page: 564 year: 2017 ident: ref_63 article-title: Fenton reaction-induced renal carcinogenesis in Mutyh-deficient mice exhibits less chromosomal aberrations than the rat model publication-title: Pathol. Int. doi: 10.1111/pin.12598 – volume: 35 start-page: 2499 year: 2016 ident: ref_193 article-title: Role of the tumor microenvironment in tumor progression and the clinical applications (Review) publication-title: Oncol. Rep. doi: 10.3892/or.2016.4660 – volume: 7 start-page: 189 year: 2012 ident: ref_164 article-title: Sequestosome 1/p62: A multi-domain protein with multi-faceted functions publication-title: Front. Biol. doi: 10.1007/s11515-012-1217-z – volume: 15 start-page: 500 year: 2015 ident: ref_34 article-title: Iron homeostasis in host defence and inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3863 – volume: 15 start-page: 1874 year: 2013 ident: ref_129 article-title: Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles publication-title: J. Nanopart. Res. doi: 10.1007/s11051-013-1874-0 – ident: ref_31 doi: 10.1172/jci.insight.132964 – volume: 4 start-page: 385 year: 2014 ident: ref_10 article-title: Magnetic nanoparticle drug delivery systems for targeting tumor publication-title: Appl. Nanosci. doi: 10.1007/s13204-013-0216-y – volume: 12 start-page: 1127 year: 2016 ident: ref_163 article-title: Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2015.11.020 – ident: ref_17 doi: 10.3390/molecules25051025 – volume: 22 start-page: 521 year: 1968 ident: ref_58 article-title: Induction of tumours in mice and rats with ferric sodium gluconate and iron dextran glycerol glycoside publication-title: Br. J. Cancer doi: 10.1038/bjc.1968.62 – volume: 129 start-page: 415 year: 2017 ident: ref_56 article-title: Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis publication-title: Blood doi: 10.1182/blood-2016-07-729822 – volume: 14 start-page: R15 year: 2003 ident: ref_23 article-title: Biological applications of colloidal nanocrystals publication-title: Nanotechnology doi: 10.1088/0957-4484/14/7/201 – volume: 1790 start-page: 589 year: 2009 ident: ref_44 article-title: Ferritins: A family of molecules for iron storage, antioxidation and more publication-title: Biochim. Biophys. Acta BBA doi: 10.1016/j.bbagen.2008.09.004 – volume: 12 start-page: 191 year: 2016 ident: ref_134 article-title: Multiscale investigation of USPIO nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2015.08.005 – volume: 121 start-page: 985 year: 2011 ident: ref_151 article-title: An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice publication-title: J. Clin. Invest. doi: 10.1172/JCI44490 – volume: 65 start-page: 730 year: 2017 ident: ref_197 article-title: The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.01.021 – volume: 1 start-page: 1800 year: 1962 ident: ref_60 article-title: Sarcoma induction by iron-carbohydrate complexes publication-title: Br. Med. J. doi: 10.1136/bmj.1.5295.1800 – volume: 1 start-page: 172 year: 2016 ident: ref_52 article-title: Brain iron overload following intracranial haemorrhage publication-title: Stroke Vasc. Neurol. doi: 10.1136/svn-2016-000042 – volume: 30 start-page: 265707 year: 2019 ident: ref_94 article-title: Protein corona formation and its constitutional changes on magnetic nanoparticles in serum featuring a polydehydroalanine coating: Effects of charge and incubation conditions publication-title: Nanotechnology doi: 10.1088/1361-6528/ab0ed0 – volume: 35 start-page: 257 year: 2017 ident: ref_29 article-title: Biological Identity of Nanoparticles In Vivo: Clinical Implications of the Protein Corona publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.08.011 – volume: 1 start-page: 1593 year: 1964 ident: ref_59 article-title: Induction of sarcomata in rabbits by intramuscular injection of iron-dextran (“imferon”) publication-title: Br. Med. J. doi: 10.1136/bmj.1.5398.1588 – volume: 58 start-page: 181 year: 2017 ident: ref_89 article-title: Time-course assessment of the aggregation and metabolization of magnetic nanoparticles publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.05.047 – volume: 133 start-page: 46 year: 2019 ident: ref_115 article-title: Transferrin and transferrin receptors update publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.06.037 – volume: 291 start-page: 18663 year: 2016 ident: ref_166 article-title: Sequestosome 1/p62 Protein Is Associated with Autophagic Removal of Excess Hepatic Endoplasmic Reticulum in Mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.739821 – volume: 7 start-page: 17614 year: 2015 ident: ref_101 article-title: Monitoring of the Enzymatic Degradation of Protein Corona and Evaluating the Accompanying Cytotoxicity of Nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05744 – volume: 5 start-page: 141 year: 2018 ident: ref_182 article-title: Lactosylated N-Alkyl polyethylenimine coated iron oxide nanoparticles induced autophagy in mouse dendritic cells publication-title: Regen. Biomater. doi: 10.1093/rb/rbx032 – volume: 286 start-page: 2937 year: 2019 ident: ref_196 article-title: Dissecting the role of hyaluronan synthases in the tumor microenvironment publication-title: FEBS J. doi: 10.1111/febs.14847 – volume: 50 start-page: 1 year: 2011 ident: ref_33 article-title: The role of iron in the immune response to bacterial infection publication-title: Immunol. Res. doi: 10.1007/s12026-010-8199-1 – volume: 69 start-page: 3945 year: 2012 ident: ref_72 article-title: Regulation of iron homeostasis by microRNAs publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-012-1031-4 – volume: 678 start-page: 108186 year: 2019 ident: ref_41 article-title: Heme oxygenase-1/carbon monoxide as modulators of autophagy and inflammation publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2019.108186 – volume: 223 start-page: 119464 year: 2019 ident: ref_179 article-title: Engineered nano-immunopotentiators efficiently promote cancer immunotherapy for inhibiting and preventing lung metastasis of melanoma publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119464 – volume: 9 start-page: 831 year: 2018 ident: ref_11 article-title: Biologically Targeted Magnetic Hyperthermia: Potential and Limitations publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00831 – volume: 98 start-page: 59 year: 2020 ident: ref_82 article-title: Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases publication-title: J. Mol. Med. doi: 10.1007/s00109-019-01845-2 – volume: 14 start-page: 379 year: 2019 ident: ref_169 article-title: Ferumoxytol. Attenuates the Function of MDSCs to Ameliorate LPS-Induced Immunosuppression in Sepsis publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-019-3209-2 – volume: 10 start-page: 4896 year: 2014 ident: ref_189 article-title: Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.07.027 – volume: 54 start-page: 10 year: 2019 ident: ref_36 article-title: Molecular perspective of iron uptake, related diseases, and treatments publication-title: Blood Res. doi: 10.5045/br.2019.54.1.10 – volume: 11 start-page: 26648 year: 2019 ident: ref_16 article-title: Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with αvβ3-Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08318 – volume: 1 start-page: 947 year: 1959 ident: ref_57 article-title: Induction of sarcoma in the rat by iron-dextran complex publication-title: Br. Med. J. doi: 10.1136/bmj.1.5127.947 – volume: 11 start-page: 9341 year: 2019 ident: ref_168 article-title: Utility of macrophages in an antitumor strategy based on the vectorization of iron oxide nanoparticles publication-title: Nanoscale doi: 10.1039/C8NR03364A – volume: 11 start-page: 986 year: 2016 ident: ref_176 article-title: Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.168 – volume: 338 start-page: 51 year: 2019 ident: ref_167 article-title: Poly(acrylic acid)-Coated Iron Oxide Nanoparticles interact with mononuclear phagocytes and decrease platelet aggregation publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2019.03.005 – volume: 127 start-page: 121 year: 2017 ident: ref_150 article-title: Iron Loading Exaggerates the Inflammatory Response to the Toll-like Receptor 4 Ligand Lipopolysaccharide by Altering Mitochondrial Homeostasis publication-title: Anesthesiology doi: 10.1097/ALN.0000000000001653 – volume: 6 start-page: 619 year: 2018 ident: ref_9 article-title: Magnetic Drug Delivery: Where the Field Is Going publication-title: Front. Chem. doi: 10.3389/fchem.2018.00619 – volume: 89 start-page: 209 year: 2013 ident: ref_5 article-title: Understanding MRI: Basic MR physics for physicians publication-title: Postgrad. Med. J. doi: 10.1136/postgradmedj-2012-131342 – volume: 12 start-page: 4473 year: 2020 ident: ref_18 article-title: Nanoparticles modified by triple single chain antibodies for MRI examination and targeted therapy in pancreatic cancer publication-title: Nanoscale doi: 10.1039/C9NR04976B – volume: 10 start-page: 825 year: 2019 ident: ref_42 article-title: Heme Catabolic Pathway in Inflammation and Immune Disorders publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00825 – ident: ref_181 doi: 10.3390/v3060920 – volume: 171 start-page: 225 year: 2013 ident: ref_88 article-title: Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.07.019 – volume: 52 start-page: 494 year: 2015 ident: ref_121 article-title: Polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.02.068 – volume: 39 start-page: 56 year: 2004 ident: ref_125 article-title: Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: Mechanisms and comparison of ferumoxides and ferumoxtran-10 publication-title: Invest. Radiol. doi: 10.1097/01.rli.0000101027.57021.28 – volume: 21 start-page: 133 year: 2019 ident: ref_91 article-title: The lysosome as a cellular centre for signalling, metabolism and quality control publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0244-7 – volume: 5 start-page: 246 year: 2015 ident: ref_4 article-title: Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians publication-title: J. Clin. Exp. Hepatol. doi: 10.1016/j.jceh.2015.08.001 – volume: 102 start-page: 783 year: 2003 ident: ref_145 article-title: Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation publication-title: Blood doi: 10.1182/blood-2003-03-0672 – ident: ref_40 doi: 10.1089/ars.2019.7991 – ident: ref_99 doi: 10.1371/journal.pone.0175871 – volume: 19 start-page: 313 year: 2018 ident: ref_110 article-title: Mechanisms of clathrin-mediated endocytosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.132 – volume: 2019 start-page: 5153268 year: 2019 ident: ref_84 article-title: Reactive Oxygen Species and Nrf2: Functional and Transcriptional Regulators of Hematopoiesis publication-title: Oxid. Med. Cell Longev. doi: 10.1155/2019/5153268 – volume: 25 start-page: 665 year: 2012 ident: ref_49 article-title: Mechanistic analysis of iron accumulation by endothelial cells of the BBB publication-title: Biometals doi: 10.1007/s10534-012-9538-6 – volume: 21 start-page: 181 year: 2020 ident: ref_21 article-title: Antifibrotic effects of specific siRNA targeting connective tissue growth factor delivered by polyethyleneimine-functionalized magnetic iron oxide nanoparticles on LX-2 cells publication-title: Mol. Med. Rep. – volume: 14 start-page: 7549 year: 2019 ident: ref_22 article-title: CD44-Targeted Magnetic Nanoparticles Kill Head And Neck Squamous Cell Carcinoma Stem Cells In An Alternating Magnetic Field publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S215087 – volume: 235 start-page: 3119 year: 2020 ident: ref_85 article-title: Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29219 – volume: 48 start-page: e12870 year: 2018 ident: ref_74 article-title: Hepcidin and DNA promoter methylation in hepatocellular carcinoma publication-title: Eur. J. Clin. Investig. doi: 10.1111/eci.12870 – volume: 11 start-page: 6817 year: 2019 ident: ref_96 article-title: Dynamic protein corona influences immune-modulating osteogenesis in magnetic nanoparticle (MNP)-infiltrated bone regeneration scaffolds in vivo publication-title: Nanoscale doi: 10.1039/C8NR08614A – ident: ref_78 doi: 10.1089/ars.2019.7962 – volume: 37 start-page: 1264 year: 2005 ident: ref_54 article-title: Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells publication-title: Nat. Genet. doi: 10.1038/ng1658 – volume: 294 start-page: 19740 year: 2019 ident: ref_73 article-title: mTORC2 links growth factor signaling with epigenetic regulation of iron metabolism in glioblastoma publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.011519 – volume: 39 start-page: 2117 year: 2018 ident: ref_50 article-title: Endothelial cells are critical regulators of iron transport in a model of the human blood–brain barrier publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X18783372 – ident: ref_43 doi: 10.3390/ph12020094 – volume: 8 start-page: 2082 year: 2018 ident: ref_116 article-title: Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings publication-title: Sci. Rep. doi: 10.1038/s41598-018-19628-z – volume: 9 start-page: 1909 year: 2009 ident: ref_26 article-title: Mediating tumor targeting efficiency of nanoparticles through design publication-title: Nano Lett. doi: 10.1021/nl900031y – volume: 14 start-page: 2055 year: 2019 ident: ref_95 article-title: Plasma protein adsorption on Fe(3)O(4)-PEG nanoparticles activates the complement system and induces an inflammatory response publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S192214 – volume: 8 start-page: 6307 year: 2018 ident: ref_173 article-title: Anti-tumor macrophages activated by ferumoxytol. combined or surface-functionalized with the TLR3 agonist poly (I: C) promote melanoma regression publication-title: Theranostics doi: 10.7150/thno.29746 – volume: 83 start-page: 1098 year: 2014 ident: ref_152 article-title: TNF and Increased Intracellular Iron Alter Macrophage Polarization to a Detrimental M1 Phenotype in the Injured Spinal Cord publication-title: Neuron doi: 10.1016/j.neuron.2014.07.027 – volume: 141 start-page: 6122 year: 2019 ident: ref_162 article-title: Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10904 – volume: 36 start-page: 4089 year: 2017 ident: ref_68 article-title: Iron addiction: A novel therapeutic target in ovarian cancer publication-title: Oncogene doi: 10.1038/onc.2017.11 – volume: 6 start-page: 167 year: 2015 ident: ref_120 article-title: Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.6.16 – volume: 2012 start-page: 948098 year: 2012 ident: ref_178 article-title: Macrophages in tumor microenvironments and the progression of tumors publication-title: Clin. Dev. Immunol. doi: 10.1155/2012/948098 – volume: 20 start-page: 2472 year: 2004 ident: ref_24 article-title: Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification publication-title: Langmuir doi: 10.1021/la035648e – volume: 10 start-page: 4520 year: 2019 ident: ref_102 article-title: Tailoring the component of protein corona via simple chemistry publication-title: Nat. Commun. doi: 10.1038/s41467-019-12470-5 – volume: 31 start-page: 9511 year: 2010 ident: ref_108 article-title: Serum heat inactivation affects protein corona composition and nanoparticle uptake publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.09.049 – ident: ref_137 doi: 10.1021/acsnano.9b08061 – volume: 11 start-page: 22849 year: 2019 ident: ref_154 article-title: The vacuolization of macrophages induced by large amounts of inorganic nanoparticle uptake to enhance the immune response publication-title: Nanoscale doi: 10.1039/C9NR08261A – volume: 6 start-page: 53 year: 2009 ident: ref_6 article-title: Magnetic targeting for site-specific drug delivery: Applications and clinical potential publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425240802662795 – volume: 143 start-page: 3489 year: 2018 ident: ref_38 article-title: Raman imaging of heme metabolism in situ in macrophages and Kupffer cells publication-title: Analyst doi: 10.1039/C8AN00282G – volume: 23 start-page: 1726 year: 2016 ident: ref_123 article-title: Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging publication-title: Drug Deliv. – volume: 39 start-page: 372 year: 2014 ident: ref_124 article-title: Uptake of fluorescent iron oxide nanoparticles by oligodendroglial OLN-93 cells publication-title: Neurochem. Res. doi: 10.1007/s11064-013-1234-6 – volume: 16 start-page: 907 year: 2015 ident: ref_113 article-title: Phagocytosis of apoptotic cells in homeostasis publication-title: Nat. Immunol. doi: 10.1038/ni.3253 – volume: 5 start-page: 111 year: 2013 ident: ref_28 article-title: Bridge over troubled waters: Understanding the synthetic and biological identities of engineered nanomaterials publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1206 – volume: 3 start-page: 2461 year: 2009 ident: ref_139 article-title: Cathepsin L digestion of nanobioconjugates upon endocytosis publication-title: ACS Nano doi: 10.1021/nn9006994 – volume: 5 start-page: 204 year: 2014 ident: ref_47 article-title: Ceruloplasmin-ferroportin system of iron traffic in vertebrates publication-title: World J. Biol. Chem – volume: 15 start-page: 1321 year: 2020 ident: ref_15 article-title: A Peptide-Functionalized Magnetic Nanoplatform-Loaded Melatonin for Targeted Amelioration of Fibrosis in Pressure Overload-Induced Cardiac Hypertrophy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S235518 – ident: ref_195 doi: 10.1186/s12885-015-1564-7 – volume: 78 start-page: 857 year: 2009 ident: ref_112 article-title: Mechanisms of endocytosis publication-title: Annu Rev. Biochem. doi: 10.1146/annurev.biochem.78.081307.110540 – volume: 10 start-page: 364 year: 2009 ident: ref_111 article-title: Defining macropinocytosis publication-title: Traffic doi: 10.1111/j.1600-0854.2009.00878.x – volume: 24 start-page: 8055 year: 2004 ident: ref_165 article-title: Sequestosome 1/p62 Is a Polyubiquitin Chain Binding Protein Involved in Ubiquitin Proteasome Degradation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.18.8055-8068.2004 – volume: 7 start-page: 16321 year: 2015 ident: ref_136 article-title: Biotransformation of magnetic nanoparticles as a function of coating in a rat model publication-title: Nanoscale doi: 10.1039/C5NR03780H – volume: 38 start-page: 61 year: 2003 ident: ref_144 article-title: Iron Metabolism in the Reticuloendothelial System publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/713609210 – volume: 101 start-page: 2846 year: 2013 ident: ref_128 article-title: Mechanism of poly-l-lysine-modified iron oxide nanoparticles uptake into cells publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.34580 – volume: 9 start-page: 1059 year: 2019 ident: ref_13 article-title: Nanoparticle-mediated magnetic hyperthermia is an effective method for killing the human-infective protozoan parasite Leishmania mexicana in vitro publication-title: Sci. Rep. doi: 10.1038/s41598-018-37670-9 – volume: 54 start-page: 793 year: 2011 ident: ref_131 article-title: The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell publication-title: Sci. China Life Sci. doi: 10.1007/s11427-011-4215-5 – volume: 9 start-page: 1148 year: 2019 ident: ref_198 article-title: Immune System Evasion as Hallmark of Melanoma Progression: The Role of Dendritic Cells publication-title: Front. Oncol. doi: 10.3389/fonc.2019.01148 – volume: 8 start-page: 117 year: 2018 ident: ref_20 article-title: Mucin-1 aptamer-armed superparamagnetic iron oxide nanoparticles for targeted delivery of doxorubicin to breast cancer cells publication-title: Bioimpacts doi: 10.15171/bi.2018.14 – ident: ref_153 doi: 10.3390/nano10020266 – ident: ref_79 doi: 10.3390/ijms20153673 – ident: ref_185 doi: 10.1002/jat.3933 – volume: 6 start-page: a016758 year: 2014 ident: ref_109 article-title: Clathrin-independent pathways of endocytosis publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016758 – volume: 8 start-page: 1479 year: 2017 ident: ref_199 article-title: Iron Induces Anti-tumor Activity in Tumor-Associated Macrophages publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01479 – volume: 71 start-page: 6728 year: 2011 ident: ref_65 article-title: An iron regulatory gene signature predicts outcome in breast cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-1870 – volume: 21 start-page: 102063 year: 2019 ident: ref_119 article-title: Polyethylenimine-coated superparamagnetic iron oxide nanoparticles impair in vitro and in vivo angiogenesis publication-title: Nanomedicine doi: 10.1016/j.nano.2019.102063 – ident: ref_87 doi: 10.1073/pnas.1221743110 – volume: 216 start-page: 78 year: 2015 ident: ref_122 article-title: Polyethylenimine-coated SPION exhibits potential intrinsic anti-metastatic properties inhibiting migration and invasion of pancreatic tumor cells publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.08.009 – volume: 10 start-page: 28 year: 2012 ident: ref_118 article-title: Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-10-28 – volume: 82 start-page: 638 year: 2017 ident: ref_104 article-title: Zwitterionic Modification of Ultrasmall Iron Oxide Nanoparticles for Reduced Protein Corona Formation publication-title: Chempluschem doi: 10.1002/cplu.201700052 – volume: 10 start-page: 7627 year: 2016 ident: ref_92 article-title: Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels publication-title: ACS Nano doi: 10.1021/acsnano.6b02876 – ident: ref_138 doi: 10.3390/ijms20040935 – volume: 8 start-page: 274 year: 2017 ident: ref_75 article-title: G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin publication-title: Nat. Commun. doi: 10.1038/s41467-017-00350-9 – volume: 10 start-page: 4548 year: 2018 ident: ref_100 article-title: Effect of Surface Chemistry and Associated Protein Corona on the Long-Term Biodegradation of Iron Oxide Nanoparticles In Vivo publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18648 – ident: ref_143 doi: 10.3390/ph11040137 – volume: 10 start-page: 20519 year: 2018 ident: ref_12 article-title: The potential of magnetic hyperthermia for triggering the differentiation of cancer cells publication-title: Nanoscale doi: 10.1039/C8NR05946B – volume: 7 start-page: 61 year: 2012 ident: ref_114 article-title: The cell biology of phagocytosis publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-011811-132445 |
SSID | ssj0000913853 |
Score | 2.2847786 |
SecondaryResourceType | review_article |
Snippet | Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 837 |
SubjectTerms | iron oxide nanoparticles nanoparticle coatings nanoparticle–endothelial cell interaction nanoparticle–macrophage interaction nanoparticle–tumor cell interaction Review |
Title | The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32349362 https://www.proquest.com/docview/2396860210 https://pubmed.ncbi.nlm.nih.gov/PMC7712800 https://doaj.org/article/5c0ee2067c3543b698955c6f230209a5 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeBNaVkaCE4rq-Lnm1lZdWg4Foa7UW-TYs2IlcKrtVuIH8MM7k6SrLAJx4RqPZWtm7JlPnnzD2NtKoRtJUKW1AKXGFLb0SVZlY0MyEARUsSuQPbMnc_3pwlyMWn1RTVhPD9wrbt9EAUAc41EZrRrqd2hMtAtMnaXwoWMvxZg3AlPdHewrhYGor3RXiOv3c8htRWwnU2p5PopBHVX_n_LL38skR3Fn9og9HBJGftBv9DG7A_kJezCiEXzKfqGt-SnOXmbUOe_bS5Ly-fAbLqJh3i746arN_PPPZQKOlyqi5aEojoec-Dm9GPCjNlAd9NUHPs_QlecBDhF7Iz3Gc8xwUeQHomnC6ui6NG0VLnGBZ2w-Oz4_OimH7gpl1EasS69RhyospMd4ZSorwEN0CYR3ImDWWBnQLqWQnIEmRiECSuEJDiam2CSpnrOd3GZ4yXg0ViUPFm1rtZey0dNG-RRAhChDdAV7f6vvOg7U49QB43uNEISsU4-tU7B3G-nLnnLjL3KHZLqNDBFldx_QfepBg_W_3Kdgb24NX-PBoteSkKG9vqql8pYadFWiYC96R9gspaTSHkN_wdyWi2ztZXskL7915N3OYUYgxKv_sflddl8S_Be6lG6P7axX1_Aac6R1M2F3p7OPE3bv8Pjsy9dJdzhuAP9gE7E |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Intrinsic+Biological+Identities+of+Iron+Oxide+Nanoparticles+and+Their+Coatings%3A+Unexplored+Territory+for+Combinatorial+Therapies&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Mulens-Arias%2C+Vladimir&rft.au=Rojas%2C+Jos%C3%A9+Manuel&rft.au=Barber%2C+Domingo+F&rft.date=2020-04-27&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=10&rft.issue=5&rft_id=info:doi/10.3390%2Fnano10050837&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |