The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation

Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alph...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 93; no. 23
Main Authors Wrapp, Daniel, McLellan, Jason S.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines. Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that has a significant agricultural and economic impact due to the high mortality rate associated with infection of neonatal piglets. Like other coronaviruses, PEDV makes use of a large, trimeric spike (S) glycoprotein to mediate membrane fusion and gain entry into host cells. Despite the importance of the spike protein in viral entry and host immune responses, high-resolution structural information concerning this large macromolecular machine has been difficult to obtain. Here, we report the cryo-electron microscopy structure of the PEDV S protein in the prefusion conformation at a resolution of 3.1 Å. Our studies revealed that the sialic acid-binding domain at the N terminus of the S1 subunit has an orientation that is substantially different from that observed in the previously determined spike structure from human alphacoronavirus NL63. We also observed dissociated S1 subunit trimers wherein the putative receptor-binding domains exist in a conformation differing from that observed in the intact spike proteins, suggesting that the PEDV receptor-binding domain undergoes conformational rearrangements akin to those that have been described in the related betacoronaviruses. Collectively, these data provide new insights into the biological processes that mediate alphacoronavirus attachment, receptor engagement, and fusion triggering while also identifying a source of conformational heterogeneity that could be manipulated to improve PEDV vaccine antigens. IMPORTANCE Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines.
AbstractList Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that has a significant agricultural and economic impact due to the high mortality rate associated with infection of neonatal piglets. Like other coronaviruses, PEDV makes use of a large, trimeric spike (S) glycoprotein to mediate membrane fusion and gain entry into host cells. Despite the importance of the spike protein in viral entry and host immune responses, high-resolution structural information concerning this large macromolecular machine has been difficult to obtain. Here, we report the cryo-electron microscopy structure of the PEDV S protein in the prefusion conformation at a resolution of 3.1 Å. Our studies revealed that the sialic acid-binding domain at the N terminus of the S1 subunit has an orientation that is substantially different from that observed in the previously determined spike structure from human alphacoronavirus NL63. We also observed dissociated S1 subunit trimers wherein the putative receptor-binding domains exist in a conformation differing from that observed in the intact spike proteins, suggesting that the PEDV receptor-binding domain undergoes conformational rearrangements akin to those that have been described in the related betacoronaviruses. Collectively, these data provide new insights into the biological processes that mediate alphacoronavirus attachment, receptor engagement, and fusion triggering while also identifying a source of conformational heterogeneity that could be manipulated to improve PEDV vaccine antigens. Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines.
Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines. Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that has a significant agricultural and economic impact due to the high mortality rate associated with infection of neonatal piglets. Like other coronaviruses, PEDV makes use of a large, trimeric spike (S) glycoprotein to mediate membrane fusion and gain entry into host cells. Despite the importance of the spike protein in viral entry and host immune responses, high-resolution structural information concerning this large macromolecular machine has been difficult to obtain. Here, we report the cryo-electron microscopy structure of the PEDV S protein in the prefusion conformation at a resolution of 3.1 Å. Our studies revealed that the sialic acid-binding domain at the N terminus of the S1 subunit has an orientation that is substantially different from that observed in the previously determined spike structure from human alphacoronavirus NL63. We also observed dissociated S1 subunit trimers wherein the putative receptor-binding domains exist in a conformation differing from that observed in the intact spike proteins, suggesting that the PEDV receptor-binding domain undergoes conformational rearrangements akin to those that have been described in the related betacoronaviruses. Collectively, these data provide new insights into the biological processes that mediate alphacoronavirus attachment, receptor engagement, and fusion triggering while also identifying a source of conformational heterogeneity that could be manipulated to improve PEDV vaccine antigens. IMPORTANCE Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines.
Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that has a significant agricultural and economic impact due to the high mortality rate associated with infection of neonatal piglets. Like other coronaviruses, PEDV makes use of a large, trimeric spike (S) glycoprotein to mediate membrane fusion and gain entry into host cells. Despite the importance of the spike protein in viral entry and host immune responses, high-resolution structural information concerning this large macromolecular machine has been difficult to obtain. Here, we report the cryo-electron microscopy structure of the PEDV S protein in the prefusion conformation at a resolution of 3.1 Å. Our studies revealed that the sialic acid-binding domain at the N terminus of the S1 subunit has an orientation that is substantially different from that observed in the previously determined spike structure from human alphacoronavirus NL63. We also observed dissociated S1 subunit trimers wherein the putative receptor-binding domains exist in a conformation differing from that observed in the intact spike proteins, suggesting that the PEDV receptor-binding domain undergoes conformational rearrangements akin to those that have been described in the related betacoronaviruses. Collectively, these data provide new insights into the biological processes that mediate alphacoronavirus attachment, receptor engagement, and fusion triggering while also identifying a source of conformational heterogeneity that could be manipulated to improve PEDV vaccine antigens.IMPORTANCE Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines.Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that has a significant agricultural and economic impact due to the high mortality rate associated with infection of neonatal piglets. Like other coronaviruses, PEDV makes use of a large, trimeric spike (S) glycoprotein to mediate membrane fusion and gain entry into host cells. Despite the importance of the spike protein in viral entry and host immune responses, high-resolution structural information concerning this large macromolecular machine has been difficult to obtain. Here, we report the cryo-electron microscopy structure of the PEDV S protein in the prefusion conformation at a resolution of 3.1 Å. Our studies revealed that the sialic acid-binding domain at the N terminus of the S1 subunit has an orientation that is substantially different from that observed in the previously determined spike structure from human alphacoronavirus NL63. We also observed dissociated S1 subunit trimers wherein the putative receptor-binding domains exist in a conformation differing from that observed in the intact spike proteins, suggesting that the PEDV receptor-binding domain undergoes conformational rearrangements akin to those that have been described in the related betacoronaviruses. Collectively, these data provide new insights into the biological processes that mediate alphacoronavirus attachment, receptor engagement, and fusion triggering while also identifying a source of conformational heterogeneity that could be manipulated to improve PEDV vaccine antigens.IMPORTANCE Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines.
Author McLellan, Jason S.
Wrapp, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Wrapp
  fullname: Wrapp, Daniel
  organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
– sequence: 2
  givenname: Jason S.
  orcidid: 0000-0003-3991-542X
  surname: McLellan
  fullname: McLellan, Jason S.
  organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31534041$$D View this record in MEDLINE/PubMed
BookMark eNptkV1rFDEUhoNU7LZ657Xk0gtnzcdkN7kRylq1paLQpXgXMpkz3ehMMk0ywv4Bf7fZ7Qe1CIFwOM95z-F9j9CBDx4Qek3JnFIm359fnc0JUYxXVD1DM0qUrISg9QGaEcJYJbj8cYiOUvpJCK3rRf0CHXIqeE1qOkN_1hvAfE6rE3-dcgwDXsVtqKAHWyqPvzobQ7Jh3OLLHCebpwg4dDiXse8hWucBn46uhcFZ_NGZGDdg8JWLU8KXo_tVqBgyOI_L2w9F6KbkivQq-C7EweRSvETPO9MneHX3H6P1p9P16kt18e3z2erkorK1ILlSNQDpeCsYt1YpLpqGKLEwrSRSgoCGSdssoZVUqbZlShJmGcimbZasAcKP0Ydb2XFqBmgt-BxNr8foBhO3Ohin_-14t9HX4bdeSFEO2Am8vROI4WaClPXgkoW-Nx7ClDRjiqslp4QX9M3jXQ9L7r0vwLtbYOdwKrY8IJToXbS6RKv30WqqCs6e4NblvXnlUtf_f-gvjwqpcg
CitedBy_id crossref_primary_10_1128_JVI_02284_20
crossref_primary_10_1016_j_str_2020_12_003
crossref_primary_10_1016_j_virusres_2024_199502
crossref_primary_10_3390_v14081744
crossref_primary_10_1126_science_abb2507
crossref_primary_10_1016_j_micpath_2020_104553
crossref_primary_10_1128_jvi_01955_21
crossref_primary_10_1016_j_str_2024_08_022
crossref_primary_10_3390_ani13111766
crossref_primary_10_1016_j_virol_2023_05_001
crossref_primary_10_3390_biom14091152
crossref_primary_10_1016_j_vetmic_2020_108917
crossref_primary_10_1016_j_cell_2020_04_031
crossref_primary_10_1016_j_vetmic_2023_109975
crossref_primary_10_1021_acsinfecdis_1c00433
crossref_primary_10_1186_s12917_023_03863_2
crossref_primary_10_1016_j_virol_2025_110412
crossref_primary_10_1038_s41467_022_32588_3
crossref_primary_10_3390_genes13030423
crossref_primary_10_4236_health_2021_133023
crossref_primary_10_1038_s41467_020_16876_4
crossref_primary_10_1128_JVI_02453_20
crossref_primary_10_3390_vetsci11110533
crossref_primary_10_1016_j_crmicr_2020_06_003
crossref_primary_10_3389_fimmu_2024_1336239
crossref_primary_10_1016_j_vetmic_2025_110370
crossref_primary_10_1021_acs_jpclett_0c01431
crossref_primary_10_1089_cmb_2020_0193
crossref_primary_10_1016_j_vetmic_2020_108955
crossref_primary_10_3390_vaccines9080833
crossref_primary_10_1186_s13567_021_00971_5
crossref_primary_10_1186_s12985_020_01305_1
crossref_primary_10_1186_s13567_021_00954_6
crossref_primary_10_3389_fmicb_2024_1386136
crossref_primary_10_3389_fimmu_2021_803647
crossref_primary_10_3390_v15071601
crossref_primary_10_1016_j_virol_2024_110224
crossref_primary_10_1128_JVI_01301_20
crossref_primary_10_1016_j_cell_2020_06_025
crossref_primary_10_3390_v15020381
crossref_primary_10_1371_journal_pone_0263582
crossref_primary_10_1007_s00705_024_06140_1
crossref_primary_10_1016_j_micpath_2024_106873
crossref_primary_10_1186_s13062_020_00275_2
crossref_primary_10_1016_j_jim_2024_113798
crossref_primary_10_1128_jvi_00429_24
crossref_primary_10_1007_s11357_022_00528_0
crossref_primary_10_3390_ani12040458
crossref_primary_10_1093_molbev_msab364
crossref_primary_10_1186_s12934_024_02409_x
crossref_primary_10_3389_fmicb_2021_667084
crossref_primary_10_1007_s10989_024_10636_4
crossref_primary_10_1016_j_vaccine_2024_01_020
crossref_primary_10_15406_mojap_2020_07_00293
crossref_primary_10_1155_2024_2876278
crossref_primary_10_1016_j_cell_2022_05_019
crossref_primary_10_1186_s12985_023_02233_6
crossref_primary_10_1016_j_bbrc_2022_03_062
crossref_primary_10_1038_s41467_020_20401_y
crossref_primary_10_1042_BSR20211238
crossref_primary_10_3390_microorganisms11082075
Cites_doi 10.1038/s41594-019-0233-y
10.1128/JVI.01628-17
10.1177/1040638713501675
10.1038/nsmb.3293
10.1006/jsbi.2000.4314
10.1126/science.1116480
10.1128/jvi.65.6.3369-3373.1991
10.1128/JVI.00297-14
10.1073/pnas.0908837106
10.1023/A:1011831902219
10.1371/journal.ppat.1002859
10.1038/nature16988
10.7554/eLife.35383
10.1016/j.prevetmed.2015.11.003
10.1136/vr.100.12.243
10.1371/journal.ppat.1007009
10.1093/bioinformatics/btz671
10.1038/s41598-018-34171-7
10.1074/jbc.M408782200
10.1038/nmeth.4169
10.3201/eid1801.111259
10.1016/j.virusres.2017.03.018
10.1099/jgv.0.000563
10.1101/338558
10.1128/JVI.00273-17
10.4148/1051-0834.1298
10.1038/s41467-017-01706-x
10.1073/pnas.1708727114
10.1038/ncomms15092
10.1016/s0378-1135(99)00199-6
10.1073/pnas.1712592114
10.1074/jbc.M116.740746
10.1007/bf01317606
10.1107/s0907444902016657
10.1186/s13567-017-0472-z
10.1371/journal.pone.0170126
10.1107/S2059798318002425
10.1016/j.virol.2007.03.031
10.1128/JVI.77.16.8801-8811.2003
10.1128/JVI.00227-17
10.1038/cr.2013.92
10.1016/j.vetmic.2014.08.012
10.1128/JVI.02078-14
10.1107/S0907444904019158
10.1073/pnas.1707304114
10.1128/JVI.00430-15
10.1016/j.cell.2018.12.028
10.1038/nature17200
10.1128/JVI.01556-17
ContentType Journal Article
Copyright Copyright © 2019 Wrapp and McLellan.
Copyright © 2019 Wrapp and McLellan. 2019 Wrapp and McLellan
Copyright_xml – notice: Copyright © 2019 Wrapp and McLellan.
– notice: Copyright © 2019 Wrapp and McLellan. 2019 Wrapp and McLellan
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1128/JVI.00923-19
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate PEDV Prefusion Spike Structure
EISSN 1098-5514
ExternalDocumentID PMC6854500
31534041
10_1128_JVI_00923_19
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI127521
– fundername: ;
  grantid: R01-AI127521
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
NPM
RHF
UCJ
7X8
5PM
ID FETCH-LOGICAL-c450t-94ee0f3d523cc9935bb0956ad8088e5eb28cb7ed8199dd29802c2e8bdb72be03
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:37:13 EDT 2025
Fri Jul 11 15:25:16 EDT 2025
Thu Jan 02 22:58:22 EST 2025
Tue Jul 01 04:04:12 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords alphacoronavirus spike
PEDV
cryo-EM
S1-CTD
Language English
License Copyright © 2019 Wrapp and McLellan.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-94ee0f3d523cc9935bb0956ad8088e5eb28cb7ed8199dd29802c2e8bdb72be03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Wrapp D, McLellan JS. 2019. The 3.1-angstrom cryo-electron microscopy structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation. J Virol 93:e00923-19. https://doi.org/10.1128/JVI.00923-19.
ORCID 0000-0003-3991-542X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6854500
PMID 31534041
PQID 2293973103
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6854500
proquest_miscellaneous_2293973103
pubmed_primary_31534041
crossref_primary_10_1128_JVI_00923_19
crossref_citationtrail_10_1128_JVI_00923_19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2019
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_42_2
  doi: 10.1038/s41594-019-0233-y
– ident: e_1_3_3_43_2
  doi: 10.1128/JVI.01628-17
– ident: e_1_3_3_4_2
  doi: 10.1177/1040638713501675
– ident: e_1_3_3_35_2
  doi: 10.1038/nsmb.3293
– ident: e_1_3_3_46_2
  doi: 10.1006/jsbi.2000.4314
– ident: e_1_3_3_17_2
  doi: 10.1126/science.1116480
– ident: e_1_3_3_20_2
  doi: 10.1128/jvi.65.6.3369-3373.1991
– ident: e_1_3_3_12_2
  doi: 10.1128/JVI.00297-14
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0908837106
– ident: e_1_3_3_10_2
  doi: 10.1023/A:1011831902219
– ident: e_1_3_3_28_2
  doi: 10.1371/journal.ppat.1002859
– ident: e_1_3_3_45_2
  doi: 10.1038/nature16988
– ident: e_1_3_3_50_2
  doi: 10.7554/eLife.35383
– ident: e_1_3_3_7_2
  doi: 10.1016/j.prevetmed.2015.11.003
– ident: e_1_3_3_2_2
  doi: 10.1136/vr.100.12.243
– ident: e_1_3_3_41_2
  doi: 10.1371/journal.ppat.1007009
– ident: e_1_3_3_38_2
  doi: 10.1093/bioinformatics/btz671
– ident: e_1_3_3_31_2
  doi: 10.1038/s41598-018-34171-7
– ident: e_1_3_3_19_2
  doi: 10.1074/jbc.M408782200
– ident: e_1_3_3_37_2
  doi: 10.1038/nmeth.4169
– ident: e_1_3_3_8_2
  doi: 10.3201/eid1801.111259
– ident: e_1_3_3_13_2
  doi: 10.1016/j.virusres.2017.03.018
– ident: e_1_3_3_30_2
  doi: 10.1099/jgv.0.000563
– ident: e_1_3_3_36_2
  doi: 10.1101/338558
– ident: e_1_3_3_21_2
  doi: 10.1128/JVI.00273-17
– ident: e_1_3_3_6_2
  doi: 10.4148/1051-0834.1298
– ident: e_1_3_3_27_2
  doi: 10.1038/s41467-017-01706-x
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.1708727114
– ident: e_1_3_3_32_2
  doi: 10.1038/ncomms15092
– ident: e_1_3_3_3_2
  doi: 10.1016/s0378-1135(99)00199-6
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.1712592114
– ident: e_1_3_3_40_2
  doi: 10.1074/jbc.M116.740746
– ident: e_1_3_3_5_2
  doi: 10.1007/bf01317606
– ident: e_1_3_3_48_2
  doi: 10.1107/s0907444902016657
– ident: e_1_3_3_9_2
  doi: 10.1186/s13567-017-0472-z
– ident: e_1_3_3_24_2
  doi: 10.1371/journal.pone.0170126
– ident: e_1_3_3_49_2
  doi: 10.1107/S2059798318002425
– ident: e_1_3_3_29_2
  doi: 10.1016/j.virol.2007.03.031
– ident: e_1_3_3_11_2
  doi: 10.1128/JVI.77.16.8801-8811.2003
– ident: e_1_3_3_26_2
  doi: 10.1128/JVI.00227-17
– ident: e_1_3_3_15_2
  doi: 10.1038/cr.2013.92
– ident: e_1_3_3_25_2
  doi: 10.1016/j.vetmic.2014.08.012
– ident: e_1_3_3_14_2
  doi: 10.1128/JVI.02078-14
– ident: e_1_3_3_47_2
  doi: 10.1107/S0907444904019158
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.1707304114
– ident: e_1_3_3_22_2
  doi: 10.1128/JVI.00430-15
– ident: e_1_3_3_34_2
  doi: 10.1016/j.cell.2018.12.028
– ident: e_1_3_3_44_2
  doi: 10.1038/nature17200
– ident: e_1_3_3_39_2
  doi: 10.1128/JVI.01556-17
SSID ssj0014464
Score 2.5477087
Snippet Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into...
Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that has a significant agricultural and economic impact due to the high mortality rate associated...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Structure and Assembly
Title The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation
URI https://www.ncbi.nlm.nih.gov/pubmed/31534041
https://www.proquest.com/docview/2293973103
https://pubmed.ncbi.nlm.nih.gov/PMC6854500
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGgviPvKTUaCpyolcZLGeZymoW0CNGll2ltkJw5UQBKlzUP3A_jdnGPHuTAqAVIVVYnjSPm-HB_b5zuHkDcZF5mI89RRbi6cQEWhE-ccEyEzyX0pQj9CgfPHT4uTz8HZVXg1mZwOopaajZyn13_UlfwPqnAOcEWV7D8g23UKJ-A_4AtHQBiOf42xP_ecw-LLeoM6kaN6Wzq2sg2GxGOuyrLa4uZzYzYL2piA87LGLfXZsakQm4LtE3UNlnl2uaqb9eyiWn1TKCPAapg2GPIchtMGl9e0UNDKHnf4tyigGy3Z16KqelV7vyD4AQOwjEREYD3Ei-FKhBcPojqUsZ6YnBRdsKF5NQUQWxoZbfFNs81QinB2eTrHHFC-Y6zoAMHqh4bQB_scuIHXD15dSKG9dIvcZjBj8O3CTbuhBLPewOoeGH83fNQ-uWtvHjsnN2YcvwfODjyR5X1yr33F9NDw4QGZqOIhuWOKim4fkZ_ACjpkBR2xgvasoB0raJlTAJi2rKCWFdSygmpWUM0K2rKCwk_fZFlBh6x4TJbvj5dHJ05bbcNJg9DdOHGg4Hv1s5D5aQpeayglJqkUGYeBSIVKMp7KSGXgQsZZxmLuspQpLjMZMalc_wnZK8pCHRAqwihfiIWS0hNBxpXwYCTjLIAvn_NYxFMys285SdtM9FgQ5XuiZ6SMJwBPouFJPGj9tmtdmQwsO9q9toAlYCJTzV1VNuuEgUuLFdpcf0qeGgC7nizyUxKNoO0aYPr18ZVi9VWnYV9wmH247rOdfT4n-_1n8oLsAabqJbiwG_lKk_MXMtOhYQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+3.1-Angstrom+Cryo-electron+Microscopy+Structure+of+the+Porcine+Epidemic+Diarrhea+Virus+Spike+Protein+in+the+Prefusion+Conformation&rft.jtitle=Journal+of+virology&rft.au=Wrapp%2C+Daniel&rft.au=McLellan%2C+Jason+S&rft.date=2019-12-01&rft.eissn=1098-5514&rft.volume=93&rft.issue=23&rft_id=info:doi/10.1128%2FJVI.00923-19&rft_id=info%3Apmid%2F31534041&rft.externalDocID=31534041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon