Prooxidant and antioxidant properties of salicylaldehyde isonicotinoyl hydrazone iron chelators in HepG2 cells
Salicylaldehyde isonicotinoyl hydrazone (SIH) is an iron chelator of the aroylhydrazone class that displays antioxidant or prooxidant effects in different mammalian cell lines. Because the liver is the major site of iron storage, elucidating the effect of SIH on hepatic oxidative metabolism is criti...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1850; no. 11; pp. 2256 - 2264 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Salicylaldehyde isonicotinoyl hydrazone (SIH) is an iron chelator of the aroylhydrazone class that displays antioxidant or prooxidant effects in different mammalian cell lines. Because the liver is the major site of iron storage, elucidating the effect of SIH on hepatic oxidative metabolism is critical for designing effective hepatic antioxidant therapies.
Hepatocyte-like HepG2 cells were exposed to SIH or to analogs showing greater stability, such as N′-[1-(2-Hydroxyphenyl)ethyliden]isonicotinoyl hydrazide (HAPI), or devoid of iron chelating properties, such as benzaldehyde isonicotinoyl hydrazone (BIH), and toxicity, oxidative stress and antioxidant (glutathione) metabolism were evaluated.
Autoxidation of Fe2+in vitro increased in the presence of SIH or HAPI (but not BIH), an effect partially blocked by Fe2+ chelation. Incubation of HepG2 cells with SIH or HAPI (but not BIH) was non-toxic and increased reactive oxygen species (ROS) levels, activated the transcription factor Nrf2, induced the catalytic subunit of γ-glutamate cysteine ligase (Gclc), and increased glutathione concentration. Fe2+ chelation decreased ROS and inhibited Nrf2 activation, and Nrf2 knock-down inhibited the induction of Gclc in the presence of HAPI. Inhibition of γ-glutamate cysteine ligase enzymatic activity inhibited the increase in glutathione caused by HAPI, and increased oxidative stress.
SIH iron chelators display both prooxidant (increasing the autoxidation rate of Fe2+) and antioxidant (activating Nrf2 signaling) effects.
Activation by SIH iron chelators of a hormetic antioxidant response contributes to their antioxidant properties and modulates the anti- and pro-oxidant balance.
•SIH increased ferrous iron autoxidation and ROS generation in HepG2 cells.•SIH increased total glutathione and induced GCLC in HepG2 cells.•GCLC induction by SIH in HepG2 cells depended on Nrf2 activation.•Activation by SIH of antioxidant signaling contributes to its antioxidant properties.•SIH modulates the anti-/pro-oxidant balance by both anti- and pro-oxidant effects. |
---|---|
AbstractList | Salicylaldehyde isonicotinoyl hydrazone (SIH) is an iron chelator of the aroylhydrazone class that displays antioxidant or prooxidant effects in different mammalian cell lines. Because the liver is the major site of iron storage, elucidating the effect of SIH on hepatic oxidative metabolism is critical for designing effective hepatic antioxidant therapies.BACKGROUNDSalicylaldehyde isonicotinoyl hydrazone (SIH) is an iron chelator of the aroylhydrazone class that displays antioxidant or prooxidant effects in different mammalian cell lines. Because the liver is the major site of iron storage, elucidating the effect of SIH on hepatic oxidative metabolism is critical for designing effective hepatic antioxidant therapies.Hepatocyte-like HepG2 cells were exposed to SIH or to analogs showing greater stability, such as N'-[1-(2-Hydroxyphenyl)ethyliden]isonicotinoyl hydrazide (HAPI), or devoid of iron chelating properties, such as benzaldehyde isonicotinoyl hydrazone (BIH), and toxicity, oxidative stress and antioxidant (glutathione) metabolism were evaluated.METHODSHepatocyte-like HepG2 cells were exposed to SIH or to analogs showing greater stability, such as N'-[1-(2-Hydroxyphenyl)ethyliden]isonicotinoyl hydrazide (HAPI), or devoid of iron chelating properties, such as benzaldehyde isonicotinoyl hydrazone (BIH), and toxicity, oxidative stress and antioxidant (glutathione) metabolism were evaluated.Autoxidation of Fe(2+)in vitro increased in the presence of SIH or HAPI (but not BIH), an effect partially blocked by Fe(2+) chelation. Incubation of HepG2 cells with SIH or HAPI (but not BIH) was non-toxic and increased reactive oxygen species (ROS) levels, activated the transcription factor Nrf2, induced the catalytic subunit of γ-glutamate cysteine ligase (Gclc), and increased glutathione concentration. Fe(2+) chelation decreased ROS and inhibited Nrf2 activation, and Nrf2 knock-down inhibited the induction of Gclc in the presence of HAPI. Inhibition of γ-glutamate cysteine ligase enzymatic activity inhibited the increase in glutathione caused by HAPI, and increased oxidative stress.RESULTSAutoxidation of Fe(2+)in vitro increased in the presence of SIH or HAPI (but not BIH), an effect partially blocked by Fe(2+) chelation. Incubation of HepG2 cells with SIH or HAPI (but not BIH) was non-toxic and increased reactive oxygen species (ROS) levels, activated the transcription factor Nrf2, induced the catalytic subunit of γ-glutamate cysteine ligase (Gclc), and increased glutathione concentration. Fe(2+) chelation decreased ROS and inhibited Nrf2 activation, and Nrf2 knock-down inhibited the induction of Gclc in the presence of HAPI. Inhibition of γ-glutamate cysteine ligase enzymatic activity inhibited the increase in glutathione caused by HAPI, and increased oxidative stress.SIH iron chelators display both prooxidant (increasing the autoxidation rate of Fe(2+)) and antioxidant (activating Nrf2 signaling) effects.CONCLUSIONSSIH iron chelators display both prooxidant (increasing the autoxidation rate of Fe(2+)) and antioxidant (activating Nrf2 signaling) effects.Activation by SIH iron chelators of a hormetic antioxidant response contributes to their antioxidant properties and modulates the anti- and pro-oxidant balance.GENERAL SIGNIFICANCEActivation by SIH iron chelators of a hormetic antioxidant response contributes to their antioxidant properties and modulates the anti- and pro-oxidant balance. Salicylaldehyde isonicotinoyl hydrazone (SIH) is an iron chelator of the aroylhydrazone class that displays antioxidant or prooxidant effects in different mammalian cell lines. Because the liver is the major site of iron storage, elucidating the effect of SIH on hepatic oxidative metabolism is critical for designing effective hepatic antioxidant therapies. Hepatocyte-like HepG2 cells were exposed to SIH or to analogs showing greater stability, such as N′-[1-(2-Hydroxyphenyl)ethyliden]isonicotinoyl hydrazide (HAPI), or devoid of iron chelating properties, such as benzaldehyde isonicotinoyl hydrazone (BIH), and toxicity, oxidative stress and antioxidant (glutathione) metabolism were evaluated. Autoxidation of Fe2+in vitro increased in the presence of SIH or HAPI (but not BIH), an effect partially blocked by Fe2+ chelation. Incubation of HepG2 cells with SIH or HAPI (but not BIH) was non-toxic and increased reactive oxygen species (ROS) levels, activated the transcription factor Nrf2, induced the catalytic subunit of γ-glutamate cysteine ligase (Gclc), and increased glutathione concentration. Fe2+ chelation decreased ROS and inhibited Nrf2 activation, and Nrf2 knock-down inhibited the induction of Gclc in the presence of HAPI. Inhibition of γ-glutamate cysteine ligase enzymatic activity inhibited the increase in glutathione caused by HAPI, and increased oxidative stress. SIH iron chelators display both prooxidant (increasing the autoxidation rate of Fe2+) and antioxidant (activating Nrf2 signaling) effects. Activation by SIH iron chelators of a hormetic antioxidant response contributes to their antioxidant properties and modulates the anti- and pro-oxidant balance. •SIH increased ferrous iron autoxidation and ROS generation in HepG2 cells.•SIH increased total glutathione and induced GCLC in HepG2 cells.•GCLC induction by SIH in HepG2 cells depended on Nrf2 activation.•Activation by SIH of antioxidant signaling contributes to its antioxidant properties.•SIH modulates the anti-/pro-oxidant balance by both anti- and pro-oxidant effects. Salicylaldehyde isonicotinoyl hydrazone (SIH) is an iron chelator of the aroylhydrazone class that displays antioxidant or prooxidant effects in different mammalian cell lines. Because the liver is the major site of iron storage, elucidating the effect of SIH on hepatic oxidative metabolism is critical for designing effective hepatic antioxidant therapies.Hepatocyte-like HepG2 cells were exposed to SIH or to analogs showing greater stability, such as N′-[1-(2-Hydroxyphenyl)ethyliden]isonicotinoyl hydrazide (HAPI), or devoid of iron chelating properties, such as benzaldehyde isonicotinoyl hydrazone (BIH), and toxicity, oxidative stress and antioxidant (glutathione) metabolism were evaluated.Autoxidation of Fe2+in vitro increased in the presence of SIH or HAPI (but not BIH), an effect partially blocked by Fe2+ chelation. Incubation of HepG2 cells with SIH or HAPI (but not BIH) was non-toxic and increased reactive oxygen species (ROS) levels, activated the transcription factor Nrf2, induced the catalytic subunit of γ-glutamate cysteine ligase (Gclc), and increased glutathione concentration. Fe2+ chelation decreased ROS and inhibited Nrf2 activation, and Nrf2 knock-down inhibited the induction of Gclc in the presence of HAPI. Inhibition of γ-glutamate cysteine ligase enzymatic activity inhibited the increase in glutathione caused by HAPI, and increased oxidative stress.SIH iron chelators display both prooxidant (increasing the autoxidation rate of Fe2+) and antioxidant (activating Nrf2 signaling) effects.Activation by SIH iron chelators of a hormetic antioxidant response contributes to their antioxidant properties and modulates the anti- and pro-oxidant balance. Salicylaldehyde isonicotinoyl hydrazone (SIH) is an iron chelator of the aroylhydrazone class that displays antioxidant or prooxidant effects in different mammalian cell lines. Because the liver is the major site of iron storage, elucidating the effect of SIH on hepatic oxidative metabolism is critical for designing effective hepatic antioxidant therapies. Hepatocyte-like HepG2 cells were exposed to SIH or to analogs showing greater stability, such as N'-[1-(2-Hydroxyphenyl)ethyliden]isonicotinoyl hydrazide (HAPI), or devoid of iron chelating properties, such as benzaldehyde isonicotinoyl hydrazone (BIH), and toxicity, oxidative stress and antioxidant (glutathione) metabolism were evaluated. Autoxidation of Fe(2+)in vitro increased in the presence of SIH or HAPI (but not BIH), an effect partially blocked by Fe(2+) chelation. Incubation of HepG2 cells with SIH or HAPI (but not BIH) was non-toxic and increased reactive oxygen species (ROS) levels, activated the transcription factor Nrf2, induced the catalytic subunit of γ-glutamate cysteine ligase (Gclc), and increased glutathione concentration. Fe(2+) chelation decreased ROS and inhibited Nrf2 activation, and Nrf2 knock-down inhibited the induction of Gclc in the presence of HAPI. Inhibition of γ-glutamate cysteine ligase enzymatic activity inhibited the increase in glutathione caused by HAPI, and increased oxidative stress. SIH iron chelators display both prooxidant (increasing the autoxidation rate of Fe(2+)) and antioxidant (activating Nrf2 signaling) effects. Activation by SIH iron chelators of a hormetic antioxidant response contributes to their antioxidant properties and modulates the anti- and pro-oxidant balance. |
Author | Dunn, Caroline Stuppy, Jake Desrochers, Linda P. Commissariat, Ava García, Salvador Lorente Strang, Harrison Caro, Andres A. Goodwin, Thomas E. Kim, Hyunjoo Smith, Allen |
Author_xml | – sequence: 1 givenname: Andres A. surname: Caro fullname: Caro, Andres A. email: caro@hendrix.edu – sequence: 2 givenname: Ava surname: Commissariat fullname: Commissariat, Ava – sequence: 3 givenname: Caroline surname: Dunn fullname: Dunn, Caroline – sequence: 4 givenname: Hyunjoo surname: Kim fullname: Kim, Hyunjoo – sequence: 5 givenname: Salvador Lorente surname: García fullname: García, Salvador Lorente – sequence: 6 givenname: Allen surname: Smith fullname: Smith, Allen – sequence: 7 givenname: Harrison surname: Strang fullname: Strang, Harrison – sequence: 8 givenname: Jake orcidid: 0000-0003-1121-6360 surname: Stuppy fullname: Stuppy, Jake – sequence: 9 givenname: Linda P. surname: Desrochers fullname: Desrochers, Linda P. – sequence: 10 givenname: Thomas E. surname: Goodwin fullname: Goodwin, Thomas E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26275495$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFvFCEUhYmpsdvqPzBmHn2ZKTAwDD6YmEZbkyb6oM-EgTtdNiyswDauv142u2u0D5aEkAvnnhzud4HOQgyA0GuCO4LJcLXqpknfQ-goJrzDY4cxf4YWZBS0HTEeztAC95i1jAz8HF3kvMJ1cclfoHM6UMGZ5AsUvqYYfzqrQ2l0sHUXd6o3KW4gFQe5iXOTtXdm57W3sNxZaFyOwZlYXIg739SrpH_VhI1LMTRmCV6XmHLjQnMLmxvaGPA-v0TPZ-0zvDqel-j7p4_frm_buy83n68_3LWGcVxaybhkcjJs6qUxA-5nLYWcmZn7aRQD6Wc84HkaLbHGMCEIUDzx0WhLmZ6F7i_R-4PvZjutwRoIJWmvNsmtddqpqJ369yW4pbqPD4rxOj_Jq8Hbo0GKP7aQi1q7vP-CDhC3WdE6S0qEZPRJKRFkxILREVfpm79j_clz4lEF7w4Ck2LOCWZlXNEVyT6l84pgtYevVuoAX-3hKzyqSrY2s0fNJ_8n2o6zggrkwUFS2TgIBqxLYIqy0f3f4DfDJc34 |
CitedBy_id | crossref_primary_10_3892_ijo_2015_3301 crossref_primary_10_1002_aoc_4019 crossref_primary_10_18632_oncotarget_8403 crossref_primary_10_1134_S1062359020120043 crossref_primary_10_1016_j_tiv_2019_104667 crossref_primary_10_7554_eLife_56580 crossref_primary_10_3390_ph11040112 crossref_primary_10_1016_j_jtumed_2017_10_007 crossref_primary_10_3390_app12083749 crossref_primary_10_14336_AD_2020_0912 crossref_primary_10_1016_j_lfs_2017_11_038 crossref_primary_10_1016_j_tox_2016_03_004 crossref_primary_10_2174_1570178620666221202090558 |
Cites_doi | 10.1016/j.freeradbiomed.2014.04.035 10.1038/sj.bjp.0706930 10.1016/j.yjmcc.2005.05.008 10.1016/S0891-5849(02)01006-7 10.1016/S0003-9861(02)00544-1 10.1039/b705199a 10.1016/0003-2697(69)90064-5 10.1182/blood-2005-02-0460 10.1016/j.freeradbiomed.2015.03.033 10.1016/j.toxlet.2010.12.017 10.1089/ars.2012.4754 10.1016/S0891-5849(01)00770-5 10.1006/abbi.2001.2694 10.1016/S0891-5849(99)00002-7 10.1016/j.abb.2003.09.044 10.1021/tx100359t 10.1016/j.freeradbiomed.2004.02.015 10.1007/s12079-014-0248-4 10.1016/j.freeradbiomed.2011.09.030 10.1089/ars.2007.1916 10.1074/jbc.M205712200 10.1021/jf5022779 10.1152/ajpgi.1998.274.6.G1031 10.1016/j.freeradbiomed.2010.12.004 10.1021/tx100125t 10.1074/jbc.M504604200 10.1074/jbc.M907022199 10.1016/j.jnutbio.2012.05.003 10.1021/jm0108754 10.1074/jbc.M107864200 10.1021/ja064806w 10.1038/bjp.2008.236 10.1016/j.freeradbiomed.2010.07.004 10.1016/S0891-5849(98)00113-0 10.1016/j.jinorgbio.2008.08.001 10.1084/jem.20091488 10.1016/j.freeradbiomed.2009.07.036 10.1079/BJN20051626 10.1002/hep.510290435 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.bbagen.2015.08.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 2264 |
ExternalDocumentID | PMC4587295 26275495 10_1016_j_bbagen_2015_08_005 S0304416515002147 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P20 RR016460 – fundername: NCRR NIH HHS grantid: 5P20RR016460 -11 – fundername: NIGMS NIH HHS grantid: P20 GM103429 – fundername: NIGMS NIH HHS grantid: 8 P20 GM103429-11 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c450t-945949bc4b39cc603fa979f4cf3b87613f060fb8d1dcc4771e20b58cad24af7a3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Aug 21 18:19:06 EDT 2025 Fri Jul 11 15:53:37 EDT 2025 Fri Jul 11 10:06:42 EDT 2025 Mon Jul 21 05:40:03 EDT 2025 Tue Jul 01 00:22:05 EDT 2025 Thu Apr 24 23:09:07 EDT 2025 Fri Feb 23 02:34:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | BIH Oxidative stress DIP Iron Antioxidant PG SK-DA DCFH-DA Gcl Gclc LIP HAPI SIH MEM Salicylaldehyde isonicotinoyl hydrazone Nrf2 ROS Glutathione |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-945949bc4b39cc603fa979f4cf3b87613f060fb8d1dcc4771e20b58cad24af7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1121-6360 |
PMID | 26275495 |
PQID | 1718074280 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4587295 proquest_miscellaneous_2000217942 proquest_miscellaneous_1718074280 pubmed_primary_26275495 crossref_citationtrail_10_1016_j_bbagen_2015_08_005 crossref_primary_10_1016_j_bbagen_2015_08_005 elsevier_sciencedirect_doi_10_1016_j_bbagen_2015_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Caro, Cederbaum (bb0095) 2002; 408 Arab, Rossary, Flourié, Tourneur, Steghens (bb0115) 2006; 95 Fernandez, Van derpoorten, Dasnois, Lebtahi, Dubois, Lobl, …, Trouet (bb0070) 2001; 44 Welch, Davis, Aust (bb0145) 2002; 397 Tietze (bb0105) 1969; 27 Buss, Neuzil, Ponka (bb0055) 2004; 421 Charkoudian, Pham, Franz (bb0075) 2006; 128 Šimůnek, Štěrba, Popelova, Kaiserova, Adamcova, Hroch, …, Geršl (bb0035) 2008; 155 González, Piloni, Puntarulo (bb0065) 2012 Charkoudian, Pham, Kwon, Vangeloff, Franz (bb0080) 2007; 43 Charkoudian, Dentchev, Lukinova, Wolkow, Dunaief, Franz (bb0025) 2008; 102 Kaiserova, Hartog, Šimůnek, Schröterová, Kvasničková, Bast (bb0020) 2006; 149 Caro, Cederbaum (bb0100) 2002; 277 Levy, Jaiswal, Forman (bb0155) 2009; 47 Galey, Destrée, Dumats, Pichaud, Marché, Génard, …, Cantoni (bb0085) 1998; 25 Day (bb0190) 2008; 10 Lau, Tian, Whitman, Zhang (bb0160) 2013; 18 Callens, Coulon, Naudin, Radford-Weiss, Boissel, Raffoux, …, Hermine (bb0200) 2010; 207 Myers, Antholine, Zielonka, Myers (bb0205) 2011; 201 Petrat, Rauen, de Groot (bb0120) 1999; 29 Du, Wagner, Buettner, Cullen (bb0125) 2015; 84 Luna-López, Triana-Martínez, López-Diazguerrero, Ventura-Gallegos, Gutiérrez-Ruiz, Damián-Matsumura, …, Königsberg (bb0175) 2010; 49 Hofer, Jørgensen, Olsen (bb0050) 2014; 62 Bendova, Mackova, Haskova, Vavrova, Jirkovsky, Sterba, …, Simunek (bb0045) 2010; 23 Bystrom, Rivella (bb0195) 2015; 79 Bou-Abdallah, Lewin, Le Brun, Moore, Chasteen (bb0090) 2002; 277 Kakhlon, Cabantchik (bb0030) 2002; 33 Luna–López, González-Puertos, López-Diazguerrero, Königsberg (bb0185) 2014; 8 Marı́, Cederbaum (bb0110) 2000; 275 Yang, Lii, Wei, Li, Lu, Liu, Chen (bb0180) 2013; 24 Hruskova, Kovarikova, Bendova, Haskova, Mackova, Stariat, …, Simunek (bb0015) 2011; 24 Caro, Cederbaum (bb0040) 2004; 36 Qian, Buettner (bb0130) 1999; 26 Šimůnek, Boer, Bouwman, Vlasblom, Versteilen, Štěrba, …, Musters (bb0010) 2005; 39 Luna–López, González-Puertos, López-Diazguerrero, Königsberg (bb0170) 2014; 8 Hašková, Kovaříková, Koubková, Vávrová, Macková, Šimůnek (bb0005) 2011; 50 Glickstein, El, Shvartsman, Cabantchik (bb0060) 2005; 106 Kalyanaraman, Darley-Usmar, Davies, Dennery, Forman, Grisham, …, Ischiropoulos (bb0165) 2012; 52 Stäubli, Boelsterli (bb0140) 1998; 274 Huang, Dai, Fournier, Ali, Zhang, Frenkel (bb0135) 2002; 32 Chen, Shertzer, Schneider, Nebert, Dalton (bb0150) 2005; 280 Charkoudian (10.1016/j.bbagen.2015.08.005_bb0075) 2006; 128 Šimůnek (10.1016/j.bbagen.2015.08.005_bb0035) 2008; 155 Buss (10.1016/j.bbagen.2015.08.005_bb0055) 2004; 421 Šimůnek (10.1016/j.bbagen.2015.08.005_bb0010) 2005; 39 González (10.1016/j.bbagen.2015.08.005_bb0065) 2012 Marı́ (10.1016/j.bbagen.2015.08.005_bb0110) 2000; 275 Hašková (10.1016/j.bbagen.2015.08.005_bb0005) 2011; 50 Kakhlon (10.1016/j.bbagen.2015.08.005_bb0030) 2002; 33 Bendova (10.1016/j.bbagen.2015.08.005_bb0045) 2010; 23 Day (10.1016/j.bbagen.2015.08.005_bb0190) 2008; 10 Luna–López (10.1016/j.bbagen.2015.08.005_bb0170) 2014; 8 Callens (10.1016/j.bbagen.2015.08.005_bb0200) 2010; 207 Charkoudian (10.1016/j.bbagen.2015.08.005_bb0080) 2007; 43 Tietze (10.1016/j.bbagen.2015.08.005_bb0105) 1969; 27 Arab (10.1016/j.bbagen.2015.08.005_bb0115) 2006; 95 Huang (10.1016/j.bbagen.2015.08.005_bb0135) 2002; 32 Levy (10.1016/j.bbagen.2015.08.005_bb0155) 2009; 47 Luna–López (10.1016/j.bbagen.2015.08.005_bb0185) 2014; 8 Caro (10.1016/j.bbagen.2015.08.005_bb0095) 2002; 408 Lau (10.1016/j.bbagen.2015.08.005_bb0160) 2013; 18 Hofer (10.1016/j.bbagen.2015.08.005_bb0050) 2014; 62 Luna-López (10.1016/j.bbagen.2015.08.005_bb0175) 2010; 49 Kaiserova (10.1016/j.bbagen.2015.08.005_bb0020) 2006; 149 Stäubli (10.1016/j.bbagen.2015.08.005_bb0140) 1998; 274 Hruskova (10.1016/j.bbagen.2015.08.005_bb0015) 2011; 24 Charkoudian (10.1016/j.bbagen.2015.08.005_bb0025) 2008; 102 Myers (10.1016/j.bbagen.2015.08.005_bb0205) 2011; 201 Yang (10.1016/j.bbagen.2015.08.005_bb0180) 2013; 24 Fernandez (10.1016/j.bbagen.2015.08.005_bb0070) 2001; 44 Glickstein (10.1016/j.bbagen.2015.08.005_bb0060) 2005; 106 Bou-Abdallah (10.1016/j.bbagen.2015.08.005_bb0090) 2002; 277 Qian (10.1016/j.bbagen.2015.08.005_bb0130) 1999; 26 Kalyanaraman (10.1016/j.bbagen.2015.08.005_bb0165) 2012; 52 Caro (10.1016/j.bbagen.2015.08.005_bb0040) 2004; 36 Petrat (10.1016/j.bbagen.2015.08.005_bb0120) 1999; 29 Du (10.1016/j.bbagen.2015.08.005_bb0125) 2015; 84 Chen (10.1016/j.bbagen.2015.08.005_bb0150) 2005; 280 Galey (10.1016/j.bbagen.2015.08.005_bb0085) 1998; 25 Caro (10.1016/j.bbagen.2015.08.005_bb0100) 2002; 277 Bystrom (10.1016/j.bbagen.2015.08.005_bb0195) 2015; 79 Welch (10.1016/j.bbagen.2015.08.005_bb0145) 2002; 397 16020512 - Blood. 2005 Nov 1;106(9):3242-50 22901690 - J Nutr Biochem. 2013 Jan;24(1):204-12 10094962 - Hepatology. 1999 Apr;29(4):1171-9 11689564 - J Biol Chem. 2002 Jan 4;277(1):104-13 11606140 - J Med Chem. 2001 Oct 25;44(22):3750-3 25284448 - J Cell Commun Signal. 2014 Dec;8(4):323-31 12374615 - Free Radic Biol Med. 2002 Oct 15;33(8):1037-46 25857216 - Free Radic Biol Med. 2015 Jul;84:289-95 20521781 - Chem Res Toxicol. 2010 Jun 21;23(6):1105-14 12124394 - J Biol Chem. 2002 Oct 4;277(40):37064-9 10401608 - Free Radic Biol Med. 1999 Jun;26(11-12):1447-56 20637280 - Free Radic Biol Med. 2010 Oct 15;49(7):1192-204 21214215 - Chem Res Toxicol. 2011 Mar 21;24(3):290-302 15978614 - J Mol Cell Cardiol. 2005 Aug;39(2):345-54 25070170 - J Agric Food Chem. 2014 Aug 20;62(33):8402-10 10748080 - J Biol Chem. 2000 May 19;275(20):15563-71 20368581 - J Exp Med. 2010 Apr 12;207(4):731-50 22027063 - Free Radic Biol Med. 2012 Jan 1;52(1):1-6 4388022 - Anal Biochem. 1969 Mar;27(3):502-22 24942145 - Environ Toxicol. 2015 Dec;30(12):1385-92 11755320 - Free Radic Biol Med. 2002 Jan 1;32(1):84-92 17031387 - Br J Pharmacol. 2006 Dec;149(7):920-30 14678779 - Arch Biochem Biophys. 2004 Jan 1;421(1):1-9 18835041 - J Inorg Biochem. 2008 Dec;102(12):2130-5 12464267 - Arch Biochem Biophys. 2002 Dec 15;408(2):162-70 24835768 - Free Radic Biol Med. 2015 Feb;79:337-42 11795895 - Arch Biochem Biophys. 2002 Jan 15;397(2):360-9 15110395 - Free Radic Biol Med. 2004 May 15;36(10):1303-16 17992288 - Dalton Trans. 2007 Nov 21;(43):5031-42 21195754 - Toxicol Lett. 2011 Mar 5;201(2):130-6 16441913 - Br J Nutr. 2006 Jan;95(1):18-26 19666106 - Free Radic Biol Med. 2009 Oct 15;47(8):1172-9 16081425 - J Biol Chem. 2005 Oct 7;280(40):33766-74 9840732 - Free Radic Biol Med. 1998 Nov 15;25(8):881-90 9696702 - Am J Physiol. 1998 Jun;274(6 Pt 1):G1031-7 16984186 - J Am Chem Soc. 2006 Sep 27;128(38):12424-5 22703241 - Antioxid Redox Signal. 2013 Jan 1;18(1):91-3 18536744 - Br J Pharmacol. 2008 Sep;155(1):138-48 17999627 - Antioxid Redox Signal. 2008 Feb;10(2):355-70 21147217 - Free Radic Biol Med. 2011 Feb 15;50(4):537-49 |
References_xml | – volume: 79 start-page: 337 year: 2015 end-page: 342 ident: bb0195 article-title: Cancer cells with irons in the fire publication-title: Free Radic. Biol. Med. – volume: 24 start-page: 204 year: 2013 end-page: 212 ident: bb0180 article-title: Docosahexaenoic acid inhibition of inflammation is partially via cross-talk between Nrf2/heme oxygenase 1 and IKK/NF-κB pathways publication-title: J. Nutr. Biochem. – volume: 10 start-page: 355 year: 2008 end-page: 370 ident: bb0190 article-title: Antioxidants as potential therapeutics for lung fibrosis publication-title: Antioxid. Redox Signal. – volume: 84 start-page: 289 year: 2015 end-page: 295 ident: bb0125 article-title: Role of labile iron in the toxicity of pharmacological ascorbate publication-title: Free Radic. Biol. Med. – volume: 50 start-page: 537 year: 2011 end-page: 549 ident: bb0005 article-title: Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity publication-title: Free Radic. Biol. Med. – volume: 106 start-page: 3242 year: 2005 end-page: 3250 ident: bb0060 article-title: Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells publication-title: Blood – volume: 62 start-page: 8402 year: 2014 end-page: 8410 ident: bb0050 article-title: Comparison of food antioxidants and iron chelators in two cellular free radical assays: strong protection by luteolin publication-title: J. Agric. Food Chem. – volume: 25 start-page: 881 year: 1998 end-page: 890 ident: bb0085 article-title: Protection of U937 cells against oxidative injury by a novel series of iron chelators publication-title: Free Radic. Biol. Med. – volume: 277 start-page: 104 year: 2002 end-page: 113 ident: bb0100 article-title: Role of calcium and calcium-activated proteases in CYP2E1-dependent toxicity in HEPG2 cells publication-title: J. Biol. Chem. – volume: 275 start-page: 15563 year: 2000 end-page: 15571 ident: bb0110 article-title: CYP2E1 overexpression in HepG2 cells induces glutathione synthesis by transcriptional activation of γ-glutamylcysteine synthetase publication-title: J. Biol. Chem. – volume: 29 start-page: 1171 year: 1999 end-page: 1179 ident: bb0120 article-title: Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using the fluorescent probe, phen green SK publication-title: Hepatology – volume: 43 start-page: 5031 year: 2007 end-page: 5042 ident: bb0080 article-title: Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress publication-title: Dalton Trans. – volume: 201 start-page: 130 year: 2011 end-page: 136 ident: bb0205 article-title: The iron-chelating drug triapine causes pronounced mitochondrial thiol redox stress publication-title: Toxicol. Lett. – volume: 27 start-page: 502 year: 1969 end-page: 522 ident: bb0105 article-title: Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues publication-title: Anal. Biochem. – volume: 8 start-page: 323 year: 2014 end-page: 331 ident: bb0185 article-title: New considerations on hormetic response against oxidative stress publication-title: J. Cell Commun. Signal. – volume: 26 start-page: 1447 year: 1999 end-page: 1456 ident: bb0130 article-title: Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study publication-title: Free Radic. Biol. Med. – volume: 277 start-page: 37064 year: 2002 end-page: 37069 ident: bb0090 article-title: Iron detoxification properties of escherichia colibacterioferritin attenuation of oxyradical chemistry publication-title: J. Biol. Chem. – volume: 18 start-page: 91 year: 2013 end-page: 93 ident: bb0160 article-title: The predicted molecular weight of Nrf2: it is what it is not publication-title: Antioxid. Redox Signal. – volume: 36 start-page: 1303 year: 2004 end-page: 1316 ident: bb0040 article-title: Antioxidant properties of S-adenosyl-l-methionine in Fe 2 publication-title: Free Radic. Biol. Med. – volume: 44 start-page: 3750 year: 2001 end-page: 3753 ident: bb0070 article-title: N-Succinyl-(β-alanyl-l-leucyl-l-alanyl-l-leucyl) doxorubicin: an extracellularly tumor-activated prodrug devoid of intravenous acute toxicity publication-title: J. Med. Chem. – volume: 23 start-page: 1105 year: 2010 end-page: 1114 ident: bb0045 article-title: Comparison of clinically used and experimental iron chelators for protection against oxidative stress-induced cellular injury publication-title: Chem. Res. Toxicol. – volume: 408 start-page: 162 year: 2002 end-page: 170 ident: bb0095 article-title: Ca 2 publication-title: Arch. Biochem. Biophys. – volume: 95 start-page: 18 year: 2006 end-page: 26 ident: bb0115 article-title: Docosahexaenoic acid enhances the antioxidant response of human fibroblasts by upregulating γ-glutamyl-cysteinyl ligase and glutathione reductase publication-title: Br. J. Nutr. – volume: 47 start-page: 1172 year: 2009 end-page: 1179 ident: bb0155 article-title: The role of c-Jun phosphorylation in EpRE activation of phase II genes publication-title: Free Radic. Biol. Med. – volume: 207 start-page: 731 year: 2010 end-page: 750 ident: bb0200 article-title: Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia publication-title: J. Exp. Med. – volume: 33 start-page: 1037 year: 2002 end-page: 1046 ident: bb0030 article-title: The labile iron pool: characterization, measurement, and participation in cellular processes publication-title: Free Radic. Biol. Med. – volume: 155 start-page: 138 year: 2008 end-page: 148 ident: bb0035 article-title: Anthracycline toxicity to cardiomyocytes or cancer cells is differently affected by iron chelation with salicylaldehyde isonicotinoyl hydrazone publication-title: Br. J. Pharmacol. – volume: 280 start-page: 33766 year: 2005 end-page: 33774 ident: bb0150 article-title: Glutamate Cysteine ligase catalysis dependence on ATP and modifier subunit for regulation of tissue glutathione levels publication-title: J. Biol. Chem. – volume: 128 start-page: 12424 year: 2006 end-page: 12425 ident: bb0075 article-title: A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation publication-title: J. Am. Chem. Soc. – volume: 149 start-page: 920 year: 2006 end-page: 930 ident: bb0020 article-title: Iron is not involved in oxidative stress‐mediated cytotoxicity of doxorubicin and bleomycin publication-title: Br. J. Pharmacol. – volume: 8 start-page: 323 year: 2014 end-page: 331 ident: bb0170 article-title: New considerations on hormetic response against oxidative stress publication-title: J. Cell Commun. Signal. – volume: 274 start-page: G1031 year: 1998 end-page: G1037 ident: bb0140 article-title: The labile iron pool in hepatocytes: prooxidant-induced increase in free iron precedes oxidative cell injury publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 24 start-page: 290 year: 2011 end-page: 302 ident: bb0015 article-title: Synthesis and initial in vitro evaluations of novel antioxidant aroylhydrazone iron chelators with increased stability against plasma hydrolysis publication-title: Chem. Res. Toxicol. – volume: 102 start-page: 2130 year: 2008 end-page: 2135 ident: bb0025 article-title: Iron prochelator BSIH protects retinal pigment epithelial cells against cell death induced by hydrogen peroxide publication-title: J. Inorg. Biochem. – volume: 421 start-page: 1 year: 2004 end-page: 9 ident: bb0055 article-title: Oxidative stress mediates toxicity of pyridoxal isonicotinoyl hydrazone analogs publication-title: Arch. Biochem. Biophys. – volume: 32 start-page: 84 year: 2002 end-page: 92 ident: bb0135 article-title: Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cells publication-title: Free Radic. Biol. Med. – volume: 52 start-page: 1 year: 2012 end-page: 6 ident: bb0165 article-title: Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations publication-title: Free Radic. Biol. Med. – volume: 49 start-page: 1192 year: 2010 end-page: 1204 ident: bb0175 article-title: Bcl-2 sustains hormetic response by inducing Nrf-2 nuclear translocation in L929 mouse fibroblasts publication-title: Free Radic. Biol. Med. – volume: 39 start-page: 345 year: 2005 end-page: 354 ident: bb0010 article-title: SIH—a novel lipophilic iron chelator—protects H9c2 cardiomyoblasts from oxidative stress-induced mitochondrial injury and cell death publication-title: J. Mol. Cell. Cardiol. – volume: 397 start-page: 360 year: 2002 end-page: 369 ident: bb0145 article-title: Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators publication-title: Arch. Biochem. Biophys. – year: 2012 ident: bb0065 article-title: Iron overload and lipid peroxidation in biological systems – volume: 79 start-page: 337 year: 2015 ident: 10.1016/j.bbagen.2015.08.005_bb0195 article-title: Cancer cells with irons in the fire publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.04.035 – volume: 149 start-page: 920 issue: 7 year: 2006 ident: 10.1016/j.bbagen.2015.08.005_bb0020 article-title: Iron is not involved in oxidative stress‐mediated cytotoxicity of doxorubicin and bleomycin publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0706930 – volume: 39 start-page: 345 issue: 2 year: 2005 ident: 10.1016/j.bbagen.2015.08.005_bb0010 article-title: SIH—a novel lipophilic iron chelator—protects H9c2 cardiomyoblasts from oxidative stress-induced mitochondrial injury and cell death publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2005.05.008 – volume: 33 start-page: 1037 issue: 8 year: 2002 ident: 10.1016/j.bbagen.2015.08.005_bb0030 article-title: The labile iron pool: characterization, measurement, and participation in cellular processes publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(02)01006-7 – volume: 408 start-page: 162 issue: 2 year: 2002 ident: 10.1016/j.bbagen.2015.08.005_bb0095 article-title: Ca 2+−dependent and independent mitochondrial damage in HepG2 cells that overexpress CYP2E1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/S0003-9861(02)00544-1 – volume: 43 start-page: 5031 year: 2007 ident: 10.1016/j.bbagen.2015.08.005_bb0080 article-title: Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress publication-title: Dalton Trans. doi: 10.1039/b705199a – volume: 27 start-page: 502 issue: 3 year: 1969 ident: 10.1016/j.bbagen.2015.08.005_bb0105 article-title: Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues publication-title: Anal. Biochem. doi: 10.1016/0003-2697(69)90064-5 – volume: 106 start-page: 3242 issue: 9 year: 2005 ident: 10.1016/j.bbagen.2015.08.005_bb0060 article-title: Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells publication-title: Blood doi: 10.1182/blood-2005-02-0460 – volume: 84 start-page: 289 year: 2015 ident: 10.1016/j.bbagen.2015.08.005_bb0125 article-title: Role of labile iron in the toxicity of pharmacological ascorbate publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.03.033 – volume: 201 start-page: 130 issue: 2 year: 2011 ident: 10.1016/j.bbagen.2015.08.005_bb0205 article-title: The iron-chelating drug triapine causes pronounced mitochondrial thiol redox stress publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2010.12.017 – volume: 18 start-page: 91 issue: 1 year: 2013 ident: 10.1016/j.bbagen.2015.08.005_bb0160 article-title: The predicted molecular weight of Nrf2: it is what it is not publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4754 – volume: 32 start-page: 84 issue: 1 year: 2002 ident: 10.1016/j.bbagen.2015.08.005_bb0135 article-title: Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cells publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(01)00770-5 – volume: 397 start-page: 360 issue: 2 year: 2002 ident: 10.1016/j.bbagen.2015.08.005_bb0145 article-title: Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2001.2694 – volume: 26 start-page: 1447 issue: 11 year: 1999 ident: 10.1016/j.bbagen.2015.08.005_bb0130 article-title: Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(99)00002-7 – volume: 421 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.bbagen.2015.08.005_bb0055 article-title: Oxidative stress mediates toxicity of pyridoxal isonicotinoyl hydrazone analogs publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2003.09.044 – volume: 24 start-page: 290 issue: 3 year: 2011 ident: 10.1016/j.bbagen.2015.08.005_bb0015 article-title: Synthesis and initial in vitro evaluations of novel antioxidant aroylhydrazone iron chelators with increased stability against plasma hydrolysis publication-title: Chem. Res. Toxicol. doi: 10.1021/tx100359t – volume: 36 start-page: 1303 issue: 10 year: 2004 ident: 10.1016/j.bbagen.2015.08.005_bb0040 article-title: Antioxidant properties of S-adenosyl-l-methionine in Fe 2+−initiated oxidations publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.02.015 – year: 2012 ident: 10.1016/j.bbagen.2015.08.005_bb0065 – volume: 8 start-page: 323 issue: 4 year: 2014 ident: 10.1016/j.bbagen.2015.08.005_bb0185 article-title: New considerations on hormetic response against oxidative stress publication-title: J. Cell Commun. Signal. doi: 10.1007/s12079-014-0248-4 – volume: 52 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.bbagen.2015.08.005_bb0165 article-title: Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.09.030 – volume: 10 start-page: 355 issue: 2 year: 2008 ident: 10.1016/j.bbagen.2015.08.005_bb0190 article-title: Antioxidants as potential therapeutics for lung fibrosis publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2007.1916 – volume: 277 start-page: 37064 issue: 40 year: 2002 ident: 10.1016/j.bbagen.2015.08.005_bb0090 article-title: Iron detoxification properties of escherichia colibacterioferritin attenuation of oxyradical chemistry publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205712200 – volume: 62 start-page: 8402 issue: 33 year: 2014 ident: 10.1016/j.bbagen.2015.08.005_bb0050 article-title: Comparison of food antioxidants and iron chelators in two cellular free radical assays: strong protection by luteolin publication-title: J. Agric. Food Chem. doi: 10.1021/jf5022779 – volume: 274 start-page: G1031 issue: 6 year: 1998 ident: 10.1016/j.bbagen.2015.08.005_bb0140 article-title: The labile iron pool in hepatocytes: prooxidant-induced increase in free iron precedes oxidative cell injury publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.1998.274.6.G1031 – volume: 50 start-page: 537 issue: 4 year: 2011 ident: 10.1016/j.bbagen.2015.08.005_bb0005 article-title: Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.12.004 – volume: 23 start-page: 1105 issue: 6 year: 2010 ident: 10.1016/j.bbagen.2015.08.005_bb0045 article-title: Comparison of clinically used and experimental iron chelators for protection against oxidative stress-induced cellular injury publication-title: Chem. Res. Toxicol. doi: 10.1021/tx100125t – volume: 280 start-page: 33766 issue: 40 year: 2005 ident: 10.1016/j.bbagen.2015.08.005_bb0150 article-title: Glutamate Cysteine ligase catalysis dependence on ATP and modifier subunit for regulation of tissue glutathione levels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504604200 – volume: 275 start-page: 15563 issue: 20 year: 2000 ident: 10.1016/j.bbagen.2015.08.005_bb0110 article-title: CYP2E1 overexpression in HepG2 cells induces glutathione synthesis by transcriptional activation of γ-glutamylcysteine synthetase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M907022199 – volume: 24 start-page: 204 issue: 1 year: 2013 ident: 10.1016/j.bbagen.2015.08.005_bb0180 article-title: Docosahexaenoic acid inhibition of inflammation is partially via cross-talk between Nrf2/heme oxygenase 1 and IKK/NF-κB pathways publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2012.05.003 – volume: 44 start-page: 3750 issue: 22 year: 2001 ident: 10.1016/j.bbagen.2015.08.005_bb0070 article-title: N-Succinyl-(β-alanyl-l-leucyl-l-alanyl-l-leucyl) doxorubicin: an extracellularly tumor-activated prodrug devoid of intravenous acute toxicity publication-title: J. Med. Chem. doi: 10.1021/jm0108754 – volume: 277 start-page: 104 issue: 1 year: 2002 ident: 10.1016/j.bbagen.2015.08.005_bb0100 article-title: Role of calcium and calcium-activated proteases in CYP2E1-dependent toxicity in HEPG2 cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M107864200 – volume: 128 start-page: 12424 issue: 38 year: 2006 ident: 10.1016/j.bbagen.2015.08.005_bb0075 article-title: A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja064806w – volume: 155 start-page: 138 issue: 1 year: 2008 ident: 10.1016/j.bbagen.2015.08.005_bb0035 article-title: Anthracycline toxicity to cardiomyocytes or cancer cells is differently affected by iron chelation with salicylaldehyde isonicotinoyl hydrazone publication-title: Br. J. Pharmacol. doi: 10.1038/bjp.2008.236 – volume: 8 start-page: 323 issue: 4 year: 2014 ident: 10.1016/j.bbagen.2015.08.005_bb0170 article-title: New considerations on hormetic response against oxidative stress publication-title: J. Cell Commun. Signal. doi: 10.1007/s12079-014-0248-4 – volume: 49 start-page: 1192 issue: 7 year: 2010 ident: 10.1016/j.bbagen.2015.08.005_bb0175 article-title: Bcl-2 sustains hormetic response by inducing Nrf-2 nuclear translocation in L929 mouse fibroblasts publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.07.004 – volume: 25 start-page: 881 issue: 8 year: 1998 ident: 10.1016/j.bbagen.2015.08.005_bb0085 article-title: Protection of U937 cells against oxidative injury by a novel series of iron chelators publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(98)00113-0 – volume: 102 start-page: 2130 issue: 12 year: 2008 ident: 10.1016/j.bbagen.2015.08.005_bb0025 article-title: Iron prochelator BSIH protects retinal pigment epithelial cells against cell death induced by hydrogen peroxide publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2008.08.001 – volume: 207 start-page: 731 issue: 4 year: 2010 ident: 10.1016/j.bbagen.2015.08.005_bb0200 article-title: Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia publication-title: J. Exp. Med. doi: 10.1084/jem.20091488 – volume: 47 start-page: 1172 issue: 8 year: 2009 ident: 10.1016/j.bbagen.2015.08.005_bb0155 article-title: The role of c-Jun phosphorylation in EpRE activation of phase II genes publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.07.036 – volume: 95 start-page: 18 issue: 01 year: 2006 ident: 10.1016/j.bbagen.2015.08.005_bb0115 article-title: Docosahexaenoic acid enhances the antioxidant response of human fibroblasts by upregulating γ-glutamyl-cysteinyl ligase and glutathione reductase publication-title: Br. J. Nutr. doi: 10.1079/BJN20051626 – volume: 29 start-page: 1171 issue: 4 year: 1999 ident: 10.1016/j.bbagen.2015.08.005_bb0120 article-title: Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using the fluorescent probe, phen green SK publication-title: Hepatology doi: 10.1002/hep.510290435 – reference: 21214215 - Chem Res Toxicol. 2011 Mar 21;24(3):290-302 – reference: 21147217 - Free Radic Biol Med. 2011 Feb 15;50(4):537-49 – reference: 17031387 - Br J Pharmacol. 2006 Dec;149(7):920-30 – reference: 21195754 - Toxicol Lett. 2011 Mar 5;201(2):130-6 – reference: 24835768 - Free Radic Biol Med. 2015 Feb;79:337-42 – reference: 11795895 - Arch Biochem Biophys. 2002 Jan 15;397(2):360-9 – reference: 20637280 - Free Radic Biol Med. 2010 Oct 15;49(7):1192-204 – reference: 22027063 - Free Radic Biol Med. 2012 Jan 1;52(1):1-6 – reference: 16984186 - J Am Chem Soc. 2006 Sep 27;128(38):12424-5 – reference: 14678779 - Arch Biochem Biophys. 2004 Jan 1;421(1):1-9 – reference: 16081425 - J Biol Chem. 2005 Oct 7;280(40):33766-74 – reference: 20368581 - J Exp Med. 2010 Apr 12;207(4):731-50 – reference: 12124394 - J Biol Chem. 2002 Oct 4;277(40):37064-9 – reference: 25857216 - Free Radic Biol Med. 2015 Jul;84:289-95 – reference: 22901690 - J Nutr Biochem. 2013 Jan;24(1):204-12 – reference: 17999627 - Antioxid Redox Signal. 2008 Feb;10(2):355-70 – reference: 9696702 - Am J Physiol. 1998 Jun;274(6 Pt 1):G1031-7 – reference: 22703241 - Antioxid Redox Signal. 2013 Jan 1;18(1):91-3 – reference: 12464267 - Arch Biochem Biophys. 2002 Dec 15;408(2):162-70 – reference: 25284448 - J Cell Commun Signal. 2014 Dec;8(4):323-31 – reference: 16020512 - Blood. 2005 Nov 1;106(9):3242-50 – reference: 20521781 - Chem Res Toxicol. 2010 Jun 21;23(6):1105-14 – reference: 17992288 - Dalton Trans. 2007 Nov 21;(43):5031-42 – reference: 18835041 - J Inorg Biochem. 2008 Dec;102(12):2130-5 – reference: 15110395 - Free Radic Biol Med. 2004 May 15;36(10):1303-16 – reference: 10748080 - J Biol Chem. 2000 May 19;275(20):15563-71 – reference: 12374615 - Free Radic Biol Med. 2002 Oct 15;33(8):1037-46 – reference: 24942145 - Environ Toxicol. 2015 Dec;30(12):1385-92 – reference: 4388022 - Anal Biochem. 1969 Mar;27(3):502-22 – reference: 9840732 - Free Radic Biol Med. 1998 Nov 15;25(8):881-90 – reference: 25070170 - J Agric Food Chem. 2014 Aug 20;62(33):8402-10 – reference: 11689564 - J Biol Chem. 2002 Jan 4;277(1):104-13 – reference: 15978614 - J Mol Cell Cardiol. 2005 Aug;39(2):345-54 – reference: 11606140 - J Med Chem. 2001 Oct 25;44(22):3750-3 – reference: 19666106 - Free Radic Biol Med. 2009 Oct 15;47(8):1172-9 – reference: 10094962 - Hepatology. 1999 Apr;29(4):1171-9 – reference: 18536744 - Br J Pharmacol. 2008 Sep;155(1):138-48 – reference: 11755320 - Free Radic Biol Med. 2002 Jan 1;32(1):84-92 – reference: 16441913 - Br J Nutr. 2006 Jan;95(1):18-26 – reference: 10401608 - Free Radic Biol Med. 1999 Jun;26(11-12):1447-56 |
SSID | ssj0000595 ssj0025309 |
Score | 2.2574215 |
Snippet | Salicylaldehyde isonicotinoyl hydrazone (SIH) is an iron chelator of the aroylhydrazone class that displays antioxidant or prooxidant effects in different... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2256 |
SubjectTerms | aerobiosis Aldehydes - pharmacology Antioxidant antioxidant activity Antioxidants - pharmacology autoxidation chelating agents chelation cysteine enzyme activity Glutathione Glutathione - metabolism Hep G2 Cells human cell lines Humans Hydrazones - pharmacology hydroxybenzaldehyde Iron Iron Chelating Agents - pharmacology liver mammals NF-E2-Related Factor 2 - metabolism Nrf2 Oxidation-Reduction Oxidative stress protein subunits reactive oxygen species Reactive Oxygen Species - metabolism Salicylaldehyde isonicotinoyl hydrazone toxicity transcription factors |
Title | Prooxidant and antioxidant properties of salicylaldehyde isonicotinoyl hydrazone iron chelators in HepG2 cells |
URI | https://dx.doi.org/10.1016/j.bbagen.2015.08.005 https://www.ncbi.nlm.nih.gov/pubmed/26275495 https://www.proquest.com/docview/1718074280 https://www.proquest.com/docview/2000217942 https://pubmed.ncbi.nlm.nih.gov/PMC4587295 |
Volume | 1850 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxsxEBYhobQvoU0v9wgq9FW1dlfa4zGYpG4NobQNzZvQSbYYrbEdiPvQ396ZPdy6B4E-mPVqtVjWzM6MVt98Q8hrcKIld0lgVgfJhDOcaW1zlvgklDm3yGGGaIvzfHoh3l_Kyz0yGXJhEFbZ2_7OprfWum8Z97M5XtT1-BNu6kE4AQ65Jf7CjHIhCtTyN99_wjwgfJDdToJg2HtIn2sxXsbAQ4ssqIlsiTyxiN3f3dOf4efvKMpf3NLZfXLYx5P0pBvyA7Ln4xG501WY3ByRu5OhoNtDEj9AlHxTO5hLqqODDwilP1_gO_klkqvSJtCVRrLguZ47f7VxniLiCDRmXcdmM6fQtNTfmgjtyyZShJLiyn1F60infvE2pbgbsHpELs5OP0-mrC-3wKyQfM0qIStRGStMVlmb8yzoqqiCsCEzYDOTLPCcB1O6xFkriiLxKTeytNqlQodCZ4_JfoQff4p4qaJKgy8qb6SwRlcmNWWw1uscvlo9Itkwy8r2XORYEmOuBtDZV9XJRqFsFFbK5HJE2PauRcfFcUv_YhCg2tEpBe7iljtfDfJWICScNR19c71SCfhyfJ1Q8n_3weynFA1dOiJPOh3ZjjdFVmhYlMLYdrRn2wHpvnevxPqqpf0WsoSVkHz23__qObmHZ10m5Quyv15e-5cQUq3NcfvMHJODk3ez6TkeZx-_zH4Av3cmrA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBddyui-jK17ZU8N9tVEtiXb-ljCOnftwmAt9JuQZIl6BDkkKTT963fnR7bsQWEfDLYeWL47352k0-8I-QBGtGBV7COrvYh4ZViktc2i2MW-yJhFDDOMtphl5QX_fCku98h0OAuDYZW97u90equt-5JJT83Joq4n33BTD9wJMMgt8Fd-j-wjOpUYkf2jk9Ny9lMhizb5CraPsMNwgq4N8zIG_lsEQo1Fi-WJeez-bqH-9EB_D6T8xTIdPyIPe5eSHnWjfkz2XDgk97skk5tDcjAdcro9IeErOMo3dQXkpDpUcAFf-ucFLssvEV-VNp6uNOIFz_W8clebylEMOgKhWdeh2cwpFC31bROgfNkEitGkOHlf0TrQ0i0-JRQ3BFZPycXxx_NpGfUZFyLLBVtHkgvJpbHcpNLajKVey1x6bn1qQG3GqWcZ86ao4spanuexS5gRhdVVwrXPdfqMjAK8_AWGTOUy8S6XzghujZYmMYW31ukMbq0ek3SgsrI9HDlmxZirIe7su-p4o5A3CpNlMjEm0bbXooPjuKN9PjBQ7YiVAotxR8_3A78VMAmppoNrrlcqBnOOKwoF-3cbPACVoK5LxuR5JyPb8SYIDA3zUhjbjvRsGyDi925NqK9a5G8uCpgMiZf__VXvyEF5_uVMnZ3MTl-RB1jTHax8TUbr5bV7Ax7W2rzt_6Afe5Inug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prooxidant+and+antioxidant+properties+of+salicylaldehyde+isonicotinoyl+hydrazone+iron+chelators+in+HepG2+cells&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Caro%2C+Andres+A&rft.au=Commissariat%2C+Ava&rft.au=Dunn%2C+Caroline&rft.au=Kim%2C+Hyunjoo&rft.date=2015-11-01&rft.issn=0006-3002&rft.volume=1850&rft.issue=11&rft.spage=2256&rft_id=info:doi/10.1016%2Fj.bbagen.2015.08.005&rft_id=info%3Apmid%2F26275495&rft.externalDocID=26275495 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |