On the applicability of entropy potentials in transport problems
Transport in confined structures of varying geometry has become the subject of growing attention in recent years since such structures are ubiquitous in biology and technology. In analyzing transport in systems of this type, the notion of entropy potentials is widely used. Entropy potentials natural...
Saved in:
Published in | The European physical journal. ST, Special topics Vol. 223; no. 14; pp. 3063 - 3077 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transport in confined structures of varying geometry has become the subject of growing attention in recent years since such structures are ubiquitous in biology and technology. In analyzing transport in systems of this type, the notion of entropy potentials is widely used. Entropy potentials naturally arise in one-dimensional description of equilibrium distributions in multidimensional confined structures. However, their application to transport problems requires some caution. In this article we discuss such applications and summarize the results of recent studies exploring the limits of applicability. We also consider an example of a transport problem in a system of varying geometry, where the conventional approach is inapplicable since the geometry changes abruptly. In addition, we demonstrate how the entropy potential can be used to analyze optimal transport through a three-dimensional cosine-shaped channel. |
---|---|
AbstractList | Transport in confined structures of varying geometry has become the subject of growing attention in recent years since such structures are ubiquitous in biology and technology. In analyzing transport in systems of this type, the notion of entropy potentials is widely used. Entropy potentials naturally arise in one-dimensional description of equilibrium distributions in multidimensional confined structures. However, their application to transport problems requires some caution. In this article we discuss such applications and summarize the results of recent studies exploring the limits of applicability. We also consider an example of a transport problem in a system of varying geometry, where the conventional approach is inapplicable since the geometry changes abruptly. In addition, we demonstrate how the entropy potential can be used to analyze optimal transport through a tree-dimensional cosine-shaped channel.Transport in confined structures of varying geometry has become the subject of growing attention in recent years since such structures are ubiquitous in biology and technology. In analyzing transport in systems of this type, the notion of entropy potentials is widely used. Entropy potentials naturally arise in one-dimensional description of equilibrium distributions in multidimensional confined structures. However, their application to transport problems requires some caution. In this article we discuss such applications and summarize the results of recent studies exploring the limits of applicability. We also consider an example of a transport problem in a system of varying geometry, where the conventional approach is inapplicable since the geometry changes abruptly. In addition, we demonstrate how the entropy potential can be used to analyze optimal transport through a tree-dimensional cosine-shaped channel. Transport in confined structures of varying geometry has become the subject of growing attention in recent years since such structures are ubiquitous in biology and technology. In analyzing transport in systems of this type, the notion of entropy potentials is widely used. Entropy potentials naturally arise in one-dimensional description of equilibrium distributions in multidimensional confined structures. However, their application to transport problems requires some caution. In this article we discuss such applications and summarize the results of recent studies exploring the limits of applicability. We also consider an example of a transport problem in a system of varying geometry, where the conventional approach is inapplicable since the geometry changes abruptly. In addition, we demonstrate how the entropy potential can be used to analyze optimal transport through a three-dimensional cosine-shaped channel. Transport in confined structures of varying geometry has become the subject of growing attention in recent years since such structures are ubiquitous in biology and technology. In analyzing transport in systems of this type, the notion of entropy potentials is widely used. Entropy potentials naturally arise in one-dimensional description of equilibrium distributions in multidimensional confined structures. However, their application to transport problems requires some caution. In this article we discuss such applications and summarize the results of recent studies exploring the limits of applicability. We also consider an example of a transport problem in a system of varying geometry, where the conventional approach is inapplicable since the geometry changes abruptly. In addition, we demonstrate how the entropy potential can be used to analyze optimal transport through a tree-dimensional cosine-shaped channel. |
Author | Berezhkovskii, A. M. Bezrukov, S. M. |
AuthorAffiliation | 1 Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA 2 Mathematical and Statistical Computing Laboratory, Division for Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892 |
AuthorAffiliation_xml | – name: 2 Mathematical and Statistical Computing Laboratory, Division for Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892 – name: 1 Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA |
Author_xml | – sequence: 1 givenname: A. M. surname: Berezhkovskii fullname: Berezhkovskii, A. M. organization: Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health – sequence: 2 givenname: S. M. surname: Bezrukov fullname: Bezrukov, S. M. organization: Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26339466$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUclKBDEQDaI4bl8gSB-9tJO9OxdRBjcQ5qLnkO5Ja4buJCYZYf7ezKKoBz1VQb2lqt4h2LXOagBOEbxAiMKx9vOYxhpDREuICRIl2QEHSDBUcgrR7mdPGBuBwxjnEDKOBdkHI8wJEZTzA3A1tUV61YXyvjetakxv0rJwXaFtCs4vC-9Sbo3qY2EyNCgbvQup8ME1vR7iMdjr8lCfbOsReL69eZrcl4_Tu4fJ9WPZUgZTKSirec1hQwkhDDFBGGzzGQoK1JEOIcwUpRXCsG6qbtaormqrZsZ1DWcCC0qOwOVG1y-aQc_a1X6qlz6YQYWldMrInxNrXuWLe5eU5atrngXOtwLBvS10THIwsdV9r6x2iyhRjTnHDAqWoWffvb5MPt-WAWQDaIOLMejuC4KgXIUj1-HIdThyHY4kmSV-sVqTVDJutbDp_-HSDTdmJ_uig5y7RbD543_SPgArPqft |
CitedBy_id | crossref_primary_10_1063_1_4942470 crossref_primary_10_3390_ijms242115923 crossref_primary_10_1021_acs_jpcb_9b09595 crossref_primary_10_1088_1361_648X_aaba0d crossref_primary_10_1021_acs_nanolett_8b03235 crossref_primary_10_1063_1_5110489 crossref_primary_10_1002_pmic_202100061 crossref_primary_10_1063_5_0135305 crossref_primary_10_1126_sciadv_abf5462 crossref_primary_10_1103_PhysRevE_103_012135 crossref_primary_10_1016_j_polymer_2022_124773 crossref_primary_10_1002_mats_202000042 crossref_primary_10_1021_acs_jpcb_8b04371 crossref_primary_10_1093_femspd_ftv113 crossref_primary_10_1103_PhysRevResearch_3_033162 crossref_primary_10_1016_j_bbamem_2016_02_026 crossref_primary_10_1021_acs_jpcb_2c00715 crossref_primary_10_1063_1_4934223 crossref_primary_10_1088_1674_1056_25_9_090501 crossref_primary_10_1140_epjst_e2014_02316_6 crossref_primary_10_1063_5_0082482 crossref_primary_10_1021_acs_jpcb_3c04520 crossref_primary_10_1039_D4CP00689E crossref_primary_10_1016_j_bbamem_2017_09_001 |
Cites_doi | 10.1063/1.2161196 10.1103/PhysRevE.75.051111 10.1103/PhysRevE.74.041203 10.1103/PhysRevE.72.061203 10.1103/PhysRevE.80.020904 10.1016/j.chemphys.2005.04.021 10.1103/PhysRevE.80.031106 10.1103/PhysRevLett.97.020601 10.1103/PhysRevE.83.051135 10.1063/1.1590957 10.1016/j.biosystems.2008.03.006 10.1103/PhysRevE.80.061142 10.1103/PhysRevE.82.031143 10.1021/bi4011495 10.1016/j.bbamem.2011.11.004 10.1063/1.1732899 10.1063/1.3271998 10.1103/PhysRevE.64.061106 10.1063/1.3626215 10.1128/MMBR.67.4.593-656.2003 10.1529/biophysj.104.057588 10.1063/1.1475758 10.1021/j100189a004 10.1073/pnas.0809634105 10.1063/1.4733394 10.1063/1.3224954 10.1063/1.1314862 10.1007/978-3-642-86414-8 10.1063/1.2719193 10.1103/PhysRevE.78.021103 10.1073/pnas.72.12.4918 10.1007/BF01871775 10.1063/1.3431756 10.1016/S0006-3495(77)85544-6 10.1063/1.2766720 |
ContentType | Journal Article |
Copyright | EDP Sciences and Springer 2014 |
Copyright_xml | – notice: EDP Sciences and Springer 2014 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1140/epjst/e2014-02319-3 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1951-6401 |
EndPage | 3077 |
ExternalDocumentID | PMC4556286 26339466 10_1140_epjst_e2014_02319_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA HD000072 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 123 199 1N0 203 29G 29~ 2J2 2JY 2KG 2KM 2LR 30V 4.4 406 408 40D 40E 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFFNX AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DNIVK DPUIP EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9T PF0 QOS R89 RED RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR 2JN AAPKM AAYXX ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION ABRTQ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c450t-94586860b43335159350c114a091f3f1125a4471208b7fdbaf7c7bd6e80d92943 |
IEDL.DBID | U2A |
ISSN | 1951-6355 |
IngestDate | Thu Aug 21 18:22:56 EDT 2025 Fri Jul 11 15:12:43 EDT 2025 Mon Jul 21 05:58:51 EDT 2025 Tue Jul 01 03:42:13 EDT 2025 Thu Apr 24 22:51:53 EDT 2025 Fri Feb 21 02:33:12 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Voltage Dependent Anion Channel Brownian Dynamic Simulation Optimal Transport European Physical Journal Special Topic Channel Radius |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-94586860b43335159350c114a091f3f1125a4471208b7fdbaf7c7bd6e80d92943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4556286 |
PMID | 26339466 |
PQID | 1826625095 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556286 proquest_miscellaneous_1826625095 pubmed_primary_26339466 crossref_primary_10_1140_epjst_e2014_02319_3 crossref_citationtrail_10_1140_epjst_e2014_02319_3 springer_journals_10_1140_epjst_e2014_02319_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: France |
PublicationTitle | The European physical journal. ST, Special topics |
PublicationTitleAbbrev | Eur. Phys. J. Spec. Top |
PublicationTitleAlternate | Eur Phys J Spec Top |
PublicationYear | 2014 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | A.M. Berezhkovskii, M.I. Monine, C.B. Muratov, S.Y. Shvartsman, J. Chem. Phys. 124, (2006) RostovtsevaT.K.BezrukovS.M.BBA-Biomembranes20121818152610.1016/j.bbamem.2011.11.004 ColombiniM.J. Membrane Biol.198911110310.1007/BF01871775 MartensS.SchmidG.Schimansky-GeierL.P. Hanggi201121047518 BerezhkovskiiA.M.PustovoitM.A.BezrukovS.M.J. Chem. Phys.20071261347062007JChPh.126m4706B10.1063/1.2719193 NoskovS.Y.RostovtsevaT.K.BezrukovS.M.Biochemistry-Us201352924610.1021/bi4011495 BerezhkovskiiA.SzaboA.J. Chem. Phys.20111350741082011JChPh.135g4108B10.1063/1.3626215 BerezhkovskiiA.M.PustovoitM.A.BezrukovS.M.J. Chem. Phys.200311939432003JChPh.119.3943B10.1063/1.1590957 NikaidoH.Microbiol Mol. Biol. R20036759310.1128/MMBR.67.4.593-656.2003 BergH.C.PurcellE.M.Biophys. J.1977201931977BpJ....20..193B10.1016/S0006-3495(77)85544-6 KalinayP.PercusJ.K.Phys. Rev. E2010820311432010PhRvE..82c1143K10.1103/PhysRevE.82.031143 BerezhkovskiiA.M.BezrukovS.M.Biophys. J.200588L1710.1529/biophysj.104.057588 DagdugL.VazquezM.V.BerezhkovskiiA.M.BezrukovS.M.J. Chem. Phys.20101330347072010JChPh.133c4707D10.1063/1.3431756 KalinayP.PercusJ.K.Phys. Rev. E2008780211032008PhRvE..78b1103K10.1103/PhysRevE.78.0211032496816 LifsonS.JacksonJ.L.J. Chem. Phys.19623624101962JChPh..36.2410L10.1063/1.1732899 MartensS.SchmidG.Schimansky-GeierL.HanggiP.Phys. Rev. E2011830511352011PhRvE..83e1135M10.1103/PhysRevE.83.051135 BerezhkovskiiA.M.PustovoitM.A.BezrukovS.M.Phys. Rev. E2009800209042009PhRvE..80b0904B10.1103/PhysRevE.80.020904 BerezhkovskiiA.M.BezrukovS.M.Chem. Phys.20053193422005CP....319..342B10.1016/j.chemphys.2005.04.021 BuradaP.S.SchmidG.RegueraD.RubiJ.M.HanggiP.Phys. Rev. E2007750511112007PhRvE..75e1111B10.1103/PhysRevE.75.051111 ZwanzigR.J. Phys. Chem-Us199296392610.1021/j100189a004 BezrukovS.M.BerezhkovskiiA.M.SzaboA.J. Chem. Phys.20071271151012007JChPh.127k5101B10.1063/1.2766720 BerezhkovskiiA.M.HummerG.BezrukovS.M.Phys. Rev. Lett.2006970206012006PhRvL..97b0601B10.1103/PhysRevLett.97.020601 UjwalR.CascioD.ColletierJ.P.FahamS.ZhangJ.ToroL.PingP.P.AbramsonJ.Proc. Natl. Acad. Sci. USA2008105177422008PNAS..10517742U10.1073/pnas.0809634105 KalinayP.Phys. Rev. E2009800311062009PhRvE..80c1106K10.1103/PhysRevE.80.031106 KalinayP.PercusJ.K.Phys. Rev. E2005720612032005PhRvE..72f1203K10.1103/PhysRevE.72.0612032203638 MakhnovskiiY.A.BerezhkovskiiA.M.ZitsermanV.Y.J. Chem. Phys.20091311047052009JChPh.131j4705M10.1063/1.3224954 BerezhkovskiiA.M.PustovoitM.A.BezrukovS.M.J. Chem. Phys.200211699522002JChPh.116.9952B10.1063/1.1475758 M.H. Jacobs, Diffusion Processes (Springer, New York, 1967) RegueraD.RubiJ.M.Phys. Rev. E2001640611062001PhRvE..64f1106R10.1103/PhysRevE.64.061106 BezrukovS.M.BerezhkovskiiA.M.PustovoitM.A.SzaboA.J. Chem. Phys.200011382062000JChPh.113.8206B10.1063/1.1314862 HillT.L.Proc. Natl. Acad. Sci. USA19757249181975PNAS...72.4918H10.1073/pnas.72.12.4918 BerezhkovskiiA.M.BarzykinA.V.ZitsermanV.Y.J. Chem. Phys.20091312241102009JChPh.131v4110B10.1063/1.3271998 KalinayP.PercusJ.K.Phys. Rev. E2006740412032006PhRvE..74d1203K10.1103/PhysRevE.74.0412032283979 BradleyR.M.Phys. Rev. E2009800611422009PhRvE..80f1142B10.1103/PhysRevE.80.061142 BuradaP.S.SchmidG.TalknerP.HanggiP.RegueraD.RubiJ.M.Biosystems2008931610.1016/j.biosystems.2008.03.006 DagdugL.PinedaI.J. Chem. Phys.20121370241072012JChPh.137b4107D10.1063/1.4733394 P. Kalinay (2367_CR18) 2006; 74 T.K. Rostovtseva (2367_CR2) 2012; 1818 A.M. Berezhkovskii (2367_CR27) 2007; 126 S.M. Bezrukov (2367_CR11) 2000; 113 P. Kalinay (2367_CR19) 2008; 78 L. Dagdug (2367_CR28) 2010; 133 P.S. Burada (2367_CR31) 2008; 93 S.Y. Noskov (2367_CR4) 2013; 52 R.M. Bradley (2367_CR25) 2009; 80 A.M. Berezhkovskii (2367_CR32) 2009; 131 R. Ujwal (2367_CR3) 2008; 105 2367_CR13 2367_CR34 D. Reguera (2367_CR16) 2001; 64 S. Martens (2367_CR22) 2011; 21 Y.A. Makhnovskii (2367_CR33) 2009; 131 H. Nikaido (2367_CR14) 2003; 67 S. Lifson (2367_CR29) 1962; 36 A.M. Berezhkovskii (2367_CR7) 2005; 319 S.M. Bezrukov (2367_CR6) 2007; 127 M. Colombini (2367_CR1) 1989; 111 R. Zwanzig (2367_CR15) 1992; 96 P. Kalinay (2367_CR20) 2010; 82 A. Berezhkovskii (2367_CR24) 2011; 135 A.M. Berezhkovskii (2367_CR8) 2005; 88 A.M. Berezhkovskii (2367_CR5) 2009; 80 A.M. Berezhkovskii (2367_CR12) 2006; 97 P. Kalinay (2367_CR17) 2005; 72 S. Martens (2367_CR23) 2011; 83 L. Dagdug (2367_CR26) 2012; 137 P.S. Burada (2367_CR30) 2007; 75 T.L. Hill (2367_CR35) 1975; 72 H.C. Berg (2367_CR36) 1977; 20 A.M. Berezhkovskii (2367_CR9) 2003; 119 A.M. Berezhkovskii (2367_CR10) 2002; 116 P. Kalinay (2367_CR21) 2009; 80 |
References_xml | – reference: KalinayP.PercusJ.K.Phys. Rev. E2008780211032008PhRvE..78b1103K10.1103/PhysRevE.78.0211032496816 – reference: NikaidoH.Microbiol Mol. Biol. R20036759310.1128/MMBR.67.4.593-656.2003 – reference: ZwanzigR.J. Phys. Chem-Us199296392610.1021/j100189a004 – reference: DagdugL.PinedaI.J. Chem. Phys.20121370241072012JChPh.137b4107D10.1063/1.4733394 – reference: RegueraD.RubiJ.M.Phys. Rev. E2001640611062001PhRvE..64f1106R10.1103/PhysRevE.64.061106 – reference: KalinayP.PercusJ.K.Phys. Rev. E2005720612032005PhRvE..72f1203K10.1103/PhysRevE.72.0612032203638 – reference: BuradaP.S.SchmidG.RegueraD.RubiJ.M.HanggiP.Phys. Rev. E2007750511112007PhRvE..75e1111B10.1103/PhysRevE.75.051111 – reference: KalinayP.PercusJ.K.Phys. Rev. E2006740412032006PhRvE..74d1203K10.1103/PhysRevE.74.0412032283979 – reference: A.M. Berezhkovskii, M.I. Monine, C.B. Muratov, S.Y. Shvartsman, J. Chem. Phys. 124, (2006) – reference: HillT.L.Proc. Natl. Acad. Sci. USA19757249181975PNAS...72.4918H10.1073/pnas.72.12.4918 – reference: M.H. Jacobs, Diffusion Processes (Springer, New York, 1967) – reference: BezrukovS.M.BerezhkovskiiA.M.PustovoitM.A.SzaboA.J. Chem. Phys.200011382062000JChPh.113.8206B10.1063/1.1314862 – reference: KalinayP.Phys. Rev. E2009800311062009PhRvE..80c1106K10.1103/PhysRevE.80.031106 – reference: MartensS.SchmidG.Schimansky-GeierL.HanggiP.Phys. Rev. E2011830511352011PhRvE..83e1135M10.1103/PhysRevE.83.051135 – reference: BuradaP.S.SchmidG.TalknerP.HanggiP.RegueraD.RubiJ.M.Biosystems2008931610.1016/j.biosystems.2008.03.006 – reference: ColombiniM.J. Membrane Biol.198911110310.1007/BF01871775 – reference: BerezhkovskiiA.M.BezrukovS.M.Chem. Phys.20053193422005CP....319..342B10.1016/j.chemphys.2005.04.021 – reference: BerezhkovskiiA.M.PustovoitM.A.BezrukovS.M.Phys. Rev. E2009800209042009PhRvE..80b0904B10.1103/PhysRevE.80.020904 – reference: BerezhkovskiiA.M.PustovoitM.A.BezrukovS.M.J. Chem. Phys.20071261347062007JChPh.126m4706B10.1063/1.2719193 – reference: BerezhkovskiiA.M.PustovoitM.A.BezrukovS.M.J. Chem. Phys.200311939432003JChPh.119.3943B10.1063/1.1590957 – reference: BergH.C.PurcellE.M.Biophys. J.1977201931977BpJ....20..193B10.1016/S0006-3495(77)85544-6 – reference: MartensS.SchmidG.Schimansky-GeierL.P. Hanggi201121047518 – reference: NoskovS.Y.RostovtsevaT.K.BezrukovS.M.Biochemistry-Us201352924610.1021/bi4011495 – reference: BerezhkovskiiA.SzaboA.J. Chem. Phys.20111350741082011JChPh.135g4108B10.1063/1.3626215 – reference: KalinayP.PercusJ.K.Phys. Rev. E2010820311432010PhRvE..82c1143K10.1103/PhysRevE.82.031143 – reference: MakhnovskiiY.A.BerezhkovskiiA.M.ZitsermanV.Y.J. Chem. Phys.20091311047052009JChPh.131j4705M10.1063/1.3224954 – reference: RostovtsevaT.K.BezrukovS.M.BBA-Biomembranes20121818152610.1016/j.bbamem.2011.11.004 – reference: BezrukovS.M.BerezhkovskiiA.M.SzaboA.J. Chem. Phys.20071271151012007JChPh.127k5101B10.1063/1.2766720 – reference: BerezhkovskiiA.M.PustovoitM.A.BezrukovS.M.J. Chem. Phys.200211699522002JChPh.116.9952B10.1063/1.1475758 – reference: BradleyR.M.Phys. Rev. E2009800611422009PhRvE..80f1142B10.1103/PhysRevE.80.061142 – reference: DagdugL.VazquezM.V.BerezhkovskiiA.M.BezrukovS.M.J. Chem. Phys.20101330347072010JChPh.133c4707D10.1063/1.3431756 – reference: LifsonS.JacksonJ.L.J. Chem. Phys.19623624101962JChPh..36.2410L10.1063/1.1732899 – reference: BerezhkovskiiA.M.BezrukovS.M.Biophys. J.200588L1710.1529/biophysj.104.057588 – reference: UjwalR.CascioD.ColletierJ.P.FahamS.ZhangJ.ToroL.PingP.P.AbramsonJ.Proc. Natl. Acad. Sci. USA2008105177422008PNAS..10517742U10.1073/pnas.0809634105 – reference: BerezhkovskiiA.M.HummerG.BezrukovS.M.Phys. Rev. Lett.2006970206012006PhRvL..97b0601B10.1103/PhysRevLett.97.020601 – reference: BerezhkovskiiA.M.BarzykinA.V.ZitsermanV.Y.J. Chem. Phys.20091312241102009JChPh.131v4110B10.1063/1.3271998 – volume: 21 start-page: 047518 year: 2011 ident: 2367_CR22 publication-title: P. Hanggi – ident: 2367_CR34 doi: 10.1063/1.2161196 – volume: 75 start-page: 051111 year: 2007 ident: 2367_CR30 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.75.051111 – volume: 74 start-page: 041203 year: 2006 ident: 2367_CR18 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.041203 – volume: 72 start-page: 061203 year: 2005 ident: 2367_CR17 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.061203 – volume: 80 start-page: 020904 year: 2009 ident: 2367_CR5 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.020904 – volume: 319 start-page: 342 year: 2005 ident: 2367_CR7 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.04.021 – volume: 80 start-page: 031106 year: 2009 ident: 2367_CR21 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.031106 – volume: 97 start-page: 020601 year: 2006 ident: 2367_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.020601 – volume: 83 start-page: 051135 year: 2011 ident: 2367_CR23 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.051135 – volume: 119 start-page: 3943 year: 2003 ident: 2367_CR9 publication-title: J. Chem. Phys. doi: 10.1063/1.1590957 – volume: 93 start-page: 16 year: 2008 ident: 2367_CR31 publication-title: Biosystems doi: 10.1016/j.biosystems.2008.03.006 – volume: 80 start-page: 061142 year: 2009 ident: 2367_CR25 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.061142 – volume: 82 start-page: 031143 year: 2010 ident: 2367_CR20 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.031143 – volume: 52 start-page: 9246 year: 2013 ident: 2367_CR4 publication-title: Biochemistry-Us doi: 10.1021/bi4011495 – volume: 1818 start-page: 1526 year: 2012 ident: 2367_CR2 publication-title: BBA-Biomembranes doi: 10.1016/j.bbamem.2011.11.004 – volume: 36 start-page: 2410 year: 1962 ident: 2367_CR29 publication-title: J. Chem. Phys. doi: 10.1063/1.1732899 – volume: 131 start-page: 224110 year: 2009 ident: 2367_CR32 publication-title: J. Chem. Phys. doi: 10.1063/1.3271998 – volume: 64 start-page: 061106 year: 2001 ident: 2367_CR16 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.061106 – volume: 135 start-page: 074108 year: 2011 ident: 2367_CR24 publication-title: J. Chem. Phys. doi: 10.1063/1.3626215 – volume: 67 start-page: 593 year: 2003 ident: 2367_CR14 publication-title: Microbiol Mol. Biol. R doi: 10.1128/MMBR.67.4.593-656.2003 – volume: 88 start-page: L17 year: 2005 ident: 2367_CR8 publication-title: Biophys. J. doi: 10.1529/biophysj.104.057588 – volume: 116 start-page: 9952 year: 2002 ident: 2367_CR10 publication-title: J. Chem. Phys. doi: 10.1063/1.1475758 – volume: 96 start-page: 3926 year: 1992 ident: 2367_CR15 publication-title: J. Phys. Chem-Us doi: 10.1021/j100189a004 – volume: 105 start-page: 17742 year: 2008 ident: 2367_CR3 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0809634105 – volume: 137 start-page: 024107 year: 2012 ident: 2367_CR26 publication-title: J. Chem. Phys. doi: 10.1063/1.4733394 – volume: 131 start-page: 104705 year: 2009 ident: 2367_CR33 publication-title: J. Chem. Phys. doi: 10.1063/1.3224954 – volume: 113 start-page: 8206 year: 2000 ident: 2367_CR11 publication-title: J. Chem. Phys. doi: 10.1063/1.1314862 – ident: 2367_CR13 doi: 10.1007/978-3-642-86414-8 – volume: 126 start-page: 134706 year: 2007 ident: 2367_CR27 publication-title: J. Chem. Phys. doi: 10.1063/1.2719193 – volume: 78 start-page: 021103 year: 2008 ident: 2367_CR19 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.021103 – volume: 72 start-page: 4918 year: 1975 ident: 2367_CR35 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.72.12.4918 – volume: 111 start-page: 103 year: 1989 ident: 2367_CR1 publication-title: J. Membrane Biol. doi: 10.1007/BF01871775 – volume: 133 start-page: 034707 year: 2010 ident: 2367_CR28 publication-title: J. Chem. Phys. doi: 10.1063/1.3431756 – volume: 20 start-page: 193 year: 1977 ident: 2367_CR36 publication-title: Biophys. J. doi: 10.1016/S0006-3495(77)85544-6 – volume: 127 start-page: 115101 year: 2007 ident: 2367_CR6 publication-title: J. Chem. Phys. doi: 10.1063/1.2766720 |
SSID | ssj0056293 |
Score | 2.1791875 |
SecondaryResourceType | review_article |
Snippet | Transport in confined structures of varying geometry has become the subject of growing attention in recent years since such structures are ubiquitous in... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3063 |
SubjectTerms | Atomic Brownian Motion in Confined Geometries. Guest Editors: S.M. Bezrukov Classical and Continuum Physics Condensed Matter Physics L. Schimansky-Geier and G. Schmid (Eds.) Materials Science Measurement Science and Instrumentation Molecular Optical and Plasma Physics Physics Physics and Astronomy Review |
Title | On the applicability of entropy potentials in transport problems |
URI | https://link.springer.com/article/10.1140/epjst/e2014-02319-3 https://www.ncbi.nlm.nih.gov/pubmed/26339466 https://www.proquest.com/docview/1826625095 https://pubmed.ncbi.nlm.nih.gov/PMC4556286 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8RADA4-ELyIb-tjqeDRwW7n0e7NRdRFUS8u6GmYaWdQkXax3YP_3sy0XVhFwXPT0E7S5gtJvgCciFxlfWENsQONCYruM6JTZkkS28QmOk-EdoPCd_diNGY3T_xpAXg3C-O73buSpP9TN3y20ZmZvFX1mcGAxYgjLRsQugjL3CXv6MbjeNj9gDGie67dvtsg7-JpSzb0i5L5gPQDZf5slvxWMfWB6God1loEGQ4bk2_Agik2YcV3cmbVFpw_FCGCurCtTPve18-wtKFTXE4-w0lZuw4hdLvwFUU7cvOwXS1TbcP46vLxYkTaNQkkYzyqyYDxVKQi0oxS6uAJ5VGGb6sQClhqEVBxxTAGxVGqE5trZZMMrSBMGuUIjhjdgaWiLMye63NKFM2VMjSLmEKtRhhL0yxHxVylKoC4OyuZtRzibpXFu2zmmyPpD1j6A5b-gCUN4HR206Sh0Phb_LgzgkRXd_ULVZhyWkmXCmG6hqAwgN3GKDOFsaDUUeUHkMyZaybgaLTnrxSvL55Om3Hu5nMDIJ1hZfsdV3895_4_5Q9g1budb4U5hKX6Y2qOENDUugfLw-vn28ued-MvU9rzBQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8RADA4-EL2Ib-uzgkcHu51HuzdFlPV9ccHbMNPO4Iq0i60H_72ZabuwioLnpqFN0uYbknwBOBa5ynrCGmL7Gg8ouseITpklSWwTm-g8EdoNCt8_iMGQ3Tzz5xng3SyM73bvSpL-T93w2UanZvxa1acGExYjjrSsT-gszCMaSF0n1zA-737AmNE9127PbZB3-bQlG_pFyXRC-oEyfzZLfquY-kR0tQLLLYIMzxuXr8KMKdZgwXdyZtU6nD0WIYK6sK1M-97Xz7C0oVNcjj_DcVm7DiEMu3CEoh25ediulqk2YHh1-XQxIO2aBJIxHtWkz3gqUhFpRil18ITyKMO3VQgFLLUIqLhimIPiKNWJzbWySYZeECaNcgRHjG7CXFEWZtv1OSWK5koZmkVMoVYjjKVplqNirlIVQNzZSmYth7hbZfEmm_nmSHoDS29g6Q0saQAnk5vGDYXG3-JHnRMkhrqrX6jClB-VdEchPK4hKAxgq3HKRGEsKHVU-QEkU-6aCDga7ekrxejF02kzzt18bgCkc6xsv-Pqr-fc-af8ISwOnu7v5N31w-0uLPkQ9G0xezBXv3-YfQQ3tT7wofwFTb30ZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xUBGXCiiUFFqC1GOtzcaOk70VASve9NCVerPsxBZUKIlIOPDvO-MkK20RSJwzGcUzE89neeYbgO-y0PlYOsvcxOABxYwFM5lwLI1d6lJTpNJQo_D1jTybiYs_yVBN2AzV7sOVZNfTQCxNZTuqC9dz20YjW_9t2pHF5CUYEZhNGF-GVdyPxxTYs_ho2Iwxu3ve3TFNk6fc2hMPvaJkMTm9QJwvCyf_uz31SWm6AR97NBkede7fhCVbbsEHX9WZN5_g520ZIsAL-1tqXwf7HFYuJMVV_RzWFS2aQjC8R9GB6Dzsx8w02zCbnv4-PmP9yASWiyRq2UQkmcxkZATnnKAKT6IcV6sRFjjuEFwlWmA-iqPMpK4w2qU5ekTaLCoQKAm-AytlVdpdqnlKNS-0tjyPhEatVlrHs7xAxYnOdADxYCuV93ziNNbiQXW9zpHyBlbewMobWPEAfsxfqjs6jbfFDwcnKAx7usvQpa2eGkXHIjy6IUAM4HPnlLnCWHJOtPkBpAvumgsQpfbik_L-zlNriyShXt0A2OBY1f_TzVvf-eWd8gew9utkqq7Oby73YN1HoK-Q2YeV9vHJfkWc05pvPpL_ARjo-KA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+applicability+of+entropy+potentials+in+transport+problems&rft.jtitle=The+European+physical+journal.+ST%2C+Special+topics&rft.au=Berezhkovskii%2C+A.+M.&rft.au=Bezrukov%2C+S.+M.&rft.date=2014-12-01&rft.issn=1951-6355&rft.eissn=1951-6401&rft.volume=223&rft.issue=14&rft.spage=3063&rft.epage=3077&rft_id=info:doi/10.1140%2Fepjst%2Fe2014-02319-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjst_e2014_02319_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1951-6355&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1951-6355&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1951-6355&client=summon |