Exploring the mechanism of hypochlorous acid decomposition in aqueous solutions

Hypochlorous acid is an intermediate in important industrial processes such as the production of chlorate but is also used for water treatment and disinfection. In aqueous solutions hypochlorous acid may decompose into oxygen or chlorate. Using density functional theory (DFT) modelling we have for t...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 21; no. 35; pp. 19342 - 19348
Main Authors Busch, Michael, Simic, Nina, Ahlberg, Elisabet
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hypochlorous acid is an intermediate in important industrial processes such as the production of chlorate but is also used for water treatment and disinfection. In aqueous solutions hypochlorous acid may decompose into oxygen or chlorate. Using density functional theory (DFT) modelling we have for the first time established detailed mechanisms for the respective decomposition pathways. Our calculations indicate, that both oxygen and chlorate formation proceed through an identical set of intermediates. At neutral pH the reaction is initiated by a fast equilibrium between HOCl, OCl − , Cl 2 O and Cl 3 O 2 − . The subsequent abstraction of Cl − to form Cl 2 O 2 is rate determining for chlorate formation while it is the decomposition of Cl 2 O 2 in the case of oxygen formation. Under alkaline conditions, OCl − decomposition to chlorate proceeds through chlorite. This reaction path is significantly less active. The highest rate for chlorate or oxygen formation is found at pH 7.1. These results highlight the need to consider a complex mixture of different Cl species when addressing the chemistry of hypochlorous acid containing solutions. The fundamental chemistry of hypochlorous acid in water is explored and mechanisms for the decomposition to either chlorate or oxygen are proposed.
AbstractList Hypochlorous acid is an intermediate in important industrial processes such as the production of chlorate but is also used for water treatment and disinfection. In aqueous solutions hypochlorous acid may decompose into oxygen or chlorate. Using density functional theory (DFT) modelling we have for the first time established detailed mechanisms for the respective decomposition pathways. Our calculations indicate, that both oxygen and chlorate formation proceed through an identical set of intermediates. At neutral pH the reaction is initiated by a fast equilibrium between HOCl, OCl − , Cl 2 O and Cl 3 O 2 − . The subsequent abstraction of Cl − to form Cl 2 O 2 is rate determining for chlorate formation while it is the decomposition of Cl 2 O 2 in the case of oxygen formation. Under alkaline conditions, OCl − decomposition to chlorate proceeds through chlorite. This reaction path is significantly less active. The highest rate for chlorate or oxygen formation is found at pH 7.1. These results highlight the need to consider a complex mixture of different Cl species when addressing the chemistry of hypochlorous acid containing solutions. The fundamental chemistry of hypochlorous acid in water is explored and mechanisms for the decomposition to either chlorate or oxygen are proposed.
Hypochlorous acid is an intermediate in important industrial processes such as the production of chlorate but is also used for water treatment and disinfection. In aqueous solutions hypochlorous acid may decompose into oxygen or chlorate. Using density functional theory (DFT) modelling we have for the first time established detailed mechanisms for the respective decomposition pathways. Our calculations indicate, that both oxygen and chlorate formation proceed through an identical set of intermediates. At neutral pH the reaction is initiated by a fast equilibrium between HOCl, OCl-, Cl2O and Cl3O2-. The subsequent abstraction of Cl- to form Cl2O2 is rate determining for chlorate formation while it is the decomposition of Cl2O2 in the case of oxygen formation. Under alkaline conditions, OCl- decomposition to chlorate proceeds through chlorite. This reaction path is significantly less active. The highest rate for chlorate or oxygen formation is found at pH 7.1. These results highlight the need to consider a complex mixture of different Cl species when addressing the chemistry of hypochlorous acid containing solutions.
Hypochlorous acid is an intermediate in important industrial processes such as the production of chlorate but is also used for water treatment and disinfection. In aqueous solutions hypochlorous acid may decompose into oxygen or chlorate. Using density functional theory (DFT) modelling we have for the first time established detailed mechanisms for the respective decomposition pathways. Our calculations indicate, that both oxygen and chlorate formation proceed through an identical set of intermediates. At neutral pH the reaction is initiated by a fast equilibrium between HOCl, OCl−, Cl2O and Cl3O2−. The subsequent abstraction of Cl− to form Cl2O2 is rate determining for chlorate formation while it is the decomposition of Cl2O2 in the case of oxygen formation. Under alkaline conditions, OCl− decomposition to chlorate proceeds through chlorite. This reaction path is significantly less active. The highest rate for chlorate or oxygen formation is found at pH 7.1. These results highlight the need to consider a complex mixture of different Cl species when addressing the chemistry of hypochlorous acid containing solutions.
Hypochlorous acid is an intermediate in important industrial processes such as the production of chlorate but is also used for water treatment and disinfection. In aqueous solutions hypochlorous acid may decompose into oxygen or chlorate. Using density functional theory (DFT) modelling we have for the first time established detailed mechanisms for the respective decomposition pathways. Our calculations indicate, that both oxygen and chlorate formation proceed through an identical set of intermediates. At neutral pH the reaction is initiated by a fast equilibrium between HOCl, OCl − , Cl 2 O and Cl 3 O 2 − . The subsequent abstraction of Cl − to form Cl 2 O 2 is rate determining for chlorate formation while it is the decomposition of Cl 2 O 2 in the case of oxygen formation. Under alkaline conditions, OCl − decomposition to chlorate proceeds through chlorite. This reaction path is significantly less active. The highest rate for chlorate or oxygen formation is found at pH 7.1. These results highlight the need to consider a complex mixture of different Cl species when addressing the chemistry of hypochlorous acid containing solutions.
Author Simic, Nina
Ahlberg, Elisabet
Busch, Michael
AuthorAffiliation Department of Chemistry and Molecular Biology
Nouryon
University of Gothenburg
AuthorAffiliation_xml – name: University of Gothenburg
– name: Nouryon
– name: Department of Chemistry and Molecular Biology
Author_xml – sequence: 1
  givenname: Michael
  surname: Busch
  fullname: Busch, Michael
– sequence: 2
  givenname: Nina
  surname: Simic
  fullname: Simic, Nina
– sequence: 3
  givenname: Elisabet
  surname: Ahlberg
  fullname: Ahlberg, Elisabet
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31453585$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-103932$$DView record from Swedish Publication Index
https://gup.ub.gu.se/publication/284432$$DView record from Swedish Publication Index
BookMark eNp9ks1P3DAQxa0KVGDh0jsoUi-oUoo_4_iIFigIJHoArlZiO7uGJE7tWMB_j7MLW4kDJ1vzfnqeN-M9sNW73gDwA8HfCBJxooQaIKFEPH0Du4gWJBewpFubOy92wF4IjxBCxBD5DnYIooywku2C2_OXoXXe9otsXJqsM2pZ9TZ0mWuy5evg1DKpLoasUlZn2ijXDS7Y0bo-s31W_YtmUoNr41QL-2C7qdpgDt7PGbi_OL-bX-Y3t3-u5qc3uaIMjnmpOcONLgRWBS04J4ZyLjjWzChRE6ELVOuaFRgLRAlGCtfUkIYzoXlFECIzkK99w7MZYi0Hb7vKv0pXWbmIg0ylRZTBSFzSZPAlf2YfTqXzC9mOUU4TXfHHa37wLmUMo-xsUKZtq34KLDEuEUrzTROegZ-f0EcXfZ_ST1QJMS8hS9SvNaW8C8GbZtMCgqtH5VzM_67WeJ3go3fLWHdGb9CPvSXgcA34oDbq_39A3gA-2KNa
CitedBy_id crossref_primary_10_1002_aenm_201903213
crossref_primary_10_1016_j_memsci_2021_119318
crossref_primary_10_3389_fmicb_2022_865918
crossref_primary_10_1021_acsomega_2c01393
crossref_primary_10_3390_molecules27061843
crossref_primary_10_1002_cctc_202101850
crossref_primary_10_1021_acs_jpcc_2c02717
crossref_primary_10_1021_acs_analchem_3c00127
crossref_primary_10_1016_j_chemosphere_2020_126890
crossref_primary_10_1016_j_cherd_2021_03_010
crossref_primary_10_1002_celc_202300304
crossref_primary_10_3390_su152215872
crossref_primary_10_1080_00219592_2024_2366409
crossref_primary_10_1021_acs_iecr_1c02004
crossref_primary_10_3390_microorganisms9010136
crossref_primary_10_1021_acs_estlett_0c00259
Cites_doi 10.1016/j.cherd.2017.03.021
10.1021/ie50367a007
10.1139/v52-107
10.1021/ct100025j
10.1021/j100322a017
10.1002/jctb.5911
10.1002/qua.24481
10.1021/ic991486r
10.1039/C8DT00120K
10.1016/j.electacta.2017.02.150
10.1080/15563650.2018.1543889
10.1021/ic00043a011
10.1146/annurev.pc.42.100191.002013
10.1007/s00214-007-0310-x
10.1149/2.0291802jes
10.1021/acs.chemrev.5b00389
10.1021/ic980020q
10.1080/00268976.2016.1143984
10.1016/j.jes.2017.05.025
10.1021/ie504890a
10.1021/ja01178a016
10.1016/j.chemosphere.2014.03.135
10.1016/0009-2614(85)80121-4
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ADTPV
AOWAS
F1U
DOI 10.1039/c9cp03439k
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1463-9084
EndPage 19348
ExternalDocumentID oai_gup_ub_gu_se_284432
oai_DiVA_org_ltu_103932
10_1039_C9CP03439K
31453585
c9cp03439k
Genre Journal Article
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
EJD
F5P
GNO
HZ
H~N
IDZ
IPNFZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-JG
-~X
0R~
2WC
70~
AAXHV
AAXPP
ABASK
ABJNI
ABPDG
ACGFO
AETIL
AFOGI
AGEGJ
AGRSR
ANUXI
COF
HZ~
NPM
RAOCF
AAJAE
AAMEH
AAWGC
AAYXX
ABEMK
ABXOH
AEFDR
AENGV
AESAV
AFLYV
AFRDS
AHGCF
APEMP
CITATION
GGIMP
H13
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
0UZ
6TJ
71~
9M8
ACHDF
ACMRT
ADTPV
AFFNX
AHGXI
ANBJS
ANLMG
AOWAS
ASPBG
AVWKF
BBWZM
CAG
EEHRC
FEDTE
HVGLF
H~9
IDY
J3H
KC5
L-8
MVM
NDZJH
R56
RCLXC
ROL
XJT
XOL
ZCG
F1U
ID FETCH-LOGICAL-c450t-8d752fd692c646773e477972d5ec9b39d61bdb5622914321c2b4e3f759d7a3113
ISSN 1463-9076
1463-9084
IngestDate Sat Aug 24 00:47:03 EDT 2024
Sat Aug 24 00:06:35 EDT 2024
Sat Aug 17 03:46:51 EDT 2024
Fri Sep 13 02:32:51 EDT 2024
Thu Sep 12 17:02:13 EDT 2024
Thu May 23 23:56:18 EDT 2024
Sat Jan 08 04:01:38 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-8d752fd692c646773e477972d5ec9b39d61bdb5622914321c2b4e3f759d7a3113
Notes 10.1039/c9cp03439k
Electronic supplementary information (ESI) available: Summary of thermodynamic calculations of speciation and pH dependence of reaction rates; all considered reaction paths, molecular structures and reaction energies. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3883-2868
PMID 31453585
PQID 2288027805
PQPubID 2047499
PageCount 7
ParticipantIDs proquest_journals_2288027805
crossref_primary_10_1039_C9CP03439K
rsc_primary_c9cp03439k
pubmed_primary_31453585
swepub_primary_oai_gup_ub_gu_se_284432
swepub_primary_oai_DiVA_org_ltu_103932
proquest_miscellaneous_2281114646
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Taube (C9CP03439K-(cit15)/*[position()=1]) 1949; 71
Jia (C9CP03439K-(cit27)/*[position()=1]) 2000; 39
Adam (C9CP03439K-(cit10)/*[position()=1]) 1992; 31
Horny (C9CP03439K-(cit25)/*[position()=1]) 2016; 114
Werschkun (C9CP03439K-(cit1)/*[position()=1]) 2014; 112
Liu (C9CP03439K-(cit22)/*[position()=1]) 2010; 6
Spasojevic (C9CP03439K-(cit12)/*[position()=1]) 2018; 165
How (C9CP03439K-(cit2)/*[position()=1]) 2017; 58
Friesner (C9CP03439K-(cit20)/*[position()=1]) 1988; 92
Adam (C9CP03439K-(cit13)/*[position()=1]) 1999; 38
Taylor (C9CP03439K-(cit28)/*[position()=1]) 1940; 32
Karlsson (C9CP03439K-(cit5)/*[position()=1]) 2016; 116
Burgess (C9CP03439K-(cit26)/*[position()=1]) 2013
Friesner (C9CP03439K-(cit19)/*[position()=1]) 1985; 116
Colman (C9CP03439K-(cit7)/*[position()=1]) 1995
Friesner (C9CP03439K-(cit21)/*[position()=1]) 1991; 42
Hollemannn (C9CP03439K-(cit24)/*[position()=1]) 2007
Bochevarov (C9CP03439K-(cit18)/*[position()=1]) 2013; 113
(C9CP03439K-(cit23)/*[position()=1]) 2004
Wanngård (C9CP03439K-(cit4)/*[position()=1]) 2017; 121
Endrodi (C9CP03439K-(cit3)/*[position()=1]) 2017; 234
Lister (C9CP03439K-(cit14)/*[position()=1]) 1952; 30
Ibl (C9CP03439K-(cit8)/*[position()=1]) 1981
Sandin (C9CP03439K-(cit9)/*[position()=1]) 2015; 54
Endrödi (C9CP03439K-(cit16)/*[position()=1]) 2019; 94
Slaughter (C9CP03439K-(cit6)/*[position()=1]) 2019; 57
Zhao (C9CP03439K-(cit17)/*[position()=1]) 2008; 120
Kalmar (C9CP03439K-(cit11)/*[position()=1]) 2018; 47
References_xml – issn: 2013
  end-page: p 217-310
  publication-title: Homogeneous Catalysis
  doi: Burgess Hubbard
– issn: 2004
  publication-title: CRC Handbook of Chemistry and Physics
– issn: 2007
  publication-title: Anorganische Chemie
  doi: Hollemannn Wiberg
– issn: 1995
  publication-title: Sodium Chlorate. Encyclopedia of Chemical Processing and Design
  doi: Colman Tilak
– issn: 1981
  publication-title: Inorganic Electrosynthesis
  doi: Ibl Vogt
– volume: 121
  start-page: 438
  year: 2017
  ident: C9CP03439K-(cit4)/*[position()=1]
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2017.03.021
  contributor:
    fullname: Wanngård
– volume-title: Homogeneous Catalysis
  year: 2013
  ident: C9CP03439K-(cit26)/*[position()=1]
  contributor:
    fullname: Burgess
– volume: 32
  start-page: 899
  year: 1940
  ident: C9CP03439K-(cit28)/*[position()=1]
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50367a007
  contributor:
    fullname: Taylor
– volume: 30
  start-page: 879
  year: 1952
  ident: C9CP03439K-(cit14)/*[position()=1]
  publication-title: Can. J. Chem.
  doi: 10.1139/v52-107
  contributor:
    fullname: Lister
– volume: 6
  start-page: 1109
  year: 2010
  ident: C9CP03439K-(cit22)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100025j
  contributor:
    fullname: Liu
– volume: 92
  start-page: 3091
  year: 1988
  ident: C9CP03439K-(cit20)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100322a017
  contributor:
    fullname: Friesner
– volume: 94
  start-page: 1520
  year: 2019
  ident: C9CP03439K-(cit16)/*[position()=1]
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5911
  contributor:
    fullname: Endrödi
– volume: 113
  start-page: 2110
  year: 2013
  ident: C9CP03439K-(cit18)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24481
  contributor:
    fullname: Bochevarov
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2004
  ident: C9CP03439K-(cit23)/*[position()=1]
– volume: 39
  start-page: 2614
  year: 2000
  ident: C9CP03439K-(cit27)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic991486r
  contributor:
    fullname: Jia
– volume: 47
  start-page: 3831
  year: 2018
  ident: C9CP03439K-(cit11)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT00120K
  contributor:
    fullname: Kalmar
– volume: 234
  start-page: 108
  year: 2017
  ident: C9CP03439K-(cit3)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.02.150
  contributor:
    fullname: Endrodi
– volume: 57
  start-page: 303
  year: 2019
  ident: C9CP03439K-(cit6)/*[position()=1]
  publication-title: Clin. Toxicol.
  doi: 10.1080/15563650.2018.1543889
  contributor:
    fullname: Slaughter
– volume: 31
  start-page: 3534
  year: 1992
  ident: C9CP03439K-(cit10)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00043a011
  contributor:
    fullname: Adam
– volume: 42
  start-page: 341
  year: 1991
  ident: C9CP03439K-(cit21)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.42.100191.002013
  contributor:
    fullname: Friesner
– volume: 120
  start-page: 215
  year: 2008
  ident: C9CP03439K-(cit17)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
  contributor:
    fullname: Zhao
– volume-title: Inorganic Electrosynthesis
  year: 1981
  ident: C9CP03439K-(cit8)/*[position()=1]
  contributor:
    fullname: Ibl
– volume-title: Sodium Chlorate. Encyclopedia of Chemical Processing and Design
  year: 1995
  ident: C9CP03439K-(cit7)/*[position()=1]
  contributor:
    fullname: Colman
– volume: 165
  start-page: E8
  year: 2018
  ident: C9CP03439K-(cit12)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0291802jes
  contributor:
    fullname: Spasojevic
– volume: 116
  start-page: 2982
  year: 2016
  ident: C9CP03439K-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00389
  contributor:
    fullname: Karlsson
– volume: 38
  start-page: 1299
  year: 1999
  ident: C9CP03439K-(cit13)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic980020q
  contributor:
    fullname: Adam
– volume-title: Anorganische Chemie
  year: 2007
  ident: C9CP03439K-(cit24)/*[position()=1]
  contributor:
    fullname: Hollemannn
– volume: 114
  start-page: 1135
  year: 2016
  ident: C9CP03439K-(cit25)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2016.1143984
  contributor:
    fullname: Horny
– volume: 58
  start-page: 2
  year: 2017
  ident: C9CP03439K-(cit2)/*[position()=1]
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2017.05.025
  contributor:
    fullname: How
– volume: 54
  start-page: 3767
  year: 2015
  ident: C9CP03439K-(cit9)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie504890a
  contributor:
    fullname: Sandin
– volume: 71
  start-page: 3330
  year: 1949
  ident: C9CP03439K-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01178a016
  contributor:
    fullname: Taube
– volume: 112
  start-page: 256
  year: 2014
  ident: C9CP03439K-(cit1)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.03.135
  contributor:
    fullname: Werschkun
– volume: 116
  start-page: 39
  year: 1985
  ident: C9CP03439K-(cit19)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(85)80121-4
  contributor:
    fullname: Friesner
SSID ssj0001513
Score 2.4146779
Snippet Hypochlorous acid is an intermediate in important industrial processes such as the production of chlorate but is also used for water treatment and...
SourceID swepub
proquest
crossref
pubmed
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 19342
SubjectTerms Acids
Aqueous solutions
Chemical Sciences
Chemistry
chlorate formation
chlorite
chromium(vi)
Decomposition
Decomposition reactions
Density functional theory
Dependence
evolution
Fysik
Kemi
kinetics
Organic chemistry
Oxygen
Physical Sciences
Physics
Speciation
temperature
Water treatment
Title Exploring the mechanism of hypochlorous acid decomposition in aqueous solutions
URI https://www.ncbi.nlm.nih.gov/pubmed/31453585
https://www.proquest.com/docview/2288027805/abstract/
https://search.proquest.com/docview/2281114646
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-103932
https://gup.ub.gu.se/publication/284432
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVK9wAXxNdCYEFBIC4okNhJXF-QSuhqgWq3hxb1ZiV20q1Y0qppDvDrmakTNws9LFyi1E5d12_seZ7MeAh5XfAoGmiWelSlsEEBleilsc89TgfAPuIiBo6E3hbn8dks_DKP5r3eh47XUr3N3qlfB-NK_gdVKANcMUr2H5C1jUIB3AO-cAWE4XojjPcOdEgff-QYxYtJL5AA_lyv1CXUootrqpb6rc7Rfbzx0UIzRwoqAWttH7tEddLip9qMcOYOi4w1pNpZEyZJYiPEPtaVSSzV9cVH680SvmfErrRaYHh51XEtq9AC3LVANCtcbtbLMGae8E2Wt3ZBNSHPjeCwqLM8Als0Z2k1uhY_Dw4u5D7Dc1CVUGufAWf6vldX7Sv68wt5OhuP5XQ0n94iR5TDTq9Pjoaj6eex1cXAZ1h7KC0T7_ftXachf-0tgGlsKvXH8bE7yjG9R-42ewV3aIC_T3p5-YDcTlpAHpILKwAuCIBrBcBdFW5XAFwUAPeaALjL0m0EwLUC8IjMTkfT5MxrMmR4Koz8rTfQPKKFjgVVMWg8zvKQc8GpjnIlMiZ0HGQ6A4pLBfBiGiiahTmD-Sk0T1kQsGPSL1dl_oS4XBfKz1IgiDoMUwrLekyF4gqa0xHNAoe8agdMrs1BKHLnwMCETEQy2Q3rV4ectGMpm4lSSYqtUUye4ZCXthqGCt9NpSX-U3wmwAD5MHbIY4OB_RkWhBGDba1DjgEUW7wH0yFvDE62Dg9N_7T8NpSrzUJebetdPxk9_OCiXksoWtSyyiXQNRippzfo6DNyB2eDscedkP52U-fPgaFusxeNGP4GqUGXjw
link.rule.ids 230,315,786,790,891,4043,27956,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+mechanism+of+hypochlorous+acid+decomposition+in+aqueous+solutions&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Busch%2C+Michael&rft.au=Simic%2C+Nina&rft.au=Ahlberg%2C+Elisabet&rft.date=2019&rft.eissn=1463-9084&rft.volume=21&rft.issue=35&rft.spage=19342&rft.epage=19348&rft_id=info:doi/10.1039%2Fc9cp03439k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon