Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach
Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipol...
Saved in:
Published in | Brain (London, England : 1878) Vol. 139; no. 9; pp. 2554 - 2566 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder (BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36 healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connections (the number of connections in the network), path length, and the global connectivity direction ('top-down' versus 'bottom-up') were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation). These analyses showed that loss anticipation was characterized by denser top-down fronto-striatal and fronto-parietal connectivity in healthy control subjects, by bottom-up striatal-frontal connectivity in MDD, and by sparse connectivity lacking fronto-striatal connections in BDD. Win anticipation was characterized by dense connectivity of medial frontal with striatal and lateral frontal cortical regions in BDD, by sparser bottom-up striatum-medial frontal cortex connectivity in MDD, and by sparse connectivity in healthy control subjects. In summary, this is the first study to demonstrate that BDD and MDD with comparable levels of current depression differed from each other and healthy control subjects in density of connections, connectivity path length, and connectivity direction as a function of win or loss anticipation. These findings suggest that different neurobiological mechanisms may underlie aberrant anticipation processes in BDD and MDD, and that distinct therapeutic strategies may be required for these individuals to improve coping strategies during expectation of positive and negative outcomes. |
---|---|
AbstractList | Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder (BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36 healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connections (the number of connections in the network), path length, and the global connectivity direction ('top-down' versus 'bottom-up') were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation). These analyses showed that loss anticipation was characterized by denser top-down fronto-striatal and fronto-parietal connectivity in healthy control subjects, by bottom-up striatal-frontal connectivity in MDD, and by sparse connectivity lacking fronto-striatal connections in BDD. Win anticipation was characterized by dense connectivity of medial frontal with striatal and lateral frontal cortical regions in BDD, by sparser bottom-up striatum-medial frontal cortex connectivity in MDD, and by sparse connectivity in healthy control subjects. In summary, this is the first study to demonstrate that BDD and MDD with comparable levels of current depression differed from each other and healthy control subjects in density of connections, connectivity path length, and connectivity direction as a function of win or loss anticipation. These findings suggest that different neurobiological mechanisms may underlie aberrant anticipation processes in BDD and MDD, and that distinct therapeutic strategies may be required for these individuals to improve coping strategies during expectation of positive and negative outcomes. It is clinically challenging to distinguish bipolar from major depressive disorder. Manelis et al . use a Bayesian network approach to examine functional and effective connectivity in affected individuals during Win/Loss anticipation. Distinct neurobiological mechanisms underlie aberrant anticipation processes in individuals with bipolar disorder versus major depressive disorder. It is clinically challenging to distinguish bipolar from major depressive disorder. Manelis et al . use a Bayesian network approach to examine functional and effective connectivity in affected individuals during Win/Loss anticipation. Distinct neurobiological mechanisms underlie aberrant anticipation processes in individuals with bipolar disorder versus major depressive disorder. Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder (BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36 healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connections (the number of connections in the network), path length, and the global connectivity direction (‘top-down’ versus ‘bottom-up’) were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation). These analyses showed that loss anticipation was characterized by denser top-down fronto-striatal and fronto-parietal connectivity in healthy control subjects, by bottom-up striatal-frontal connectivity in MDD, and by sparse connectivity lacking fronto-striatal connections in BDD. Win anticipation was characterized by dense connectivity of medial frontal with striatal and lateral frontal cortical regions in BDD, by sparser bottom-up striatum-medial frontal cortex connectivity in MDD, and by sparse connectivity in healthy control subjects. In summary, this is the first study to demonstrate that BDD and MDD with comparable levels of current depression differed from each other and healthy control subjects in density of connections, connectivity path length, and connectivity direction as a function of win or loss anticipation. These findings suggest that different neurobiological mechanisms may underlie aberrant anticipation processes in BDD and MDD, and that distinct therapeutic strategies may be required for these individuals to improve coping strategies during expectation of positive and negative outcomes. |
Author | Manelis, Anna Phillips, Mary L. Stiffler, Richelle Lockovich, Jeanette C. Almeida, Jorge R. C. Aslam, Haris A. |
Author_xml | – sequence: 1 givenname: Anna surname: Manelis fullname: Manelis, Anna – sequence: 2 givenname: Jorge R. C. surname: Almeida fullname: Almeida, Jorge R. C. – sequence: 3 givenname: Richelle surname: Stiffler fullname: Stiffler, Richelle – sequence: 4 givenname: Jeanette C. surname: Lockovich fullname: Lockovich, Jeanette C. – sequence: 5 givenname: Haris A. surname: Aslam fullname: Aslam, Haris A. – sequence: 6 givenname: Mary L. surname: Phillips fullname: Phillips, Mary L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27368345$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1PGzEQxa0KBIH21jPysYdu8eeut4dKCLWAhMQFztas7U2MNvbWdkD579kmIYKK02g0v3kzeu8EHYQYHEJfKflBScvPuwQ-nMPzM5XNJzSjoiYVo7I-QDNCSF2pVpJjdJLzIyFUcFYfoWPW8FpxIWfIXITijR-h-Biq5AYozuKNJjYxBGeKf_Jljae-82McIGEIFq_CrrFuTC7nafsnBjxPMC5wWbiY1hjGMUUwi8_osIchuy-7eooe_vy-v7yubu-ubi4vbisjJCmV6nrTQMNZVwvVcmVsxxnjljLLemOh5dQxA8Jw0VmlRNO3kvbSNE62rGc9P0W_trrjqls6a1woCQY9Jr-EtNYRvH4_CX6h5_FJi7aVXKpJ4NtOIMW_K5eLXvps3DBAcHGVNVWTu7IhXE7o2dtb-yOvzk7A9y1gUsw5uX6PUKL_Bac3JuttcBPO_sONL5tQpk_98PHSCyY2ohQ |
CitedBy_id | crossref_primary_10_1002_da_23267 crossref_primary_10_1109_TNNLS_2019_2921613 crossref_primary_10_1111_bdi_13176 crossref_primary_10_1038_s41386_021_00989_5 crossref_primary_10_3389_fnins_2019_00585 crossref_primary_10_3390_brainsci14090945 crossref_primary_10_1007_s11920_019_1072_6 crossref_primary_10_1038_s41598_021_87069_2 crossref_primary_10_1093_scan_nsab107 crossref_primary_10_1016_j_nicl_2023_103556 crossref_primary_10_1016_j_jad_2018_11_002 crossref_primary_10_1007_s00213_018_5021_6 crossref_primary_10_1016_j_jad_2022_08_081 crossref_primary_10_3389_fpsyt_2022_864902 crossref_primary_10_1016_j_nicl_2021_102790 crossref_primary_10_1515_tnsci_2020_0187 crossref_primary_10_1038_s41398_022_02075_w crossref_primary_10_1038_s41386_024_01842_1 crossref_primary_10_1111_cns_12998 crossref_primary_10_1002_hbm_25021 crossref_primary_10_1111_bdi_70012 crossref_primary_10_1016_j_ijchp_2023_100397 crossref_primary_10_1017_S0033291718003847 crossref_primary_10_1080_00207454_2020_1837802 crossref_primary_10_1016_j_nicl_2020_102299 crossref_primary_10_1007_s11682_021_00566_w crossref_primary_10_1016_j_jad_2019_08_006 crossref_primary_10_1080_14737175_2019_1562338 crossref_primary_10_3389_fnsys_2016_00104 crossref_primary_10_1186_s12888_021_03548_w crossref_primary_10_1093_schbul_sby046 crossref_primary_10_1007_s12021_022_09579_2 crossref_primary_10_1016_j_jpsychires_2023_10_058 crossref_primary_10_1016_j_jad_2020_07_011 crossref_primary_10_1016_j_jad_2021_07_078 crossref_primary_10_1016_j_psychres_2019_01_026 crossref_primary_10_1016_j_jad_2023_01_080 crossref_primary_10_1016_j_clinph_2022_03_014 crossref_primary_10_1002_brb3_1257 crossref_primary_10_3389_fnhum_2022_749767 crossref_primary_10_1038_s41386_020_0638_7 crossref_primary_10_1111_adb_12752 crossref_primary_10_1007_s11920_018_0877_z crossref_primary_10_1016_j_nicl_2020_102297 crossref_primary_10_1111_ejn_14083 crossref_primary_10_1016_j_nicl_2018_09_016 crossref_primary_10_1089_brain_2020_0766 crossref_primary_10_3389_fpsyt_2018_00704 crossref_primary_10_1016_j_jad_2021_05_057 crossref_primary_10_1016_j_neurobiolaging_2022_10_006 crossref_primary_10_3758_s13415_020_00804_6 crossref_primary_10_1002_brb3_2695 crossref_primary_10_1016_j_pnpbp_2021_110289 crossref_primary_10_1007_s12572_024_00381_8 crossref_primary_10_1017_S0033291720000367 crossref_primary_10_1016_j_brainres_2019_146543 crossref_primary_10_1186_s12888_020_02831_6 crossref_primary_10_1016_j_pnpbp_2018_03_022 crossref_primary_10_1111_acps_12945 crossref_primary_10_1007_s41237_016_0010_8 crossref_primary_10_1038_s41398_025_03282_x crossref_primary_10_3389_fpsyt_2020_00597 crossref_primary_10_1016_j_jpsychires_2022_12_002 crossref_primary_10_1093_cercor_bhab356 |
Cites_doi | 10.1111/bdi.12132 10.1523/JNEUROSCI.3470-06.2007 10.3389/fncom.2014.00122 10.3389/fnhum.2014.00593 10.1073/pnas.1117206109 10.1016/j.neuroimage.2013.10.020 10.1016/S0166-2236(03)00233-9 10.1016/j.brat.2008.10.008 10.1016/j.neuroimage.2013.11.046 10.1002/hbm.10062 10.1109/TMI.2003.822821 10.1002/hbm.22348 10.1016/S1053-8119(02)91132-8 10.1523/JNEUROSCI.21-16-j0002.2001 10.1037/0022-3514.63.5.711 10.1037/a0024945 10.1016/S0140-6736(13)60989-7 10.1016/j.neuroimage.2011.06.068 10.1038/tp.2013.15 10.1038/npp.2014.215 10.1080/13854048908403285 10.1016/S1361-8415(01)00036-6 10.1097/00001756-200305230-00004 10.1176/appi.ajp.2012.11071105 10.1097/YCO.0000000000000122 10.1038/nrn2575 10.1093/scan/nsu158 10.1016/j.brat.2005.07.001 10.1007/s00213-014-3662-7 10.1080/09540260902962172 10.4088/JCP.v64n0209 10.1038/22268 10.1016/j.biopsych.2010.01.027 10.1016/S1053-8119(02)00057-5 10.1002/hbm.20131 10.1016/j.ijpsycho.2008.11.003 10.1016/j.neuroimage.2009.08.065 10.1016/j.jpsychires.2006.07.020 10.1073/pnas.1000446107 10.1097/WCO.0000000000000220 10.1016/j.euroneuro.2007.05.009 10.1016/j.tics.2011.08.003 10.1371/journal.pone.0047754 10.1016/j.biopsych.2009.03.024 10.1176/appi.ajp.2007.07071066 10.1176/appi.ajp.2014.13081008 10.1016/j.neuroimage.2014.03.034 10.1089/brain.2013.0161 10.1016/S0896-6273(02)00967-4 10.1111/j.1399-5618.2012.01012.x 10.1016/S0896-6273(01)00225-2 10.1136/jnnp.23.1.56 10.1093/acprof:oso/9780192630711.003.0014 10.1016/j.biopsych.2003.11.017 10.1016/j.jrp.2005.11.001 10.1016/j.jneumeth.2010.03.028 10.1111/j.1399-5618.2008.00641.x 10.1016/0022-3956(75)90026-6 10.1214/aoms/1177729437 10.1176/appi.ajp.2008.07081336 10.1016/j.neuroimage.2013.09.062 10.1098/rstb.2007.2095 10.1371/journal.pone.0006598 10.3109/15622975.2014.966144 10.1016/j.neuropharm.2013.05.040 10.1192/bjp.133.5.429 10.1523/JNEUROSCI.4515-08.2009 10.1093/cercor/bhq216 10.1146/annurev.psych.53.100901.135148 10.1016/j.neuroimage.2007.10.013 10.1016/j.neuropsychologia.2004.05.011 10.1042/BST0370313 10.1037/t07827-000 10.1016/j.biopsych.2009.11.025 10.1176/appi.ajp.2012.12020169 10.1016/j.neuroimage.2014.09.019 10.1016/j.neuroimage.2014.09.003 10.1038/mp.2014.71 |
ContentType | Journal Article |
Copyright | The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016 |
Copyright_xml | – notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/brain/aww157 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2566 |
ExternalDocumentID | PMC4995358 27368345 10_1093_brain_aww157 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R25 MH101076 |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ AAYXX ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 6.Y ABQTQ ABSAR ADJQC ADRIX AFXEN CGR CUY CVF ECM EIF M49 NPM VXZ 7X8 5PM |
ID | FETCH-LOGICAL-c450t-8bfc7a732b648938cdb3223d12d2fcda931e2ca4c34bd8847f951f5c7e592f2f3 |
ISSN | 0006-8950 |
IngestDate | Thu Aug 21 14:31:28 EDT 2025 Fri Jul 11 08:58:32 EDT 2025 Wed Feb 19 02:30:36 EST 2025 Tue Jul 01 00:46:08 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | bipolar disorder depression connectivity win and loss anticipation graph modelling |
Language | English |
License | The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-8bfc7a732b648938cdb3223d12d2fcda931e2ca4c34bd8847f951f5c7e592f2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/139/9/2554/17944494/aww157.pdf |
PMID | 27368345 |
PQID | 1814657035 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4995358 proquest_miscellaneous_1814657035 pubmed_primary_27368345 crossref_primary_10_1093_brain_aww157 crossref_citationtrail_10_1093_brain_aww157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016082400371388000_139.9.2554.62 2016082400371388000_139.9.2554.63 2016082400371388000_139.9.2554.60 2016082400371388000_139.9.2554.61 2016082400371388000_139.9.2554.22 2016082400371388000_139.9.2554.66 2016082400371388000_139.9.2554.23 2016082400371388000_139.9.2554.67 2016082400371388000_139.9.2554.20 2016082400371388000_139.9.2554.64 2016082400371388000_139.9.2554.21 Phillips (2016082400371388000_139.9.2554.55) 2008; 13 2016082400371388000_139.9.2554.65 Manelis (2016082400371388000_139.9.2554.43) 2014; 8 Ramsey (2016082400371388000_139.9.2554.59) 2011; 58 2016082400371388000_139.9.2554.15 2016082400371388000_139.9.2554.16 Meehl (2016082400371388000_139.9.2554.46) 1975; 39 2016082400371388000_139.9.2554.13 2016082400371388000_139.9.2554.57 2016082400371388000_139.9.2554.14 2016082400371388000_139.9.2554.58 2016082400371388000_139.9.2554.19 2016082400371388000_139.9.2554.17 2016082400371388000_139.9.2554.18 2016082400371388000_139.9.2554.73 2016082400371388000_139.9.2554.30 2016082400371388000_139.9.2554.74 2016082400371388000_139.9.2554.71 2016082400371388000_139.9.2554.72 2016082400371388000_139.9.2554.8 2016082400371388000_139.9.2554.33 2016082400371388000_139.9.2554.77 2016082400371388000_139.9.2554.9 2016082400371388000_139.9.2554.34 2016082400371388000_139.9.2554.78 2016082400371388000_139.9.2554.6 2016082400371388000_139.9.2554.31 2016082400371388000_139.9.2554.75 2016082400371388000_139.9.2554.7 2016082400371388000_139.9.2554.32 2016082400371388000_139.9.2554.76 2016082400371388000_139.9.2554.4 2016082400371388000_139.9.2554.5 2016082400371388000_139.9.2554.2 2016082400371388000_139.9.2554.3 2016082400371388000_139.9.2554.1 2016082400371388000_139.9.2554.70 2016082400371388000_139.9.2554.26 2016082400371388000_139.9.2554.27 2016082400371388000_139.9.2554.24 2016082400371388000_139.9.2554.68 2016082400371388000_139.9.2554.25 2016082400371388000_139.9.2554.69 Guo (2016082400371388000_139.9.2554.28) 2014; 8 2016082400371388000_139.9.2554.29 2016082400371388000_139.9.2554.41 2016082400371388000_139.9.2554.82 2016082400371388000_139.9.2554.44 2016082400371388000_139.9.2554.45 2016082400371388000_139.9.2554.42 2016082400371388000_139.9.2554.80 2016082400371388000_139.9.2554.81 2016082400371388000_139.9.2554.37 2016082400371388000_139.9.2554.38 2016082400371388000_139.9.2554.35 2016082400371388000_139.9.2554.79 2016082400371388000_139.9.2554.36 2016082400371388000_139.9.2554.39 2016082400371388000_139.9.2554.51 2016082400371388000_139.9.2554.52 2016082400371388000_139.9.2554.50 2016082400371388000_139.9.2554.11 2016082400371388000_139.9.2554.12 2016082400371388000_139.9.2554.56 2016082400371388000_139.9.2554.53 2016082400371388000_139.9.2554.10 2016082400371388000_139.9.2554.54 2016082400371388000_139.9.2554.48 2016082400371388000_139.9.2554.49 2016082400371388000_139.9.2554.47 Knutson (2016082400371388000_139.9.2554.40) 2001; 21 |
References_xml | – ident: 2016082400371388000_139.9.2554.15 doi: 10.1111/bdi.12132 – ident: 2016082400371388000_139.9.2554.21 doi: 10.1523/JNEUROSCI.3470-06.2007 – volume: 8 start-page: 122 year: 2014 ident: 2016082400371388000_139.9.2554.28 article-title: Characterizing structural association alterations within brain networks in normal aging using Gaussian Bayesian networks publication-title: Front Comput Neurosci doi: 10.3389/fncom.2014.00122 – volume: 8 start-page: 593 year: 2014 ident: 2016082400371388000_139.9.2554.43 article-title: Effective connectivity among the working memory regions during preparation for and during performance of the n-back task publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2014.00593 – ident: 2016082400371388000_139.9.2554.53 doi: 10.1073/pnas.1117206109 – ident: 2016082400371388000_139.9.2554.50 doi: 10.1016/j.neuroimage.2013.10.020 – ident: 2016082400371388000_139.9.2554.7 doi: 10.1016/S0166-2236(03)00233-9 – ident: 2016082400371388000_139.9.2554.69 doi: 10.1016/j.brat.2008.10.008 – ident: 2016082400371388000_139.9.2554.63 doi: 10.1016/j.neuroimage.2013.11.046 – ident: 2016082400371388000_139.9.2554.67 doi: 10.1002/hbm.10062 – ident: 2016082400371388000_139.9.2554.6 doi: 10.1109/TMI.2003.822821 – volume: 13 start-page: 829, 833 year: 2008 ident: 2016082400371388000_139.9.2554.55 article-title: A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder publication-title: Mol Psychiatry – ident: 2016082400371388000_139.9.2554.10 doi: 10.1002/hbm.22348 – ident: 2016082400371388000_139.9.2554.36 doi: 10.1016/S1053-8119(02)91132-8 – volume: 21 start-page: RC159 year: 2001 ident: 2016082400371388000_139.9.2554.40 article-title: Anticipation of increasing monetary reward selectively recruits nucleus accumbens publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-16-j0002.2001 – ident: 2016082400371388000_139.9.2554.3 doi: 10.1037/0022-3514.63.5.711 – ident: 2016082400371388000_139.9.2554.66 doi: 10.1037/a0024945 – ident: 2016082400371388000_139.9.2554.54 doi: 10.1016/S0140-6736(13)60989-7 – volume: 58 start-page: 838 year: 2011 ident: 2016082400371388000_139.9.2554.59 article-title: Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith et al publication-title: simulation study. Neuroimage doi: 10.1016/j.neuroimage.2011.06.068 – ident: 2016082400371388000_139.9.2554.68 doi: 10.1038/tp.2013.15 – ident: 2016082400371388000_139.9.2554.49 – ident: 2016082400371388000_139.9.2554.81 doi: 10.1038/npp.2014.215 – ident: 2016082400371388000_139.9.2554.8 doi: 10.1080/13854048908403285 – ident: 2016082400371388000_139.9.2554.37 doi: 10.1016/S1361-8415(01)00036-6 – ident: 2016082400371388000_139.9.2554.76 doi: 10.1097/00001756-200305230-00004 – ident: 2016082400371388000_139.9.2554.5 – ident: 2016082400371388000_139.9.2554.31 doi: 10.1176/appi.ajp.2012.11071105 – ident: 2016082400371388000_139.9.2554.78 doi: 10.1097/YCO.0000000000000122 – ident: 2016082400371388000_139.9.2554.12 doi: 10.1038/nrn2575 – ident: 2016082400371388000_139.9.2554.74 doi: 10.1093/scan/nsu158 – ident: 2016082400371388000_139.9.2554.70 doi: 10.1016/j.brat.2005.07.001 – ident: 2016082400371388000_139.9.2554.29 doi: 10.1007/s00213-014-3662-7 – ident: 2016082400371388000_139.9.2554.11 doi: 10.1080/09540260902962172 – ident: 2016082400371388000_139.9.2554.35 doi: 10.4088/JCP.v64n0209 – ident: 2016082400371388000_139.9.2554.58 doi: 10.1038/22268 – ident: 2016082400371388000_139.9.2554.20 doi: 10.1016/j.biopsych.2010.01.027 – ident: 2016082400371388000_139.9.2554.41 doi: 10.1016/S1053-8119(02)00057-5 – ident: 2016082400371388000_139.9.2554.52 doi: 10.1002/hbm.20131 – ident: 2016082400371388000_139.9.2554.75 doi: 10.1016/j.ijpsycho.2008.11.003 – ident: 2016082400371388000_139.9.2554.60 doi: 10.1016/j.neuroimage.2009.08.065 – ident: 2016082400371388000_139.9.2554.1 doi: 10.1016/j.jpsychires.2006.07.020 – ident: 2016082400371388000_139.9.2554.65 doi: 10.1073/pnas.1000446107 – ident: 2016082400371388000_139.9.2554.79 doi: 10.1097/WCO.0000000000000220 – ident: 2016082400371388000_139.9.2554.30 doi: 10.1016/j.euroneuro.2007.05.009 – ident: 2016082400371388000_139.9.2554.47 doi: 10.1016/j.tics.2011.08.003 – ident: 2016082400371388000_139.9.2554.45 doi: 10.1371/journal.pone.0047754 – ident: 2016082400371388000_139.9.2554.2 doi: 10.1016/j.biopsych.2009.03.024 – ident: 2016082400371388000_139.9.2554.57 doi: 10.1176/appi.ajp.2007.07071066 – ident: 2016082400371388000_139.9.2554.56 doi: 10.1176/appi.ajp.2014.13081008 – ident: 2016082400371388000_139.9.2554.27 doi: 10.1016/j.neuroimage.2014.03.034 – ident: 2016082400371388000_139.9.2554.33 doi: 10.1089/brain.2013.0161 – ident: 2016082400371388000_139.9.2554.64 doi: 10.1016/S0896-6273(02)00967-4 – ident: 2016082400371388000_139.9.2554.51 doi: 10.1111/j.1399-5618.2012.01012.x – ident: 2016082400371388000_139.9.2554.16 doi: 10.1016/S0896-6273(01)00225-2 – ident: 2016082400371388000_139.9.2554.32 doi: 10.1136/jnnp.23.1.56 – ident: 2016082400371388000_139.9.2554.80 doi: 10.1093/acprof:oso/9780192630711.003.0014 – ident: 2016082400371388000_139.9.2554.42 doi: 10.1016/j.biopsych.2003.11.017 – ident: 2016082400371388000_139.9.2554.26 doi: 10.1016/j.jrp.2005.11.001 – ident: 2016082400371388000_139.9.2554.39 doi: 10.1016/j.jneumeth.2010.03.028 – ident: 2016082400371388000_139.9.2554.34 doi: 10.1111/j.1399-5618.2008.00641.x – ident: 2016082400371388000_139.9.2554.23 doi: 10.1016/0022-3956(75)90026-6 – ident: 2016082400371388000_139.9.2554.4 doi: 10.1214/aoms/1177729437 – ident: 2016082400371388000_139.9.2554.24 doi: 10.1176/appi.ajp.2008.07081336 – ident: 2016082400371388000_139.9.2554.61 doi: 10.1016/j.neuroimage.2013.09.062 – ident: 2016082400371388000_139.9.2554.13 doi: 10.1098/rstb.2007.2095 – ident: 2016082400371388000_139.9.2554.73 doi: 10.1371/journal.pone.0006598 – ident: 2016082400371388000_139.9.2554.9 doi: 10.3109/15622975.2014.966144 – ident: 2016082400371388000_139.9.2554.62 doi: 10.1016/j.neuropharm.2013.05.040 – ident: 2016082400371388000_139.9.2554.82 doi: 10.1192/bjp.133.5.429 – ident: 2016082400371388000_139.9.2554.17 doi: 10.1523/JNEUROSCI.4515-08.2009 – ident: 2016082400371388000_139.9.2554.38 doi: 10.1093/cercor/bhq216 – ident: 2016082400371388000_139.9.2554.18 doi: 10.1146/annurev.psych.53.100901.135148 – volume: 39 start-page: 295 year: 1975 ident: 2016082400371388000_139.9.2554.46 article-title: Hedonic capacity: some conjectures publication-title: Bull Menninger Clin – ident: 2016082400371388000_139.9.2554.72 doi: 10.1016/j.neuroimage.2007.10.013 – ident: 2016082400371388000_139.9.2554.19 doi: 10.1016/j.neuropsychologia.2004.05.011 – ident: 2016082400371388000_139.9.2554.44 doi: 10.1042/BST0370313 – ident: 2016082400371388000_139.9.2554.22 doi: 10.1037/t07827-000 – ident: 2016082400371388000_139.9.2554.77 doi: 10.1016/j.biopsych.2009.11.025 – ident: 2016082400371388000_139.9.2554.14 doi: 10.1176/appi.ajp.2012.12020169 – ident: 2016082400371388000_139.9.2554.48 doi: 10.1016/j.neuroimage.2014.09.019 – ident: 2016082400371388000_139.9.2554.71 doi: 10.1016/j.neuroimage.2014.09.003 – ident: 2016082400371388000_139.9.2554.25 doi: 10.1038/mp.2014.71 |
SSID | ssj0014326 |
Score | 2.475021 |
Snippet | Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control... It is clinically challenging to distinguish bipolar from major depressive disorder. Manelis et al . use a Bayesian network approach to examine functional and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2554 |
SubjectTerms | Adult Anticipation, Psychological - physiology Bipolar Disorder - diagnostic imaging Bipolar Disorder - physiopathology Connectome - methods Depressive Disorder, Major - diagnostic imaging Depressive Disorder, Major - physiopathology Female Humans Magnetic Resonance Imaging Male Nerve Net - diagnostic imaging Nerve Net - physiopathology Original Prefrontal Cortex - diagnostic imaging Prefrontal Cortex - physiopathology Reward Ventral Striatum - diagnostic imaging Ventral Striatum - physiopathology |
Title | Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27368345 https://www.proquest.com/docview/1814657035 https://pubmed.ncbi.nlm.nih.gov/PMC4995358 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbKIiFeEDflkpHgqUq3sXPYvK0q0HIUIbQr7VsUO7G20m5aQaoV_En-EmOP4yZLQbAvUXPZTebLeMae-YaQl5rJUrLKxkmlKkrMTMEnJeKIgZpkshJaOSLtxafs8Dh5f5KejEY_e1FLm1ZN9Y-deSVXkSocA7naLNn_kGxoFA7Ab5AvbEHCsP0nGR8025joyGWlWHvSFn2w0eSN02XWyoZ9tVxbJ9atFWwavxPCYBvMeXbs1Zjb-D2wjQ-WfV3bu6qA4NSCyEVvamFRNrUvt255mgO2zs7rZYUxunZCfvJlOplPw1RPuzSmq8js41S7cx9Bea9AtZ1iXA4037Z1d6-fuoizEJvV_i0lcqCus0hIZKad1qihk2wWgZ2SDVQ4EiJ5rMq-Qk6Ro9oP7mDgZTsHDiTVchKyo-PFRYy82T0Urc8djMDeywRHDsxLVN2fF3NwIFOeimvkOgO_xfn47z6EZa2Eu_p_4bl8JgZ0vu-63seOLUO172VoLv3mA10O5e3ZRke3yS3v1NADROgdMqqbu-TGwodt3CN6F1Cp-y-0D1QK-x6oFDBFO6DSLVBf05I6mFKEKe1gep8cv31zND-MfHWPSCfprI2EMjovc85UZgmQhK4UDC68ilnFjK5KyeOa6TLRPFGVACPKgDNgUp3XqWSGGf6A7DWrpn5EKJMaxm0hTVzyxMRGsDIxBhqTM26bHZNJ9xIL7anvbQWWswJDMHjhnrjAtz8mr8LVa6R8-cN1Lzp5FKCT7UIb4H61-VbEdl7dUtulY_IQ5RNa6gQ7JvlAcuECy_c-PNMsTx3vu8fW4yvf-YTc3H6GT8le-3VTPwObulXPHU5_AfMu05Q |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anticipation-related+brain+connectivity+in+bipolar+and+unipolar+depression%3A+a+graph+theory+approach&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Manelis%2C+Anna&rft.au=Almeida%2C+Jorge+R.+C.&rft.au=Stiffler%2C+Richelle&rft.au=Lockovich%2C+Jeanette+C.&rft.date=2016-09-01&rft.pub=Oxford+University+Press&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=139&rft.issue=9&rft.spage=2554&rft.epage=2566&rft_id=info:doi/10.1093%2Fbrain%2Faww157&rft_id=info%3Apmid%2F27368345&rft.externalDocID=PMC4995358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |