The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone
Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteocl...
Saved in:
Published in | International journal of molecular sciences Vol. 19; no. 4; p. 984 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
26.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the “podosome belt”. Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone. |
---|---|
AbstractList | Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the “podosome belt”. Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in
Dictyostelium
cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone. Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the "podosome belt". Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone.Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the "podosome belt". Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone. Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the “podosome belt”. Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone. Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the "podosome belt". Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone. |
Author | Inoue, Satoshi Nakamura, Masanori Takito, Jiro |
AuthorAffiliation | Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; s-inoue@dent.showa-u.ac.jp (S.I.); masanaka@dent.showa-u.ac.jp (M.N.) |
AuthorAffiliation_xml | – name: Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; s-inoue@dent.showa-u.ac.jp (S.I.); masanaka@dent.showa-u.ac.jp (M.N.) |
Author_xml | – sequence: 1 givenname: Jiro surname: Takito fullname: Takito, Jiro – sequence: 2 givenname: Satoshi surname: Inoue fullname: Inoue, Satoshi – sequence: 3 givenname: Masanori surname: Nakamura fullname: Nakamura, Masanori |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29587415$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LHTEUxYNY_Gp3rsssu-i0-ZwkXRSsWC0Ib6HddBPyMjfPyLzEJhlB_3ojfvAqXd0L55zfCbn7aDumCAgdEvyFMY2_hut1IRpzrBXfQnuEU9pjPMjtjX0X7ZdyjTFlVOgdtEu1UJITsYdOL6-guwA7hbjq_jRyF2K3KBWSm2yp5Vt31OTJ94u8sjHcw9hd1Dy7OmfoUuxqi_9osffonbdTgQ_P8wD9_nlyeXzWny9Ofx0fnfeOC1x7ZZ0fPScjgWGQQo1s1E4IL0Bap_hSsgEwowNrj9a-qZIpTyRfYqs8OMUO0Pcn7s28XMPoINZsJ3OTw9rmO5NsMP8qMVyZVbo1QkstBG2AT8-AnP7OUKpZh-JgmmyENBdDMdFcKkZIs37c7Hotefm9ZqBPBpdTKRm8caHaGtJjdZgMwebxRGbzRC30-U3ohftf-wMpzpLT |
CitedBy_id | crossref_primary_10_1242_jcs_254029 crossref_primary_10_3390_ijms22041718 crossref_primary_10_1007_s00018_018_2881_1 crossref_primary_10_1038_s41467_023_39769_8 crossref_primary_10_1016_j_pbiomolbio_2023_09_002 crossref_primary_10_1172_JCI168155 crossref_primary_10_1016_j_job_2024_09_007 crossref_primary_10_3390_ijms22136934 crossref_primary_10_1016_j_phymed_2020_153351 crossref_primary_10_1016_j_bioorg_2022_106114 crossref_primary_10_1016_j_bioorg_2024_107603 crossref_primary_10_2174_0109298673308301240821052742 crossref_primary_10_1016_j_arr_2023_101842 crossref_primary_10_1002_jcp_28699 crossref_primary_10_1111_febs_16098 crossref_primary_10_1002_jbmr_4462 crossref_primary_10_3390_ijms23073558 crossref_primary_10_1038_s41598_024_57526_9 crossref_primary_10_1038_s41467_023_44000_9 crossref_primary_10_1038_s41467_021_25239_6 crossref_primary_10_3390_cancers13061257 crossref_primary_10_1016_j_bone_2019_06_023 crossref_primary_10_1002_jcb_29168 crossref_primary_10_1088_1361_6463_ab4838 crossref_primary_10_1097_JBR_0000000000000128 crossref_primary_10_1016_j_jbc_2021_101376 crossref_primary_10_1242_jcs_259040 crossref_primary_10_1242_jcs_244798 crossref_primary_10_3390_ijms21186629 crossref_primary_10_1016_j_identj_2023_09_005 crossref_primary_10_17116_stomat202110003155 crossref_primary_10_1016_j_phrs_2021_105458 crossref_primary_10_1186_s12951_022_01721_1 crossref_primary_10_33647_2713_0428_17_3E_176_182 crossref_primary_10_3390_ijms25116134 crossref_primary_10_1016_j_chmed_2023_09_006 crossref_primary_10_1002_cpim_74 crossref_primary_10_1002_dvg_23490 crossref_primary_10_17116_stomat202110004131 crossref_primary_10_1016_j_isci_2022_105514 crossref_primary_10_1016_j_bbadis_2023_166902 crossref_primary_10_3390_cells11193023 crossref_primary_10_1002_jbmr_4404 crossref_primary_10_1016_j_job_2019_07_002 crossref_primary_10_1016_j_ejmech_2024_116335 crossref_primary_10_1021_acsbiomaterials_0c01493 crossref_primary_10_1038_s41596_023_00894_9 crossref_primary_10_1016_j_bone_2023_116759 crossref_primary_10_3390_ijms21176001 crossref_primary_10_1002_cbf_3691 crossref_primary_10_1007_s11914_022_00723_0 crossref_primary_10_1016_j_heliyon_2023_e17841 crossref_primary_10_3390_ijms231810327 crossref_primary_10_1007_s13346_022_01189_4 crossref_primary_10_1111_joa_13820 crossref_primary_10_3390_ijms22020909 crossref_primary_10_3390_antiox13070850 crossref_primary_10_1302_2046_3758_1111_BJR_2022_0147_R2 crossref_primary_10_1016_j_job_2021_10_003 crossref_primary_10_1016_j_pharmthera_2023_108383 crossref_primary_10_1038_s41413_024_00360_6 crossref_primary_10_1038_s41467_019_12304_4 crossref_primary_10_1016_j_bbrc_2022_08_033 crossref_primary_10_1016_j_bioactmat_2021_06_016 crossref_primary_10_1016_j_phymed_2024_156276 crossref_primary_10_3390_ijms21031056 crossref_primary_10_1016_j_jare_2024_06_010 crossref_primary_10_3389_fphar_2020_00389 crossref_primary_10_1021_acs_analchem_2c04786 crossref_primary_10_29254_2077_4214_2021_2_160_236_241 crossref_primary_10_1111_febs_15778 crossref_primary_10_3390_ijms22126504 crossref_primary_10_3390_ijms23010146 crossref_primary_10_1002_ptr_6735 crossref_primary_10_1016_j_ejmech_2022_114948 crossref_primary_10_3389_fcell_2020_00433 crossref_primary_10_1007_s11914_024_00868_0 crossref_primary_10_3389_fcell_2022_818462 crossref_primary_10_3390_nu14204354 crossref_primary_10_3390_cancers11050615 crossref_primary_10_1007_s00018_021_03875_x |
Cites_doi | 10.1016/j.bpj.2008.12.3942 10.1016/0092-8674(91)90499-O 10.1126/science.2528207 10.3892/or.2013.2923 10.1007/s00223-008-9168-8 10.1038/44183 10.1091/mbc.e12-12-0856 10.1016/j.celrep.2013.10.040 10.1242/jcs.113.3.377 10.1242/jcs.113.9.1577 10.1091/mbc.e11-02-0114 10.1242/jcs.182329 10.1073/pnas.1117096109 10.1016/j.ejcb.2008.03.002 10.1152/ajpcell.1991.261.1.C1 10.1016/j.ceb.2012.08.012 10.1126/science.276.5310.266 10.1074/jbc.M109.017269 10.1083/jcb.148.4.665 10.1083/jcb.101.6.2210 10.1007/s00223-013-9786-7 10.1016/j.cub.2008.07.046 10.1016/j.tcb.2017.02.003 10.1242/jcs.110.15.1767 10.1002/jez.1402510206 10.1186/1471-2121-12-42 10.1002/jbmr.5650111207 10.4161/cib.20980 10.1242/jcs.112.22.3985 10.1091/mbc.e04-06-0522 10.1096/fj.09-149518 10.1242/jcs.108.8.2729 10.1103/PhysRevLett.104.228102 10.1091/mbc.e02-07-0389 10.1038/417308a 10.1074/jbc.M311838200 10.1242/bio.025460 10.1083/jcb.99.5.1696 10.1016/j.ejcb.2005.09.008 10.1038/nrm3141 10.1242/jcs.202036 10.1242/jcs.090886 10.4161/cam.3.4.9708 10.1126/science.aaf4382 10.1016/j.yexcr.2015.11.026 10.1038/ncomms6343 10.1083/jcb.201007141 10.1242/jcs.200295 10.2976/1.3239407 10.1016/0014-4827(88)90191-7 10.1016/j.cell.2015.11.048 10.1016/8756-3282(90)90082-A 10.1182/blood-2003-04-1259 10.1242/jcs.109.2.301 10.1016/8756-3282(95)00455-6 10.1126/scisignal.aaa3312 10.1126/science.276.5310.270 10.1084/jem.20050645 10.1016/j.ejcb.2008.01.001 10.1002/cm.21350 10.1083/jcb.34.1.275 10.1172/JCI116032 10.1038/boneres.2015.32 10.1146/annurev-cellbio-092910-154216 10.1371/journal.pone.0000179 10.1016/S0092-8674(03)00120-X 10.1091/mbc.e06-01-0088 10.1091/mbc.e07-04-0378 10.1177/36.1.2447153 10.1034/j.1600-0854.2003.40206.x 10.1242/jcs.052704 10.1016/8756-3282(96)00172-X 10.1038/s41598-018-19447-2 |
ContentType | Journal Article |
Copyright | 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.3390/ijms19040984 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC5979552 29587415 10_3390_ijms19040984 |
Genre | Journal Article Review |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR IPNFZ ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TR2 TUS UKHRP ~8M NPM PJZUB PPXIY 7X8 5PM |
ID | FETCH-LOGICAL-c450t-8acfdf41d1e66758d3d9c55f5e7ac84b736e032630679fd3d738f174b0a8fec83 |
IEDL.DBID | M48 |
ISSN | 1422-0067 |
IngestDate | Thu Aug 21 18:17:00 EDT 2025 Fri Jul 11 07:20:19 EDT 2025 Mon Jul 21 05:55:33 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Tue Jul 01 01:45:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | actin polymerization podosome Arp2/3 invadopodia actin wave plasma membrane sealing zone osteoclasts integrin |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-8acfdf41d1e66758d3d9c55f5e7ac84b736e032630679fd3d738f174b0a8fec83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms19040984 |
PMID | 29587415 |
PQID | 2019478311 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5979552 proquest_miscellaneous_2019478311 pubmed_primary_29587415 crossref_citationtrail_10_3390_ijms19040984 crossref_primary_10_3390_ijms19040984 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180326 |
PublicationDateYYYYMMDD | 2018-03-26 |
PublicationDate_xml | – month: 3 year: 2018 text: 20180326 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2018 |
Publisher | MDPI |
Publisher_xml | – name: MDPI |
References | Teti (ref_8) 1991; 261 Pollard (ref_44) 2003; 112 Calle (ref_48) 2004; 103 Merrild (ref_70) 2015; 3 Badowski (ref_28) 2008; 19 Nakamura (ref_66) 1999; 112 Allard (ref_33) 2013; 25 ref_57 Schenk (ref_18) 1967; 34 Wiesner (ref_56) 2002; 417 Takito (ref_31) 2012; 125 Carlsson (ref_53) 2010; 104 Palokangas (ref_41) 1997; 110 Chabadel (ref_45) 2007; 18 Henriet (ref_5) 2016; 129 Saltel (ref_46) 2008; 87 Mulari (ref_67) 2003; 4 Takagi (ref_62) 1988; 36 Nesbitt (ref_12) 1997; 276 Yu (ref_50) 2013; 5 Zhao (ref_9) 2000; 113 ref_22 Gerwig (ref_36) 2009; 3 Salo (ref_13) 1997; 276 Shin (ref_52) 2017; 357 Soriano (ref_16) 1991; 64 Schwartz (ref_27) 2013; 24 Yagi (ref_40) 2005; 202 Batsir (ref_43) 2017; 74 Schmidt (ref_49) 2011; 192 Gerisch (ref_58) 2009; 3 Sala (ref_76) 2018; 8 Ory (ref_29) 2008; 87 Takito (ref_7) 2017; 4 Alberti (ref_51) 2017; 130 Takito (ref_32) 2012; 5 Bretschneider (ref_35) 2009; 96 Chellaiah (ref_47) 2000; 148 Stenbeck (ref_61) 2000; 113 Kanehisa (ref_30) 1990; 11 Greco (ref_74) 2014; 31 Linder (ref_1) 2011; 27 Boyce (ref_17) 1992; 90 Destaing (ref_20) 2003; 14 Freeman (ref_65) 2016; 164 Rumpler (ref_14) 2013; 93 Gupta (ref_68) 1996; 18 Loisel (ref_55) 1999; 401 Inagaki (ref_34) 2017; 27 Marchisio (ref_19) 1984; 99 Labernadie (ref_26) 2014; 5 ref_37 Salo (ref_63) 1996; 109 Silver (ref_59) 1988; 175 Linder (ref_4) 2016; 343 Saltel (ref_24) 2004; 15 Gerhardt (ref_39) 2014; 127 Takito (ref_6) 2017; 6 Bourguignon (ref_72) 2004; 279 Golebiewska (ref_64) 2011; 22 Jurdic (ref_21) 2006; 85 Baron (ref_10) 1985; 101 (ref_15) 2017; 130 Murphy (ref_2) 2011; 12 Kuroda (ref_42) 1996; 19 Collin (ref_25) 2008; 18 Kawska (ref_54) 2012; 109 Horton (ref_60) 1995; 108 Astro (ref_75) 2015; 8 Henriksen (ref_69) 2008; 83 Destaing (ref_3) 2009; 122 Nakamura (ref_23) 1996; 11 McMichael (ref_38) 2010; 285 Blair (ref_11) 1989; 245 Chen (ref_71) 1989; 251 Busco (ref_73) 2010; 24 |
References_xml | – volume: 96 start-page: 2888 year: 2009 ident: ref_35 article-title: The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization publication-title: Biophys. J. doi: 10.1016/j.bpj.2008.12.3942 – volume: 4 start-page: e1614 year: 2017 ident: ref_7 article-title: Emerging role of actin flow in the organization of podosomes in osteoclasts publication-title: Macrophage – volume: 64 start-page: 693 year: 1991 ident: ref_16 article-title: Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice publication-title: Cell doi: 10.1016/0092-8674(91)90499-O – volume: 245 start-page: 855 year: 1989 ident: ref_11 article-title: Osteoclastic bone resorption by a polarized vacuolar proton pump publication-title: Science doi: 10.1126/science.2528207 – volume: 31 start-page: 940 year: 2014 ident: ref_74 article-title: Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe publication-title: Oncol. Rep. doi: 10.3892/or.2013.2923 – volume: 83 start-page: 230 year: 2008 ident: ref_69 article-title: Ion transporters involved in acidification of the resorption lacuna in osteoclasts publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-008-9168-8 – volume: 401 start-page: 613 year: 1999 ident: ref_55 article-title: Reconstitution of actin-based motility of Listeria and Shigella using pure proteins publication-title: Nature doi: 10.1038/44183 – volume: 24 start-page: 2112 year: 2013 ident: ref_27 article-title: Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e12-12-0856 – volume: 5 start-page: 1456 year: 2013 ident: ref_50 article-title: Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.10.040 – volume: 113 start-page: 377 year: 2000 ident: ref_9 article-title: The cell biology of osteoclast function publication-title: J. Cell Sci. doi: 10.1242/jcs.113.3.377 – volume: 113 start-page: 1577 year: 2000 ident: ref_61 article-title: A new specialized cell-matrix interaction in actively resorbing osteoclasts publication-title: J. Cell Sci. doi: 10.1242/jcs.113.9.1577 – volume: 22 start-page: 3498 year: 2011 ident: ref_64 article-title: Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-02-0114 – volume: 129 start-page: 1759 year: 2016 ident: ref_5 article-title: The microenvironment controls invadosome plasticity publication-title: J. Cell Sci. doi: 10.1242/jcs.182329 – volume: 109 start-page: 14440 year: 2012 ident: ref_54 article-title: How actin network dynamics control the onset of actin-based motility publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1117096109 – volume: 87 start-page: 469 year: 2008 ident: ref_29 article-title: Rho GTPases in osteoclasts: Orchestrators of podosome arrangement publication-title: Eur. J. Cell Biol. doi: 10.1016/j.ejcb.2008.03.002 – volume: 261 start-page: C1 year: 1991 ident: ref_8 article-title: Clear zone in osteoclast function: Role of podosomes in regulation of bone-resorbing activity publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1991.261.1.C1 – volume: 25 start-page: 107 year: 2013 ident: ref_33 article-title: Traveling waves in actin dynamics and cell motility publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2012.08.012 – volume: 276 start-page: 266 year: 1997 ident: ref_12 article-title: Trafficking of matrix collagens through bone-resorbing osteoclasts publication-title: Science doi: 10.1126/science.276.5310.266 – volume: 285 start-page: 9506 year: 2010 ident: ref_38 article-title: Myosin X regulates sealing zone patterning in osteoclasts through linkage of podosomes and microtubules publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.017269 – volume: 148 start-page: 665 year: 2000 ident: ref_47 article-title: Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength publication-title: J. Cell Biol. doi: 10.1083/jcb.148.4.665 – volume: 101 start-page: 2210 year: 1985 ident: ref_10 article-title: Cell-mediated extracellular acidification and bone resorption: Evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border publication-title: J. Cell Biol. doi: 10.1083/jcb.101.6.2210 – volume: 93 start-page: 526 year: 2013 ident: ref_14 article-title: Osteoclasts on bone and dentin in vitro: Mechanism of trail formation and comparison of resorption behavior publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-013-9786-7 – volume: 18 start-page: 1288 year: 2008 ident: ref_25 article-title: Self-organized podosomes are dynamic mechanosensors publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.07.046 – volume: 27 start-page: 515 year: 2017 ident: ref_34 article-title: Actin Waves: Origin of Cell Polarization and Migration? publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2017.02.003 – volume: 110 start-page: 1767 year: 1997 ident: ref_41 article-title: Endocytic pathway from the basal plasma membrane to the ruffled border membrane in bone-resorbing osteoclasts publication-title: J. Cell Sci. doi: 10.1242/jcs.110.15.1767 – volume: 251 start-page: 167 year: 1989 ident: ref_71 article-title: Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells publication-title: J. Exp. Zool doi: 10.1002/jez.1402510206 – ident: ref_37 doi: 10.1186/1471-2121-12-42 – volume: 11 start-page: 1873 year: 1996 ident: ref_23 article-title: Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.5650111207 – volume: 5 start-page: 453 year: 2012 ident: ref_32 article-title: Precursors linked via the zipper-like structure or the filopodium during the secondary fusion of osteoclasts publication-title: Commun. Integr. Biol. doi: 10.4161/cib.20980 – volume: 112 start-page: 3985 year: 1999 ident: ref_66 article-title: Role of α(v)β(3) integrin in osteoclast migration and formation of the sealing zone publication-title: J. Cell Sci. doi: 10.1242/jcs.112.22.3985 – volume: 15 start-page: 5231 year: 2004 ident: ref_24 article-title: Apatite-mediated actin dynamics in resorbing osteoclasts publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-06-0522 – volume: 24 start-page: 3903 year: 2010 ident: ref_73 article-title: NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space publication-title: FASEB J. doi: 10.1096/fj.09-149518 – volume: 108 start-page: 2729 year: 1995 ident: ref_60 article-title: The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure publication-title: J. Cell Sci. doi: 10.1242/jcs.108.8.2729 – volume: 104 start-page: 228102 year: 2010 ident: ref_53 article-title: Dendritic actin filament nucleation causes traveling waves and patches publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.228102 – volume: 14 start-page: 407 year: 2003 ident: ref_20 article-title: Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-07-0389 – volume: 417 start-page: 308 year: 2002 ident: ref_56 article-title: The dynamics of actin-based motility depend on surface parameters publication-title: Nature doi: 10.1038/417308a – volume: 279 start-page: 26991 year: 2004 ident: ref_72 article-title: CD44 interaction with Na+–H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311838200 – volume: 6 start-page: 1104 year: 2017 ident: ref_6 article-title: Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion publication-title: Biol. Open doi: 10.1242/bio.025460 – volume: 99 start-page: 1696 year: 1984 ident: ref_19 article-title: Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures publication-title: J. Cell Biol. doi: 10.1083/jcb.99.5.1696 – volume: 85 start-page: 195 year: 2006 ident: ref_21 article-title: Podosome and sealing zone: Specificity of the osteoclast model publication-title: Eur. J. Cell Biol. doi: 10.1016/j.ejcb.2005.09.008 – volume: 127 start-page: 4507 year: 2014 ident: ref_39 article-title: Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state publication-title: J. Cell Sci. – volume: 12 start-page: 413 year: 2011 ident: ref_2 article-title: The “ins” and “outs” of podosomes and invadopodia: Characteristics, formation and function publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3141 – volume: 130 start-page: 2026 year: 2017 ident: ref_15 article-title: Time-lapse reveals that osteoclasts can move across the bone surface while resorbing publication-title: J. Cell Sci. doi: 10.1242/jcs.202036 – volume: 125 start-page: 662 year: 2012 ident: ref_31 article-title: The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts publication-title: J. Cell Sci. doi: 10.1242/jcs.090886 – volume: 3 start-page: 373 year: 2009 ident: ref_58 article-title: Self-organizing actin waves as planar phagocytic cup structures publication-title: Cell Adhes. Migr. doi: 10.4161/cam.3.4.9708 – volume: 357 start-page: eaaf4382 year: 2017 ident: ref_52 article-title: Liquid phase condensation in cell physiology and disease publication-title: Science doi: 10.1126/science.aaf4382 – volume: 343 start-page: 67 year: 2016 ident: ref_4 article-title: Feel the force: Podosomes in mechanosensing publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2015.11.026 – volume: 5 start-page: 5343 year: 2014 ident: ref_26 article-title: Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes publication-title: Nat. Commun. doi: 10.1038/ncomms6343 – volume: 192 start-page: 883 year: 2011 ident: ref_49 article-title: Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption publication-title: J. Cell Biol. doi: 10.1083/jcb.201007141 – volume: 130 start-page: 2789 year: 2017 ident: ref_51 article-title: The wisdom of crowds: Regulating cell function through condensed states of living matter publication-title: J. Cell Sci. doi: 10.1242/jcs.200295 – volume: 3 start-page: 412 year: 2009 ident: ref_36 article-title: Propagating waves separate two states of actin organization in living cells publication-title: HFSP J. doi: 10.2976/1.3239407 – volume: 175 start-page: 266 year: 1988 ident: ref_59 article-title: Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(88)90191-7 – volume: 164 start-page: 128 year: 2016 ident: ref_65 article-title: Integrins Form an Expanding Diffusional Barrier that Coordinates Phagocytosis publication-title: Cell doi: 10.1016/j.cell.2015.11.048 – volume: 11 start-page: 287 year: 1990 ident: ref_30 article-title: A band of F-actin containing podosomes is involved in bone resorption by osteoclasts publication-title: Bone doi: 10.1016/8756-3282(90)90082-A – volume: 103 start-page: 3552 year: 2004 ident: ref_48 article-title: WASp deficiency in mice results in failure to form osteoclast sealing zones and defects in bone resorption publication-title: Blood doi: 10.1182/blood-2003-04-1259 – volume: 109 start-page: 301 year: 1996 ident: ref_63 article-title: Bone-resorbing osteoclasts reveal a dynamic division of basal plasma membrane into two different domains publication-title: J. Cell Sci. doi: 10.1242/jcs.109.2.301 – volume: 18 start-page: 87 year: 1996 ident: ref_68 article-title: Cellular distribution and regulation of NHE-1 isoform of the NA-H exchanger in the avian osteoclast publication-title: Bone doi: 10.1016/8756-3282(95)00455-6 – volume: 8 start-page: re1 year: 2015 ident: ref_75 article-title: Plasma membrane-associated platforms: Dynamic scaffolds that organize membrane-associated events publication-title: Sci. Signal. doi: 10.1126/scisignal.aaa3312 – volume: 276 start-page: 270 year: 1997 ident: ref_13 article-title: Removal of osteoclast bone resorption products by transcytosis publication-title: Science doi: 10.1126/science.276.5310.270 – volume: 202 start-page: 345 year: 2005 ident: ref_40 article-title: DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells publication-title: J. Exp. Med. doi: 10.1084/jem.20050645 – volume: 87 start-page: 459 year: 2008 ident: ref_46 article-title: Actin cytoskeletal organisation in osteoclasts: A model to decipher transmigration and matrix degradation publication-title: Eur. J. Cell Biol. doi: 10.1016/j.ejcb.2008.01.001 – volume: 74 start-page: 72 year: 2017 ident: ref_43 article-title: Dynamics of the sealing zone in cultured osteoclasts publication-title: Cytoskeleton doi: 10.1002/cm.21350 – volume: 34 start-page: 275 year: 1967 ident: ref_18 article-title: Cartilage resorption in the tibial epiphyseal plate of growing rats publication-title: J. Cell Biol. doi: 10.1083/jcb.34.1.275 – volume: 90 start-page: 1622 year: 1992 ident: ref_17 article-title: Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice publication-title: J. Clin. Investig. doi: 10.1172/JCI116032 – volume: 3 start-page: 15032 year: 2015 ident: ref_70 article-title: Pit- and trench-forming osteoclasts: A distinction that matters publication-title: Bone Rep. doi: 10.1038/boneres.2015.32 – volume: 27 start-page: 185 year: 2011 ident: ref_1 article-title: Degrading devices: Invadosomes in proteolytic cell invasion publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154216 – ident: ref_22 doi: 10.1371/journal.pone.0000179 – volume: 112 start-page: 453 year: 2003 ident: ref_44 article-title: Cellular motility driven by assembly and disassembly of actin filaments publication-title: Cell doi: 10.1016/S0092-8674(03)00120-X – volume: 19 start-page: 633 year: 2008 ident: ref_28 article-title: Paxillin phosphorylation controls invadopodia/podosomes spatiotemporal organization publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-01-0088 – volume: 18 start-page: 4899 year: 2007 ident: ref_45 article-title: CD44 and β3 integrin organize two functionally distinct actin-based domains in osteoclasts publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-04-0378 – volume: 36 start-page: 95 year: 1988 ident: ref_62 article-title: Ultrastructural visualization of selective peanut agglutinin binding sites in rat osteoclasts publication-title: J. Histochem. Cytochem. doi: 10.1177/36.1.2447153 – ident: ref_57 – volume: 4 start-page: 113 year: 2003 ident: ref_67 article-title: Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake publication-title: Traffic doi: 10.1034/j.1600-0854.2003.40206.x – volume: 122 start-page: 3037 year: 2009 ident: ref_3 article-title: Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions publication-title: J. Cell Sci. doi: 10.1242/jcs.052704 – volume: 19 start-page: 115 year: 1996 ident: ref_42 article-title: Effects of calcitonin and parathyroid hormone on the distribution of F-actin in the clear zone of osteoclasts in vivo publication-title: Bone doi: 10.1016/8756-3282(96)00172-X – volume: 8 start-page: 1164 year: 2018 ident: ref_76 article-title: Identification of a membrane-less compartment regulating invadosome function and motility publication-title: Sci. Rep. doi: 10.1038/s41598-018-19447-2 |
SSID | ssj0023259 |
Score | 2.4863057 |
SecondaryResourceType | review_article |
Snippet | Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich... Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 984 |
SubjectTerms | Review |
Title | The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29587415 https://www.proquest.com/docview/2019478311 https://pubmed.ncbi.nlm.nih.gov/PMC5979552 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tSxwxEB58odAvorWtZ-0RQT-V2H1JNolQioqnCL5QPTj6ZdndJHhy7lnvBP33ndndO7xawS8LS5JdmMnmeZ7NZAZgC0E5N8hTOaUS50JHlmfaWK6lpvTsMg5sFSB7lhx3xUlP9uZgUm20MeDov9KO6kl17wc7j3-efuIH_4MUJ0r27_2b2xHiGioVLeZhETFJUS2DUzHdT0DaUJVNox8enBboOgT-xehZcHrBOP8NnHyGRJ1lWGooJNurfb4Cc678AO_qopJPq3CEnmeXyP8QlNjvYelYv2Tn6MxhgUx5PNple9g88Lw5huksu6ySyD7cOzYsGTJCto_DPkK3c3h1cMybcgm8EDIYc50V3noR2tAlJANsbE0hpZdOZYUWuYoTFyBbI5FgPLaqWHsUJHmQae8KHX-ChRIfv0YHuU0UZoEsfBQIa3KK5nOolROH64FSvgXfJnZKiyaXOJW0GKSoKciq6XOrtmB72vuuzqHxSr_NiclTnOS0c5GVbvgwSpGlGKF0HIYt-Fy7YPqkyEhNtKgFasY50w6UQHu2pexfV4m0UUwZKaP1N7z3C7zHm-o0YpRswAL6xX1FOjLO2zCvegqvunPUhsX9w7OLX20CCNmu5uBfjHXh3w |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Sealing+Zone+in+Osteoclasts%3A+A+Self-Organized+Structure+on+the+Bone&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Takito%2C+Jiro&rft.au=Inoue%2C+Satoshi&rft.au=Nakamura%2C+Masanori&rft.date=2018-03-26&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=19&rft.issue=4&rft_id=info:doi/10.3390%2Fijms19040984&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |