The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone

Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteocl...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 19; no. 4; p. 984
Main Authors Takito, Jiro, Inoue, Satoshi, Nakamura, Masanori
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 26.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the “podosome belt”. Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone.
AbstractList Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the “podosome belt”. Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone.
Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the "podosome belt". Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone.Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the "podosome belt". Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone.
Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the “podosome belt”. Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone.
Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the "podosome belt". Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone.
Author Inoue, Satoshi
Nakamura, Masanori
Takito, Jiro
AuthorAffiliation Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; s-inoue@dent.showa-u.ac.jp (S.I.); masanaka@dent.showa-u.ac.jp (M.N.)
AuthorAffiliation_xml – name: Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; s-inoue@dent.showa-u.ac.jp (S.I.); masanaka@dent.showa-u.ac.jp (M.N.)
Author_xml – sequence: 1
  givenname: Jiro
  surname: Takito
  fullname: Takito, Jiro
– sequence: 2
  givenname: Satoshi
  surname: Inoue
  fullname: Inoue, Satoshi
– sequence: 3
  givenname: Masanori
  surname: Nakamura
  fullname: Nakamura, Masanori
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29587415$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LHTEUxYNY_Gp3rsssu-i0-ZwkXRSsWC0Ib6HddBPyMjfPyLzEJhlB_3ojfvAqXd0L55zfCbn7aDumCAgdEvyFMY2_hut1IRpzrBXfQnuEU9pjPMjtjX0X7ZdyjTFlVOgdtEu1UJITsYdOL6-guwA7hbjq_jRyF2K3KBWSm2yp5Vt31OTJ94u8sjHcw9hd1Dy7OmfoUuxqi_9osffonbdTgQ_P8wD9_nlyeXzWny9Ofx0fnfeOC1x7ZZ0fPScjgWGQQo1s1E4IL0Bap_hSsgEwowNrj9a-qZIpTyRfYqs8OMUO0Pcn7s28XMPoINZsJ3OTw9rmO5NsMP8qMVyZVbo1QkstBG2AT8-AnP7OUKpZh-JgmmyENBdDMdFcKkZIs37c7Hotefm9ZqBPBpdTKRm8caHaGtJjdZgMwebxRGbzRC30-U3ohftf-wMpzpLT
CitedBy_id crossref_primary_10_1242_jcs_254029
crossref_primary_10_3390_ijms22041718
crossref_primary_10_1007_s00018_018_2881_1
crossref_primary_10_1038_s41467_023_39769_8
crossref_primary_10_1016_j_pbiomolbio_2023_09_002
crossref_primary_10_1172_JCI168155
crossref_primary_10_1016_j_job_2024_09_007
crossref_primary_10_3390_ijms22136934
crossref_primary_10_1016_j_phymed_2020_153351
crossref_primary_10_1016_j_bioorg_2022_106114
crossref_primary_10_1016_j_bioorg_2024_107603
crossref_primary_10_2174_0109298673308301240821052742
crossref_primary_10_1016_j_arr_2023_101842
crossref_primary_10_1002_jcp_28699
crossref_primary_10_1111_febs_16098
crossref_primary_10_1002_jbmr_4462
crossref_primary_10_3390_ijms23073558
crossref_primary_10_1038_s41598_024_57526_9
crossref_primary_10_1038_s41467_023_44000_9
crossref_primary_10_1038_s41467_021_25239_6
crossref_primary_10_3390_cancers13061257
crossref_primary_10_1016_j_bone_2019_06_023
crossref_primary_10_1002_jcb_29168
crossref_primary_10_1088_1361_6463_ab4838
crossref_primary_10_1097_JBR_0000000000000128
crossref_primary_10_1016_j_jbc_2021_101376
crossref_primary_10_1242_jcs_259040
crossref_primary_10_1242_jcs_244798
crossref_primary_10_3390_ijms21186629
crossref_primary_10_1016_j_identj_2023_09_005
crossref_primary_10_17116_stomat202110003155
crossref_primary_10_1016_j_phrs_2021_105458
crossref_primary_10_1186_s12951_022_01721_1
crossref_primary_10_33647_2713_0428_17_3E_176_182
crossref_primary_10_3390_ijms25116134
crossref_primary_10_1016_j_chmed_2023_09_006
crossref_primary_10_1002_cpim_74
crossref_primary_10_1002_dvg_23490
crossref_primary_10_17116_stomat202110004131
crossref_primary_10_1016_j_isci_2022_105514
crossref_primary_10_1016_j_bbadis_2023_166902
crossref_primary_10_3390_cells11193023
crossref_primary_10_1002_jbmr_4404
crossref_primary_10_1016_j_job_2019_07_002
crossref_primary_10_1016_j_ejmech_2024_116335
crossref_primary_10_1021_acsbiomaterials_0c01493
crossref_primary_10_1038_s41596_023_00894_9
crossref_primary_10_1016_j_bone_2023_116759
crossref_primary_10_3390_ijms21176001
crossref_primary_10_1002_cbf_3691
crossref_primary_10_1007_s11914_022_00723_0
crossref_primary_10_1016_j_heliyon_2023_e17841
crossref_primary_10_3390_ijms231810327
crossref_primary_10_1007_s13346_022_01189_4
crossref_primary_10_1111_joa_13820
crossref_primary_10_3390_ijms22020909
crossref_primary_10_3390_antiox13070850
crossref_primary_10_1302_2046_3758_1111_BJR_2022_0147_R2
crossref_primary_10_1016_j_job_2021_10_003
crossref_primary_10_1016_j_pharmthera_2023_108383
crossref_primary_10_1038_s41413_024_00360_6
crossref_primary_10_1038_s41467_019_12304_4
crossref_primary_10_1016_j_bbrc_2022_08_033
crossref_primary_10_1016_j_bioactmat_2021_06_016
crossref_primary_10_1016_j_phymed_2024_156276
crossref_primary_10_3390_ijms21031056
crossref_primary_10_1016_j_jare_2024_06_010
crossref_primary_10_3389_fphar_2020_00389
crossref_primary_10_1021_acs_analchem_2c04786
crossref_primary_10_29254_2077_4214_2021_2_160_236_241
crossref_primary_10_1111_febs_15778
crossref_primary_10_3390_ijms22126504
crossref_primary_10_3390_ijms23010146
crossref_primary_10_1002_ptr_6735
crossref_primary_10_1016_j_ejmech_2022_114948
crossref_primary_10_3389_fcell_2020_00433
crossref_primary_10_1007_s11914_024_00868_0
crossref_primary_10_3389_fcell_2022_818462
crossref_primary_10_3390_nu14204354
crossref_primary_10_3390_cancers11050615
crossref_primary_10_1007_s00018_021_03875_x
Cites_doi 10.1016/j.bpj.2008.12.3942
10.1016/0092-8674(91)90499-O
10.1126/science.2528207
10.3892/or.2013.2923
10.1007/s00223-008-9168-8
10.1038/44183
10.1091/mbc.e12-12-0856
10.1016/j.celrep.2013.10.040
10.1242/jcs.113.3.377
10.1242/jcs.113.9.1577
10.1091/mbc.e11-02-0114
10.1242/jcs.182329
10.1073/pnas.1117096109
10.1016/j.ejcb.2008.03.002
10.1152/ajpcell.1991.261.1.C1
10.1016/j.ceb.2012.08.012
10.1126/science.276.5310.266
10.1074/jbc.M109.017269
10.1083/jcb.148.4.665
10.1083/jcb.101.6.2210
10.1007/s00223-013-9786-7
10.1016/j.cub.2008.07.046
10.1016/j.tcb.2017.02.003
10.1242/jcs.110.15.1767
10.1002/jez.1402510206
10.1186/1471-2121-12-42
10.1002/jbmr.5650111207
10.4161/cib.20980
10.1242/jcs.112.22.3985
10.1091/mbc.e04-06-0522
10.1096/fj.09-149518
10.1242/jcs.108.8.2729
10.1103/PhysRevLett.104.228102
10.1091/mbc.e02-07-0389
10.1038/417308a
10.1074/jbc.M311838200
10.1242/bio.025460
10.1083/jcb.99.5.1696
10.1016/j.ejcb.2005.09.008
10.1038/nrm3141
10.1242/jcs.202036
10.1242/jcs.090886
10.4161/cam.3.4.9708
10.1126/science.aaf4382
10.1016/j.yexcr.2015.11.026
10.1038/ncomms6343
10.1083/jcb.201007141
10.1242/jcs.200295
10.2976/1.3239407
10.1016/0014-4827(88)90191-7
10.1016/j.cell.2015.11.048
10.1016/8756-3282(90)90082-A
10.1182/blood-2003-04-1259
10.1242/jcs.109.2.301
10.1016/8756-3282(95)00455-6
10.1126/scisignal.aaa3312
10.1126/science.276.5310.270
10.1084/jem.20050645
10.1016/j.ejcb.2008.01.001
10.1002/cm.21350
10.1083/jcb.34.1.275
10.1172/JCI116032
10.1038/boneres.2015.32
10.1146/annurev-cellbio-092910-154216
10.1371/journal.pone.0000179
10.1016/S0092-8674(03)00120-X
10.1091/mbc.e06-01-0088
10.1091/mbc.e07-04-0378
10.1177/36.1.2447153
10.1034/j.1600-0854.2003.40206.x
10.1242/jcs.052704
10.1016/8756-3282(96)00172-X
10.1038/s41598-018-19447-2
ContentType Journal Article
Copyright 2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3390/ijms19040984
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC5979552
29587415
10_3390_ijms19040984
Genre Journal Article
Review
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
IPNFZ
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TR2
TUS
UKHRP
~8M
NPM
PJZUB
PPXIY
7X8
5PM
ID FETCH-LOGICAL-c450t-8acfdf41d1e66758d3d9c55f5e7ac84b736e032630679fd3d738f174b0a8fec83
IEDL.DBID M48
ISSN 1422-0067
IngestDate Thu Aug 21 18:17:00 EDT 2025
Fri Jul 11 07:20:19 EDT 2025
Mon Jul 21 05:55:33 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
Tue Jul 01 01:45:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords actin polymerization
podosome
Arp2/3
invadopodia
actin wave
plasma membrane
sealing zone
osteoclasts
integrin
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-8acfdf41d1e66758d3d9c55f5e7ac84b736e032630679fd3d738f174b0a8fec83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms19040984
PMID 29587415
PQID 2019478311
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5979552
proquest_miscellaneous_2019478311
pubmed_primary_29587415
crossref_citationtrail_10_3390_ijms19040984
crossref_primary_10_3390_ijms19040984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180326
PublicationDateYYYYMMDD 2018-03-26
PublicationDate_xml – month: 3
  year: 2018
  text: 20180326
  day: 26
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2018
Publisher MDPI
Publisher_xml – name: MDPI
References Teti (ref_8) 1991; 261
Pollard (ref_44) 2003; 112
Calle (ref_48) 2004; 103
Merrild (ref_70) 2015; 3
Badowski (ref_28) 2008; 19
Nakamura (ref_66) 1999; 112
Allard (ref_33) 2013; 25
ref_57
Schenk (ref_18) 1967; 34
Wiesner (ref_56) 2002; 417
Takito (ref_31) 2012; 125
Carlsson (ref_53) 2010; 104
Palokangas (ref_41) 1997; 110
Chabadel (ref_45) 2007; 18
Henriet (ref_5) 2016; 129
Saltel (ref_46) 2008; 87
Mulari (ref_67) 2003; 4
Takagi (ref_62) 1988; 36
Nesbitt (ref_12) 1997; 276
Yu (ref_50) 2013; 5
Zhao (ref_9) 2000; 113
ref_22
Gerwig (ref_36) 2009; 3
Salo (ref_13) 1997; 276
Shin (ref_52) 2017; 357
Soriano (ref_16) 1991; 64
Schwartz (ref_27) 2013; 24
Yagi (ref_40) 2005; 202
Batsir (ref_43) 2017; 74
Schmidt (ref_49) 2011; 192
Gerisch (ref_58) 2009; 3
Sala (ref_76) 2018; 8
Ory (ref_29) 2008; 87
Takito (ref_7) 2017; 4
Alberti (ref_51) 2017; 130
Takito (ref_32) 2012; 5
Bretschneider (ref_35) 2009; 96
Chellaiah (ref_47) 2000; 148
Stenbeck (ref_61) 2000; 113
Kanehisa (ref_30) 1990; 11
Greco (ref_74) 2014; 31
Linder (ref_1) 2011; 27
Boyce (ref_17) 1992; 90
Destaing (ref_20) 2003; 14
Freeman (ref_65) 2016; 164
Rumpler (ref_14) 2013; 93
Gupta (ref_68) 1996; 18
Loisel (ref_55) 1999; 401
Inagaki (ref_34) 2017; 27
Marchisio (ref_19) 1984; 99
Labernadie (ref_26) 2014; 5
ref_37
Salo (ref_63) 1996; 109
Silver (ref_59) 1988; 175
Linder (ref_4) 2016; 343
Saltel (ref_24) 2004; 15
Gerhardt (ref_39) 2014; 127
Takito (ref_6) 2017; 6
Bourguignon (ref_72) 2004; 279
Golebiewska (ref_64) 2011; 22
Jurdic (ref_21) 2006; 85
Baron (ref_10) 1985; 101
(ref_15) 2017; 130
Murphy (ref_2) 2011; 12
Kuroda (ref_42) 1996; 19
Collin (ref_25) 2008; 18
Kawska (ref_54) 2012; 109
Horton (ref_60) 1995; 108
Astro (ref_75) 2015; 8
Henriksen (ref_69) 2008; 83
Destaing (ref_3) 2009; 122
Nakamura (ref_23) 1996; 11
McMichael (ref_38) 2010; 285
Blair (ref_11) 1989; 245
Chen (ref_71) 1989; 251
Busco (ref_73) 2010; 24
References_xml – volume: 96
  start-page: 2888
  year: 2009
  ident: ref_35
  article-title: The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2008.12.3942
– volume: 4
  start-page: e1614
  year: 2017
  ident: ref_7
  article-title: Emerging role of actin flow in the organization of podosomes in osteoclasts
  publication-title: Macrophage
– volume: 64
  start-page: 693
  year: 1991
  ident: ref_16
  article-title: Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90499-O
– volume: 245
  start-page: 855
  year: 1989
  ident: ref_11
  article-title: Osteoclastic bone resorption by a polarized vacuolar proton pump
  publication-title: Science
  doi: 10.1126/science.2528207
– volume: 31
  start-page: 940
  year: 2014
  ident: ref_74
  article-title: Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2013.2923
– volume: 83
  start-page: 230
  year: 2008
  ident: ref_69
  article-title: Ion transporters involved in acidification of the resorption lacuna in osteoclasts
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-008-9168-8
– volume: 401
  start-page: 613
  year: 1999
  ident: ref_55
  article-title: Reconstitution of actin-based motility of Listeria and Shigella using pure proteins
  publication-title: Nature
  doi: 10.1038/44183
– volume: 24
  start-page: 2112
  year: 2013
  ident: ref_27
  article-title: Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e12-12-0856
– volume: 5
  start-page: 1456
  year: 2013
  ident: ref_50
  article-title: Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.10.040
– volume: 113
  start-page: 377
  year: 2000
  ident: ref_9
  article-title: The cell biology of osteoclast function
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.113.3.377
– volume: 113
  start-page: 1577
  year: 2000
  ident: ref_61
  article-title: A new specialized cell-matrix interaction in actively resorbing osteoclasts
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.113.9.1577
– volume: 22
  start-page: 3498
  year: 2011
  ident: ref_64
  article-title: Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-02-0114
– volume: 129
  start-page: 1759
  year: 2016
  ident: ref_5
  article-title: The microenvironment controls invadosome plasticity
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.182329
– volume: 109
  start-page: 14440
  year: 2012
  ident: ref_54
  article-title: How actin network dynamics control the onset of actin-based motility
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1117096109
– volume: 87
  start-page: 469
  year: 2008
  ident: ref_29
  article-title: Rho GTPases in osteoclasts: Orchestrators of podosome arrangement
  publication-title: Eur. J. Cell Biol.
  doi: 10.1016/j.ejcb.2008.03.002
– volume: 261
  start-page: C1
  year: 1991
  ident: ref_8
  article-title: Clear zone in osteoclast function: Role of podosomes in regulation of bone-resorbing activity
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1991.261.1.C1
– volume: 25
  start-page: 107
  year: 2013
  ident: ref_33
  article-title: Traveling waves in actin dynamics and cell motility
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2012.08.012
– volume: 276
  start-page: 266
  year: 1997
  ident: ref_12
  article-title: Trafficking of matrix collagens through bone-resorbing osteoclasts
  publication-title: Science
  doi: 10.1126/science.276.5310.266
– volume: 285
  start-page: 9506
  year: 2010
  ident: ref_38
  article-title: Myosin X regulates sealing zone patterning in osteoclasts through linkage of podosomes and microtubules
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.017269
– volume: 148
  start-page: 665
  year: 2000
  ident: ref_47
  article-title: Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.148.4.665
– volume: 101
  start-page: 2210
  year: 1985
  ident: ref_10
  article-title: Cell-mediated extracellular acidification and bone resorption: Evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.101.6.2210
– volume: 93
  start-page: 526
  year: 2013
  ident: ref_14
  article-title: Osteoclasts on bone and dentin in vitro: Mechanism of trail formation and comparison of resorption behavior
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-013-9786-7
– volume: 18
  start-page: 1288
  year: 2008
  ident: ref_25
  article-title: Self-organized podosomes are dynamic mechanosensors
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.07.046
– volume: 27
  start-page: 515
  year: 2017
  ident: ref_34
  article-title: Actin Waves: Origin of Cell Polarization and Migration?
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2017.02.003
– volume: 110
  start-page: 1767
  year: 1997
  ident: ref_41
  article-title: Endocytic pathway from the basal plasma membrane to the ruffled border membrane in bone-resorbing osteoclasts
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.110.15.1767
– volume: 251
  start-page: 167
  year: 1989
  ident: ref_71
  article-title: Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells
  publication-title: J. Exp. Zool
  doi: 10.1002/jez.1402510206
– ident: ref_37
  doi: 10.1186/1471-2121-12-42
– volume: 11
  start-page: 1873
  year: 1996
  ident: ref_23
  article-title: Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.5650111207
– volume: 5
  start-page: 453
  year: 2012
  ident: ref_32
  article-title: Precursors linked via the zipper-like structure or the filopodium during the secondary fusion of osteoclasts
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.20980
– volume: 112
  start-page: 3985
  year: 1999
  ident: ref_66
  article-title: Role of α(v)β(3) integrin in osteoclast migration and formation of the sealing zone
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.22.3985
– volume: 15
  start-page: 5231
  year: 2004
  ident: ref_24
  article-title: Apatite-mediated actin dynamics in resorbing osteoclasts
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-06-0522
– volume: 24
  start-page: 3903
  year: 2010
  ident: ref_73
  article-title: NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space
  publication-title: FASEB J.
  doi: 10.1096/fj.09-149518
– volume: 108
  start-page: 2729
  year: 1995
  ident: ref_60
  article-title: The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.108.8.2729
– volume: 104
  start-page: 228102
  year: 2010
  ident: ref_53
  article-title: Dendritic actin filament nucleation causes traveling waves and patches
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.228102
– volume: 14
  start-page: 407
  year: 2003
  ident: ref_20
  article-title: Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e02-07-0389
– volume: 417
  start-page: 308
  year: 2002
  ident: ref_56
  article-title: The dynamics of actin-based motility depend on surface parameters
  publication-title: Nature
  doi: 10.1038/417308a
– volume: 279
  start-page: 26991
  year: 2004
  ident: ref_72
  article-title: CD44 interaction with Na+–H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311838200
– volume: 6
  start-page: 1104
  year: 2017
  ident: ref_6
  article-title: Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion
  publication-title: Biol. Open
  doi: 10.1242/bio.025460
– volume: 99
  start-page: 1696
  year: 1984
  ident: ref_19
  article-title: Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.99.5.1696
– volume: 85
  start-page: 195
  year: 2006
  ident: ref_21
  article-title: Podosome and sealing zone: Specificity of the osteoclast model
  publication-title: Eur. J. Cell Biol.
  doi: 10.1016/j.ejcb.2005.09.008
– volume: 127
  start-page: 4507
  year: 2014
  ident: ref_39
  article-title: Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state
  publication-title: J. Cell Sci.
– volume: 12
  start-page: 413
  year: 2011
  ident: ref_2
  article-title: The “ins” and “outs” of podosomes and invadopodia: Characteristics, formation and function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3141
– volume: 130
  start-page: 2026
  year: 2017
  ident: ref_15
  article-title: Time-lapse reveals that osteoclasts can move across the bone surface while resorbing
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.202036
– volume: 125
  start-page: 662
  year: 2012
  ident: ref_31
  article-title: The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.090886
– volume: 3
  start-page: 373
  year: 2009
  ident: ref_58
  article-title: Self-organizing actin waves as planar phagocytic cup structures
  publication-title: Cell Adhes. Migr.
  doi: 10.4161/cam.3.4.9708
– volume: 357
  start-page: eaaf4382
  year: 2017
  ident: ref_52
  article-title: Liquid phase condensation in cell physiology and disease
  publication-title: Science
  doi: 10.1126/science.aaf4382
– volume: 343
  start-page: 67
  year: 2016
  ident: ref_4
  article-title: Feel the force: Podosomes in mechanosensing
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2015.11.026
– volume: 5
  start-page: 5343
  year: 2014
  ident: ref_26
  article-title: Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6343
– volume: 192
  start-page: 883
  year: 2011
  ident: ref_49
  article-title: Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201007141
– volume: 130
  start-page: 2789
  year: 2017
  ident: ref_51
  article-title: The wisdom of crowds: Regulating cell function through condensed states of living matter
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.200295
– volume: 3
  start-page: 412
  year: 2009
  ident: ref_36
  article-title: Propagating waves separate two states of actin organization in living cells
  publication-title: HFSP J.
  doi: 10.2976/1.3239407
– volume: 175
  start-page: 266
  year: 1988
  ident: ref_59
  article-title: Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(88)90191-7
– volume: 164
  start-page: 128
  year: 2016
  ident: ref_65
  article-title: Integrins Form an Expanding Diffusional Barrier that Coordinates Phagocytosis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.048
– volume: 11
  start-page: 287
  year: 1990
  ident: ref_30
  article-title: A band of F-actin containing podosomes is involved in bone resorption by osteoclasts
  publication-title: Bone
  doi: 10.1016/8756-3282(90)90082-A
– volume: 103
  start-page: 3552
  year: 2004
  ident: ref_48
  article-title: WASp deficiency in mice results in failure to form osteoclast sealing zones and defects in bone resorption
  publication-title: Blood
  doi: 10.1182/blood-2003-04-1259
– volume: 109
  start-page: 301
  year: 1996
  ident: ref_63
  article-title: Bone-resorbing osteoclasts reveal a dynamic division of basal plasma membrane into two different domains
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.109.2.301
– volume: 18
  start-page: 87
  year: 1996
  ident: ref_68
  article-title: Cellular distribution and regulation of NHE-1 isoform of the NA-H exchanger in the avian osteoclast
  publication-title: Bone
  doi: 10.1016/8756-3282(95)00455-6
– volume: 8
  start-page: re1
  year: 2015
  ident: ref_75
  article-title: Plasma membrane-associated platforms: Dynamic scaffolds that organize membrane-associated events
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aaa3312
– volume: 276
  start-page: 270
  year: 1997
  ident: ref_13
  article-title: Removal of osteoclast bone resorption products by transcytosis
  publication-title: Science
  doi: 10.1126/science.276.5310.270
– volume: 202
  start-page: 345
  year: 2005
  ident: ref_40
  article-title: DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050645
– volume: 87
  start-page: 459
  year: 2008
  ident: ref_46
  article-title: Actin cytoskeletal organisation in osteoclasts: A model to decipher transmigration and matrix degradation
  publication-title: Eur. J. Cell Biol.
  doi: 10.1016/j.ejcb.2008.01.001
– volume: 74
  start-page: 72
  year: 2017
  ident: ref_43
  article-title: Dynamics of the sealing zone in cultured osteoclasts
  publication-title: Cytoskeleton
  doi: 10.1002/cm.21350
– volume: 34
  start-page: 275
  year: 1967
  ident: ref_18
  article-title: Cartilage resorption in the tibial epiphyseal plate of growing rats
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.34.1.275
– volume: 90
  start-page: 1622
  year: 1992
  ident: ref_17
  article-title: Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI116032
– volume: 3
  start-page: 15032
  year: 2015
  ident: ref_70
  article-title: Pit- and trench-forming osteoclasts: A distinction that matters
  publication-title: Bone Rep.
  doi: 10.1038/boneres.2015.32
– volume: 27
  start-page: 185
  year: 2011
  ident: ref_1
  article-title: Degrading devices: Invadosomes in proteolytic cell invasion
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-092910-154216
– ident: ref_22
  doi: 10.1371/journal.pone.0000179
– volume: 112
  start-page: 453
  year: 2003
  ident: ref_44
  article-title: Cellular motility driven by assembly and disassembly of actin filaments
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00120-X
– volume: 19
  start-page: 633
  year: 2008
  ident: ref_28
  article-title: Paxillin phosphorylation controls invadopodia/podosomes spatiotemporal organization
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-01-0088
– volume: 18
  start-page: 4899
  year: 2007
  ident: ref_45
  article-title: CD44 and β3 integrin organize two functionally distinct actin-based domains in osteoclasts
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-04-0378
– volume: 36
  start-page: 95
  year: 1988
  ident: ref_62
  article-title: Ultrastructural visualization of selective peanut agglutinin binding sites in rat osteoclasts
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/36.1.2447153
– ident: ref_57
– volume: 4
  start-page: 113
  year: 2003
  ident: ref_67
  article-title: Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake
  publication-title: Traffic
  doi: 10.1034/j.1600-0854.2003.40206.x
– volume: 122
  start-page: 3037
  year: 2009
  ident: ref_3
  article-title: Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.052704
– volume: 19
  start-page: 115
  year: 1996
  ident: ref_42
  article-title: Effects of calcitonin and parathyroid hormone on the distribution of F-actin in the clear zone of osteoclasts in vivo
  publication-title: Bone
  doi: 10.1016/8756-3282(96)00172-X
– volume: 8
  start-page: 1164
  year: 2018
  ident: ref_76
  article-title: Identification of a membrane-less compartment regulating invadosome function and motility
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19447-2
SSID ssj0023259
Score 2.4863057
SecondaryResourceType review_article
Snippet Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich...
Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 984
SubjectTerms Review
Title The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone
URI https://www.ncbi.nlm.nih.gov/pubmed/29587415
https://www.proquest.com/docview/2019478311
https://pubmed.ncbi.nlm.nih.gov/PMC5979552
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tSxwxEB58odAvorWtZ-0RQT-V2H1JNolQioqnCL5QPTj6ZdndJHhy7lnvBP33ndndO7xawS8LS5JdmMnmeZ7NZAZgC0E5N8hTOaUS50JHlmfaWK6lpvTsMg5sFSB7lhx3xUlP9uZgUm20MeDov9KO6kl17wc7j3-efuIH_4MUJ0r27_2b2xHiGioVLeZhETFJUS2DUzHdT0DaUJVNox8enBboOgT-xehZcHrBOP8NnHyGRJ1lWGooJNurfb4Cc678AO_qopJPq3CEnmeXyP8QlNjvYelYv2Tn6MxhgUx5PNple9g88Lw5huksu6ySyD7cOzYsGTJCto_DPkK3c3h1cMybcgm8EDIYc50V3noR2tAlJANsbE0hpZdOZYUWuYoTFyBbI5FgPLaqWHsUJHmQae8KHX-ChRIfv0YHuU0UZoEsfBQIa3KK5nOolROH64FSvgXfJnZKiyaXOJW0GKSoKciq6XOrtmB72vuuzqHxSr_NiclTnOS0c5GVbvgwSpGlGKF0HIYt-Fy7YPqkyEhNtKgFasY50w6UQHu2pexfV4m0UUwZKaP1N7z3C7zHm-o0YpRswAL6xX1FOjLO2zCvegqvunPUhsX9w7OLX20CCNmu5uBfjHXh3w
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Sealing+Zone+in+Osteoclasts%3A+A+Self-Organized+Structure+on+the+Bone&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Takito%2C+Jiro&rft.au=Inoue%2C+Satoshi&rft.au=Nakamura%2C+Masanori&rft.date=2018-03-26&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=19&rft.issue=4&rft_id=info:doi/10.3390%2Fijms19040984&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon