Recent advances in biomass phytic acid flame retardants
With the rapid growth of industrialization, polymers have become widely used in people's daily lives. However, the flammability of these materials poses a potential threat to people's safety and property. To support sustainable development, it is important and urgent to develop high-perfor...
Saved in:
Published in | Polymer testing Vol. 124; p. 108100 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid growth of industrialization, polymers have become widely used in people's daily lives. However, the flammability of these materials poses a potential threat to people's safety and property. To support sustainable development, it is important and urgent to develop high-performance, green flame retardants. One such material that has garnered significant attention in the flame-retardant field is biomass phytic acid, which has high phosphorus content and excellent biocompatibility. In this review, we focus on the use of phytic acid in plastics, fabrics, and other polymers for fire resistance, including its intrinsic flame-retardant properties, phytate metal, phytate ammonium and multicomponent compounds. We also discuss the proposed mechanisms behind these flame-retardant properties and explore future trends in the field.
[Display omitted]
•Recent advances of phytic acid and its derivatives as flame retardants are discussed.•Its classification, flame retardancy, and mechanism are introduced in detail.•Future developments of phytic acid-based flame retardants are discussed. |
---|---|
AbstractList | With the rapid growth of industrialization, polymers have become widely used in people's daily lives. However, the flammability of these materials poses a potential threat to people's safety and property. To support sustainable development, it is important and urgent to develop high-performance, green flame retardants. One such material that has garnered significant attention in the flame-retardant field is biomass phytic acid, which has high phosphorus content and excellent biocompatibility. In this review, we focus on the use of phytic acid in plastics, fabrics, and other polymers for fire resistance, including its intrinsic flame-retardant properties, phytate metal, phytate ammonium and multicomponent compounds. We also discuss the proposed mechanisms behind these flame-retardant properties and explore future trends in the field.
[Display omitted]
•Recent advances of phytic acid and its derivatives as flame retardants are discussed.•Its classification, flame retardancy, and mechanism are introduced in detail.•Future developments of phytic acid-based flame retardants are discussed. With the rapid growth of industrialization, polymers have become widely used in people's daily lives. However, the flammability of these materials poses a potential threat to people's safety and property. To support sustainable development, it is important and urgent to develop high-performance, green flame retardants. One such material that has garnered significant attention in the flame-retardant field is biomass phytic acid, which has high phosphorus content and excellent biocompatibility. In this review, we focus on the use of phytic acid in plastics, fabrics, and other polymers for fire resistance, including its intrinsic flame-retardant properties, phytate metal, phytate ammonium and multicomponent compounds. We also discuss the proposed mechanisms behind these flame-retardant properties and explore future trends in the field. |
ArticleNumber | 108100 |
Author | Cui, Yuanchen Li, Zhiwei Li, Menghua Liu, Yi Zhang, Anshen Cheng, Yamin |
Author_xml | – sequence: 1 givenname: Yi surname: Liu fullname: Liu, Yi organization: National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, PR China – sequence: 2 givenname: Anshen surname: Zhang fullname: Zhang, Anshen organization: College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China – sequence: 3 givenname: Yamin surname: Cheng fullname: Cheng, Yamin email: chengyamin@henu.edu.cn organization: College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China – sequence: 4 givenname: Menghua surname: Li fullname: Li, Menghua organization: College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China – sequence: 5 givenname: Yuanchen surname: Cui fullname: Cui, Yuanchen email: yccui@henu.edu.cn organization: National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, PR China – sequence: 6 givenname: Zhiwei surname: Li fullname: Li, Zhiwei email: zhiweili@henu.edu.cn organization: National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, PR China |
BookMark | eNqNkE1LAzEQhnNQUKv_YQ9eWycfze6CFy1WC4Igeg6zyURTtrslCUL_vakVQU-eBmZ4n5l5ztjRMA7E2CWHGQeur9az7djvNhQzpRyGt5kAIcuo4QBH7BS4EtNW8eaEnaW0BoB5SZ2y-pksDblC94GDpVSFoerCuMGUqu37LgdboQ2u8j1uqIqUMToccjpnxx77RBffdcJel3cvi4fp49P9anHzOLVqDnnaNLpua-8U6qYB0UGLuq5bAd7BvOEcQXiwtSTnZaew0SiFdNqr1jssf8kJWx24bsS12cawwbgzIwbz1Rjjm8FYruzJkHLcaqdLFSWvOyVkV0vpvJLat3vW9YFl45hSJP_D42D2Ek3Z8Eui2Us0B4klfvsnbkPGHMYhRwz9fyHLA4SKtI9A0SQbqJh3IZLN5avwP9An8xGd_g |
CitedBy_id | crossref_primary_10_1016_j_aiepr_2024_04_003 crossref_primary_10_1016_j_jcou_2024_102918 crossref_primary_10_1016_j_indcrop_2024_119034 crossref_primary_10_1002_app_56279 crossref_primary_10_1016_j_mtsust_2023_100528 crossref_primary_10_6000_1929_5995_2024_13_13 crossref_primary_10_1016_j_coco_2024_102065 crossref_primary_10_1016_j_polymertesting_2024_108467 crossref_primary_10_1016_j_coco_2025_102340 crossref_primary_10_1016_j_ijbiomac_2023_128033 crossref_primary_10_1016_j_polymdegradstab_2024_110895 crossref_primary_10_1016_j_energy_2024_133170 crossref_primary_10_1680_jgrma_24_00152 crossref_primary_10_1021_acs_macromol_4c02104 crossref_primary_10_1016_j_eurpolymj_2024_113525 crossref_primary_10_1016_j_colsurfa_2024_135809 crossref_primary_10_1016_j_jmst_2024_03_001 crossref_primary_10_3390_polym15224440 crossref_primary_10_1016_j_polymdegradstab_2024_111008 crossref_primary_10_3390_coatings14050574 crossref_primary_10_1016_j_cej_2024_153162 crossref_primary_10_1016_j_porgcoat_2023_108205 crossref_primary_10_1016_j_cej_2024_154773 crossref_primary_10_1007_s10570_024_06100_7 crossref_primary_10_1007_s10570_025_06407_z crossref_primary_10_1021_acssuschemeng_4c09232 crossref_primary_10_1016_j_cej_2023_145563 crossref_primary_10_1016_j_watres_2024_123019 crossref_primary_10_1016_j_jcis_2025_02_056 crossref_primary_10_1016_j_jclepro_2024_143615 crossref_primary_10_3390_molecules29225306 crossref_primary_10_1016_j_ijbiomac_2024_136304 crossref_primary_10_1016_j_ijbiomac_2024_137911 crossref_primary_10_1016_j_ijbiomac_2024_136868 crossref_primary_10_1016_j_polymdegradstab_2024_110830 crossref_primary_10_1016_j_indcrop_2024_118647 crossref_primary_10_1016_j_cej_2024_152827 crossref_primary_10_1016_j_polymdegradstab_2025_111242 crossref_primary_10_1016_j_polymdegradstab_2023_110518 crossref_primary_10_1016_j_ijbiomac_2023_128975 crossref_primary_10_1016_j_polymdegradstab_2024_111109 crossref_primary_10_1016_j_jobab_2023_10_004 crossref_primary_10_1016_j_ijbiomac_2024_139331 crossref_primary_10_1016_j_ijbiomac_2024_138121 crossref_primary_10_1016_j_ijbiomac_2024_137157 crossref_primary_10_1021_acsami_4c09184 crossref_primary_10_1016_j_ijbiomac_2024_136499 crossref_primary_10_1016_j_polymdegradstab_2024_111072 crossref_primary_10_1021_acsapm_4c00198 crossref_primary_10_1016_j_coco_2024_102055 crossref_primary_10_1016_j_cej_2025_161026 crossref_primary_10_1016_j_jcis_2024_06_005 crossref_primary_10_1016_j_polymdegradstab_2024_110985 crossref_primary_10_1016_j_mtcomm_2025_111821 crossref_primary_10_1002_adma_202414880 crossref_primary_10_1080_1023666X_2024_2421816 |
Cites_doi | 10.1016/j.cej.2020.128223 10.1002/pat.5190 10.1016/j.porgcoat.2019.04.018 10.3390/polym8090319 10.1007/s10853-020-05367-y 10.1002/pat.5165 10.1002/app.47243 10.1016/j.jclepro.2019.03.157 10.1007/s10853-017-1354-5 10.1016/j.apsusc.2013.03.061 10.1016/j.indcrop.2021.113349 10.1016/j.polymdegradstab.2019.02.005 10.1016/j.compositesb.2022.109887 10.1016/j.compositesb.2021.108919 10.1007/s12298-020-00818-x 10.1002/app.50413 10.1002/fam.2877 10.1016/j.ijbiomac.2019.08.049 10.1021/acsami.1c00880 10.1007/s10973-020-10420-8 10.1007/s10570-013-0122-1 10.1002/adfm.202212124 10.1016/j.micromeso.2021.110951 10.1016/j.compositesb.2019.107588 10.1007/s10570-012-9830-1 10.1177/0954008313517910 10.1007/s10570-018-1745-z 10.1680/jgrma.19.00054 10.1080/10667857.2004.11753063 10.1016/j.polymdegradstab.2018.11.024 10.3390/coatings10090848 10.1016/j.jaap.2017.06.003 10.1021/bm300873b 10.1016/j.polymdegradstab.2022.109898 10.1021/acssuschemeng.8b04851 10.1002/app.46601 10.1016/j.jclepro.2016.02.113 10.1177/0021955X17720157 10.1002/app.46599 10.1021/acsapm.2c00138 10.1016/j.jhazmat.2020.123001 10.1002/pat.5335 10.1002/pat.5447 10.1016/j.polymdegradstab.2020.109220 10.1039/D0GC00449A 10.1007/s10570-021-03714-z 10.1007/s10965-020-02176-4 10.1007/s10856-020-06387-5 10.1016/j.porgcoat.2021.106597 10.1002/pat.5316 10.1007/s12221-021-0678-6 10.1016/j.colsurfa.2019.04.044 10.1002/pat.1088 10.1002/pat.5454 10.1002/fam.2482 10.3390/polym13172900 10.1016/j.jallcom.2019.152875 10.1016/j.hydromet.2019.105234 10.1016/j.compositesb.2019.01.086 10.1002/pat.3030 10.1016/j.porgcoat.2020.105539 10.1016/j.ceramint.2020.11.245 10.1016/j.compositesb.2020.108124 10.1007/s10570-017-1550-0 10.1002/mame.202000207 10.1016/j.porgcoat.2021.106271 10.1002/app.49727 10.1016/j.carbpol.2012.09.032 10.1039/C4TA06486K 10.1016/j.polymdegradstab.2021.109696 10.1016/j.polymertesting.2020.106741 10.1016/j.coco.2019.11.011 10.1016/j.mser.2017.04.001 10.1016/j.carbpol.2017.06.129 10.1039/D0DT02019B 10.1021/acs.iecr.7b02303 10.1002/pat.5429 10.1002/pat.1335 10.1021/acsomega.0c05778 10.1016/j.carbpol.2014.09.025 10.1016/j.mser.2020.100604 10.3390/polym15020360 10.1016/j.matchemphys.2022.126674 10.1016/j.compositesa.2022.107279 10.3390/ma14133620 10.1016/j.coco.2022.101282 10.1021/acsami.1c01992 10.1002/pat.265 10.1016/j.polymdegradstab.2016.01.022 10.1007/s10570-020-03003-1 10.1016/j.jmrt.2022.02.051 10.1021/acsami.7b14958 10.1039/C4RA09243K 10.1002/app.38382 10.1016/j.ijbiomac.2021.02.023 10.1016/j.polymdegradstab.2019.07.005 10.1016/j.eurpolymj.2017.07.018 10.1016/j.compositesa.2022.107417 10.1021/ie503421f 10.3390/polym11010071 10.1021/acssuschemeng.6b02712 10.1016/j.compositesa.2018.04.027 10.1016/j.compositesb.2019.107371 10.1016/j.cej.2019.05.012 10.1016/j.jcis.2019.06.015 10.1007/s10570-021-03681-5 10.1021/acsapm.0c01155 10.1016/j.jclepro.2019.118552 10.1016/j.pmatsci.2020.100687 10.1002/sus2.73 10.1016/j.polymdegradstab.2015.05.014 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.polymertesting.2023.108100 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | oai_doaj_org_article_e4d1c6d6e4d249f6b423b733df436f91 10_1016_j_polymertesting_2023_108100 S0142941823001800 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXKI AAXUO ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADVLN AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c450t-886797fd4a68802b09a677920fd05811a02f0c73edf3b4a86a323d6f49fda1013 |
IEDL.DBID | .~1 |
ISSN | 0142-9418 |
IngestDate | Wed Aug 27 01:30:27 EDT 2025 Tue Jul 01 04:26:51 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Tue Dec 03 03:44:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flame retardants Flame-retardant mechanism Biomass Phytic acid |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-886797fd4a68802b09a677920fd05811a02f0c73edf3b4a86a323d6f49fda1013 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0142941823001800 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e4d1c6d6e4d249f6b423b733df436f91 crossref_primary_10_1016_j_polymertesting_2023_108100 crossref_citationtrail_10_1016_j_polymertesting_2023_108100 elsevier_sciencedirect_doi_10_1016_j_polymertesting_2023_108100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Polymer testing |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Holdsworth, Horrocks, Kandola (bib56) 2020; 179 Wang, Wei, Deng, Lyu, Zhu, Yang (bib66) 2021; 13 Wan, Zhang, Zhang (bib8) 2020; 27 Zhou, Ding, Qian, An (bib51) 2015; 115 Li, Chen, Lu, Wei, Huang, Jiang (bib30) 2021; 6 Yang, Yu, Xu, Bourbigot, Wang, Song (bib28) 2020; 22 Zhang, Cui, Wang, Yu, Li, Yang (bib9) 2020; 138 Das, Kim, Hedenqvist, Bhattacharyya, Johansson, Xu (bib13) 2020; 243 Xing, Song, Lu, Hu, Zhou (bib100) 2009; 20 Zhao, Cheng, Li, Li, Zhang (bib55) 2020; 56 Wang, Huo, Wang, Yang, Chen, Li (bib70) 2022; 4 Cheng, Shi, Fan, Yu, Liu (bib85) 2022; 199 Sun, Li, Das, Hedenqvist (bib16) 2023; 167 Liu, Shi, Zhang, Yan, Chen, Chen (bib64) 2021; 32 Huang, Wang (bib71) 2021 Wang, Zhao, Degracia, Han, Sun, Sun (bib27) 2017; 9 Zhang, Yan, Shen, Fang, Zhang, Wang (bib112) 2014; 53 Zhong, Wang, Sun, Yin, Tian, Ying (bib34) 2023; 15 Yang, Tawiah, Yu, Qian, Wang, Yuen (bib59) 2018; 110 Qiu, Li, Li, Zhang (bib15) 2022; 35 Shen, Guo, Song, Pan, Wang, Wen (bib37) 2013; 276 Fang, Ran, Fang, Song, Wang (bib93) 2019; 165 Zhu, Liu, Zhao, Chen, Li, He (bib53) 2020; 191 Czlonka, Kairyte, Miedzinska, Strakowska (bib92) 2021; 14 Depeng, Chixiang, Xiulei, Tao, Ling (bib96) 2017; 54 Liu, Feng, Xue, Chevali, Zhang, Shi (bib3) 2022; 33 Zhang, Yan, Shen, Fang, Zhang, Wang (bib75) 2014; 4 Cheng, Guan, Yang, Tang, Yao (bib109) 2019; 223 Costes, Laoutid, Brohez, Dubois (bib25) 2017; 117 Wang, Liao, Hu, Pan, Li, Wang (bib69) 2019; 159 Yang, Zhang, Liu, Yang, Liu, Chen (bib73) 2021 Wang, Liu, Li (bib32) 2017; 5 Yang, Li, Niu, Wang, Zhu (bib29) 2021; 219 Fang, Sun, Li, Liu, Liu (bib108) 2021; 175 Malkappa, Salehiyan, Ray (bib5) 2020; 305 Zhou, Qiu, Chu, Liu, Yang, Hu (bib12) 2023; 164 Cheng, Wu, Meng, Xu, Han, Yu (bib61) 2018; 135 Zheng, Liao, Xia, Liu, Dai, Li (bib24) 2020; 90 Cheng, Guan, Tang, Liu (bib48) 2016; 124 Lewin, Endo (bib54) 2003; 14 Yang, Wang, Fei, Li, Gu, Sun (bib79) 2021; 32 Huang, Ruan, Wu, Ma, Jiang, Tsai (bib97) 2020; 138 Shi, Zhao, Zhao, Li, Li, Zhang (bib115) 2021; 22 Medvecky, Stulajterova, Giretova, Sopcak, Molcanova, Koval (bib35) 2020; 31 Qiu, Wan, Wang, Li, Li, Li (bib18) 2022; 238 Abraham, Deepa, Pothan, John, Narine, Thomas (bib20) 2013; 20 Zhang, Zeng, Jiang, Li, Bai, Li (bib103) 2021; 13 Kalali, Montes, Wang, Zhang, Shabestari, Li (bib42) 2018; 42 Marney, Yang, Russell, Shen, Nguyen, Yuan (bib6) 2012; 23 Hu, Xu, Zhao, Wang (bib21) 2019; 136 Luo, Shi, Qian, Zhou (bib58) 2022; 291 Zhao, Tang, Hou, Fu (bib87) 2020; 10 Zhang, Ma, Leng, Wang (bib88) 2019; 140 Schinazi, Moraes d'Almeida, Pokorski, Schiraldi (bib23) 2020; 3 Jin, Gu, Chen, Tang, Li, Liu (bib90) 2017; 52 Liu, Pan, Wang, Hou, Gui, Hu (bib22) 2017; 56 Zhang, Jin, Gu, Chen, Li, Zhang (bib33) 2018; 135 Zhang, Chen, Liu, Liu, Liu, Yu (bib52) 2020; 818 Zhang, Chen, Fang (bib107) 2013; 128 Nie, Hu, Song, He, Yang (bib98) 2008; 19 Qiu, Li, Chevali, Song, Li, Zhang (bib4) 2023 Zhang, Tian, Liu, Cheng, Wang, Liew (bib84) 2019; 372 Shan, Jiang, Li, Song, Han, Hu (bib104) 2019; 11 Feng, Zhou, Li, He, Zhang, Zhang (bib80) 2017; 175 Chen, Xu, Chen, Ma, He, Yu (bib95) 2014; 26 Nam, Condon, Xia, Nagarajan, Hinchliffe, Madison (bib91) 2017; 126 Sun, Yuan, Shang, Zhang, Shi, Yu (bib105) 2020; 181 Gong, Fan, Luo, Liang, Meng (bib63) 2020; 32 Guo, Yang, Li, Sun, Liu, Gu (bib113) 2021 Zhang, Li, Ma, Ning, Zhang, Wang (bib111) 2020; 49 Fang, Huo, Shen, Ran, Wang, Song (bib43) 2020; 17 Wang, Ma, Li, Zhao, Zhou, Wang (bib11) 2021; 13 Pramitha, Jeeva, Ravikesavan, Joel, Vinothana, Meenakumari (bib36) 2020; 26 Ye, Huo, Wang, Shi, Liu, Wang (bib77) 2021; 192 Kim, Cho, Yeo, Lee, Moon, Ha (bib26) 2019; 7 Cheng, Tang, Yao, Yang (bib74) 2019; 132 Gao, Deng, Du, Huang, Wang (bib72) 2019; 161 Vahabi, Laoutid, Mehrpouya, Saeb, Dubois (bib10) 2021; 144 Bloot, Kalschne, Amaral, Baraldi, Canan (bib39) 2021 Xue, Zuo, Wang, Zhou, Pan, Li (bib106) 2020; 196 Jin, Xiang, Zhang, Qin, He, Jiang (bib86) 2022; 17 Xing, Li, Lin, Ma, Qu, Fan (bib114) 2020; 44 Zhu, Shang, Wang, Wang (bib78) 2019; 167 Zhang, Hu, Sun, Zhai, Yin, Guan (bib38) 2019; 573 Mao, Wu, Qian, An (bib49) 2013; 21 Dufton (bib17) 2016; 19 Sai, Ran, Guo, Yan, Zhang, Wang (bib57) 2021; 409 Naiker, Mestry, Nirgude, Gadgeel, Mhaske (bib46) 2022 Zhang, Yang, Liu, Zou, Kan, Deng (bib60) 2022; 61 He, Song, Yu, Fang, Wang (bib7) 2020; 114 Xu, Zhang, Wang, Dai (bib102) 2021; 28 Costes, Laoutid, Dumazert, Lopez-cuesta, Brohez, Delvosalle (bib62) 2015; 119 Sykam, Försth, Sas, Restás, Das (bib14) 2021; 164 Zhang, Yi, Hao, Gao (bib76) 2020; 32 Sai, Ran, Guo, Song, Fang (bib19) 2022; 2 Patra, Kjellin, Larsson (bib67) 2020; 8 Laufer, Kirkland, Morgan, Grunlan (bib110) 2012; 13 Shang, Ma, Yuan, Chen, Sun, Huang (bib94) 2019; 177 Su, Cheng, Zheng, Liu, Ren, He (bib101) 2021; 28 Kong, He, Peng, Nie, Dong, Yang (bib45) 2020; 27 Liu, Zhang, Cheng, Ren, Zhang, Ding (bib81) 2017; 25 Ortelli, Malucelli, Cuttica, Blosi, Zanoni, Costa (bib31) 2018; 25 Qin, Li, Yang (bib99) 2016; 126 Xu, Li, Shen, Wang, Hu, Wang (bib65) 2021; 146 Zhang, Shi, Yuan, Liu (bib40) 2021; 47 Liu, Shi, Ge, Huang, Chen, Mu (bib47) 2021; 156 Song, Liu, Fan, Li, Ou, Liu (bib82) 2022; 162 Cheng, Tang, Guan, Zhou (bib44) 2020; 141 Yang, Huang, Tu, Wu, Huang, Wang (bib2) 2021; 316 Wu, Qian, An (bib50) 2013; 92 Salmeia, Gaan, Malucelli (bib41) 2016; 8 Shang, Yuan, Sun, Chen, Huang, Yu (bib68) 2019; 553 Costes, Laoutid, Brohez, Delvosalle, Dubois (bib89) 2017; 94 Li, Zhang, Hu, Yang, Cheng, Xie (bib83) 2020; 398 Jiang, Cheng, Liu, Wang, He, Wang (bib1) 2015; 3 Liu (10.1016/j.polymertesting.2023.108100_bib3) 2022; 33 Zhang (10.1016/j.polymertesting.2023.108100_bib38) 2019; 573 Wang (10.1016/j.polymertesting.2023.108100_bib66) 2021; 13 Feng (10.1016/j.polymertesting.2023.108100_bib80) 2017; 175 Cheng (10.1016/j.polymertesting.2023.108100_bib109) 2019; 223 Sai (10.1016/j.polymertesting.2023.108100_bib19) 2022; 2 Laufer (10.1016/j.polymertesting.2023.108100_bib110) 2012; 13 Yang (10.1016/j.polymertesting.2023.108100_bib29) 2021; 219 Yang (10.1016/j.polymertesting.2023.108100_bib2) 2021; 316 Bloot (10.1016/j.polymertesting.2023.108100_bib39) 2021 Yang (10.1016/j.polymertesting.2023.108100_bib28) 2020; 22 Fang (10.1016/j.polymertesting.2023.108100_bib93) 2019; 165 Kong (10.1016/j.polymertesting.2023.108100_bib45) 2020; 27 Huang (10.1016/j.polymertesting.2023.108100_bib97) 2020; 138 Zheng (10.1016/j.polymertesting.2023.108100_bib24) 2020; 90 Costes (10.1016/j.polymertesting.2023.108100_bib25) 2017; 117 Malkappa (10.1016/j.polymertesting.2023.108100_bib5) 2020; 305 Sykam (10.1016/j.polymertesting.2023.108100_bib14) 2021; 164 Ortelli (10.1016/j.polymertesting.2023.108100_bib31) 2018; 25 Li (10.1016/j.polymertesting.2023.108100_bib30) 2021; 6 Xu (10.1016/j.polymertesting.2023.108100_bib65) 2021; 146 Wang (10.1016/j.polymertesting.2023.108100_bib27) 2017; 9 Zhang (10.1016/j.polymertesting.2023.108100_bib60) 2022; 61 Yang (10.1016/j.polymertesting.2023.108100_bib79) 2021; 32 Ye (10.1016/j.polymertesting.2023.108100_bib77) 2021; 192 Wang (10.1016/j.polymertesting.2023.108100_bib70) 2022; 4 Zhang (10.1016/j.polymertesting.2023.108100_bib76) 2020; 32 Xue (10.1016/j.polymertesting.2023.108100_bib106) 2020; 196 Kim (10.1016/j.polymertesting.2023.108100_bib26) 2019; 7 Shen (10.1016/j.polymertesting.2023.108100_bib37) 2013; 276 Costes (10.1016/j.polymertesting.2023.108100_bib62) 2015; 119 Shang (10.1016/j.polymertesting.2023.108100_bib68) 2019; 553 Xu (10.1016/j.polymertesting.2023.108100_bib102) 2021; 28 Holdsworth (10.1016/j.polymertesting.2023.108100_bib56) 2020; 179 Jin (10.1016/j.polymertesting.2023.108100_bib86) 2022; 17 Zhang (10.1016/j.polymertesting.2023.108100_bib33) 2018; 135 Zhang (10.1016/j.polymertesting.2023.108100_bib75) 2014; 4 Sai (10.1016/j.polymertesting.2023.108100_bib57) 2021; 409 Sun (10.1016/j.polymertesting.2023.108100_bib16) 2023; 167 Shang (10.1016/j.polymertesting.2023.108100_bib94) 2019; 177 Xing (10.1016/j.polymertesting.2023.108100_bib100) 2009; 20 Zhang (10.1016/j.polymertesting.2023.108100_bib40) 2021; 47 Qiu (10.1016/j.polymertesting.2023.108100_bib15) 2022; 35 Naiker (10.1016/j.polymertesting.2023.108100_bib46) 2022 Jin (10.1016/j.polymertesting.2023.108100_bib90) 2017; 52 Zhang (10.1016/j.polymertesting.2023.108100_bib112) 2014; 53 Gong (10.1016/j.polymertesting.2023.108100_bib63) 2020; 32 Cheng (10.1016/j.polymertesting.2023.108100_bib61) 2018; 135 Zhao (10.1016/j.polymertesting.2023.108100_bib87) 2020; 10 Nie (10.1016/j.polymertesting.2023.108100_bib98) 2008; 19 Zhao (10.1016/j.polymertesting.2023.108100_bib55) 2020; 56 Liu (10.1016/j.polymertesting.2023.108100_bib22) 2017; 56 Costes (10.1016/j.polymertesting.2023.108100_bib89) 2017; 94 Fang (10.1016/j.polymertesting.2023.108100_bib108) 2021; 175 Abraham (10.1016/j.polymertesting.2023.108100_bib20) 2013; 20 Guo (10.1016/j.polymertesting.2023.108100_bib113) 2021 Medvecky (10.1016/j.polymertesting.2023.108100_bib35) 2020; 31 Liu (10.1016/j.polymertesting.2023.108100_bib47) 2021; 156 Zhang (10.1016/j.polymertesting.2023.108100_bib111) 2020; 49 Song (10.1016/j.polymertesting.2023.108100_bib82) 2022; 162 Salmeia (10.1016/j.polymertesting.2023.108100_bib41) 2016; 8 Shi (10.1016/j.polymertesting.2023.108100_bib115) 2021; 22 Wan (10.1016/j.polymertesting.2023.108100_bib8) 2020; 27 Zhang (10.1016/j.polymertesting.2023.108100_bib52) 2020; 818 Luo (10.1016/j.polymertesting.2023.108100_bib58) 2022; 291 Kalali (10.1016/j.polymertesting.2023.108100_bib42) 2018; 42 Cheng (10.1016/j.polymertesting.2023.108100_bib44) 2020; 141 Zhang (10.1016/j.polymertesting.2023.108100_bib103) 2021; 13 Dufton (10.1016/j.polymertesting.2023.108100_bib17) 2016; 19 Pramitha (10.1016/j.polymertesting.2023.108100_bib36) 2020; 26 Shan (10.1016/j.polymertesting.2023.108100_bib104) 2019; 11 Zhong (10.1016/j.polymertesting.2023.108100_bib34) 2023; 15 Zhang (10.1016/j.polymertesting.2023.108100_bib88) 2019; 140 Wang (10.1016/j.polymertesting.2023.108100_bib32) 2017; 5 Depeng (10.1016/j.polymertesting.2023.108100_bib96) 2017; 54 Liu (10.1016/j.polymertesting.2023.108100_bib64) 2021; 32 Zhu (10.1016/j.polymertesting.2023.108100_bib78) 2019; 167 Qiu (10.1016/j.polymertesting.2023.108100_bib4) 2023 Schinazi (10.1016/j.polymertesting.2023.108100_bib23) 2020; 3 Wang (10.1016/j.polymertesting.2023.108100_bib69) 2019; 159 Zhang (10.1016/j.polymertesting.2023.108100_bib9) 2020; 138 Czlonka (10.1016/j.polymertesting.2023.108100_bib92) 2021; 14 Zhang (10.1016/j.polymertesting.2023.108100_bib84) 2019; 372 Su (10.1016/j.polymertesting.2023.108100_bib101) 2021; 28 Das (10.1016/j.polymertesting.2023.108100_bib13) 2020; 243 Cheng (10.1016/j.polymertesting.2023.108100_bib48) 2016; 124 Liu (10.1016/j.polymertesting.2023.108100_bib81) 2017; 25 Yang (10.1016/j.polymertesting.2023.108100_bib59) 2018; 110 Vahabi (10.1016/j.polymertesting.2023.108100_bib10) 2021; 144 Cheng (10.1016/j.polymertesting.2023.108100_bib85) 2022; 199 Wu (10.1016/j.polymertesting.2023.108100_bib50) 2013; 92 Jiang (10.1016/j.polymertesting.2023.108100_bib1) 2015; 3 Gao (10.1016/j.polymertesting.2023.108100_bib72) 2019; 161 Zhang (10.1016/j.polymertesting.2023.108100_bib107) 2013; 128 Patra (10.1016/j.polymertesting.2023.108100_bib67) 2020; 8 Cheng (10.1016/j.polymertesting.2023.108100_bib74) 2019; 132 Wang (10.1016/j.polymertesting.2023.108100_bib11) 2021; 13 Zhou (10.1016/j.polymertesting.2023.108100_bib51) 2015; 115 Huang (10.1016/j.polymertesting.2023.108100_bib71) 2021 He (10.1016/j.polymertesting.2023.108100_bib7) 2020; 114 Zhu (10.1016/j.polymertesting.2023.108100_bib53) 2020; 191 Fang (10.1016/j.polymertesting.2023.108100_bib43) 2020; 17 Xing (10.1016/j.polymertesting.2023.108100_bib114) 2020; 44 Nam (10.1016/j.polymertesting.2023.108100_bib91) 2017; 126 Qiu (10.1016/j.polymertesting.2023.108100_bib18) 2022; 238 Sun (10.1016/j.polymertesting.2023.108100_bib105) 2020; 181 Chen (10.1016/j.polymertesting.2023.108100_bib95) 2014; 26 Hu (10.1016/j.polymertesting.2023.108100_bib21) 2019; 136 Lewin (10.1016/j.polymertesting.2023.108100_bib54) 2003; 14 Zhou (10.1016/j.polymertesting.2023.108100_bib12) 2023; 164 Mao (10.1016/j.polymertesting.2023.108100_bib49) 2013; 21 Li (10.1016/j.polymertesting.2023.108100_bib83) 2020; 398 Qin (10.1016/j.polymertesting.2023.108100_bib99) 2016; 126 Marney (10.1016/j.polymertesting.2023.108100_bib6) 2012; 23 Yang (10.1016/j.polymertesting.2023.108100_bib73) 2021 |
References_xml | – volume: 115 start-page: 670 year: 2015 end-page: 676 ident: bib51 article-title: Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant publication-title: Carbohydr. Polym. – volume: 164 year: 2023 ident: bib12 article-title: Passivation of black phosphorus by triazine-based silica coating: hierarchical BP@SiO2-N@Co(OH)2 structure for enhanced fire safety and toughness of unsaturated polyester resins publication-title: Compos. Appl. Sci. Manuf. – volume: 818 year: 2020 ident: bib52 article-title: Anticorrosion study of phytic acid ligand binding with exceptional self-sealing functionality publication-title: J. Alloys Compd. – volume: 14 start-page: 3 year: 2003 end-page: 11 ident: bib54 article-title: Catalysis of intumescent flame retardancy of polypropylene by metallic compounds publication-title: Polym. Adv. Technol. – volume: 31 start-page: 54 year: 2020 ident: bib35 article-title: Enzymatically hardened calcium phosphate biocement with phytic acid addition publication-title: J. Mater. Sci. Mater. Med. – volume: 47 start-page: 8795 year: 2021 end-page: 8802 ident: bib40 article-title: Magnetic properties of iron-based soft magnetic composites prepared via phytic acid surface treatment publication-title: Ceram. Int. – volume: 114 year: 2020 ident: bib7 article-title: Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants publication-title: Prog. Mater. Sci. – volume: 22 start-page: 2656 year: 2021 end-page: 2663 ident: bib115 article-title: Fabrication of bismuth oxychloride nanosheets decorated with chitosan and phytic acid for improvement of flexible poly(vinyl chloride) flame retardancy publication-title: Fibers Polym. – volume: 17 start-page: 104 year: 2020 end-page: 108 ident: bib43 article-title: A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins publication-title: Compos. Commun. – volume: 167 year: 2023 ident: bib16 article-title: Superior flame retardancy and smoke suppression of epoxy resins with zinc ferrite@polyphosphazene nanocomposites publication-title: Compos. Appl. Sci. Manuf. – volume: 56 start-page: 2702 year: 2020 end-page: 2716 ident: bib55 article-title: Improvement in fire-retardant properties of polypropylene filled with intumescent flame retardants, using flower-like nickel cobaltate as synergist publication-title: J. Mater. Sci. – volume: 8 start-page: 123 year: 2020 end-page: 130 ident: bib67 article-title: Phytic acid-based flame retardants for cotton publication-title: Green Mater. – volume: 138 year: 2020 ident: bib9 article-title: Cross‐linked Salen‐based polyphosphazenes (Salen‐PZNs) enhancing the fire resistance of epoxy resin composites publication-title: J. Appl. Polym. Sci. – volume: 35 year: 2022 ident: bib15 article-title: Fabrication of dimethyl methylphosphonate-loaded mesoporous silica nano fire extinguisher and flame retarding unsaturated polyester publication-title: Compos. Commun. – volume: 219 year: 2021 ident: bib29 article-title: Poly(vinylalcohol)/chitosan-based high-strength, fire-retardant and smoke-suppressant composite aerogels incorporating aluminum species via freeze drying publication-title: Compos. B Eng. – volume: 141 year: 2020 ident: bib44 article-title: An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach publication-title: Prog. Org. Coating – volume: 8 year: 2016 ident: bib41 article-title: Recent advances for flame retardancy of textiles based on phosphorus chemistry publication-title: Polymers (Basel) – volume: 179 year: 2020 ident: bib56 article-title: Novel metal complexes as potential synergists with phosphorus based flame retardants in polyamide 6.6 publication-title: Polym. Degrad. Stabil. – year: 2023 ident: bib4 article-title: Functionalized mesoporous silica fire retardant via hierarchical assembly for improved fire retardancy of unsaturated polyester publication-title: ACS.Appl. Polym.Mater – volume: 13 start-page: 2843 year: 2012 end-page: 2848 ident: bib110 article-title: Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton publication-title: Biomacromolecules – volume: 11 year: 2019 ident: bib104 article-title: Preparation of beta-cyclodextrin inclusion complex and its application as an intumescent flame retardant for epoxy publication-title: Polymers (Basel) – volume: 9 start-page: 42258 year: 2017 end-page: 42265 ident: bib27 article-title: Green approach to improving the strength and flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating biobased gelatin publication-title: ACS Appl. Mater. Interfaces – volume: 15 year: 2023 ident: bib34 article-title: Fabrication of phytic acid/urea Co-modified bamboo biochar and its application as green flame retardant for polylactic acid resins publication-title: Polymers (Basel) – volume: 5 start-page: 2375 year: 2017 end-page: 2383 ident: bib32 article-title: Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites publication-title: ACS Sustain. Chem. Eng. – volume: 61 start-page: 1204 year: 2022 end-page: 1222 ident: bib60 article-title: Rigid polyurethane foam composites based on bivalent metal phytate: thermal stability, flame retardancy, and fire toxicity publication-title: Polym.-Plast. Technol. Mater – volume: 32 start-page: 1548 year: 2020 end-page: 1559 ident: bib63 article-title: Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid publication-title: Polym. Adv. Technol. – start-page: 1 year: 2021 end-page: 20 ident: bib39 article-title: A review of phytic acid sources, obtention, and applications publication-title: Food Rev. Int. – volume: 553 start-page: 364 year: 2019 end-page: 371 ident: bib68 article-title: Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology publication-title: J. Colloid Interface Sci. – volume: 26 start-page: 445 year: 2014 end-page: 454 ident: bib95 article-title: Thermal stability and combustion behavior of flame-retardant polypropylene with thermoplastic polyurethane-microencapsulated ammonium polyphosphate publication-title: High Perform. Polym. – volume: 175 start-page: 636 year: 2017 end-page: 644 ident: bib80 article-title: A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric publication-title: Carbohydr. Polym. – volume: 398 year: 2020 ident: bib83 article-title: Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets publication-title: J. Hazard Mater. – volume: 27 year: 2020 ident: bib45 article-title: Eco-friendly flame retardant poly(lactic acid) composites based on banana peel powders and phytic acid: flame retardancy and thermal property publication-title: J. Polym. Res. – year: 2021 ident: bib113 article-title: Construction of bio‐safety flame retardant coatings on polyethylene terephthalate fabric with ammonium phytate and cyclodextrin publication-title: Polym. Adv. Technol. – volume: 124 start-page: 114 year: 2016 end-page: 119 ident: bib48 article-title: Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric publication-title: J. Clean. Prod. – volume: 146 start-page: 153 year: 2021 end-page: 164 ident: bib65 article-title: Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins publication-title: J. Therm. Anal. Calorim. – volume: 135 year: 2018 ident: bib61 article-title: Application of metallic phytates to poly(vinyl chloride) as efficient biobased phosphorous flame retardants publication-title: J. Appl. Polym. Sci. – volume: 196 year: 2020 ident: bib106 article-title: Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate publication-title: Compos. B Eng. – volume: 54 start-page: 615 year: 2017 end-page: 631 ident: bib96 article-title: Synergistic effects of intumescent flame retardant and nano-CaCO3 on foamability and flame-retardant property of polypropylene composites foams publication-title: J. Cell. Plast. – volume: 156 year: 2021 ident: bib47 article-title: A bio-based flame retardant coating used for polyamide 66 fabric publication-title: Prog. Org. Coating – volume: 3 start-page: 4284 year: 2015 end-page: 4290 ident: bib1 article-title: Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites publication-title: J. Mater. Chem. – volume: 119 start-page: 217 year: 2015 end-page: 227 ident: bib62 article-title: Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid) publication-title: Polym. Degrad. Stabil. – volume: 4 start-page: 3564 year: 2022 end-page: 3574 ident: bib70 article-title: Green and facile synthesis of bio-based, flame-retardant, latent imidazole curing agent for single-component epoxy resin publication-title: ACS.Appl. Polym.Mater – volume: 199 year: 2022 ident: bib85 article-title: Bio-based coating of phytic acid, chitosan, and biochar for flame-retardant cotton fabrics publication-title: Polym. Degrad. Stabil. – volume: 10 year: 2020 ident: bib87 article-title: Preparation and synergistic effect of chitosan/sodium phytate/MgO nanoparticle fire-retardant coatings on wood substrate through layer-by-layer self-assembly publication-title: Coatings – volume: 165 start-page: 406 year: 2019 end-page: 416 ident: bib93 article-title: Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water publication-title: Compos. B Eng. – volume: 33 year: 2022 ident: bib3 article-title: 2D MXenes for fire retardancy and fire‐warning applications: promises and prospects publication-title: Adv. Funct. Mater. – volume: 6 start-page: 3921 year: 2021 end-page: 3930 ident: bib30 article-title: Combustion behavior and thermal degradation properties of wood impregnated with intumescent biomass flame retardants: phytic acid, hydrolyzed collagen, and glycerol publication-title: ACS Omega – volume: 32 start-page: 3232 year: 2021 end-page: 3241 ident: bib64 article-title: Coordination driven layer‐by‐layer deposition technology used for fabrication of flame retardant polyamide 66 fabric publication-title: Polym. Adv. Technol. – volume: 135 year: 2018 ident: bib33 article-title: The preparation of fully bio-based flame retardant poly(lactic acid) composites containing casein publication-title: J. Appl. Polym. Sci. – volume: 25 start-page: 799 year: 2017 end-page: 811 ident: bib81 article-title: Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent publication-title: Cellulose – volume: 19 start-page: 489 year: 2008 end-page: 495 ident: bib98 article-title: Study on a novel and efficient flame retardant synergist–nanoporous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene publication-title: Polym. Adv. Technol. – volume: 20 start-page: 696 year: 2009 end-page: 702 ident: bib100 article-title: Flame retardancy and thermal degradation of intumescent flame retardant polypropylene with MP/TPMP publication-title: Polym. Adv. Technol. – volume: 21 start-page: 697 year: 2013 end-page: 704 ident: bib49 article-title: Conductivity and flame retardancy of polyaniline-deposited functional cellulosic paper doped with organic sulfonic acids publication-title: Cellulose – volume: 132 start-page: 336 year: 2019 end-page: 342 ident: bib74 article-title: Flame retardant coating of wool fabric with phytic acid/polyethyleneimine polyelectrolyte complex publication-title: Prog. Org. Coating – volume: 19 start-page: 45 year: 2016 end-page: 50 ident: bib17 article-title: Flame retardant materials for plastics publication-title: Mater. Technol. – volume: 238 year: 2022 ident: bib18 article-title: A simple and universal strategy for construction and application of silica-based flame-retardant nanostructure publication-title: Compos. B Eng. – volume: 7 start-page: 3858 year: 2019 end-page: 3865 ident: bib26 article-title: Flame retardant epoxy derived from tannic acid as biobased hardener publication-title: ACS Sustain. Chem. Eng. – volume: 28 start-page: 3201 year: 2021 end-page: 3214 ident: bib101 article-title: A novel biomass vitamin B6-based flame retardant for lyocell fibers publication-title: Cellulose – volume: 191 year: 2020 ident: bib53 article-title: A green method for decomposition of scheelite under normal atmospheric pressure by sodium phytate publication-title: Hydrometallurgy – volume: 28 start-page: 3807 year: 2021 end-page: 3822 ident: bib102 article-title: A novel ε-polylysine-derived durable phosphorus‐nitrogen‐based flame retardant for cotton fabrics publication-title: Cellulose – volume: 372 start-page: 1077 year: 2019 end-page: 1090 ident: bib84 article-title: Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings publication-title: Chem. Eng. J. – volume: 4 start-page: 48285 year: 2014 end-page: 48292 ident: bib75 article-title: A phosphorus-, nitrogen- and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropylene publication-title: RSC Adv. – volume: 94 start-page: 270 year: 2017 end-page: 285 ident: bib89 article-title: Phytic acid–lignin combination: a simple and efficient route for enhancing thermal and flame retardant properties of polylactide publication-title: Eur. Polym. J. – volume: 49 start-page: 11226 year: 2020 end-page: 11237 ident: bib111 article-title: A facile and green strategy to simultaneously enhance the flame retardant and mechanical properties of poly(vinyl alcohol) by introduction of a bio-based polyelectrolyte complex formed by chitosan and phytic acid publication-title: Dalton Trans. – volume: 13 year: 2021 ident: bib66 article-title: Synergistic flame retardant effect of barium phytate and intumescent flame retardant for epoxy resin publication-title: Polymers (Basel) – volume: 32 start-page: 3039 year: 2021 end-page: 3049 ident: bib79 article-title: Preparation of phytic acid‐based green intumescent flame retardant and its application in PLA nonwovens publication-title: Polym. Adv. Technol. – volume: 126 start-page: 117 year: 2016 end-page: 124 ident: bib99 article-title: Study on inorganic modified ammonium polyphosphate with precipitation method and its effect in flame retardant polypropylene publication-title: Polym. Degrad. Stabil. – volume: 13 start-page: 11332 year: 2021 end-page: 11343 ident: bib103 article-title: Leather solid waste/poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 1176 year: 2020 end-page: 1186 ident: bib76 article-title: One‐step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy publication-title: Polym. Adv. Technol. – volume: 162 year: 2022 ident: bib82 article-title: Sustainable, high-performance, flame-retardant waterborne wood coatings via phytic acid based green curing agent for melamine-urea-formaldehyde resin publication-title: Prog. Org. Coating – year: 2021 ident: bib71 article-title: Synthesis of a bio‐based piperazine phytate flame retardant for epoxy resin with improved flame retardancy and smoke suppression publication-title: Polym. Adv. Technol. – volume: 159 start-page: 153 year: 2019 end-page: 162 ident: bib69 article-title: Facile fabrication of biobased P N C-containing nano-layered hybrid: preparation, growth mechanism and its efficient fire retardancy in epoxy publication-title: Polym. Degrad. Stabil. – volume: 140 start-page: 303 year: 2019 end-page: 310 ident: bib88 article-title: Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions publication-title: Int. J. Biol. Macromol. – volume: 53 start-page: 19199 year: 2014 end-page: 19207 ident: bib112 article-title: Chitosan/phytic acid polyelectrolyte complex: a green and renewable intumescent flame retardant system for ethylene–vinyl acetate copolymer publication-title: Ind. Eng. Chem. Res. – volume: 44 start-page: 814 year: 2020 end-page: 824 ident: bib114 article-title: Synthesis and characterization of bio‐based intumescent flame retardant and its application in polyurethane publication-title: Fire Mater. – volume: 2 start-page: 411 year: 2022 end-page: 434 ident: bib19 article-title: Recent advances in fire‐retardant carbon‐based polymeric nanocomposites through fighting free radicals publication-title: SusMat – volume: 167 start-page: 179 year: 2019 end-page: 188 ident: bib78 article-title: Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: curing behavior, thermal stability and flame retardancy publication-title: Polym. Degrad. Stabil. – volume: 92 start-page: 435 year: 2013 end-page: 440 ident: bib50 article-title: Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization publication-title: Carbohydr. Polym. – volume: 175 start-page: 140 year: 2021 end-page: 146 ident: bib108 article-title: Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating publication-title: Int. J. Biol. Macromol. – volume: 164 year: 2021 ident: bib14 article-title: Phytic acid: a bio-based flame retardant for cotton and wool fabrics publication-title: Ind. Crop. Prod. – year: 2022 ident: bib46 article-title: Recent developments in phosphorous-containing bio-based flame-retardant (FR) materials for coatings: an attentive review publication-title: J. Coating Technol. Res. – volume: 110 start-page: 227 year: 2018 end-page: 236 ident: bib59 article-title: Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes publication-title: Compos. Appl. Sci. Manuf. – volume: 117 start-page: 1 year: 2017 end-page: 25 ident: bib25 article-title: Bio-based flame retardants: when nature meets fire protection publication-title: Mater. Sci. Eng. R Rep. – volume: 17 start-page: 3138 year: 2022 end-page: 3149 ident: bib86 article-title: An eco-friendly and effective approach based on bio-based substances and halloysite nanotubes for fire protection of bamboo fiber/polypropylene composites publication-title: J. Mater. Res. Technol. – volume: 276 start-page: 167 year: 2013 end-page: 173 ident: bib37 article-title: Phytic acid adsorption on the copper surface: observation of electrochemistry and Raman spectroscopy publication-title: Appl. Surf. Sci. – volume: 177 year: 2019 ident: bib94 article-title: Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene publication-title: Compos. B Eng. – volume: 23 start-page: 1564 year: 2012 end-page: 1571 ident: bib6 article-title: Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6 publication-title: Polym. Adv. Technol. – volume: 56 start-page: 9429 year: 2017 end-page: 9436 ident: bib22 article-title: Layer-by-Layer assembly of hypophosphorous acid-modified chitosan based coating for flame-retardant polyester–cotton blends publication-title: Ind. Eng. Chem. Res. – volume: 26 start-page: 1477 year: 2020 end-page: 1488 ident: bib36 article-title: Environmental impact of phytic acid in Maize (Zea mays. L) genotypes for the identification of stable inbreds for low phytic acid publication-title: Physiol. Mol. Biol. Plants – year: 2021 ident: bib73 article-title: Fire performance of piperazine phytate modified rigid polyurethane foam composites publication-title: Polym. Adv. Technol. – volume: 161 start-page: 298 year: 2019 end-page: 308 ident: bib72 article-title: A novel bio-based flame retardant for polypropylene from phytic acid publication-title: Polym. Degrad. Stabil. – volume: 305 year: 2020 ident: bib5 article-title: Supramolecular poly(cyclotriphosphazene) functionalized graphene oxide/polypropylene composites with simultaneously improved thermal stability, flame retardancy, and viscoelastic properties publication-title: Macromol. Mater. Eng. – volume: 20 start-page: 417 year: 2013 end-page: 427 ident: bib20 article-title: Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex publication-title: Cellulose – volume: 14 year: 2021 ident: bib92 article-title: Casein/apricot filler in the production of flame-retardant polyurethane composites publication-title: Materials – volume: 136 year: 2019 ident: bib21 article-title: Metal-phenolic networks: a biobased synergist for EVA/APP composites toward enhanced thermal stability and flame retardancy publication-title: J. Appl. Polym. Sci. – volume: 27 start-page: 3469 year: 2020 end-page: 3483 ident: bib8 article-title: A novel guanidine ammonium phosphate for preparation of a reactive durable flame retardant for cotton fabric publication-title: Cellulose – volume: 13 start-page: 15690 year: 2021 end-page: 15700 ident: bib11 article-title: 3D printing of lightweight polyimide honeycombs with the high specific strength and temperature resistance publication-title: ACS Appl. Mater. Interfaces – volume: 243 year: 2020 ident: bib13 article-title: Naturally-occurring bromophenol to develop fire retardant gluten biopolymers publication-title: J. Clean. Prod. – volume: 3 start-page: 372 year: 2020 end-page: 388 ident: bib23 article-title: Bio-based flame retardation of acrylonitrile–butadiene–styrene publication-title: ACS.Appl. Polym.Mater – volume: 25 start-page: 2755 year: 2018 end-page: 2765 ident: bib31 article-title: Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics publication-title: Cellulose – volume: 126 start-page: 239 year: 2017 end-page: 246 ident: bib91 article-title: Intumescent flame-retardant cotton produced by tannic acid and sodium hydroxide publication-title: J. Anal. Appl. Pyrol. – volume: 573 start-page: 80 year: 2019 end-page: 87 ident: bib38 article-title: Effect of phytic acid on the surface properties of scheelite and fluorite for their selective flotation publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 409 year: 2021 ident: bib57 article-title: Transparent, highly thermostable and flame retardant polycarbonate enabled by rod-like phosphorous-containing metal complex aggregates publication-title: Chem. Eng. J. – volume: 128 start-page: 2424 year: 2013 end-page: 2432 ident: bib107 article-title: Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS publication-title: J. Appl. Polym. Sci. – volume: 144 year: 2021 ident: bib10 article-title: Flame retardant polymer materials: an update and the future for 3D printing developments publication-title: Mater. Sci. Eng. R Rep. – volume: 22 start-page: 2129 year: 2020 end-page: 2161 ident: bib28 article-title: Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials publication-title: Green Chem. – volume: 138 year: 2020 ident: bib97 article-title: High‐efficiency ammonium polyphosphate intumescent encapsulated polypropylene flame retardant publication-title: J. Appl. Polym. Sci. – volume: 291 year: 2022 ident: bib58 article-title: Novel design and synthesis of bio-based polyelectrolyte complexes for enhancing the flame retardancy of epoxy resin publication-title: Mater. Chem. Phys. – volume: 192 year: 2021 ident: bib77 article-title: One-step and green synthesis of a bio-based high-efficiency flame retardant for poly (lactic acid) publication-title: Polym. Degrad. Stabil. – volume: 90 year: 2020 ident: bib24 article-title: Co-microencapsulation of biomass-based char source and melamine polyphosphate and investigation for their synergistic action in flame-retarding polypropylene publication-title: Polym. Test. – volume: 223 start-page: 342 year: 2019 end-page: 349 ident: bib109 article-title: A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric publication-title: J. Clean. Prod. – volume: 181 year: 2020 ident: bib105 article-title: Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene publication-title: Compos. B Eng. – volume: 316 year: 2021 ident: bib2 article-title: A micropore-dominant N,P,S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid publication-title: Microporous Mesoporous Mater. – volume: 42 start-page: 213 year: 2018 end-page: 220 ident: bib42 article-title: Effect of phytic acid-modified layered double hydroxide on flammability and mechanical properties of intumescent flame retardant polypropylene system publication-title: Fire Mater. – volume: 52 start-page: 12235 year: 2017 end-page: 12250 ident: bib90 article-title: The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides publication-title: J. Mater. Sci. – volume: 409 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib57 article-title: Transparent, highly thermostable and flame retardant polycarbonate enabled by rod-like phosphorous-containing metal complex aggregates publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128223 – volume: 32 start-page: 1548 issue: 4 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib63 article-title: Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5190 – volume: 132 start-page: 336 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib74 article-title: Flame retardant coating of wool fabric with phytic acid/polyethyleneimine polyelectrolyte complex publication-title: Prog. Org. Coating doi: 10.1016/j.porgcoat.2019.04.018 – volume: 8 issue: 9 year: 2016 ident: 10.1016/j.polymertesting.2023.108100_bib41 article-title: Recent advances for flame retardancy of textiles based on phosphorus chemistry publication-title: Polymers (Basel) doi: 10.3390/polym8090319 – volume: 56 start-page: 2702 issue: 3 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib55 article-title: Improvement in fire-retardant properties of polypropylene filled with intumescent flame retardants, using flower-like nickel cobaltate as synergist publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05367-y – volume: 32 start-page: 1176 issue: 3 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib76 article-title: One‐step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5165 – volume: 136 issue: 12 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib21 article-title: Metal-phenolic networks: a biobased synergist for EVA/APP composites toward enhanced thermal stability and flame retardancy publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47243 – volume: 223 start-page: 342 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib109 article-title: A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.157 – volume: 52 start-page: 12235 issue: 20 year: 2017 ident: 10.1016/j.polymertesting.2023.108100_bib90 article-title: The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1354-5 – volume: 276 start-page: 167 year: 2013 ident: 10.1016/j.polymertesting.2023.108100_bib37 article-title: Phytic acid adsorption on the copper surface: observation of electrochemistry and Raman spectroscopy publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.03.061 – volume: 164 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib14 article-title: Phytic acid: a bio-based flame retardant for cotton and wool fabrics publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2021.113349 – volume: 161 start-page: 298 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib72 article-title: A novel bio-based flame retardant for polypropylene from phytic acid publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2019.02.005 – volume: 238 year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib18 article-title: A simple and universal strategy for construction and application of silica-based flame-retardant nanostructure publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2022.109887 – volume: 219 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib29 article-title: Poly(vinylalcohol)/chitosan-based high-strength, fire-retardant and smoke-suppressant composite aerogels incorporating aluminum species via freeze drying publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2021.108919 – volume: 26 start-page: 1477 issue: 7 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib36 article-title: Environmental impact of phytic acid in Maize (Zea mays. L) genotypes for the identification of stable inbreds for low phytic acid publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-020-00818-x – volume: 138 issue: 20 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib97 article-title: High‐efficiency ammonium polyphosphate intumescent encapsulated polypropylene flame retardant publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.50413 – volume: 44 start-page: 814 issue: 6 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib114 article-title: Synthesis and characterization of bio‐based intumescent flame retardant and its application in polyurethane publication-title: Fire Mater. doi: 10.1002/fam.2877 – volume: 140 start-page: 303 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib88 article-title: Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.08.049 – volume: 13 start-page: 11332 issue: 9 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib103 article-title: Leather solid waste/poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c00880 – volume: 146 start-page: 153 issue: 1 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib65 article-title: Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10420-8 – volume: 21 start-page: 697 issue: 1 year: 2013 ident: 10.1016/j.polymertesting.2023.108100_bib49 article-title: Conductivity and flame retardancy of polyaniline-deposited functional cellulosic paper doped with organic sulfonic acids publication-title: Cellulose doi: 10.1007/s10570-013-0122-1 – volume: 33 issue: 9 year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib3 article-title: 2D MXenes for fire retardancy and fire‐warning applications: promises and prospects publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202212124 – volume: 316 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib2 article-title: A micropore-dominant N,P,S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.110951 – volume: 181 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib105 article-title: Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107588 – volume: 20 start-page: 417 issue: 1 year: 2013 ident: 10.1016/j.polymertesting.2023.108100_bib20 article-title: Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex publication-title: Cellulose doi: 10.1007/s10570-012-9830-1 – volume: 26 start-page: 445 issue: 4 year: 2014 ident: 10.1016/j.polymertesting.2023.108100_bib95 article-title: Thermal stability and combustion behavior of flame-retardant polypropylene with thermoplastic polyurethane-microencapsulated ammonium polyphosphate publication-title: High Perform. Polym. doi: 10.1177/0954008313517910 – volume: 25 start-page: 2755 issue: 4 year: 2018 ident: 10.1016/j.polymertesting.2023.108100_bib31 article-title: Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics publication-title: Cellulose doi: 10.1007/s10570-018-1745-z – volume: 8 start-page: 123 issue: 3 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib67 article-title: Phytic acid-based flame retardants for cotton publication-title: Green Mater. doi: 10.1680/jgrma.19.00054 – volume: 19 start-page: 45 issue: 1 year: 2016 ident: 10.1016/j.polymertesting.2023.108100_bib17 article-title: Flame retardant materials for plastics publication-title: Mater. Technol. doi: 10.1080/10667857.2004.11753063 – volume: 159 start-page: 153 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib69 article-title: Facile fabrication of biobased P N C-containing nano-layered hybrid: preparation, growth mechanism and its efficient fire retardancy in epoxy publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2018.11.024 – year: 2023 ident: 10.1016/j.polymertesting.2023.108100_bib4 article-title: Functionalized mesoporous silica fire retardant via hierarchical assembly for improved fire retardancy of unsaturated polyester publication-title: ACS.Appl. Polym.Mater – volume: 10 issue: 9 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib87 article-title: Preparation and synergistic effect of chitosan/sodium phytate/MgO nanoparticle fire-retardant coatings on wood substrate through layer-by-layer self-assembly publication-title: Coatings doi: 10.3390/coatings10090848 – volume: 126 start-page: 239 year: 2017 ident: 10.1016/j.polymertesting.2023.108100_bib91 article-title: Intumescent flame-retardant cotton produced by tannic acid and sodium hydroxide publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2017.06.003 – volume: 13 start-page: 2843 issue: 9 year: 2012 ident: 10.1016/j.polymertesting.2023.108100_bib110 article-title: Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton publication-title: Biomacromolecules doi: 10.1021/bm300873b – volume: 199 year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib85 article-title: Bio-based coating of phytic acid, chitosan, and biochar for flame-retardant cotton fabrics publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2022.109898 – volume: 7 start-page: 3858 issue: 4 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib26 article-title: Flame retardant epoxy derived from tannic acid as biobased hardener publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04851 – volume: 135 issue: 33 year: 2018 ident: 10.1016/j.polymertesting.2023.108100_bib61 article-title: Application of metallic phytates to poly(vinyl chloride) as efficient biobased phosphorous flame retardants publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46601 – volume: 124 start-page: 114 year: 2016 ident: 10.1016/j.polymertesting.2023.108100_bib48 article-title: Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.02.113 – volume: 54 start-page: 615 issue: 3 year: 2017 ident: 10.1016/j.polymertesting.2023.108100_bib96 article-title: Synergistic effects of intumescent flame retardant and nano-CaCO3 on foamability and flame-retardant property of polypropylene composites foams publication-title: J. Cell. Plast. doi: 10.1177/0021955X17720157 – volume: 135 issue: 33 year: 2018 ident: 10.1016/j.polymertesting.2023.108100_bib33 article-title: The preparation of fully bio-based flame retardant poly(lactic acid) composites containing casein publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46599 – volume: 4 start-page: 3564 issue: 5 year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib70 article-title: Green and facile synthesis of bio-based, flame-retardant, latent imidazole curing agent for single-component epoxy resin publication-title: ACS.Appl. Polym.Mater doi: 10.1021/acsapm.2c00138 – volume: 398 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib83 article-title: Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.123001 – volume: 32 start-page: 3232 issue: 8 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib64 article-title: Coordination driven layer‐by‐layer deposition technology used for fabrication of flame retardant polyamide 66 fabric publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5335 – year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib113 article-title: Construction of bio‐safety flame retardant coatings on polyethylene terephthalate fabric with ammonium phytate and cyclodextrin publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5447 – volume: 179 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib56 article-title: Novel metal complexes as potential synergists with phosphorus based flame retardants in polyamide 6.6 publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2020.109220 – volume: 22 start-page: 2129 issue: 7 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib28 article-title: Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials publication-title: Green Chem. doi: 10.1039/D0GC00449A – volume: 28 start-page: 3807 issue: 6 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib102 article-title: A novel ε-polylysine-derived durable phosphorus‐nitrogen‐based flame retardant for cotton fabrics publication-title: Cellulose doi: 10.1007/s10570-021-03714-z – volume: 27 issue: 8 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib45 article-title: Eco-friendly flame retardant poly(lactic acid) composites based on banana peel powders and phytic acid: flame retardancy and thermal property publication-title: J. Polym. Res. doi: 10.1007/s10965-020-02176-4 – volume: 31 start-page: 54 issue: 6 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib35 article-title: Enzymatically hardened calcium phosphate biocement with phytic acid addition publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-020-06387-5 – volume: 162 year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib82 article-title: Sustainable, high-performance, flame-retardant waterborne wood coatings via phytic acid based green curing agent for melamine-urea-formaldehyde resin publication-title: Prog. Org. Coating doi: 10.1016/j.porgcoat.2021.106597 – volume: 32 start-page: 3039 issue: 8 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib79 article-title: Preparation of phytic acid‐based green intumescent flame retardant and its application in PLA nonwovens publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5316 – volume: 22 start-page: 2656 issue: 10 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib115 article-title: Fabrication of bismuth oxychloride nanosheets decorated with chitosan and phytic acid for improvement of flexible poly(vinyl chloride) flame retardancy publication-title: Fibers Polym. doi: 10.1007/s12221-021-0678-6 – volume: 573 start-page: 80 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib38 article-title: Effect of phytic acid on the surface properties of scheelite and fluorite for their selective flotation publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2019.04.044 – volume: 19 start-page: 489 issue: 6 year: 2008 ident: 10.1016/j.polymertesting.2023.108100_bib98 article-title: Study on a novel and efficient flame retardant synergist–nanoporous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1088 – year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib73 article-title: Fire performance of piperazine phytate modified rigid polyurethane foam composites publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5454 – volume: 42 start-page: 213 issue: 2 year: 2018 ident: 10.1016/j.polymertesting.2023.108100_bib42 article-title: Effect of phytic acid-modified layered double hydroxide on flammability and mechanical properties of intumescent flame retardant polypropylene system publication-title: Fire Mater. doi: 10.1002/fam.2482 – volume: 13 issue: 17 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib66 article-title: Synergistic flame retardant effect of barium phytate and intumescent flame retardant for epoxy resin publication-title: Polymers (Basel) doi: 10.3390/polym13172900 – volume: 818 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib52 article-title: Anticorrosion study of phytic acid ligand binding with exceptional self-sealing functionality publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152875 – volume: 191 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib53 article-title: A green method for decomposition of scheelite under normal atmospheric pressure by sodium phytate publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2019.105234 – volume: 165 start-page: 406 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib93 article-title: Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.01.086 – volume: 23 start-page: 1564 issue: 12 year: 2012 ident: 10.1016/j.polymertesting.2023.108100_bib6 article-title: Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6 publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3030 – volume: 141 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib44 article-title: An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach publication-title: Prog. Org. Coating doi: 10.1016/j.porgcoat.2020.105539 – volume: 61 start-page: 1204 issue: 11 year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib60 article-title: Rigid polyurethane foam composites based on bivalent metal phytate: thermal stability, flame retardancy, and fire toxicity publication-title: Polym.-Plast. Technol. Mater – volume: 47 start-page: 8795 issue: 7 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib40 article-title: Magnetic properties of iron-based soft magnetic composites prepared via phytic acid surface treatment publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.11.245 – volume: 196 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib106 article-title: Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2020.108124 – volume: 25 start-page: 799 issue: 1 year: 2017 ident: 10.1016/j.polymertesting.2023.108100_bib81 article-title: Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent publication-title: Cellulose doi: 10.1007/s10570-017-1550-0 – start-page: 1 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib39 article-title: A review of phytic acid sources, obtention, and applications publication-title: Food Rev. Int. – volume: 305 issue: 8 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib5 article-title: Supramolecular poly(cyclotriphosphazene) functionalized graphene oxide/polypropylene composites with simultaneously improved thermal stability, flame retardancy, and viscoelastic properties publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.202000207 – volume: 156 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib47 article-title: A bio-based flame retardant coating used for polyamide 66 fabric publication-title: Prog. Org. Coating doi: 10.1016/j.porgcoat.2021.106271 – volume: 138 issue: 4 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib9 article-title: Cross‐linked Salen‐based polyphosphazenes (Salen‐PZNs) enhancing the fire resistance of epoxy resin composites publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.49727 – year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib46 article-title: Recent developments in phosphorous-containing bio-based flame-retardant (FR) materials for coatings: an attentive review publication-title: J. Coating Technol. Res. – volume: 92 start-page: 435 issue: 1 year: 2013 ident: 10.1016/j.polymertesting.2023.108100_bib50 article-title: Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.09.032 – volume: 3 start-page: 4284 issue: 8 year: 2015 ident: 10.1016/j.polymertesting.2023.108100_bib1 article-title: Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites publication-title: J. Mater. Chem. doi: 10.1039/C4TA06486K – volume: 192 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib77 article-title: One-step and green synthesis of a bio-based high-efficiency flame retardant for poly (lactic acid) publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2021.109696 – volume: 90 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib24 article-title: Co-microencapsulation of biomass-based char source and melamine polyphosphate and investigation for their synergistic action in flame-retarding polypropylene publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2020.106741 – volume: 17 start-page: 104 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib43 article-title: A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins publication-title: Compos. Commun. doi: 10.1016/j.coco.2019.11.011 – volume: 117 start-page: 1 year: 2017 ident: 10.1016/j.polymertesting.2023.108100_bib25 article-title: Bio-based flame retardants: when nature meets fire protection publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2017.04.001 – volume: 175 start-page: 636 year: 2017 ident: 10.1016/j.polymertesting.2023.108100_bib80 article-title: A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.129 – volume: 49 start-page: 11226 issue: 32 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib111 article-title: A facile and green strategy to simultaneously enhance the flame retardant and mechanical properties of poly(vinyl alcohol) by introduction of a bio-based polyelectrolyte complex formed by chitosan and phytic acid publication-title: Dalton Trans. doi: 10.1039/D0DT02019B – volume: 56 start-page: 9429 issue: 34 year: 2017 ident: 10.1016/j.polymertesting.2023.108100_bib22 article-title: Layer-by-Layer assembly of hypophosphorous acid-modified chitosan based coating for flame-retardant polyester–cotton blends publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b02303 – year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib71 article-title: Synthesis of a bio‐based piperazine phytate flame retardant for epoxy resin with improved flame retardancy and smoke suppression publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5429 – volume: 20 start-page: 696 issue: 8 year: 2009 ident: 10.1016/j.polymertesting.2023.108100_bib100 article-title: Flame retardancy and thermal degradation of intumescent flame retardant polypropylene with MP/TPMP publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1335 – volume: 6 start-page: 3921 issue: 5 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib30 article-title: Combustion behavior and thermal degradation properties of wood impregnated with intumescent biomass flame retardants: phytic acid, hydrolyzed collagen, and glycerol publication-title: ACS Omega doi: 10.1021/acsomega.0c05778 – volume: 115 start-page: 670 year: 2015 ident: 10.1016/j.polymertesting.2023.108100_bib51 article-title: Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.09.025 – volume: 144 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib10 article-title: Flame retardant polymer materials: an update and the future for 3D printing developments publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2020.100604 – volume: 15 issue: 2 year: 2023 ident: 10.1016/j.polymertesting.2023.108100_bib34 article-title: Fabrication of phytic acid/urea Co-modified bamboo biochar and its application as green flame retardant for polylactic acid resins publication-title: Polymers (Basel) doi: 10.3390/polym15020360 – volume: 291 year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib58 article-title: Novel design and synthesis of bio-based polyelectrolyte complexes for enhancing the flame retardancy of epoxy resin publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2022.126674 – volume: 164 year: 2023 ident: 10.1016/j.polymertesting.2023.108100_bib12 article-title: Passivation of black phosphorus by triazine-based silica coating: hierarchical BP@SiO2-N@Co(OH)2 structure for enhanced fire safety and toughness of unsaturated polyester resins publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2022.107279 – volume: 14 issue: 13 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib92 article-title: Casein/apricot filler in the production of flame-retardant polyurethane composites publication-title: Materials doi: 10.3390/ma14133620 – volume: 35 year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib15 article-title: Fabrication of dimethyl methylphosphonate-loaded mesoporous silica nano fire extinguisher and flame retarding unsaturated polyester publication-title: Compos. Commun. doi: 10.1016/j.coco.2022.101282 – volume: 13 start-page: 15690 issue: 13 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib11 article-title: 3D printing of lightweight polyimide honeycombs with the high specific strength and temperature resistance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c01992 – volume: 14 start-page: 3 issue: 1 year: 2003 ident: 10.1016/j.polymertesting.2023.108100_bib54 article-title: Catalysis of intumescent flame retardancy of polypropylene by metallic compounds publication-title: Polym. Adv. Technol. doi: 10.1002/pat.265 – volume: 126 start-page: 117 year: 2016 ident: 10.1016/j.polymertesting.2023.108100_bib99 article-title: Study on inorganic modified ammonium polyphosphate with precipitation method and its effect in flame retardant polypropylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.01.022 – volume: 27 start-page: 3469 issue: 6 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib8 article-title: A novel guanidine ammonium phosphate for preparation of a reactive durable flame retardant for cotton fabric publication-title: Cellulose doi: 10.1007/s10570-020-03003-1 – volume: 17 start-page: 3138 year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib86 article-title: An eco-friendly and effective approach based on bio-based substances and halloysite nanotubes for fire protection of bamboo fiber/polypropylene composites publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.02.051 – volume: 9 start-page: 42258 issue: 48 year: 2017 ident: 10.1016/j.polymertesting.2023.108100_bib27 article-title: Green approach to improving the strength and flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating biobased gelatin publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14958 – volume: 4 start-page: 48285 issue: 89 year: 2014 ident: 10.1016/j.polymertesting.2023.108100_bib75 article-title: A phosphorus-, nitrogen- and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropylene publication-title: RSC Adv. doi: 10.1039/C4RA09243K – volume: 128 start-page: 2424 issue: 4 year: 2013 ident: 10.1016/j.polymertesting.2023.108100_bib107 article-title: Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.38382 – volume: 175 start-page: 140 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib108 article-title: Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.02.023 – volume: 167 start-page: 179 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib78 article-title: Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: curing behavior, thermal stability and flame retardancy publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2019.07.005 – volume: 94 start-page: 270 year: 2017 ident: 10.1016/j.polymertesting.2023.108100_bib89 article-title: Phytic acid–lignin combination: a simple and efficient route for enhancing thermal and flame retardant properties of polylactide publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.07.018 – volume: 167 year: 2023 ident: 10.1016/j.polymertesting.2023.108100_bib16 article-title: Superior flame retardancy and smoke suppression of epoxy resins with zinc ferrite@polyphosphazene nanocomposites publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2022.107417 – volume: 53 start-page: 19199 issue: 49 year: 2014 ident: 10.1016/j.polymertesting.2023.108100_bib112 article-title: Chitosan/phytic acid polyelectrolyte complex: a green and renewable intumescent flame retardant system for ethylene–vinyl acetate copolymer publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie503421f – volume: 11 issue: 1 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib104 article-title: Preparation of beta-cyclodextrin inclusion complex and its application as an intumescent flame retardant for epoxy publication-title: Polymers (Basel) doi: 10.3390/polym11010071 – volume: 5 start-page: 2375 issue: 3 year: 2017 ident: 10.1016/j.polymertesting.2023.108100_bib32 article-title: Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02712 – volume: 110 start-page: 227 year: 2018 ident: 10.1016/j.polymertesting.2023.108100_bib59 article-title: Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.04.027 – volume: 177 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib94 article-title: Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107371 – volume: 372 start-page: 1077 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib84 article-title: Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.012 – volume: 553 start-page: 364 year: 2019 ident: 10.1016/j.polymertesting.2023.108100_bib68 article-title: Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.06.015 – volume: 28 start-page: 3201 issue: 5 year: 2021 ident: 10.1016/j.polymertesting.2023.108100_bib101 article-title: A novel biomass vitamin B6-based flame retardant for lyocell fibers publication-title: Cellulose doi: 10.1007/s10570-021-03681-5 – volume: 3 start-page: 372 issue: 1 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib23 article-title: Bio-based flame retardation of acrylonitrile–butadiene–styrene publication-title: ACS.Appl. Polym.Mater doi: 10.1021/acsapm.0c01155 – volume: 243 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib13 article-title: Naturally-occurring bromophenol to develop fire retardant gluten biopolymers publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118552 – volume: 114 year: 2020 ident: 10.1016/j.polymertesting.2023.108100_bib7 article-title: Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100687 – volume: 2 start-page: 411 issue: 4 year: 2022 ident: 10.1016/j.polymertesting.2023.108100_bib19 article-title: Recent advances in fire‐retardant carbon‐based polymeric nanocomposites through fighting free radicals publication-title: SusMat doi: 10.1002/sus2.73 – volume: 119 start-page: 217 year: 2015 ident: 10.1016/j.polymertesting.2023.108100_bib62 article-title: Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid) publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2015.05.014 |
SSID | ssj0005016 |
Score | 2.6030717 |
Snippet | With the rapid growth of industrialization, polymers have become widely used in people's daily lives. However, the flammability of these materials poses a... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 108100 |
SubjectTerms | Biomass Flame retardants Flame-retardant mechanism Phytic acid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ygz8OolNx_iKHXatpkyYdHkTFMQQ9OdgtpPkhk9mNWQ_-97407awnd_BUKLwQvrz0faFfvodQ3zIbK8ijyCprI6Y0fAdTpaJYqMwwJpyuekY-PfPRmD1O0kmr1ZfXhAV74ADclWUm1txweMJJwfEc6n8uKDWOUR7urSdQ85rDVCPuIFXTU-D_STRgcbaJ-j_KrsV89vVul6W3sSheL30DcS-1i_0tt1Zxqjz8WzWqVXeGe2i3Joz4Nkx0H23Yoou27ps-bV2007IUPEACeCDUEVz_2__A0wL7K_bAkTEgCoNgpacGO8gEi73YcGm8FOYQjYcPL_ejqG6OEGmWkjLKvFOecIYpDlswyclAcSEGCXGGpFkcK5I4ogW1xtGcqYwrmlDDHWBoFABBj1CnmBf2GGHYl5YxA9QRVifnJPeGMJkGsgcheuB66LpBReraOdw3sJjJRiL2Jn9jKj2mMmDaQ-kqehEcNNaMu_MLsIrxPtjVC8gOWWeH_Cs7euimWT5ZU4pAFWCo6VrTOPmPaZyibT9kkPmeoU65_LTnQGbK_KLK22-Oo_HP priority: 102 providerName: Directory of Open Access Journals |
Title | Recent advances in biomass phytic acid flame retardants |
URI | https://dx.doi.org/10.1016/j.polymertesting.2023.108100 https://doaj.org/article/e4d1c6d6e4d249f6b423b733df436f91 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6Kgo-D-MT6KHvwGpvHZpPgQbRYqqInC72FzT4kUtNS68GLv92ZPDTeBE8hYWdZZmdnZrPffgNwZrjxJNqRY6QxDpcK_WAopeNFMtacR1aVNSMfHsVozO8m4aQDg-YuDMEqa99f-fTSW9df-rU2-_M87xMsyU-4RydFxEJF-3bsnKz8_LMF83DL8qfU2KHWa3D2g_Gaz6Yfr2axJEKL4vmcSokT6M6j-26tMFWy-beiVSsCDbdhq04d2VU1uh3omGIX1gdNxbZd2GyRC-5BhBkhRhRWn_K_sbxgdNkes2WGusVOmFS5ZhZtwjCCHS40gWL2YTy8eRqMnLpMgqN46C6dmDjzIqu5FLgY_cxNpIiixHetdsPY86TrW1dFgdE2yLiMhQz8QAvLE6slKiI4gJViVphDYLhCDecalYnzlAk3I2qYWGHahyIqsV24aLSSqppDnEpZTNMGLPaS_tZpSjpNK512IfyWnldcGn-Uu6YJ-JYhRuzyw2zxnNYmkRquPSW0wCfuKK3IME_MoiDQlgfCJl4XLpvpS38ZGHaV_2kYR__u4Rg26K1C-57AynLxbk4xp1lmvdJoe7B6dXs_euyVfwa-AHLZ-Kw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKhV6qFpa1O3TB3oM6ySOk6hCVUuLlvI4gcTNdfxAqSC7WraquPCn-IPMJA4NN6SKUyRHM7JmJjNj5fN8ABtOuFhjHEVOOxcJbTAPZlpHca4LK0TuTcsZeXAoJ8fi50l2sgTX_V0YglWG3N_l9DZbh5VxsOZ4VtdjgiUlpYjpTxFNoeIBWbnnLv_iue1ia_c7OvlTkuz8ONqeRIFaIDIi44uooDlzubdCSwzgpOKllnleJtxbnhVxrHniuclTZ31aCV1InSaplV6U3mqM4hT1PoLHAtMF0SZsXg1wJbzlW6XdRbS9J7DxD1Q2m55dnrv5giZoNKebxF1OKL-YLtgN6mJLHzAoj4OSt_McnoVelX3tzPECllyzBivbPUXcGjwdTDN8CTm2oFjCWIAVXLC6YXS7H9tzhs5EJUyb2jKPQegY4RznllA4r-D4QYy3DsvNtHGvgWFKcEJY9B4GRiV5RbNoCoN9JoqY0o_gc28VZcLQcuLOOFM9Ou23umtTRTZVnU1HkN1Kz7rhHfeU-0YOuJWhEdztwnR-qkIMKidsbKSV-MQjrJcVNqZVnqbWi1T6Mh7Bl9596k5Eo6r6Xtt4898aPsLK5OhgX-3vHu69hVV600GN38HyYv7HvceGalF9aAOYwa-H_mJuADE3Mgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+biomass+phytic+acid+flame+retardants&rft.jtitle=Polymer+testing&rft.au=Liu%2C+Yi&rft.au=Zhang%2C+Anshen&rft.au=Cheng%2C+Yamin&rft.au=Li%2C+Menghua&rft.date=2023-07-01&rft.issn=0142-9418&rft.volume=124&rft.spage=108100&rft_id=info:doi/10.1016%2Fj.polymertesting.2023.108100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_polymertesting_2023_108100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9418&client=summon |