Recent advances in biomass phytic acid flame retardants

With the rapid growth of industrialization, polymers have become widely used in people's daily lives. However, the flammability of these materials poses a potential threat to people's safety and property. To support sustainable development, it is important and urgent to develop high-perfor...

Full description

Saved in:
Bibliographic Details
Published inPolymer testing Vol. 124; p. 108100
Main Authors Liu, Yi, Zhang, Anshen, Cheng, Yamin, Li, Menghua, Cui, Yuanchen, Li, Zhiwei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid growth of industrialization, polymers have become widely used in people's daily lives. However, the flammability of these materials poses a potential threat to people's safety and property. To support sustainable development, it is important and urgent to develop high-performance, green flame retardants. One such material that has garnered significant attention in the flame-retardant field is biomass phytic acid, which has high phosphorus content and excellent biocompatibility. In this review, we focus on the use of phytic acid in plastics, fabrics, and other polymers for fire resistance, including its intrinsic flame-retardant properties, phytate metal, phytate ammonium and multicomponent compounds. We also discuss the proposed mechanisms behind these flame-retardant properties and explore future trends in the field. [Display omitted] •Recent advances of phytic acid and its derivatives as flame retardants are discussed.•Its classification, flame retardancy, and mechanism are introduced in detail.•Future developments of phytic acid-based flame retardants are discussed.
AbstractList With the rapid growth of industrialization, polymers have become widely used in people's daily lives. However, the flammability of these materials poses a potential threat to people's safety and property. To support sustainable development, it is important and urgent to develop high-performance, green flame retardants. One such material that has garnered significant attention in the flame-retardant field is biomass phytic acid, which has high phosphorus content and excellent biocompatibility. In this review, we focus on the use of phytic acid in plastics, fabrics, and other polymers for fire resistance, including its intrinsic flame-retardant properties, phytate metal, phytate ammonium and multicomponent compounds. We also discuss the proposed mechanisms behind these flame-retardant properties and explore future trends in the field. [Display omitted] •Recent advances of phytic acid and its derivatives as flame retardants are discussed.•Its classification, flame retardancy, and mechanism are introduced in detail.•Future developments of phytic acid-based flame retardants are discussed.
With the rapid growth of industrialization, polymers have become widely used in people's daily lives. However, the flammability of these materials poses a potential threat to people's safety and property. To support sustainable development, it is important and urgent to develop high-performance, green flame retardants. One such material that has garnered significant attention in the flame-retardant field is biomass phytic acid, which has high phosphorus content and excellent biocompatibility. In this review, we focus on the use of phytic acid in plastics, fabrics, and other polymers for fire resistance, including its intrinsic flame-retardant properties, phytate metal, phytate ammonium and multicomponent compounds. We also discuss the proposed mechanisms behind these flame-retardant properties and explore future trends in the field.
ArticleNumber 108100
Author Cui, Yuanchen
Li, Zhiwei
Li, Menghua
Liu, Yi
Zhang, Anshen
Cheng, Yamin
Author_xml – sequence: 1
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, PR China
– sequence: 2
  givenname: Anshen
  surname: Zhang
  fullname: Zhang, Anshen
  organization: College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
– sequence: 3
  givenname: Yamin
  surname: Cheng
  fullname: Cheng, Yamin
  email: chengyamin@henu.edu.cn
  organization: College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
– sequence: 4
  givenname: Menghua
  surname: Li
  fullname: Li, Menghua
  organization: College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
– sequence: 5
  givenname: Yuanchen
  surname: Cui
  fullname: Cui, Yuanchen
  email: yccui@henu.edu.cn
  organization: National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, PR China
– sequence: 6
  givenname: Zhiwei
  surname: Li
  fullname: Li, Zhiwei
  email: zhiweili@henu.edu.cn
  organization: National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, PR China
BookMark eNqNkE1LAzEQhnNQUKv_YQ9eWycfze6CFy1WC4Igeg6zyURTtrslCUL_vakVQU-eBmZ4n5l5ztjRMA7E2CWHGQeur9az7djvNhQzpRyGt5kAIcuo4QBH7BS4EtNW8eaEnaW0BoB5SZ2y-pksDblC94GDpVSFoerCuMGUqu37LgdboQ2u8j1uqIqUMToccjpnxx77RBffdcJel3cvi4fp49P9anHzOLVqDnnaNLpua-8U6qYB0UGLuq5bAd7BvOEcQXiwtSTnZaew0SiFdNqr1jssf8kJWx24bsS12cawwbgzIwbz1Rjjm8FYruzJkHLcaqdLFSWvOyVkV0vpvJLat3vW9YFl45hSJP_D42D2Ek3Z8Eui2Us0B4klfvsnbkPGHMYhRwz9fyHLA4SKtI9A0SQbqJh3IZLN5avwP9An8xGd_g
CitedBy_id crossref_primary_10_1016_j_aiepr_2024_04_003
crossref_primary_10_1016_j_jcou_2024_102918
crossref_primary_10_1016_j_indcrop_2024_119034
crossref_primary_10_1002_app_56279
crossref_primary_10_1016_j_mtsust_2023_100528
crossref_primary_10_6000_1929_5995_2024_13_13
crossref_primary_10_1016_j_coco_2024_102065
crossref_primary_10_1016_j_polymertesting_2024_108467
crossref_primary_10_1016_j_coco_2025_102340
crossref_primary_10_1016_j_ijbiomac_2023_128033
crossref_primary_10_1016_j_polymdegradstab_2024_110895
crossref_primary_10_1016_j_energy_2024_133170
crossref_primary_10_1680_jgrma_24_00152
crossref_primary_10_1021_acs_macromol_4c02104
crossref_primary_10_1016_j_eurpolymj_2024_113525
crossref_primary_10_1016_j_colsurfa_2024_135809
crossref_primary_10_1016_j_jmst_2024_03_001
crossref_primary_10_3390_polym15224440
crossref_primary_10_1016_j_polymdegradstab_2024_111008
crossref_primary_10_3390_coatings14050574
crossref_primary_10_1016_j_cej_2024_153162
crossref_primary_10_1016_j_porgcoat_2023_108205
crossref_primary_10_1016_j_cej_2024_154773
crossref_primary_10_1007_s10570_024_06100_7
crossref_primary_10_1007_s10570_025_06407_z
crossref_primary_10_1021_acssuschemeng_4c09232
crossref_primary_10_1016_j_cej_2023_145563
crossref_primary_10_1016_j_watres_2024_123019
crossref_primary_10_1016_j_jcis_2025_02_056
crossref_primary_10_1016_j_jclepro_2024_143615
crossref_primary_10_3390_molecules29225306
crossref_primary_10_1016_j_ijbiomac_2024_136304
crossref_primary_10_1016_j_ijbiomac_2024_137911
crossref_primary_10_1016_j_ijbiomac_2024_136868
crossref_primary_10_1016_j_polymdegradstab_2024_110830
crossref_primary_10_1016_j_indcrop_2024_118647
crossref_primary_10_1016_j_cej_2024_152827
crossref_primary_10_1016_j_polymdegradstab_2025_111242
crossref_primary_10_1016_j_polymdegradstab_2023_110518
crossref_primary_10_1016_j_ijbiomac_2023_128975
crossref_primary_10_1016_j_polymdegradstab_2024_111109
crossref_primary_10_1016_j_jobab_2023_10_004
crossref_primary_10_1016_j_ijbiomac_2024_139331
crossref_primary_10_1016_j_ijbiomac_2024_138121
crossref_primary_10_1016_j_ijbiomac_2024_137157
crossref_primary_10_1021_acsami_4c09184
crossref_primary_10_1016_j_ijbiomac_2024_136499
crossref_primary_10_1016_j_polymdegradstab_2024_111072
crossref_primary_10_1021_acsapm_4c00198
crossref_primary_10_1016_j_coco_2024_102055
crossref_primary_10_1016_j_cej_2025_161026
crossref_primary_10_1016_j_jcis_2024_06_005
crossref_primary_10_1016_j_polymdegradstab_2024_110985
crossref_primary_10_1016_j_mtcomm_2025_111821
crossref_primary_10_1002_adma_202414880
crossref_primary_10_1080_1023666X_2024_2421816
Cites_doi 10.1016/j.cej.2020.128223
10.1002/pat.5190
10.1016/j.porgcoat.2019.04.018
10.3390/polym8090319
10.1007/s10853-020-05367-y
10.1002/pat.5165
10.1002/app.47243
10.1016/j.jclepro.2019.03.157
10.1007/s10853-017-1354-5
10.1016/j.apsusc.2013.03.061
10.1016/j.indcrop.2021.113349
10.1016/j.polymdegradstab.2019.02.005
10.1016/j.compositesb.2022.109887
10.1016/j.compositesb.2021.108919
10.1007/s12298-020-00818-x
10.1002/app.50413
10.1002/fam.2877
10.1016/j.ijbiomac.2019.08.049
10.1021/acsami.1c00880
10.1007/s10973-020-10420-8
10.1007/s10570-013-0122-1
10.1002/adfm.202212124
10.1016/j.micromeso.2021.110951
10.1016/j.compositesb.2019.107588
10.1007/s10570-012-9830-1
10.1177/0954008313517910
10.1007/s10570-018-1745-z
10.1680/jgrma.19.00054
10.1080/10667857.2004.11753063
10.1016/j.polymdegradstab.2018.11.024
10.3390/coatings10090848
10.1016/j.jaap.2017.06.003
10.1021/bm300873b
10.1016/j.polymdegradstab.2022.109898
10.1021/acssuschemeng.8b04851
10.1002/app.46601
10.1016/j.jclepro.2016.02.113
10.1177/0021955X17720157
10.1002/app.46599
10.1021/acsapm.2c00138
10.1016/j.jhazmat.2020.123001
10.1002/pat.5335
10.1002/pat.5447
10.1016/j.polymdegradstab.2020.109220
10.1039/D0GC00449A
10.1007/s10570-021-03714-z
10.1007/s10965-020-02176-4
10.1007/s10856-020-06387-5
10.1016/j.porgcoat.2021.106597
10.1002/pat.5316
10.1007/s12221-021-0678-6
10.1016/j.colsurfa.2019.04.044
10.1002/pat.1088
10.1002/pat.5454
10.1002/fam.2482
10.3390/polym13172900
10.1016/j.jallcom.2019.152875
10.1016/j.hydromet.2019.105234
10.1016/j.compositesb.2019.01.086
10.1002/pat.3030
10.1016/j.porgcoat.2020.105539
10.1016/j.ceramint.2020.11.245
10.1016/j.compositesb.2020.108124
10.1007/s10570-017-1550-0
10.1002/mame.202000207
10.1016/j.porgcoat.2021.106271
10.1002/app.49727
10.1016/j.carbpol.2012.09.032
10.1039/C4TA06486K
10.1016/j.polymdegradstab.2021.109696
10.1016/j.polymertesting.2020.106741
10.1016/j.coco.2019.11.011
10.1016/j.mser.2017.04.001
10.1016/j.carbpol.2017.06.129
10.1039/D0DT02019B
10.1021/acs.iecr.7b02303
10.1002/pat.5429
10.1002/pat.1335
10.1021/acsomega.0c05778
10.1016/j.carbpol.2014.09.025
10.1016/j.mser.2020.100604
10.3390/polym15020360
10.1016/j.matchemphys.2022.126674
10.1016/j.compositesa.2022.107279
10.3390/ma14133620
10.1016/j.coco.2022.101282
10.1021/acsami.1c01992
10.1002/pat.265
10.1016/j.polymdegradstab.2016.01.022
10.1007/s10570-020-03003-1
10.1016/j.jmrt.2022.02.051
10.1021/acsami.7b14958
10.1039/C4RA09243K
10.1002/app.38382
10.1016/j.ijbiomac.2021.02.023
10.1016/j.polymdegradstab.2019.07.005
10.1016/j.eurpolymj.2017.07.018
10.1016/j.compositesa.2022.107417
10.1021/ie503421f
10.3390/polym11010071
10.1021/acssuschemeng.6b02712
10.1016/j.compositesa.2018.04.027
10.1016/j.compositesb.2019.107371
10.1016/j.cej.2019.05.012
10.1016/j.jcis.2019.06.015
10.1007/s10570-021-03681-5
10.1021/acsapm.0c01155
10.1016/j.jclepro.2019.118552
10.1016/j.pmatsci.2020.100687
10.1002/sus2.73
10.1016/j.polymdegradstab.2015.05.014
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.polymertesting.2023.108100
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID oai_doaj_org_article_e4d1c6d6e4d249f6b423b733df436f91
10_1016_j_polymertesting_2023_108100
S0142941823001800
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXKI
AAXUO
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c450t-886797fd4a68802b09a677920fd05811a02f0c73edf3b4a86a323d6f49fda1013
IEDL.DBID .~1
ISSN 0142-9418
IngestDate Wed Aug 27 01:30:27 EDT 2025
Tue Jul 01 04:26:51 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Tue Dec 03 03:44:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Flame retardants
Flame-retardant mechanism
Biomass
Phytic acid
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-886797fd4a68802b09a677920fd05811a02f0c73edf3b4a86a323d6f49fda1013
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0142941823001800
ParticipantIDs doaj_primary_oai_doaj_org_article_e4d1c6d6e4d249f6b423b733df436f91
crossref_primary_10_1016_j_polymertesting_2023_108100
crossref_citationtrail_10_1016_j_polymertesting_2023_108100
elsevier_sciencedirect_doi_10_1016_j_polymertesting_2023_108100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Polymer testing
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Holdsworth, Horrocks, Kandola (bib56) 2020; 179
Wang, Wei, Deng, Lyu, Zhu, Yang (bib66) 2021; 13
Wan, Zhang, Zhang (bib8) 2020; 27
Zhou, Ding, Qian, An (bib51) 2015; 115
Li, Chen, Lu, Wei, Huang, Jiang (bib30) 2021; 6
Yang, Yu, Xu, Bourbigot, Wang, Song (bib28) 2020; 22
Zhang, Cui, Wang, Yu, Li, Yang (bib9) 2020; 138
Das, Kim, Hedenqvist, Bhattacharyya, Johansson, Xu (bib13) 2020; 243
Xing, Song, Lu, Hu, Zhou (bib100) 2009; 20
Zhao, Cheng, Li, Li, Zhang (bib55) 2020; 56
Wang, Huo, Wang, Yang, Chen, Li (bib70) 2022; 4
Cheng, Shi, Fan, Yu, Liu (bib85) 2022; 199
Sun, Li, Das, Hedenqvist (bib16) 2023; 167
Liu, Shi, Zhang, Yan, Chen, Chen (bib64) 2021; 32
Huang, Wang (bib71) 2021
Wang, Zhao, Degracia, Han, Sun, Sun (bib27) 2017; 9
Zhang, Yan, Shen, Fang, Zhang, Wang (bib112) 2014; 53
Zhong, Wang, Sun, Yin, Tian, Ying (bib34) 2023; 15
Yang, Tawiah, Yu, Qian, Wang, Yuen (bib59) 2018; 110
Qiu, Li, Li, Zhang (bib15) 2022; 35
Shen, Guo, Song, Pan, Wang, Wen (bib37) 2013; 276
Fang, Ran, Fang, Song, Wang (bib93) 2019; 165
Zhu, Liu, Zhao, Chen, Li, He (bib53) 2020; 191
Czlonka, Kairyte, Miedzinska, Strakowska (bib92) 2021; 14
Depeng, Chixiang, Xiulei, Tao, Ling (bib96) 2017; 54
Liu, Feng, Xue, Chevali, Zhang, Shi (bib3) 2022; 33
Zhang, Yan, Shen, Fang, Zhang, Wang (bib75) 2014; 4
Cheng, Guan, Yang, Tang, Yao (bib109) 2019; 223
Costes, Laoutid, Brohez, Dubois (bib25) 2017; 117
Wang, Liao, Hu, Pan, Li, Wang (bib69) 2019; 159
Yang, Zhang, Liu, Yang, Liu, Chen (bib73) 2021
Wang, Liu, Li (bib32) 2017; 5
Yang, Li, Niu, Wang, Zhu (bib29) 2021; 219
Fang, Sun, Li, Liu, Liu (bib108) 2021; 175
Malkappa, Salehiyan, Ray (bib5) 2020; 305
Zhou, Qiu, Chu, Liu, Yang, Hu (bib12) 2023; 164
Cheng, Wu, Meng, Xu, Han, Yu (bib61) 2018; 135
Zheng, Liao, Xia, Liu, Dai, Li (bib24) 2020; 90
Cheng, Guan, Tang, Liu (bib48) 2016; 124
Lewin, Endo (bib54) 2003; 14
Yang, Wang, Fei, Li, Gu, Sun (bib79) 2021; 32
Huang, Ruan, Wu, Ma, Jiang, Tsai (bib97) 2020; 138
Shi, Zhao, Zhao, Li, Li, Zhang (bib115) 2021; 22
Medvecky, Stulajterova, Giretova, Sopcak, Molcanova, Koval (bib35) 2020; 31
Qiu, Wan, Wang, Li, Li, Li (bib18) 2022; 238
Abraham, Deepa, Pothan, John, Narine, Thomas (bib20) 2013; 20
Zhang, Zeng, Jiang, Li, Bai, Li (bib103) 2021; 13
Kalali, Montes, Wang, Zhang, Shabestari, Li (bib42) 2018; 42
Marney, Yang, Russell, Shen, Nguyen, Yuan (bib6) 2012; 23
Hu, Xu, Zhao, Wang (bib21) 2019; 136
Luo, Shi, Qian, Zhou (bib58) 2022; 291
Zhao, Tang, Hou, Fu (bib87) 2020; 10
Zhang, Ma, Leng, Wang (bib88) 2019; 140
Schinazi, Moraes d'Almeida, Pokorski, Schiraldi (bib23) 2020; 3
Jin, Gu, Chen, Tang, Li, Liu (bib90) 2017; 52
Liu, Pan, Wang, Hou, Gui, Hu (bib22) 2017; 56
Zhang, Jin, Gu, Chen, Li, Zhang (bib33) 2018; 135
Zhang, Chen, Liu, Liu, Liu, Yu (bib52) 2020; 818
Zhang, Chen, Fang (bib107) 2013; 128
Nie, Hu, Song, He, Yang (bib98) 2008; 19
Qiu, Li, Chevali, Song, Li, Zhang (bib4) 2023
Zhang, Tian, Liu, Cheng, Wang, Liew (bib84) 2019; 372
Shan, Jiang, Li, Song, Han, Hu (bib104) 2019; 11
Feng, Zhou, Li, He, Zhang, Zhang (bib80) 2017; 175
Chen, Xu, Chen, Ma, He, Yu (bib95) 2014; 26
Nam, Condon, Xia, Nagarajan, Hinchliffe, Madison (bib91) 2017; 126
Sun, Yuan, Shang, Zhang, Shi, Yu (bib105) 2020; 181
Gong, Fan, Luo, Liang, Meng (bib63) 2020; 32
Guo, Yang, Li, Sun, Liu, Gu (bib113) 2021
Zhang, Li, Ma, Ning, Zhang, Wang (bib111) 2020; 49
Fang, Huo, Shen, Ran, Wang, Song (bib43) 2020; 17
Wang, Ma, Li, Zhao, Zhou, Wang (bib11) 2021; 13
Pramitha, Jeeva, Ravikesavan, Joel, Vinothana, Meenakumari (bib36) 2020; 26
Ye, Huo, Wang, Shi, Liu, Wang (bib77) 2021; 192
Kim, Cho, Yeo, Lee, Moon, Ha (bib26) 2019; 7
Cheng, Tang, Yao, Yang (bib74) 2019; 132
Gao, Deng, Du, Huang, Wang (bib72) 2019; 161
Vahabi, Laoutid, Mehrpouya, Saeb, Dubois (bib10) 2021; 144
Bloot, Kalschne, Amaral, Baraldi, Canan (bib39) 2021
Xue, Zuo, Wang, Zhou, Pan, Li (bib106) 2020; 196
Jin, Xiang, Zhang, Qin, He, Jiang (bib86) 2022; 17
Xing, Li, Lin, Ma, Qu, Fan (bib114) 2020; 44
Zhu, Shang, Wang, Wang (bib78) 2019; 167
Zhang, Hu, Sun, Zhai, Yin, Guan (bib38) 2019; 573
Mao, Wu, Qian, An (bib49) 2013; 21
Dufton (bib17) 2016; 19
Sai, Ran, Guo, Yan, Zhang, Wang (bib57) 2021; 409
Naiker, Mestry, Nirgude, Gadgeel, Mhaske (bib46) 2022
Zhang, Yang, Liu, Zou, Kan, Deng (bib60) 2022; 61
He, Song, Yu, Fang, Wang (bib7) 2020; 114
Xu, Zhang, Wang, Dai (bib102) 2021; 28
Costes, Laoutid, Dumazert, Lopez-cuesta, Brohez, Delvosalle (bib62) 2015; 119
Sykam, Försth, Sas, Restás, Das (bib14) 2021; 164
Zhang, Yi, Hao, Gao (bib76) 2020; 32
Sai, Ran, Guo, Song, Fang (bib19) 2022; 2
Patra, Kjellin, Larsson (bib67) 2020; 8
Laufer, Kirkland, Morgan, Grunlan (bib110) 2012; 13
Shang, Ma, Yuan, Chen, Sun, Huang (bib94) 2019; 177
Su, Cheng, Zheng, Liu, Ren, He (bib101) 2021; 28
Kong, He, Peng, Nie, Dong, Yang (bib45) 2020; 27
Liu, Zhang, Cheng, Ren, Zhang, Ding (bib81) 2017; 25
Ortelli, Malucelli, Cuttica, Blosi, Zanoni, Costa (bib31) 2018; 25
Qin, Li, Yang (bib99) 2016; 126
Xu, Li, Shen, Wang, Hu, Wang (bib65) 2021; 146
Zhang, Shi, Yuan, Liu (bib40) 2021; 47
Liu, Shi, Ge, Huang, Chen, Mu (bib47) 2021; 156
Song, Liu, Fan, Li, Ou, Liu (bib82) 2022; 162
Cheng, Tang, Guan, Zhou (bib44) 2020; 141
Yang, Huang, Tu, Wu, Huang, Wang (bib2) 2021; 316
Wu, Qian, An (bib50) 2013; 92
Salmeia, Gaan, Malucelli (bib41) 2016; 8
Shang, Yuan, Sun, Chen, Huang, Yu (bib68) 2019; 553
Costes, Laoutid, Brohez, Delvosalle, Dubois (bib89) 2017; 94
Li, Zhang, Hu, Yang, Cheng, Xie (bib83) 2020; 398
Jiang, Cheng, Liu, Wang, He, Wang (bib1) 2015; 3
Liu (10.1016/j.polymertesting.2023.108100_bib3) 2022; 33
Zhang (10.1016/j.polymertesting.2023.108100_bib38) 2019; 573
Wang (10.1016/j.polymertesting.2023.108100_bib66) 2021; 13
Feng (10.1016/j.polymertesting.2023.108100_bib80) 2017; 175
Cheng (10.1016/j.polymertesting.2023.108100_bib109) 2019; 223
Sai (10.1016/j.polymertesting.2023.108100_bib19) 2022; 2
Laufer (10.1016/j.polymertesting.2023.108100_bib110) 2012; 13
Yang (10.1016/j.polymertesting.2023.108100_bib29) 2021; 219
Yang (10.1016/j.polymertesting.2023.108100_bib2) 2021; 316
Bloot (10.1016/j.polymertesting.2023.108100_bib39) 2021
Yang (10.1016/j.polymertesting.2023.108100_bib28) 2020; 22
Fang (10.1016/j.polymertesting.2023.108100_bib93) 2019; 165
Kong (10.1016/j.polymertesting.2023.108100_bib45) 2020; 27
Huang (10.1016/j.polymertesting.2023.108100_bib97) 2020; 138
Zheng (10.1016/j.polymertesting.2023.108100_bib24) 2020; 90
Costes (10.1016/j.polymertesting.2023.108100_bib25) 2017; 117
Malkappa (10.1016/j.polymertesting.2023.108100_bib5) 2020; 305
Sykam (10.1016/j.polymertesting.2023.108100_bib14) 2021; 164
Ortelli (10.1016/j.polymertesting.2023.108100_bib31) 2018; 25
Li (10.1016/j.polymertesting.2023.108100_bib30) 2021; 6
Xu (10.1016/j.polymertesting.2023.108100_bib65) 2021; 146
Wang (10.1016/j.polymertesting.2023.108100_bib27) 2017; 9
Zhang (10.1016/j.polymertesting.2023.108100_bib60) 2022; 61
Yang (10.1016/j.polymertesting.2023.108100_bib79) 2021; 32
Ye (10.1016/j.polymertesting.2023.108100_bib77) 2021; 192
Wang (10.1016/j.polymertesting.2023.108100_bib70) 2022; 4
Zhang (10.1016/j.polymertesting.2023.108100_bib76) 2020; 32
Xue (10.1016/j.polymertesting.2023.108100_bib106) 2020; 196
Kim (10.1016/j.polymertesting.2023.108100_bib26) 2019; 7
Shen (10.1016/j.polymertesting.2023.108100_bib37) 2013; 276
Costes (10.1016/j.polymertesting.2023.108100_bib62) 2015; 119
Shang (10.1016/j.polymertesting.2023.108100_bib68) 2019; 553
Xu (10.1016/j.polymertesting.2023.108100_bib102) 2021; 28
Holdsworth (10.1016/j.polymertesting.2023.108100_bib56) 2020; 179
Jin (10.1016/j.polymertesting.2023.108100_bib86) 2022; 17
Zhang (10.1016/j.polymertesting.2023.108100_bib33) 2018; 135
Zhang (10.1016/j.polymertesting.2023.108100_bib75) 2014; 4
Sai (10.1016/j.polymertesting.2023.108100_bib57) 2021; 409
Sun (10.1016/j.polymertesting.2023.108100_bib16) 2023; 167
Shang (10.1016/j.polymertesting.2023.108100_bib94) 2019; 177
Xing (10.1016/j.polymertesting.2023.108100_bib100) 2009; 20
Zhang (10.1016/j.polymertesting.2023.108100_bib40) 2021; 47
Qiu (10.1016/j.polymertesting.2023.108100_bib15) 2022; 35
Naiker (10.1016/j.polymertesting.2023.108100_bib46) 2022
Jin (10.1016/j.polymertesting.2023.108100_bib90) 2017; 52
Zhang (10.1016/j.polymertesting.2023.108100_bib112) 2014; 53
Gong (10.1016/j.polymertesting.2023.108100_bib63) 2020; 32
Cheng (10.1016/j.polymertesting.2023.108100_bib61) 2018; 135
Zhao (10.1016/j.polymertesting.2023.108100_bib87) 2020; 10
Nie (10.1016/j.polymertesting.2023.108100_bib98) 2008; 19
Zhao (10.1016/j.polymertesting.2023.108100_bib55) 2020; 56
Liu (10.1016/j.polymertesting.2023.108100_bib22) 2017; 56
Costes (10.1016/j.polymertesting.2023.108100_bib89) 2017; 94
Fang (10.1016/j.polymertesting.2023.108100_bib108) 2021; 175
Abraham (10.1016/j.polymertesting.2023.108100_bib20) 2013; 20
Guo (10.1016/j.polymertesting.2023.108100_bib113) 2021
Medvecky (10.1016/j.polymertesting.2023.108100_bib35) 2020; 31
Liu (10.1016/j.polymertesting.2023.108100_bib47) 2021; 156
Zhang (10.1016/j.polymertesting.2023.108100_bib111) 2020; 49
Song (10.1016/j.polymertesting.2023.108100_bib82) 2022; 162
Salmeia (10.1016/j.polymertesting.2023.108100_bib41) 2016; 8
Shi (10.1016/j.polymertesting.2023.108100_bib115) 2021; 22
Wan (10.1016/j.polymertesting.2023.108100_bib8) 2020; 27
Zhang (10.1016/j.polymertesting.2023.108100_bib52) 2020; 818
Luo (10.1016/j.polymertesting.2023.108100_bib58) 2022; 291
Kalali (10.1016/j.polymertesting.2023.108100_bib42) 2018; 42
Cheng (10.1016/j.polymertesting.2023.108100_bib44) 2020; 141
Zhang (10.1016/j.polymertesting.2023.108100_bib103) 2021; 13
Dufton (10.1016/j.polymertesting.2023.108100_bib17) 2016; 19
Pramitha (10.1016/j.polymertesting.2023.108100_bib36) 2020; 26
Shan (10.1016/j.polymertesting.2023.108100_bib104) 2019; 11
Zhong (10.1016/j.polymertesting.2023.108100_bib34) 2023; 15
Zhang (10.1016/j.polymertesting.2023.108100_bib88) 2019; 140
Wang (10.1016/j.polymertesting.2023.108100_bib32) 2017; 5
Depeng (10.1016/j.polymertesting.2023.108100_bib96) 2017; 54
Liu (10.1016/j.polymertesting.2023.108100_bib64) 2021; 32
Zhu (10.1016/j.polymertesting.2023.108100_bib78) 2019; 167
Qiu (10.1016/j.polymertesting.2023.108100_bib4) 2023
Schinazi (10.1016/j.polymertesting.2023.108100_bib23) 2020; 3
Wang (10.1016/j.polymertesting.2023.108100_bib69) 2019; 159
Zhang (10.1016/j.polymertesting.2023.108100_bib9) 2020; 138
Czlonka (10.1016/j.polymertesting.2023.108100_bib92) 2021; 14
Zhang (10.1016/j.polymertesting.2023.108100_bib84) 2019; 372
Su (10.1016/j.polymertesting.2023.108100_bib101) 2021; 28
Das (10.1016/j.polymertesting.2023.108100_bib13) 2020; 243
Cheng (10.1016/j.polymertesting.2023.108100_bib48) 2016; 124
Liu (10.1016/j.polymertesting.2023.108100_bib81) 2017; 25
Yang (10.1016/j.polymertesting.2023.108100_bib59) 2018; 110
Vahabi (10.1016/j.polymertesting.2023.108100_bib10) 2021; 144
Cheng (10.1016/j.polymertesting.2023.108100_bib85) 2022; 199
Wu (10.1016/j.polymertesting.2023.108100_bib50) 2013; 92
Jiang (10.1016/j.polymertesting.2023.108100_bib1) 2015; 3
Gao (10.1016/j.polymertesting.2023.108100_bib72) 2019; 161
Zhang (10.1016/j.polymertesting.2023.108100_bib107) 2013; 128
Patra (10.1016/j.polymertesting.2023.108100_bib67) 2020; 8
Cheng (10.1016/j.polymertesting.2023.108100_bib74) 2019; 132
Wang (10.1016/j.polymertesting.2023.108100_bib11) 2021; 13
Zhou (10.1016/j.polymertesting.2023.108100_bib51) 2015; 115
Huang (10.1016/j.polymertesting.2023.108100_bib71) 2021
He (10.1016/j.polymertesting.2023.108100_bib7) 2020; 114
Zhu (10.1016/j.polymertesting.2023.108100_bib53) 2020; 191
Fang (10.1016/j.polymertesting.2023.108100_bib43) 2020; 17
Xing (10.1016/j.polymertesting.2023.108100_bib114) 2020; 44
Nam (10.1016/j.polymertesting.2023.108100_bib91) 2017; 126
Qiu (10.1016/j.polymertesting.2023.108100_bib18) 2022; 238
Sun (10.1016/j.polymertesting.2023.108100_bib105) 2020; 181
Chen (10.1016/j.polymertesting.2023.108100_bib95) 2014; 26
Hu (10.1016/j.polymertesting.2023.108100_bib21) 2019; 136
Lewin (10.1016/j.polymertesting.2023.108100_bib54) 2003; 14
Zhou (10.1016/j.polymertesting.2023.108100_bib12) 2023; 164
Mao (10.1016/j.polymertesting.2023.108100_bib49) 2013; 21
Li (10.1016/j.polymertesting.2023.108100_bib83) 2020; 398
Qin (10.1016/j.polymertesting.2023.108100_bib99) 2016; 126
Marney (10.1016/j.polymertesting.2023.108100_bib6) 2012; 23
Yang (10.1016/j.polymertesting.2023.108100_bib73) 2021
References_xml – volume: 115
  start-page: 670
  year: 2015
  end-page: 676
  ident: bib51
  article-title: Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant
  publication-title: Carbohydr. Polym.
– volume: 164
  year: 2023
  ident: bib12
  article-title: Passivation of black phosphorus by triazine-based silica coating: hierarchical BP@SiO2-N@Co(OH)2 structure for enhanced fire safety and toughness of unsaturated polyester resins
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 818
  year: 2020
  ident: bib52
  article-title: Anticorrosion study of phytic acid ligand binding with exceptional self-sealing functionality
  publication-title: J. Alloys Compd.
– volume: 14
  start-page: 3
  year: 2003
  end-page: 11
  ident: bib54
  article-title: Catalysis of intumescent flame retardancy of polypropylene by metallic compounds
  publication-title: Polym. Adv. Technol.
– volume: 31
  start-page: 54
  year: 2020
  ident: bib35
  article-title: Enzymatically hardened calcium phosphate biocement with phytic acid addition
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 47
  start-page: 8795
  year: 2021
  end-page: 8802
  ident: bib40
  article-title: Magnetic properties of iron-based soft magnetic composites prepared via phytic acid surface treatment
  publication-title: Ceram. Int.
– volume: 114
  year: 2020
  ident: bib7
  article-title: Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants
  publication-title: Prog. Mater. Sci.
– volume: 22
  start-page: 2656
  year: 2021
  end-page: 2663
  ident: bib115
  article-title: Fabrication of bismuth oxychloride nanosheets decorated with chitosan and phytic acid for improvement of flexible poly(vinyl chloride) flame retardancy
  publication-title: Fibers Polym.
– volume: 17
  start-page: 104
  year: 2020
  end-page: 108
  ident: bib43
  article-title: A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins
  publication-title: Compos. Commun.
– volume: 167
  year: 2023
  ident: bib16
  article-title: Superior flame retardancy and smoke suppression of epoxy resins with zinc ferrite@polyphosphazene nanocomposites
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 56
  start-page: 2702
  year: 2020
  end-page: 2716
  ident: bib55
  article-title: Improvement in fire-retardant properties of polypropylene filled with intumescent flame retardants, using flower-like nickel cobaltate as synergist
  publication-title: J. Mater. Sci.
– volume: 8
  start-page: 123
  year: 2020
  end-page: 130
  ident: bib67
  article-title: Phytic acid-based flame retardants for cotton
  publication-title: Green Mater.
– volume: 138
  year: 2020
  ident: bib9
  article-title: Cross‐linked Salen‐based polyphosphazenes (Salen‐PZNs) enhancing the fire resistance of epoxy resin composites
  publication-title: J. Appl. Polym. Sci.
– volume: 35
  year: 2022
  ident: bib15
  article-title: Fabrication of dimethyl methylphosphonate-loaded mesoporous silica nano fire extinguisher and flame retarding unsaturated polyester
  publication-title: Compos. Commun.
– volume: 219
  year: 2021
  ident: bib29
  article-title: Poly(vinylalcohol)/chitosan-based high-strength, fire-retardant and smoke-suppressant composite aerogels incorporating aluminum species via freeze drying
  publication-title: Compos. B Eng.
– volume: 141
  year: 2020
  ident: bib44
  article-title: An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach
  publication-title: Prog. Org. Coating
– volume: 8
  year: 2016
  ident: bib41
  article-title: Recent advances for flame retardancy of textiles based on phosphorus chemistry
  publication-title: Polymers (Basel)
– volume: 179
  year: 2020
  ident: bib56
  article-title: Novel metal complexes as potential synergists with phosphorus based flame retardants in polyamide 6.6
  publication-title: Polym. Degrad. Stabil.
– year: 2023
  ident: bib4
  article-title: Functionalized mesoporous silica fire retardant via hierarchical assembly for improved fire retardancy of unsaturated polyester
  publication-title: ACS.Appl. Polym.Mater
– volume: 13
  start-page: 2843
  year: 2012
  end-page: 2848
  ident: bib110
  article-title: Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton
  publication-title: Biomacromolecules
– volume: 11
  year: 2019
  ident: bib104
  article-title: Preparation of beta-cyclodextrin inclusion complex and its application as an intumescent flame retardant for epoxy
  publication-title: Polymers (Basel)
– volume: 9
  start-page: 42258
  year: 2017
  end-page: 42265
  ident: bib27
  article-title: Green approach to improving the strength and flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating biobased gelatin
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  year: 2023
  ident: bib34
  article-title: Fabrication of phytic acid/urea Co-modified bamboo biochar and its application as green flame retardant for polylactic acid resins
  publication-title: Polymers (Basel)
– volume: 5
  start-page: 2375
  year: 2017
  end-page: 2383
  ident: bib32
  article-title: Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites
  publication-title: ACS Sustain. Chem. Eng.
– volume: 61
  start-page: 1204
  year: 2022
  end-page: 1222
  ident: bib60
  article-title: Rigid polyurethane foam composites based on bivalent metal phytate: thermal stability, flame retardancy, and fire toxicity
  publication-title: Polym.-Plast. Technol. Mater
– volume: 32
  start-page: 1548
  year: 2020
  end-page: 1559
  ident: bib63
  article-title: Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid
  publication-title: Polym. Adv. Technol.
– start-page: 1
  year: 2021
  end-page: 20
  ident: bib39
  article-title: A review of phytic acid sources, obtention, and applications
  publication-title: Food Rev. Int.
– volume: 553
  start-page: 364
  year: 2019
  end-page: 371
  ident: bib68
  article-title: Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology
  publication-title: J. Colloid Interface Sci.
– volume: 26
  start-page: 445
  year: 2014
  end-page: 454
  ident: bib95
  article-title: Thermal stability and combustion behavior of flame-retardant polypropylene with thermoplastic polyurethane-microencapsulated ammonium polyphosphate
  publication-title: High Perform. Polym.
– volume: 175
  start-page: 636
  year: 2017
  end-page: 644
  ident: bib80
  article-title: A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric
  publication-title: Carbohydr. Polym.
– volume: 398
  year: 2020
  ident: bib83
  article-title: Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets
  publication-title: J. Hazard Mater.
– volume: 27
  year: 2020
  ident: bib45
  article-title: Eco-friendly flame retardant poly(lactic acid) composites based on banana peel powders and phytic acid: flame retardancy and thermal property
  publication-title: J. Polym. Res.
– year: 2021
  ident: bib113
  article-title: Construction of bio‐safety flame retardant coatings on polyethylene terephthalate fabric with ammonium phytate and cyclodextrin
  publication-title: Polym. Adv. Technol.
– volume: 124
  start-page: 114
  year: 2016
  end-page: 119
  ident: bib48
  article-title: Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric
  publication-title: J. Clean. Prod.
– volume: 146
  start-page: 153
  year: 2021
  end-page: 164
  ident: bib65
  article-title: Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins
  publication-title: J. Therm. Anal. Calorim.
– volume: 135
  year: 2018
  ident: bib61
  article-title: Application of metallic phytates to poly(vinyl chloride) as efficient biobased phosphorous flame retardants
  publication-title: J. Appl. Polym. Sci.
– volume: 196
  year: 2020
  ident: bib106
  article-title: Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate
  publication-title: Compos. B Eng.
– volume: 54
  start-page: 615
  year: 2017
  end-page: 631
  ident: bib96
  article-title: Synergistic effects of intumescent flame retardant and nano-CaCO3 on foamability and flame-retardant property of polypropylene composites foams
  publication-title: J. Cell. Plast.
– volume: 156
  year: 2021
  ident: bib47
  article-title: A bio-based flame retardant coating used for polyamide 66 fabric
  publication-title: Prog. Org. Coating
– volume: 3
  start-page: 4284
  year: 2015
  end-page: 4290
  ident: bib1
  article-title: Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites
  publication-title: J. Mater. Chem.
– volume: 119
  start-page: 217
  year: 2015
  end-page: 227
  ident: bib62
  article-title: Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid)
  publication-title: Polym. Degrad. Stabil.
– volume: 4
  start-page: 3564
  year: 2022
  end-page: 3574
  ident: bib70
  article-title: Green and facile synthesis of bio-based, flame-retardant, latent imidazole curing agent for single-component epoxy resin
  publication-title: ACS.Appl. Polym.Mater
– volume: 199
  year: 2022
  ident: bib85
  article-title: Bio-based coating of phytic acid, chitosan, and biochar for flame-retardant cotton fabrics
  publication-title: Polym. Degrad. Stabil.
– volume: 10
  year: 2020
  ident: bib87
  article-title: Preparation and synergistic effect of chitosan/sodium phytate/MgO nanoparticle fire-retardant coatings on wood substrate through layer-by-layer self-assembly
  publication-title: Coatings
– volume: 165
  start-page: 406
  year: 2019
  end-page: 416
  ident: bib93
  article-title: Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water
  publication-title: Compos. B Eng.
– volume: 33
  year: 2022
  ident: bib3
  article-title: 2D MXenes for fire retardancy and fire‐warning applications: promises and prospects
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 3921
  year: 2021
  end-page: 3930
  ident: bib30
  article-title: Combustion behavior and thermal degradation properties of wood impregnated with intumescent biomass flame retardants: phytic acid, hydrolyzed collagen, and glycerol
  publication-title: ACS Omega
– volume: 32
  start-page: 3232
  year: 2021
  end-page: 3241
  ident: bib64
  article-title: Coordination driven layer‐by‐layer deposition technology used for fabrication of flame retardant polyamide 66 fabric
  publication-title: Polym. Adv. Technol.
– volume: 135
  year: 2018
  ident: bib33
  article-title: The preparation of fully bio-based flame retardant poly(lactic acid) composites containing casein
  publication-title: J. Appl. Polym. Sci.
– volume: 25
  start-page: 799
  year: 2017
  end-page: 811
  ident: bib81
  article-title: Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent
  publication-title: Cellulose
– volume: 19
  start-page: 489
  year: 2008
  end-page: 495
  ident: bib98
  article-title: Study on a novel and efficient flame retardant synergist–nanoporous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene
  publication-title: Polym. Adv. Technol.
– volume: 20
  start-page: 696
  year: 2009
  end-page: 702
  ident: bib100
  article-title: Flame retardancy and thermal degradation of intumescent flame retardant polypropylene with MP/TPMP
  publication-title: Polym. Adv. Technol.
– volume: 21
  start-page: 697
  year: 2013
  end-page: 704
  ident: bib49
  article-title: Conductivity and flame retardancy of polyaniline-deposited functional cellulosic paper doped with organic sulfonic acids
  publication-title: Cellulose
– volume: 132
  start-page: 336
  year: 2019
  end-page: 342
  ident: bib74
  article-title: Flame retardant coating of wool fabric with phytic acid/polyethyleneimine polyelectrolyte complex
  publication-title: Prog. Org. Coating
– volume: 19
  start-page: 45
  year: 2016
  end-page: 50
  ident: bib17
  article-title: Flame retardant materials for plastics
  publication-title: Mater. Technol.
– volume: 238
  year: 2022
  ident: bib18
  article-title: A simple and universal strategy for construction and application of silica-based flame-retardant nanostructure
  publication-title: Compos. B Eng.
– volume: 7
  start-page: 3858
  year: 2019
  end-page: 3865
  ident: bib26
  article-title: Flame retardant epoxy derived from tannic acid as biobased hardener
  publication-title: ACS Sustain. Chem. Eng.
– volume: 28
  start-page: 3201
  year: 2021
  end-page: 3214
  ident: bib101
  article-title: A novel biomass vitamin B6-based flame retardant for lyocell fibers
  publication-title: Cellulose
– volume: 191
  year: 2020
  ident: bib53
  article-title: A green method for decomposition of scheelite under normal atmospheric pressure by sodium phytate
  publication-title: Hydrometallurgy
– volume: 28
  start-page: 3807
  year: 2021
  end-page: 3822
  ident: bib102
  article-title: A novel ε-polylysine-derived durable phosphorus‐nitrogen‐based flame retardant for cotton fabrics
  publication-title: Cellulose
– volume: 372
  start-page: 1077
  year: 2019
  end-page: 1090
  ident: bib84
  article-title: Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 48285
  year: 2014
  end-page: 48292
  ident: bib75
  article-title: A phosphorus-, nitrogen- and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropylene
  publication-title: RSC Adv.
– volume: 94
  start-page: 270
  year: 2017
  end-page: 285
  ident: bib89
  article-title: Phytic acid–lignin combination: a simple and efficient route for enhancing thermal and flame retardant properties of polylactide
  publication-title: Eur. Polym. J.
– volume: 49
  start-page: 11226
  year: 2020
  end-page: 11237
  ident: bib111
  article-title: A facile and green strategy to simultaneously enhance the flame retardant and mechanical properties of poly(vinyl alcohol) by introduction of a bio-based polyelectrolyte complex formed by chitosan and phytic acid
  publication-title: Dalton Trans.
– volume: 13
  year: 2021
  ident: bib66
  article-title: Synergistic flame retardant effect of barium phytate and intumescent flame retardant for epoxy resin
  publication-title: Polymers (Basel)
– volume: 32
  start-page: 3039
  year: 2021
  end-page: 3049
  ident: bib79
  article-title: Preparation of phytic acid‐based green intumescent flame retardant and its application in PLA nonwovens
  publication-title: Polym. Adv. Technol.
– volume: 126
  start-page: 117
  year: 2016
  end-page: 124
  ident: bib99
  article-title: Study on inorganic modified ammonium polyphosphate with precipitation method and its effect in flame retardant polypropylene
  publication-title: Polym. Degrad. Stabil.
– volume: 13
  start-page: 11332
  year: 2021
  end-page: 11343
  ident: bib103
  article-title: Leather solid waste/poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 1176
  year: 2020
  end-page: 1186
  ident: bib76
  article-title: One‐step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy
  publication-title: Polym. Adv. Technol.
– volume: 162
  year: 2022
  ident: bib82
  article-title: Sustainable, high-performance, flame-retardant waterborne wood coatings via phytic acid based green curing agent for melamine-urea-formaldehyde resin
  publication-title: Prog. Org. Coating
– year: 2021
  ident: bib71
  article-title: Synthesis of a bio‐based piperazine phytate flame retardant for epoxy resin with improved flame retardancy and smoke suppression
  publication-title: Polym. Adv. Technol.
– volume: 159
  start-page: 153
  year: 2019
  end-page: 162
  ident: bib69
  article-title: Facile fabrication of biobased P N C-containing nano-layered hybrid: preparation, growth mechanism and its efficient fire retardancy in epoxy
  publication-title: Polym. Degrad. Stabil.
– volume: 140
  start-page: 303
  year: 2019
  end-page: 310
  ident: bib88
  article-title: Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions
  publication-title: Int. J. Biol. Macromol.
– volume: 53
  start-page: 19199
  year: 2014
  end-page: 19207
  ident: bib112
  article-title: Chitosan/phytic acid polyelectrolyte complex: a green and renewable intumescent flame retardant system for ethylene–vinyl acetate copolymer
  publication-title: Ind. Eng. Chem. Res.
– volume: 44
  start-page: 814
  year: 2020
  end-page: 824
  ident: bib114
  article-title: Synthesis and characterization of bio‐based intumescent flame retardant and its application in polyurethane
  publication-title: Fire Mater.
– volume: 2
  start-page: 411
  year: 2022
  end-page: 434
  ident: bib19
  article-title: Recent advances in fire‐retardant carbon‐based polymeric nanocomposites through fighting free radicals
  publication-title: SusMat
– volume: 167
  start-page: 179
  year: 2019
  end-page: 188
  ident: bib78
  article-title: Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: curing behavior, thermal stability and flame retardancy
  publication-title: Polym. Degrad. Stabil.
– volume: 92
  start-page: 435
  year: 2013
  end-page: 440
  ident: bib50
  article-title: Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization
  publication-title: Carbohydr. Polym.
– volume: 175
  start-page: 140
  year: 2021
  end-page: 146
  ident: bib108
  article-title: Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating
  publication-title: Int. J. Biol. Macromol.
– volume: 164
  year: 2021
  ident: bib14
  article-title: Phytic acid: a bio-based flame retardant for cotton and wool fabrics
  publication-title: Ind. Crop. Prod.
– year: 2022
  ident: bib46
  article-title: Recent developments in phosphorous-containing bio-based flame-retardant (FR) materials for coatings: an attentive review
  publication-title: J. Coating Technol. Res.
– volume: 110
  start-page: 227
  year: 2018
  end-page: 236
  ident: bib59
  article-title: Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 117
  start-page: 1
  year: 2017
  end-page: 25
  ident: bib25
  article-title: Bio-based flame retardants: when nature meets fire protection
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 17
  start-page: 3138
  year: 2022
  end-page: 3149
  ident: bib86
  article-title: An eco-friendly and effective approach based on bio-based substances and halloysite nanotubes for fire protection of bamboo fiber/polypropylene composites
  publication-title: J. Mater. Res. Technol.
– volume: 276
  start-page: 167
  year: 2013
  end-page: 173
  ident: bib37
  article-title: Phytic acid adsorption on the copper surface: observation of electrochemistry and Raman spectroscopy
  publication-title: Appl. Surf. Sci.
– volume: 177
  year: 2019
  ident: bib94
  article-title: Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene
  publication-title: Compos. B Eng.
– volume: 23
  start-page: 1564
  year: 2012
  end-page: 1571
  ident: bib6
  article-title: Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6
  publication-title: Polym. Adv. Technol.
– volume: 56
  start-page: 9429
  year: 2017
  end-page: 9436
  ident: bib22
  article-title: Layer-by-Layer assembly of hypophosphorous acid-modified chitosan based coating for flame-retardant polyester–cotton blends
  publication-title: Ind. Eng. Chem. Res.
– volume: 26
  start-page: 1477
  year: 2020
  end-page: 1488
  ident: bib36
  article-title: Environmental impact of phytic acid in Maize (Zea mays. L) genotypes for the identification of stable inbreds for low phytic acid
  publication-title: Physiol. Mol. Biol. Plants
– year: 2021
  ident: bib73
  article-title: Fire performance of piperazine phytate modified rigid polyurethane foam composites
  publication-title: Polym. Adv. Technol.
– volume: 161
  start-page: 298
  year: 2019
  end-page: 308
  ident: bib72
  article-title: A novel bio-based flame retardant for polypropylene from phytic acid
  publication-title: Polym. Degrad. Stabil.
– volume: 305
  year: 2020
  ident: bib5
  article-title: Supramolecular poly(cyclotriphosphazene) functionalized graphene oxide/polypropylene composites with simultaneously improved thermal stability, flame retardancy, and viscoelastic properties
  publication-title: Macromol. Mater. Eng.
– volume: 20
  start-page: 417
  year: 2013
  end-page: 427
  ident: bib20
  article-title: Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex
  publication-title: Cellulose
– volume: 14
  year: 2021
  ident: bib92
  article-title: Casein/apricot filler in the production of flame-retardant polyurethane composites
  publication-title: Materials
– volume: 136
  year: 2019
  ident: bib21
  article-title: Metal-phenolic networks: a biobased synergist for EVA/APP composites toward enhanced thermal stability and flame retardancy
  publication-title: J. Appl. Polym. Sci.
– volume: 27
  start-page: 3469
  year: 2020
  end-page: 3483
  ident: bib8
  article-title: A novel guanidine ammonium phosphate for preparation of a reactive durable flame retardant for cotton fabric
  publication-title: Cellulose
– volume: 13
  start-page: 15690
  year: 2021
  end-page: 15700
  ident: bib11
  article-title: 3D printing of lightweight polyimide honeycombs with the high specific strength and temperature resistance
  publication-title: ACS Appl. Mater. Interfaces
– volume: 243
  year: 2020
  ident: bib13
  article-title: Naturally-occurring bromophenol to develop fire retardant gluten biopolymers
  publication-title: J. Clean. Prod.
– volume: 3
  start-page: 372
  year: 2020
  end-page: 388
  ident: bib23
  article-title: Bio-based flame retardation of acrylonitrile–butadiene–styrene
  publication-title: ACS.Appl. Polym.Mater
– volume: 25
  start-page: 2755
  year: 2018
  end-page: 2765
  ident: bib31
  article-title: Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics
  publication-title: Cellulose
– volume: 126
  start-page: 239
  year: 2017
  end-page: 246
  ident: bib91
  article-title: Intumescent flame-retardant cotton produced by tannic acid and sodium hydroxide
  publication-title: J. Anal. Appl. Pyrol.
– volume: 573
  start-page: 80
  year: 2019
  end-page: 87
  ident: bib38
  article-title: Effect of phytic acid on the surface properties of scheelite and fluorite for their selective flotation
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 409
  year: 2021
  ident: bib57
  article-title: Transparent, highly thermostable and flame retardant polycarbonate enabled by rod-like phosphorous-containing metal complex aggregates
  publication-title: Chem. Eng. J.
– volume: 128
  start-page: 2424
  year: 2013
  end-page: 2432
  ident: bib107
  article-title: Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS
  publication-title: J. Appl. Polym. Sci.
– volume: 144
  year: 2021
  ident: bib10
  article-title: Flame retardant polymer materials: an update and the future for 3D printing developments
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 22
  start-page: 2129
  year: 2020
  end-page: 2161
  ident: bib28
  article-title: Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials
  publication-title: Green Chem.
– volume: 138
  year: 2020
  ident: bib97
  article-title: High‐efficiency ammonium polyphosphate intumescent encapsulated polypropylene flame retardant
  publication-title: J. Appl. Polym. Sci.
– volume: 291
  year: 2022
  ident: bib58
  article-title: Novel design and synthesis of bio-based polyelectrolyte complexes for enhancing the flame retardancy of epoxy resin
  publication-title: Mater. Chem. Phys.
– volume: 192
  year: 2021
  ident: bib77
  article-title: One-step and green synthesis of a bio-based high-efficiency flame retardant for poly (lactic acid)
  publication-title: Polym. Degrad. Stabil.
– volume: 90
  year: 2020
  ident: bib24
  article-title: Co-microencapsulation of biomass-based char source and melamine polyphosphate and investigation for their synergistic action in flame-retarding polypropylene
  publication-title: Polym. Test.
– volume: 223
  start-page: 342
  year: 2019
  end-page: 349
  ident: bib109
  article-title: A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric
  publication-title: J. Clean. Prod.
– volume: 181
  year: 2020
  ident: bib105
  article-title: Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene
  publication-title: Compos. B Eng.
– volume: 316
  year: 2021
  ident: bib2
  article-title: A micropore-dominant N,P,S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid
  publication-title: Microporous Mesoporous Mater.
– volume: 42
  start-page: 213
  year: 2018
  end-page: 220
  ident: bib42
  article-title: Effect of phytic acid-modified layered double hydroxide on flammability and mechanical properties of intumescent flame retardant polypropylene system
  publication-title: Fire Mater.
– volume: 52
  start-page: 12235
  year: 2017
  end-page: 12250
  ident: bib90
  article-title: The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides
  publication-title: J. Mater. Sci.
– volume: 409
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib57
  article-title: Transparent, highly thermostable and flame retardant polycarbonate enabled by rod-like phosphorous-containing metal complex aggregates
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128223
– volume: 32
  start-page: 1548
  issue: 4
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib63
  article-title: Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5190
– volume: 132
  start-page: 336
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib74
  article-title: Flame retardant coating of wool fabric with phytic acid/polyethyleneimine polyelectrolyte complex
  publication-title: Prog. Org. Coating
  doi: 10.1016/j.porgcoat.2019.04.018
– volume: 8
  issue: 9
  year: 2016
  ident: 10.1016/j.polymertesting.2023.108100_bib41
  article-title: Recent advances for flame retardancy of textiles based on phosphorus chemistry
  publication-title: Polymers (Basel)
  doi: 10.3390/polym8090319
– volume: 56
  start-page: 2702
  issue: 3
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib55
  article-title: Improvement in fire-retardant properties of polypropylene filled with intumescent flame retardants, using flower-like nickel cobaltate as synergist
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05367-y
– volume: 32
  start-page: 1176
  issue: 3
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib76
  article-title: One‐step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5165
– volume: 136
  issue: 12
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib21
  article-title: Metal-phenolic networks: a biobased synergist for EVA/APP composites toward enhanced thermal stability and flame retardancy
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.47243
– volume: 223
  start-page: 342
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib109
  article-title: A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.03.157
– volume: 52
  start-page: 12235
  issue: 20
  year: 2017
  ident: 10.1016/j.polymertesting.2023.108100_bib90
  article-title: The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1354-5
– volume: 276
  start-page: 167
  year: 2013
  ident: 10.1016/j.polymertesting.2023.108100_bib37
  article-title: Phytic acid adsorption on the copper surface: observation of electrochemistry and Raman spectroscopy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.03.061
– volume: 164
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib14
  article-title: Phytic acid: a bio-based flame retardant for cotton and wool fabrics
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2021.113349
– volume: 161
  start-page: 298
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib72
  article-title: A novel bio-based flame retardant for polypropylene from phytic acid
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2019.02.005
– volume: 238
  year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib18
  article-title: A simple and universal strategy for construction and application of silica-based flame-retardant nanostructure
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2022.109887
– volume: 219
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib29
  article-title: Poly(vinylalcohol)/chitosan-based high-strength, fire-retardant and smoke-suppressant composite aerogels incorporating aluminum species via freeze drying
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2021.108919
– volume: 26
  start-page: 1477
  issue: 7
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib36
  article-title: Environmental impact of phytic acid in Maize (Zea mays. L) genotypes for the identification of stable inbreds for low phytic acid
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-020-00818-x
– volume: 138
  issue: 20
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib97
  article-title: High‐efficiency ammonium polyphosphate intumescent encapsulated polypropylene flame retardant
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.50413
– volume: 44
  start-page: 814
  issue: 6
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib114
  article-title: Synthesis and characterization of bio‐based intumescent flame retardant and its application in polyurethane
  publication-title: Fire Mater.
  doi: 10.1002/fam.2877
– volume: 140
  start-page: 303
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib88
  article-title: Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.08.049
– volume: 13
  start-page: 11332
  issue: 9
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib103
  article-title: Leather solid waste/poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c00880
– volume: 146
  start-page: 153
  issue: 1
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib65
  article-title: Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-10420-8
– volume: 21
  start-page: 697
  issue: 1
  year: 2013
  ident: 10.1016/j.polymertesting.2023.108100_bib49
  article-title: Conductivity and flame retardancy of polyaniline-deposited functional cellulosic paper doped with organic sulfonic acids
  publication-title: Cellulose
  doi: 10.1007/s10570-013-0122-1
– volume: 33
  issue: 9
  year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib3
  article-title: 2D MXenes for fire retardancy and fire‐warning applications: promises and prospects
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202212124
– volume: 316
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib2
  article-title: A micropore-dominant N,P,S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.110951
– volume: 181
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib105
  article-title: Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.107588
– volume: 20
  start-page: 417
  issue: 1
  year: 2013
  ident: 10.1016/j.polymertesting.2023.108100_bib20
  article-title: Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex
  publication-title: Cellulose
  doi: 10.1007/s10570-012-9830-1
– volume: 26
  start-page: 445
  issue: 4
  year: 2014
  ident: 10.1016/j.polymertesting.2023.108100_bib95
  article-title: Thermal stability and combustion behavior of flame-retardant polypropylene with thermoplastic polyurethane-microencapsulated ammonium polyphosphate
  publication-title: High Perform. Polym.
  doi: 10.1177/0954008313517910
– volume: 25
  start-page: 2755
  issue: 4
  year: 2018
  ident: 10.1016/j.polymertesting.2023.108100_bib31
  article-title: Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1745-z
– volume: 8
  start-page: 123
  issue: 3
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib67
  article-title: Phytic acid-based flame retardants for cotton
  publication-title: Green Mater.
  doi: 10.1680/jgrma.19.00054
– volume: 19
  start-page: 45
  issue: 1
  year: 2016
  ident: 10.1016/j.polymertesting.2023.108100_bib17
  article-title: Flame retardant materials for plastics
  publication-title: Mater. Technol.
  doi: 10.1080/10667857.2004.11753063
– volume: 159
  start-page: 153
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib69
  article-title: Facile fabrication of biobased P N C-containing nano-layered hybrid: preparation, growth mechanism and its efficient fire retardancy in epoxy
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2018.11.024
– year: 2023
  ident: 10.1016/j.polymertesting.2023.108100_bib4
  article-title: Functionalized mesoporous silica fire retardant via hierarchical assembly for improved fire retardancy of unsaturated polyester
  publication-title: ACS.Appl. Polym.Mater
– volume: 10
  issue: 9
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib87
  article-title: Preparation and synergistic effect of chitosan/sodium phytate/MgO nanoparticle fire-retardant coatings on wood substrate through layer-by-layer self-assembly
  publication-title: Coatings
  doi: 10.3390/coatings10090848
– volume: 126
  start-page: 239
  year: 2017
  ident: 10.1016/j.polymertesting.2023.108100_bib91
  article-title: Intumescent flame-retardant cotton produced by tannic acid and sodium hydroxide
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2017.06.003
– volume: 13
  start-page: 2843
  issue: 9
  year: 2012
  ident: 10.1016/j.polymertesting.2023.108100_bib110
  article-title: Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton
  publication-title: Biomacromolecules
  doi: 10.1021/bm300873b
– volume: 199
  year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib85
  article-title: Bio-based coating of phytic acid, chitosan, and biochar for flame-retardant cotton fabrics
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2022.109898
– volume: 7
  start-page: 3858
  issue: 4
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib26
  article-title: Flame retardant epoxy derived from tannic acid as biobased hardener
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04851
– volume: 135
  issue: 33
  year: 2018
  ident: 10.1016/j.polymertesting.2023.108100_bib61
  article-title: Application of metallic phytates to poly(vinyl chloride) as efficient biobased phosphorous flame retardants
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46601
– volume: 124
  start-page: 114
  year: 2016
  ident: 10.1016/j.polymertesting.2023.108100_bib48
  article-title: Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.02.113
– volume: 54
  start-page: 615
  issue: 3
  year: 2017
  ident: 10.1016/j.polymertesting.2023.108100_bib96
  article-title: Synergistic effects of intumescent flame retardant and nano-CaCO3 on foamability and flame-retardant property of polypropylene composites foams
  publication-title: J. Cell. Plast.
  doi: 10.1177/0021955X17720157
– volume: 135
  issue: 33
  year: 2018
  ident: 10.1016/j.polymertesting.2023.108100_bib33
  article-title: The preparation of fully bio-based flame retardant poly(lactic acid) composites containing casein
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46599
– volume: 4
  start-page: 3564
  issue: 5
  year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib70
  article-title: Green and facile synthesis of bio-based, flame-retardant, latent imidazole curing agent for single-component epoxy resin
  publication-title: ACS.Appl. Polym.Mater
  doi: 10.1021/acsapm.2c00138
– volume: 398
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib83
  article-title: Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.123001
– volume: 32
  start-page: 3232
  issue: 8
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib64
  article-title: Coordination driven layer‐by‐layer deposition technology used for fabrication of flame retardant polyamide 66 fabric
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5335
– year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib113
  article-title: Construction of bio‐safety flame retardant coatings on polyethylene terephthalate fabric with ammonium phytate and cyclodextrin
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5447
– volume: 179
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib56
  article-title: Novel metal complexes as potential synergists with phosphorus based flame retardants in polyamide 6.6
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2020.109220
– volume: 22
  start-page: 2129
  issue: 7
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib28
  article-title: Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials
  publication-title: Green Chem.
  doi: 10.1039/D0GC00449A
– volume: 28
  start-page: 3807
  issue: 6
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib102
  article-title: A novel ε-polylysine-derived durable phosphorus‐nitrogen‐based flame retardant for cotton fabrics
  publication-title: Cellulose
  doi: 10.1007/s10570-021-03714-z
– volume: 27
  issue: 8
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib45
  article-title: Eco-friendly flame retardant poly(lactic acid) composites based on banana peel powders and phytic acid: flame retardancy and thermal property
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-020-02176-4
– volume: 31
  start-page: 54
  issue: 6
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib35
  article-title: Enzymatically hardened calcium phosphate biocement with phytic acid addition
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-020-06387-5
– volume: 162
  year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib82
  article-title: Sustainable, high-performance, flame-retardant waterborne wood coatings via phytic acid based green curing agent for melamine-urea-formaldehyde resin
  publication-title: Prog. Org. Coating
  doi: 10.1016/j.porgcoat.2021.106597
– volume: 32
  start-page: 3039
  issue: 8
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib79
  article-title: Preparation of phytic acid‐based green intumescent flame retardant and its application in PLA nonwovens
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5316
– volume: 22
  start-page: 2656
  issue: 10
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib115
  article-title: Fabrication of bismuth oxychloride nanosheets decorated with chitosan and phytic acid for improvement of flexible poly(vinyl chloride) flame retardancy
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-021-0678-6
– volume: 573
  start-page: 80
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib38
  article-title: Effect of phytic acid on the surface properties of scheelite and fluorite for their selective flotation
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2019.04.044
– volume: 19
  start-page: 489
  issue: 6
  year: 2008
  ident: 10.1016/j.polymertesting.2023.108100_bib98
  article-title: Study on a novel and efficient flame retardant synergist–nanoporous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1088
– year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib73
  article-title: Fire performance of piperazine phytate modified rigid polyurethane foam composites
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5454
– volume: 42
  start-page: 213
  issue: 2
  year: 2018
  ident: 10.1016/j.polymertesting.2023.108100_bib42
  article-title: Effect of phytic acid-modified layered double hydroxide on flammability and mechanical properties of intumescent flame retardant polypropylene system
  publication-title: Fire Mater.
  doi: 10.1002/fam.2482
– volume: 13
  issue: 17
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib66
  article-title: Synergistic flame retardant effect of barium phytate and intumescent flame retardant for epoxy resin
  publication-title: Polymers (Basel)
  doi: 10.3390/polym13172900
– volume: 818
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib52
  article-title: Anticorrosion study of phytic acid ligand binding with exceptional self-sealing functionality
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.152875
– volume: 191
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib53
  article-title: A green method for decomposition of scheelite under normal atmospheric pressure by sodium phytate
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2019.105234
– volume: 165
  start-page: 406
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib93
  article-title: Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.01.086
– volume: 23
  start-page: 1564
  issue: 12
  year: 2012
  ident: 10.1016/j.polymertesting.2023.108100_bib6
  article-title: Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3030
– volume: 141
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib44
  article-title: An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach
  publication-title: Prog. Org. Coating
  doi: 10.1016/j.porgcoat.2020.105539
– volume: 61
  start-page: 1204
  issue: 11
  year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib60
  article-title: Rigid polyurethane foam composites based on bivalent metal phytate: thermal stability, flame retardancy, and fire toxicity
  publication-title: Polym.-Plast. Technol. Mater
– volume: 47
  start-page: 8795
  issue: 7
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib40
  article-title: Magnetic properties of iron-based soft magnetic composites prepared via phytic acid surface treatment
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.11.245
– volume: 196
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib106
  article-title: Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2020.108124
– volume: 25
  start-page: 799
  issue: 1
  year: 2017
  ident: 10.1016/j.polymertesting.2023.108100_bib81
  article-title: Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1550-0
– start-page: 1
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib39
  article-title: A review of phytic acid sources, obtention, and applications
  publication-title: Food Rev. Int.
– volume: 305
  issue: 8
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib5
  article-title: Supramolecular poly(cyclotriphosphazene) functionalized graphene oxide/polypropylene composites with simultaneously improved thermal stability, flame retardancy, and viscoelastic properties
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.202000207
– volume: 156
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib47
  article-title: A bio-based flame retardant coating used for polyamide 66 fabric
  publication-title: Prog. Org. Coating
  doi: 10.1016/j.porgcoat.2021.106271
– volume: 138
  issue: 4
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib9
  article-title: Cross‐linked Salen‐based polyphosphazenes (Salen‐PZNs) enhancing the fire resistance of epoxy resin composites
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.49727
– year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib46
  article-title: Recent developments in phosphorous-containing bio-based flame-retardant (FR) materials for coatings: an attentive review
  publication-title: J. Coating Technol. Res.
– volume: 92
  start-page: 435
  issue: 1
  year: 2013
  ident: 10.1016/j.polymertesting.2023.108100_bib50
  article-title: Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.09.032
– volume: 3
  start-page: 4284
  issue: 8
  year: 2015
  ident: 10.1016/j.polymertesting.2023.108100_bib1
  article-title: Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites
  publication-title: J. Mater. Chem.
  doi: 10.1039/C4TA06486K
– volume: 192
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib77
  article-title: One-step and green synthesis of a bio-based high-efficiency flame retardant for poly (lactic acid)
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2021.109696
– volume: 90
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib24
  article-title: Co-microencapsulation of biomass-based char source and melamine polyphosphate and investigation for their synergistic action in flame-retarding polypropylene
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2020.106741
– volume: 17
  start-page: 104
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib43
  article-title: A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2019.11.011
– volume: 117
  start-page: 1
  year: 2017
  ident: 10.1016/j.polymertesting.2023.108100_bib25
  article-title: Bio-based flame retardants: when nature meets fire protection
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2017.04.001
– volume: 175
  start-page: 636
  year: 2017
  ident: 10.1016/j.polymertesting.2023.108100_bib80
  article-title: A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.06.129
– volume: 49
  start-page: 11226
  issue: 32
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib111
  article-title: A facile and green strategy to simultaneously enhance the flame retardant and mechanical properties of poly(vinyl alcohol) by introduction of a bio-based polyelectrolyte complex formed by chitosan and phytic acid
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT02019B
– volume: 56
  start-page: 9429
  issue: 34
  year: 2017
  ident: 10.1016/j.polymertesting.2023.108100_bib22
  article-title: Layer-by-Layer assembly of hypophosphorous acid-modified chitosan based coating for flame-retardant polyester–cotton blends
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b02303
– year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib71
  article-title: Synthesis of a bio‐based piperazine phytate flame retardant for epoxy resin with improved flame retardancy and smoke suppression
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5429
– volume: 20
  start-page: 696
  issue: 8
  year: 2009
  ident: 10.1016/j.polymertesting.2023.108100_bib100
  article-title: Flame retardancy and thermal degradation of intumescent flame retardant polypropylene with MP/TPMP
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1335
– volume: 6
  start-page: 3921
  issue: 5
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib30
  article-title: Combustion behavior and thermal degradation properties of wood impregnated with intumescent biomass flame retardants: phytic acid, hydrolyzed collagen, and glycerol
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c05778
– volume: 115
  start-page: 670
  year: 2015
  ident: 10.1016/j.polymertesting.2023.108100_bib51
  article-title: Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.09.025
– volume: 144
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib10
  article-title: Flame retardant polymer materials: an update and the future for 3D printing developments
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2020.100604
– volume: 15
  issue: 2
  year: 2023
  ident: 10.1016/j.polymertesting.2023.108100_bib34
  article-title: Fabrication of phytic acid/urea Co-modified bamboo biochar and its application as green flame retardant for polylactic acid resins
  publication-title: Polymers (Basel)
  doi: 10.3390/polym15020360
– volume: 291
  year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib58
  article-title: Novel design and synthesis of bio-based polyelectrolyte complexes for enhancing the flame retardancy of epoxy resin
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2022.126674
– volume: 164
  year: 2023
  ident: 10.1016/j.polymertesting.2023.108100_bib12
  article-title: Passivation of black phosphorus by triazine-based silica coating: hierarchical BP@SiO2-N@Co(OH)2 structure for enhanced fire safety and toughness of unsaturated polyester resins
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2022.107279
– volume: 14
  issue: 13
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib92
  article-title: Casein/apricot filler in the production of flame-retardant polyurethane composites
  publication-title: Materials
  doi: 10.3390/ma14133620
– volume: 35
  year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib15
  article-title: Fabrication of dimethyl methylphosphonate-loaded mesoporous silica nano fire extinguisher and flame retarding unsaturated polyester
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2022.101282
– volume: 13
  start-page: 15690
  issue: 13
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib11
  article-title: 3D printing of lightweight polyimide honeycombs with the high specific strength and temperature resistance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c01992
– volume: 14
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.polymertesting.2023.108100_bib54
  article-title: Catalysis of intumescent flame retardancy of polypropylene by metallic compounds
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.265
– volume: 126
  start-page: 117
  year: 2016
  ident: 10.1016/j.polymertesting.2023.108100_bib99
  article-title: Study on inorganic modified ammonium polyphosphate with precipitation method and its effect in flame retardant polypropylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2016.01.022
– volume: 27
  start-page: 3469
  issue: 6
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib8
  article-title: A novel guanidine ammonium phosphate for preparation of a reactive durable flame retardant for cotton fabric
  publication-title: Cellulose
  doi: 10.1007/s10570-020-03003-1
– volume: 17
  start-page: 3138
  year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib86
  article-title: An eco-friendly and effective approach based on bio-based substances and halloysite nanotubes for fire protection of bamboo fiber/polypropylene composites
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.02.051
– volume: 9
  start-page: 42258
  issue: 48
  year: 2017
  ident: 10.1016/j.polymertesting.2023.108100_bib27
  article-title: Green approach to improving the strength and flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating biobased gelatin
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14958
– volume: 4
  start-page: 48285
  issue: 89
  year: 2014
  ident: 10.1016/j.polymertesting.2023.108100_bib75
  article-title: A phosphorus-, nitrogen- and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropylene
  publication-title: RSC Adv.
  doi: 10.1039/C4RA09243K
– volume: 128
  start-page: 2424
  issue: 4
  year: 2013
  ident: 10.1016/j.polymertesting.2023.108100_bib107
  article-title: Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.38382
– volume: 175
  start-page: 140
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib108
  article-title: Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.02.023
– volume: 167
  start-page: 179
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib78
  article-title: Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: curing behavior, thermal stability and flame retardancy
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2019.07.005
– volume: 94
  start-page: 270
  year: 2017
  ident: 10.1016/j.polymertesting.2023.108100_bib89
  article-title: Phytic acid–lignin combination: a simple and efficient route for enhancing thermal and flame retardant properties of polylactide
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2017.07.018
– volume: 167
  year: 2023
  ident: 10.1016/j.polymertesting.2023.108100_bib16
  article-title: Superior flame retardancy and smoke suppression of epoxy resins with zinc ferrite@polyphosphazene nanocomposites
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2022.107417
– volume: 53
  start-page: 19199
  issue: 49
  year: 2014
  ident: 10.1016/j.polymertesting.2023.108100_bib112
  article-title: Chitosan/phytic acid polyelectrolyte complex: a green and renewable intumescent flame retardant system for ethylene–vinyl acetate copolymer
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie503421f
– volume: 11
  issue: 1
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib104
  article-title: Preparation of beta-cyclodextrin inclusion complex and its application as an intumescent flame retardant for epoxy
  publication-title: Polymers (Basel)
  doi: 10.3390/polym11010071
– volume: 5
  start-page: 2375
  issue: 3
  year: 2017
  ident: 10.1016/j.polymertesting.2023.108100_bib32
  article-title: Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02712
– volume: 110
  start-page: 227
  year: 2018
  ident: 10.1016/j.polymertesting.2023.108100_bib59
  article-title: Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2018.04.027
– volume: 177
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib94
  article-title: Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.107371
– volume: 372
  start-page: 1077
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib84
  article-title: Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.012
– volume: 553
  start-page: 364
  year: 2019
  ident: 10.1016/j.polymertesting.2023.108100_bib68
  article-title: Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.06.015
– volume: 28
  start-page: 3201
  issue: 5
  year: 2021
  ident: 10.1016/j.polymertesting.2023.108100_bib101
  article-title: A novel biomass vitamin B6-based flame retardant for lyocell fibers
  publication-title: Cellulose
  doi: 10.1007/s10570-021-03681-5
– volume: 3
  start-page: 372
  issue: 1
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib23
  article-title: Bio-based flame retardation of acrylonitrile–butadiene–styrene
  publication-title: ACS.Appl. Polym.Mater
  doi: 10.1021/acsapm.0c01155
– volume: 243
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib13
  article-title: Naturally-occurring bromophenol to develop fire retardant gluten biopolymers
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118552
– volume: 114
  year: 2020
  ident: 10.1016/j.polymertesting.2023.108100_bib7
  article-title: Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100687
– volume: 2
  start-page: 411
  issue: 4
  year: 2022
  ident: 10.1016/j.polymertesting.2023.108100_bib19
  article-title: Recent advances in fire‐retardant carbon‐based polymeric nanocomposites through fighting free radicals
  publication-title: SusMat
  doi: 10.1002/sus2.73
– volume: 119
  start-page: 217
  year: 2015
  ident: 10.1016/j.polymertesting.2023.108100_bib62
  article-title: Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid)
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2015.05.014
SSID ssj0005016
Score 2.6030717
Snippet With the rapid growth of industrialization, polymers have become widely used in people's daily lives. However, the flammability of these materials poses a...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 108100
SubjectTerms Biomass
Flame retardants
Flame-retardant mechanism
Phytic acid
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ygz8OolNx_iKHXatpkyYdHkTFMQQ9OdgtpPkhk9mNWQ_-97407awnd_BUKLwQvrz0faFfvodQ3zIbK8ijyCprI6Y0fAdTpaJYqMwwJpyuekY-PfPRmD1O0kmr1ZfXhAV74ADclWUm1txweMJJwfEc6n8uKDWOUR7urSdQ85rDVCPuIFXTU-D_STRgcbaJ-j_KrsV89vVul6W3sSheL30DcS-1i_0tt1Zxqjz8WzWqVXeGe2i3Joz4Nkx0H23Yoou27ps-bV2007IUPEACeCDUEVz_2__A0wL7K_bAkTEgCoNgpacGO8gEi73YcGm8FOYQjYcPL_ejqG6OEGmWkjLKvFOecIYpDlswyclAcSEGCXGGpFkcK5I4ogW1xtGcqYwrmlDDHWBoFABBj1CnmBf2GGHYl5YxA9QRVifnJPeGMJkGsgcheuB66LpBReraOdw3sJjJRiL2Jn9jKj2mMmDaQ-kqehEcNNaMu_MLsIrxPtjVC8gOWWeH_Cs7euimWT5ZU4pAFWCo6VrTOPmPaZyibT9kkPmeoU65_LTnQGbK_KLK22-Oo_HP
  priority: 102
  providerName: Directory of Open Access Journals
Title Recent advances in biomass phytic acid flame retardants
URI https://dx.doi.org/10.1016/j.polymertesting.2023.108100
https://doaj.org/article/e4d1c6d6e4d249f6b423b733df436f91
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6Kgo-D-MT6KHvwGpvHZpPgQbRYqqInC72FzT4kUtNS68GLv92ZPDTeBE8hYWdZZmdnZrPffgNwZrjxJNqRY6QxDpcK_WAopeNFMtacR1aVNSMfHsVozO8m4aQDg-YuDMEqa99f-fTSW9df-rU2-_M87xMsyU-4RydFxEJF-3bsnKz8_LMF83DL8qfU2KHWa3D2g_Gaz6Yfr2axJEKL4vmcSokT6M6j-26tMFWy-beiVSsCDbdhq04d2VU1uh3omGIX1gdNxbZd2GyRC-5BhBkhRhRWn_K_sbxgdNkes2WGusVOmFS5ZhZtwjCCHS40gWL2YTy8eRqMnLpMgqN46C6dmDjzIqu5FLgY_cxNpIiixHetdsPY86TrW1dFgdE2yLiMhQz8QAvLE6slKiI4gJViVphDYLhCDecalYnzlAk3I2qYWGHahyIqsV24aLSSqppDnEpZTNMGLPaS_tZpSjpNK512IfyWnldcGn-Uu6YJ-JYhRuzyw2zxnNYmkRquPSW0wCfuKK3IME_MoiDQlgfCJl4XLpvpS38ZGHaV_2kYR__u4Rg26K1C-57AynLxbk4xp1lmvdJoe7B6dXs_euyVfwa-AHLZ-Kw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKhV6qFpa1O3TB3oM6ySOk6hCVUuLlvI4gcTNdfxAqSC7WraquPCn-IPMJA4NN6SKUyRHM7JmJjNj5fN8ABtOuFhjHEVOOxcJbTAPZlpHca4LK0TuTcsZeXAoJ8fi50l2sgTX_V0YglWG3N_l9DZbh5VxsOZ4VtdjgiUlpYjpTxFNoeIBWbnnLv_iue1ia_c7OvlTkuz8ONqeRIFaIDIi44uooDlzubdCSwzgpOKllnleJtxbnhVxrHniuclTZ31aCV1InSaplV6U3mqM4hT1PoLHAtMF0SZsXg1wJbzlW6XdRbS9J7DxD1Q2m55dnrv5giZoNKebxF1OKL-YLtgN6mJLHzAoj4OSt_McnoVelX3tzPECllyzBivbPUXcGjwdTDN8CTm2oFjCWIAVXLC6YXS7H9tzhs5EJUyb2jKPQegY4RznllA4r-D4QYy3DsvNtHGvgWFKcEJY9B4GRiV5RbNoCoN9JoqY0o_gc28VZcLQcuLOOFM9Ou23umtTRTZVnU1HkN1Kz7rhHfeU-0YOuJWhEdztwnR-qkIMKidsbKSV-MQjrJcVNqZVnqbWi1T6Mh7Bl9596k5Eo6r6Xtt4898aPsLK5OhgX-3vHu69hVV600GN38HyYv7HvceGalF9aAOYwa-H_mJuADE3Mgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+biomass+phytic+acid+flame+retardants&rft.jtitle=Polymer+testing&rft.au=Liu%2C+Yi&rft.au=Zhang%2C+Anshen&rft.au=Cheng%2C+Yamin&rft.au=Li%2C+Menghua&rft.date=2023-07-01&rft.issn=0142-9418&rft.volume=124&rft.spage=108100&rft_id=info:doi/10.1016%2Fj.polymertesting.2023.108100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_polymertesting_2023_108100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9418&client=summon