Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain
We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-sp...
Saved in:
Published in | Journal of virology Vol. 90; no. 6; pp. 2767 - 2782 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10
4.5
infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease.
IMPORTANCE
Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS. |
---|---|
AbstractList | We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10
4.5
infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease.
IMPORTANCE
Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS. We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease.UNLABELLEDWe have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease.Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS.IMPORTANCENeuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS. We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS. |
Author | Shives, Katherine D. Beatman, Erica L. Massey, Aaron Chamanian, Mastooreh Morrison, Thomas E. Beckham, J. David Burrack, Kristina S. |
Author_xml | – sequence: 1 givenname: Erica L. surname: Beatman fullname: Beatman, Erica L. organization: Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA – sequence: 2 givenname: Aaron surname: Massey fullname: Massey, Aaron organization: Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA – sequence: 3 givenname: Katherine D. surname: Shives fullname: Shives, Katherine D. organization: Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA, Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA – sequence: 4 givenname: Kristina S. surname: Burrack fullname: Burrack, Kristina S. organization: Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA – sequence: 5 givenname: Mastooreh surname: Chamanian fullname: Chamanian, Mastooreh organization: Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA – sequence: 6 givenname: Thomas E. surname: Morrison fullname: Morrison, Thomas E. organization: Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA – sequence: 7 givenname: J. David surname: Beckham fullname: Beckham, J. David organization: Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA, Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA, Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26719256$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LAzEQxYMoWqs3z7JHD65O0mQ3exFqqVoRhVrEW4jpxEa22ZpsRf974ycqnuYwb35vZt4mWfWNR0J2KBxQyuTh-c3oAFjFq5yKFdKhUMlcCMpXSQeAsVz05O0G2YzxAYByXvB1ssGKklZMFB1y0q8XM51fv_ilqdH5bPi8CBija3w2xtgGZ9qYjS_72Y0Lus5G3qJpUzdmSdzOMDsO2vktsmZ1HXH7s3bJ5GQ4GZzlF1eno0H_IjdcQJvLUoABkJVJG1hZIsOelXSqBfDEvasQDGNaCiunFZW2tBYBcIolaM3LXpccfWAXy7s5Tg36Ni2lFsHNdXhRjXbqd8e7mbpvnhSXFApRJMDeJyA0j8t0n5q7aLCutcdmGRUtCylEUXJI0t2fXt8mX79LAvYhMKGJMaBVxrX67TfJ2tWKgnoLSKWA1HtAioo0tP9n6Iv7r_wVFRyR_A |
CitedBy_id | crossref_primary_10_1097_WAD_0000000000000405 crossref_primary_10_1016_j_nbd_2024_106609 crossref_primary_10_1002_mds_28680 crossref_primary_10_1007_s00702_023_02635_4 crossref_primary_10_1016_S1474_4422_20_30269_6 crossref_primary_10_18097_PBMC20186403276 crossref_primary_10_1016_j_lfs_2022_120981 crossref_primary_10_1080_14737175_2023_2196014 crossref_primary_10_3389_fphys_2022_864263 crossref_primary_10_34922_AE_2024_37_5_003 crossref_primary_10_1021_jasms_2c00339 crossref_primary_10_1021_acs_biomac_2c00582 crossref_primary_10_1096_fj_202301489R crossref_primary_10_1016_j_bbih_2020_100105 crossref_primary_10_1016_j_neurol_2021_08_002 crossref_primary_10_1038_s41531_021_00203_9 crossref_primary_10_1016_j_expneurol_2021_113845 crossref_primary_10_1002_mds_29363 crossref_primary_10_1038_s41531_019_0090_8 crossref_primary_10_1093_brain_awac192 crossref_primary_10_1089_dna_2016_3488 crossref_primary_10_3390_ijms22137135 crossref_primary_10_1002_mds_29240 crossref_primary_10_1016_j_mehy_2017_05_022 crossref_primary_10_1021_acschemneuro_2c00679 crossref_primary_10_1007_s12035_023_03761_6 crossref_primary_10_1016_j_it_2022_10_001 crossref_primary_10_3233_JPD_191702 crossref_primary_10_1016_j_expneurol_2023_114644 crossref_primary_10_1016_j_virol_2024_110141 crossref_primary_10_3233_JPD_191703 crossref_primary_10_1159_000479653 crossref_primary_10_1016_j_tins_2021_06_006 crossref_primary_10_3390_ijms24065618 crossref_primary_10_1016_j_nbd_2023_106308 crossref_primary_10_1016_j_nbd_2022_105654 crossref_primary_10_3389_fneur_2022_968193 crossref_primary_10_1002_mds_28185 crossref_primary_10_3390_ijms252212079 crossref_primary_10_1007_s00702_022_02500_w crossref_primary_10_3233_JPD_171240 crossref_primary_10_1111_ejn_13476 crossref_primary_10_1016_j_toxlet_2021_12_003 crossref_primary_10_1039_D3CS00878A crossref_primary_10_1111_ejn_14286 crossref_primary_10_1038_s41380_022_01831_0 crossref_primary_10_3233_JPD_223240 crossref_primary_10_1016_j_bbrc_2021_10_042 crossref_primary_10_1186_s40035_021_00271_0 crossref_primary_10_1016_j_parkreldis_2023_105358 crossref_primary_10_3390_microorganisms10030599 crossref_primary_10_1007_s00401_024_02781_3 crossref_primary_10_1038_s41598_023_41240_z crossref_primary_10_3389_fncel_2021_759571 crossref_primary_10_3389_fncel_2022_843790 crossref_primary_10_1039_D1NP00042J crossref_primary_10_1128_jvi_00418_24 crossref_primary_10_3389_fimmu_2023_1154626 crossref_primary_10_1146_annurev_pathol_031920_092547 crossref_primary_10_1371_journal_ppat_1010670 crossref_primary_10_4103_1673_5374_300437 crossref_primary_10_3389_fneur_2023_1172416 crossref_primary_10_1016_j_jns_2018_11_003 crossref_primary_10_1016_j_celrep_2021_110090 crossref_primary_10_1186_s40478_024_01761_8 crossref_primary_10_1016_j_heliyon_2018_e00513 crossref_primary_10_1111_bph_14471 crossref_primary_10_3233_JPD_230315 crossref_primary_10_3390_ijms23179739 crossref_primary_10_3233_JPD_202279 crossref_primary_10_1016_j_tins_2020_10_009 crossref_primary_10_1111_ejn_14290 crossref_primary_10_1042_NS20200051 crossref_primary_10_3233_JPD_240195 crossref_primary_10_3390_pathogens11121535 crossref_primary_10_2174_0113892037275221240327042353 crossref_primary_10_1128_mSphere_00021_20 crossref_primary_10_1038_s41467_017_01447_x crossref_primary_10_1038_s41531_023_00467_3 crossref_primary_10_1021_acs_jpclett_2c02278 crossref_primary_10_1038_s41531_025_00887_3 crossref_primary_10_1146_annurev_biochem_032620_105157 crossref_primary_10_3389_fneur_2021_697079 crossref_primary_10_1002_mds_28084 crossref_primary_10_3390_v13112164 crossref_primary_10_1002_pro_4736 crossref_primary_10_1007_s00702_017_1726_7 crossref_primary_10_1089_vim_2018_0075 crossref_primary_10_1126_scitranslmed_aar5280 crossref_primary_10_1134_S1990750818040029 crossref_primary_10_3389_fmicb_2016_00296 crossref_primary_10_3390_biomedicines11041215 crossref_primary_10_1038_s41467_018_05490_0 crossref_primary_10_3390_ijms22094643 crossref_primary_10_3390_life12060904 crossref_primary_10_1016_j_cell_2022_05_008 crossref_primary_10_3233_JAD_160607 crossref_primary_10_3390_ijms222111986 crossref_primary_10_1371_journal_ppat_1010018 crossref_primary_10_3390_biomedicines11092524 crossref_primary_10_1021_acschemneuro_0c00671 crossref_primary_10_3233_JPD_202320 crossref_primary_10_1111_febs_17023 crossref_primary_10_1126_scitranslmed_aas9292 crossref_primary_10_1007_s00018_020_03711_8 crossref_primary_10_3390_brainsci12020143 crossref_primary_10_1016_j_jneuroim_2023_578047 crossref_primary_10_1016_j_neulet_2017_12_003 crossref_primary_10_1007_s00415_021_10444_6 crossref_primary_10_1212_CPJ_0000000000000908 crossref_primary_10_1186_s40659_023_00482_x crossref_primary_10_1016_j_ebiom_2024_105191 crossref_primary_10_3233_JPD_212929 crossref_primary_10_3389_fneur_2020_01044 crossref_primary_10_3389_fpsyt_2024_1480438 crossref_primary_10_3390_brainsci11121654 crossref_primary_10_1002_mds_27138 crossref_primary_10_1007_s00401_020_02202_1 crossref_primary_10_1038_s41467_021_25474_x crossref_primary_10_1007_s40475_020_00200_7 crossref_primary_10_1038_s41467_022_32039_z crossref_primary_10_1016_j_nbd_2022_105698 crossref_primary_10_3389_fnagi_2023_1138418 crossref_primary_10_1007_s44192_025_00128_2 crossref_primary_10_1007_s13311_023_01365_5 crossref_primary_10_3390_ijms21051890 crossref_primary_10_3390_geriatrics6010010 crossref_primary_10_3389_fncel_2021_691136 crossref_primary_10_1017_neu_2023_17 crossref_primary_10_3389_fneur_2019_00652 crossref_primary_10_1007_s15005_021_2010_9 crossref_primary_10_3389_fnagi_2021_776936 crossref_primary_10_1002_mds_28411 crossref_primary_10_1038_s41577_022_00684_6 crossref_primary_10_1016_j_nbd_2016_12_013 crossref_primary_10_1515_nipt_2023_0011 crossref_primary_10_1016_j_coi_2021_05_004 crossref_primary_10_1038_ni_3656 crossref_primary_10_2217_fvl_2023_0105 crossref_primary_10_3233_JPD_230070 crossref_primary_10_3233_ADR_170037 crossref_primary_10_1016_j_nbd_2017_11_004 crossref_primary_10_1212_WNL_0000000000210215 crossref_primary_10_1002_mds_28925 crossref_primary_10_1038_s41467_024_54628_w crossref_primary_10_3390_ijms23063394 crossref_primary_10_1016_j_jneuroim_2020_577432 crossref_primary_10_1038_s41531_017_0035_z crossref_primary_10_3389_fneur_2019_00122 crossref_primary_10_3389_fnins_2024_1467333 crossref_primary_10_1002_mds_27556 crossref_primary_10_1038_s41419_024_06534_8 |
Cites_doi | 10.1126/science.1090278 10.1126/science.1195227 10.1038/ncb2131 10.1001/jama.290.4.511 10.1073/pnas.0900096106 10.1111/j.1750-3639.2007.00080.x 10.1128/JVI.02311-06 10.1056/NEJMoa1212628 10.1074/jbc.M114.619353 10.1038/nm.3108 10.1016/j.neuron.2013.09.004 10.1212/01.wnl.0000195890.70898.1f 10.1016/S0896-6273(00)80886-7 10.1212/01.WNL.0000101721.25345.DC 10.1074/jbc.M111.222703 10.1128/JVI.02097-12 10.1523/JNEUROSCI.2898-12.2013 10.1126/science.276.5321.2045 10.1126/science.1129462 10.1146/annurev.cellbio.042308.113313 10.1073/pnas.172514599 10.1089/ars.2009.2880 10.1128/JVI.01650-06 10.1091/mbc.E09-09-0801 10.1038/nm1068 10.1016/S0140-6736(04)17103-1 10.3109/13550284.2010.499890 10.1073/pnas.1416598111 10.1007/s13311-011-0086-5 10.1126/science.287.5456.1265 10.1056/NEJMra030476 10.1073/pnas.95.11.6469 10.1038/ng0298-106 10.1128/JVI.02050-10 10.1083/jcb.200907074 10.1523/JNEUROSCI.5367-11.2012 10.1126/science.1248465 10.1016/j.virol.2012.08.016 10.1038/nm1113 10.1128/JVI.01323-14 10.1016/j.bbadis.2008.08.001 10.1002/ana.10795 10.1016/S0140-6736(04)17104-3 10.1128/JVI.02944-13 |
ContentType | Journal Article |
Copyright | Copyright © 2016, American Society for Microbiology. All Rights Reserved. Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/JVI.02949-15 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Alpha-Synuclein Restricts Virus in the Brain |
EISSN | 1098-5514 |
EndPage | 2782 |
ExternalDocumentID | PMC4810656 26719256 10_1128_JVI_02949_15 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01AI108725 – fundername: NIAID NIH HHS grantid: R01 AI108725 – fundername: University of Colorado Anschutz Medical Campus Center for Neuroscience – fundername: University of Colorado Department of Medicine – fundername: NIH/NIAID grantid: R01AI108725 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM CGR CUY CVF ECM EIF NPM RHF UCJ 7X8 5PM |
ID | FETCH-LOGICAL-c450t-8750c0089c267f87e2e3f81da504fecb9e0c22a85f8d918f7ffe00ede70aa473 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 14:07:53 EDT 2025 Fri Jul 11 13:12:42 EDT 2025 Thu Jan 02 22:22:13 EST 2025 Thu Apr 24 22:56:36 EDT 2025 Tue Jul 01 01:02:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright © 2016, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-8750c0089c267f87e2e3f81da504fecb9e0c22a85f8d918f7ffe00ede70aa473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Kristina S. Burrack, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA. E.L.B. and A.M. are co-first authors and contributed equally to the article. Citation Beatman EL, Massey A, Shives KD, Burrack KS, Chamanian M, Morrison TE, Beckham JD. 2016. Alpha-synuclein expression restricts RNA viral infections in the brain. J Virol 90:2767–2782. doi:10.1128/JVI.02949-15. |
OpenAccessLink | https://jvi.asm.org/content/jvi/90/6/2767.full.pdf |
PMID | 26719256 |
PQID | 1768556740 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4810656 proquest_miscellaneous_1768556740 pubmed_primary_26719256 crossref_citationtrail_10_1128_JVI_02949_15 crossref_primary_10_1128_JVI_02949_15 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-15 |
PublicationDateYYYYMMDD | 2016-03-15 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2016 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 National Research Council (e_1_3_2_29_2) 2011 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 Ali M (e_1_3_2_5_2) 2005; 26 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 15451224 - Lancet. 2004 Sep 25-Oct 1;364(9440):1167-9 14718715 - Neurology. 2004 Jan 13;62(1):128-31 12376616 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14524-9 21151134 - Nat Cell Biol. 2011 Jan;13(1):30-9 17610522 - Brain Pathol. 2007 Oct;17(4):354-62 23964935 - N Engl J Med. 2013 Aug 22;369(8):732-44 9462735 - Nat Genet. 1998 Feb;18(2):106-8 22939285 - Virology. 2012 Nov 10;433(1):262-72 23455712 - Nat Med. 2013 Apr;19(4):458-64 10678833 - Science. 2000 Feb 18;287(5456):1265-9 25246573 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4274-83 21191014 - J Virol. 2011 Mar;85(6):2723-32 23221566 - J Virol. 2013 Feb;87(4):2206-14 17035323 - J Virol. 2006 Dec;80(24):12060-9 18760350 - Biochim Biophys Acta. 2009 Jul;1792(7):714-21 23392688 - J Neurosci. 2013 Feb 6;33(6):2605-15 24198425 - J Virol. 2014 Jan;88(2):1080-9 25697356 - J Biol Chem. 2015 Apr 3;290(14):8949-63 14593171 - Science. 2003 Oct 31;302(5646):841 14755719 - Ann Neurol. 2004 Feb;55(2):164-73 15272270 - Nat Med. 2004 Jul;10 Suppl:S58-62 10707987 - Neuron. 2000 Jan;25(1):239-52 15451225 - Lancet. 2004 Sep 25-Oct 1;364(9440):1169-71 16382032 - Neurology. 2006 Feb 14;66(3):361-5 19948500 - J Cell Biol. 2009 Nov 16;187(4):525-36 21385877 - J Biol Chem. 2011 Apr 22;286(16):14226-36 12876094 - JAMA. 2003 Jul 23;290(4):511-5 20095866 - Antioxid Redox Signal. 2010 Sep 15;13(6):721-9 24920798 - J Virol. 2014 Aug;88(16):9458-71 22399753 - J Neurosci. 2012 Mar 7;32(10):3306-20 24050397 - Neuron. 2013 Sep 18;79(6):1044-66 24482115 - Science. 2014 Feb 14;343(6172):783-7 19667183 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14063-8 15269317 - N Engl J Med. 2004 Jul 22;351(4):370-8 20626234 - J Neurovirol. 2010 Jul;16(4):306-17 16794039 - Science. 2006 Jul 21;313(5785):324-8 22102180 - Neurotherapeutics. 2012 Jan;9(1):124-38 15709126 - AJNR Am J Neuroradiol. 2005 Feb;26(2):289-97 9600990 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6469-73 20392839 - Mol Biol Cell. 2010 Jun 1;21(11):1850-63 15459709 - Nat Med. 2004 Oct;10(10):1055-63 17192305 - J Virol. 2007 Mar;81(6):2614-23 9197268 - Science. 1997 Jun 27;276(5321):2045-7 20500090 - Annu Rev Cell Dev Biol. 2010;26:211-33 20798282 - Science. 2010 Sep 24;329(5999):1663-7 |
References_xml | – ident: e_1_3_2_19_2 doi: 10.1126/science.1090278 – ident: e_1_3_2_25_2 doi: 10.1126/science.1195227 – ident: e_1_3_2_43_2 doi: 10.1038/ncb2131 – ident: e_1_3_2_8_2 doi: 10.1001/jama.290.4.511 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.0900096106 – ident: e_1_3_2_6_2 doi: 10.1111/j.1750-3639.2007.00080.x – ident: e_1_3_2_40_2 doi: 10.1128/JVI.02311-06 – ident: e_1_3_2_3_2 doi: 10.1056/NEJMoa1212628 – ident: e_1_3_2_46_2 doi: 10.1074/jbc.M114.619353 – ident: e_1_3_2_11_2 doi: 10.1038/nm.3108 – ident: e_1_3_2_41_2 doi: 10.1016/j.neuron.2013.09.004 – ident: e_1_3_2_7_2 doi: 10.1212/01.wnl.0000195890.70898.1f – ident: e_1_3_2_23_2 doi: 10.1016/S0896-6273(00)80886-7 – ident: e_1_3_2_20_2 doi: 10.1212/01.WNL.0000101721.25345.DC – ident: e_1_3_2_36_2 doi: 10.1074/jbc.M111.222703 – ident: e_1_3_2_38_2 doi: 10.1128/JVI.02097-12 – ident: e_1_3_2_42_2 doi: 10.1523/JNEUROSCI.2898-12.2013 – ident: e_1_3_2_18_2 doi: 10.1126/science.276.5321.2045 – ident: e_1_3_2_28_2 doi: 10.1126/science.1129462 – volume: 26 start-page: 289 year: 2005 ident: e_1_3_2_5_2 article-title: West Nile virus infection: MR imaging findings in the nervous system publication-title: AJNR Am J Neuroradiol – ident: e_1_3_2_27_2 doi: 10.1146/annurev.cellbio.042308.113313 – ident: e_1_3_2_24_2 doi: 10.1073/pnas.172514599 – ident: e_1_3_2_45_2 doi: 10.1089/ars.2009.2880 – ident: e_1_3_2_47_2 doi: 10.1128/JVI.01650-06 – ident: e_1_3_2_44_2 doi: 10.1091/mbc.E09-09-0801 – ident: e_1_3_2_13_2 doi: 10.1038/nm1068 – ident: e_1_3_2_15_2 doi: 10.1016/S0140-6736(04)17103-1 – ident: e_1_3_2_32_2 doi: 10.3109/13550284.2010.499890 – ident: e_1_3_2_26_2 doi: 10.1073/pnas.1416598111 – ident: e_1_3_2_2_2 doi: 10.1007/s13311-011-0086-5 – ident: e_1_3_2_22_2 doi: 10.1126/science.287.5456.1265 – volume-title: Guide for the care and use of laboratory animals year: 2011 ident: e_1_3_2_29_2 – ident: e_1_3_2_4_2 doi: 10.1056/NEJMra030476 – ident: e_1_3_2_14_2 doi: 10.1073/pnas.95.11.6469 – ident: e_1_3_2_17_2 doi: 10.1038/ng0298-106 – ident: e_1_3_2_35_2 doi: 10.1128/JVI.02050-10 – ident: e_1_3_2_39_2 doi: 10.1083/jcb.200907074 – ident: e_1_3_2_37_2 doi: 10.1523/JNEUROSCI.5367-11.2012 – ident: e_1_3_2_34_2 doi: 10.1126/science.1248465 – ident: e_1_3_2_30_2 doi: 10.1016/j.virol.2012.08.016 – ident: e_1_3_2_12_2 doi: 10.1038/nm1113 – ident: e_1_3_2_31_2 doi: 10.1128/JVI.01323-14 – ident: e_1_3_2_10_2 doi: 10.1016/j.bbadis.2008.08.001 – ident: e_1_3_2_21_2 doi: 10.1002/ana.10795 – ident: e_1_3_2_16_2 doi: 10.1016/S0140-6736(04)17104-3 – ident: e_1_3_2_33_2 doi: 10.1128/JVI.02944-13 – reference: 23964935 - N Engl J Med. 2013 Aug 22;369(8):732-44 – reference: 24482115 - Science. 2014 Feb 14;343(6172):783-7 – reference: 20500090 - Annu Rev Cell Dev Biol. 2010;26:211-33 – reference: 21151134 - Nat Cell Biol. 2011 Jan;13(1):30-9 – reference: 25697356 - J Biol Chem. 2015 Apr 3;290(14):8949-63 – reference: 12876094 - JAMA. 2003 Jul 23;290(4):511-5 – reference: 20392839 - Mol Biol Cell. 2010 Jun 1;21(11):1850-63 – reference: 12376616 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14524-9 – reference: 19948500 - J Cell Biol. 2009 Nov 16;187(4):525-36 – reference: 20626234 - J Neurovirol. 2010 Jul;16(4):306-17 – reference: 14718715 - Neurology. 2004 Jan 13;62(1):128-31 – reference: 9462735 - Nat Genet. 1998 Feb;18(2):106-8 – reference: 25246573 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4274-83 – reference: 21191014 - J Virol. 2011 Mar;85(6):2723-32 – reference: 24050397 - Neuron. 2013 Sep 18;79(6):1044-66 – reference: 10678833 - Science. 2000 Feb 18;287(5456):1265-9 – reference: 22102180 - Neurotherapeutics. 2012 Jan;9(1):124-38 – reference: 15269317 - N Engl J Med. 2004 Jul 22;351(4):370-8 – reference: 17192305 - J Virol. 2007 Mar;81(6):2614-23 – reference: 16794039 - Science. 2006 Jul 21;313(5785):324-8 – reference: 18760350 - Biochim Biophys Acta. 2009 Jul;1792(7):714-21 – reference: 14593171 - Science. 2003 Oct 31;302(5646):841 – reference: 23392688 - J Neurosci. 2013 Feb 6;33(6):2605-15 – reference: 15272270 - Nat Med. 2004 Jul;10 Suppl:S58-62 – reference: 15459709 - Nat Med. 2004 Oct;10(10):1055-63 – reference: 10707987 - Neuron. 2000 Jan;25(1):239-52 – reference: 9197268 - Science. 1997 Jun 27;276(5321):2045-7 – reference: 23221566 - J Virol. 2013 Feb;87(4):2206-14 – reference: 23455712 - Nat Med. 2013 Apr;19(4):458-64 – reference: 15451225 - Lancet. 2004 Sep 25-Oct 1;364(9440):1169-71 – reference: 16382032 - Neurology. 2006 Feb 14;66(3):361-5 – reference: 9600990 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6469-73 – reference: 15451224 - Lancet. 2004 Sep 25-Oct 1;364(9440):1167-9 – reference: 17610522 - Brain Pathol. 2007 Oct;17(4):354-62 – reference: 22939285 - Virology. 2012 Nov 10;433(1):262-72 – reference: 15709126 - AJNR Am J Neuroradiol. 2005 Feb;26(2):289-97 – reference: 22399753 - J Neurosci. 2012 Mar 7;32(10):3306-20 – reference: 20095866 - Antioxid Redox Signal. 2010 Sep 15;13(6):721-9 – reference: 24198425 - J Virol. 2014 Jan;88(2):1080-9 – reference: 24920798 - J Virol. 2014 Aug;88(16):9458-71 – reference: 21385877 - J Biol Chem. 2011 Apr 22;286(16):14226-36 – reference: 17035323 - J Virol. 2006 Dec;80(24):12060-9 – reference: 19667183 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14063-8 – reference: 14755719 - Ann Neurol. 2004 Feb;55(2):164-73 – reference: 20798282 - Science. 2010 Sep 24;329(5999):1663-7 |
SSID | ssj0014464 |
Score | 2.5718975 |
Snippet | We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2767 |
SubjectTerms | alpha-Synuclein - biosynthesis Animals Brain - immunology Brain - virology Cells, Cultured Encephalitis Virus, Venezuelan Equine - immunology Encephalitis Virus, Venezuelan Equine - isolation & purification Female Gene Expression Immunity, Innate Male Mice, Inbred C57BL Mice, Knockout Neurons - immunology Neurons - virology Pathogenesis and Immunity RNA Virus Infections - immunology RNA Virus Infections - prevention & control RNA Virus Infections - virology Survival Analysis West Nile virus - immunology West Nile virus - isolation & purification |
Title | Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26719256 https://www.proquest.com/docview/1768556740 https://pubmed.ncbi.nlm.nih.gov/PMC4810656 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxDflS0aCpyrDce04fuzQqjGNIrFs6lvkJLaohDKUpQ_jr-f8kaRZhzR4iSrXdVLfT5e7893vEPpQyUQZwVRUKcMjpgyJUsVFBJ6HLCspi7h02RbL5OiMHa_4aug26qpL2mK__H1jXcn_SBXGQK62SvYfJNsvCgPwGeQLV5AwXG8l47ktlI1Or2pLSryuLW-xT2t1YXnLvd9eTr8v59PzdeM4NXzilc8d95kBKjBv79qntgBuO-R-YDPSfbjUKc9pHzb-Cga4j3zPVTMc6586StsuZcOVGQ75xQebplFeFXs9U6sQhQ0hiDixOVi-CDNoTUtKak0v_1K5YSyoWt8ZNEBqpDeFb8qxq9CpLVI4Pv-yT6hksrvtiDd7-S1fnJ2c5NnhKruL7lFwGGgXtwnnSQA9l1_QPVRXAkHTT9trj42THY_jeuLsliWSPUIPg4jw3OPhMbqj6yfovm8qevUULa6hAg-owD0qMKACO1TgARUYJoOgsEPFM5QtDrPPR1HolhGVjJMWXmuclGDRyZImwqRCUz0z4I0oThisU0hNSkpVyk1ayTg1whhNiK60IEoxMXuO9uqLWr9EmMyYzc0wKtEVK5goFC0Mg18prgjX8QRNu13Ky8Akbxua_MydR0nTHPY0d3uax3yCPvazf3kGlb_Me99teA4qzp5bqVpfbC7zGFxizhPByAS98ALoV4L_Cj4KTyZIjETTT7D06eNv6vUPR6PO0hjs7-TVLe77Gj0YcP8G7bXNRr8FY7Qt3jmc_QHBjYw6 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpha-Synuclein+Expression+Restricts+RNA+Viral+Infections+in+the+Brain&rft.jtitle=Journal+of+virology&rft.au=Beatman%2C+Erica+L&rft.au=Massey%2C+Aaron&rft.au=Shives%2C+Katherine+D&rft.au=Burrack%2C+Kristina+S&rft.date=2016-03-15&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=90&rft.issue=6&rft.spage=2767&rft_id=info:doi/10.1128%2FJVI.02949-15&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |