Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain

We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-sp...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 90; no. 6; pp. 2767 - 2782
Main Authors Beatman, Erica L., Massey, Aaron, Shives, Katherine D., Burrack, Kristina S., Chamanian, Mastooreh, Morrison, Thomas E., Beckham, J. David
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 15.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10 4.5 infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. IMPORTANCE Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS.
AbstractList We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10 4.5 infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. IMPORTANCE Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS.
We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease.UNLABELLEDWe have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease.Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS.IMPORTANCENeuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS.
We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS.
Author Shives, Katherine D.
Beatman, Erica L.
Massey, Aaron
Chamanian, Mastooreh
Morrison, Thomas E.
Beckham, J. David
Burrack, Kristina S.
Author_xml – sequence: 1
  givenname: Erica L.
  surname: Beatman
  fullname: Beatman, Erica L.
  organization: Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
– sequence: 2
  givenname: Aaron
  surname: Massey
  fullname: Massey, Aaron
  organization: Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
– sequence: 3
  givenname: Katherine D.
  surname: Shives
  fullname: Shives, Katherine D.
  organization: Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA, Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
– sequence: 4
  givenname: Kristina S.
  surname: Burrack
  fullname: Burrack, Kristina S.
  organization: Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
– sequence: 5
  givenname: Mastooreh
  surname: Chamanian
  fullname: Chamanian, Mastooreh
  organization: Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
– sequence: 6
  givenname: Thomas E.
  surname: Morrison
  fullname: Morrison, Thomas E.
  organization: Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
– sequence: 7
  givenname: J. David
  surname: Beckham
  fullname: Beckham, J. David
  organization: Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA, Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA, Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26719256$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LAzEQxYMoWqs3z7JHD65O0mQ3exFqqVoRhVrEW4jpxEa22ZpsRf974ycqnuYwb35vZt4mWfWNR0J2KBxQyuTh-c3oAFjFq5yKFdKhUMlcCMpXSQeAsVz05O0G2YzxAYByXvB1ssGKklZMFB1y0q8XM51fv_ilqdH5bPi8CBija3w2xtgGZ9qYjS_72Y0Lus5G3qJpUzdmSdzOMDsO2vktsmZ1HXH7s3bJ5GQ4GZzlF1eno0H_IjdcQJvLUoABkJVJG1hZIsOelXSqBfDEvasQDGNaCiunFZW2tBYBcIolaM3LXpccfWAXy7s5Tg36Ni2lFsHNdXhRjXbqd8e7mbpvnhSXFApRJMDeJyA0j8t0n5q7aLCutcdmGRUtCylEUXJI0t2fXt8mX79LAvYhMKGJMaBVxrX67TfJ2tWKgnoLSKWA1HtAioo0tP9n6Iv7r_wVFRyR_A
CitedBy_id crossref_primary_10_1097_WAD_0000000000000405
crossref_primary_10_1016_j_nbd_2024_106609
crossref_primary_10_1002_mds_28680
crossref_primary_10_1007_s00702_023_02635_4
crossref_primary_10_1016_S1474_4422_20_30269_6
crossref_primary_10_18097_PBMC20186403276
crossref_primary_10_1016_j_lfs_2022_120981
crossref_primary_10_1080_14737175_2023_2196014
crossref_primary_10_3389_fphys_2022_864263
crossref_primary_10_34922_AE_2024_37_5_003
crossref_primary_10_1021_jasms_2c00339
crossref_primary_10_1021_acs_biomac_2c00582
crossref_primary_10_1096_fj_202301489R
crossref_primary_10_1016_j_bbih_2020_100105
crossref_primary_10_1016_j_neurol_2021_08_002
crossref_primary_10_1038_s41531_021_00203_9
crossref_primary_10_1016_j_expneurol_2021_113845
crossref_primary_10_1002_mds_29363
crossref_primary_10_1038_s41531_019_0090_8
crossref_primary_10_1093_brain_awac192
crossref_primary_10_1089_dna_2016_3488
crossref_primary_10_3390_ijms22137135
crossref_primary_10_1002_mds_29240
crossref_primary_10_1016_j_mehy_2017_05_022
crossref_primary_10_1021_acschemneuro_2c00679
crossref_primary_10_1007_s12035_023_03761_6
crossref_primary_10_1016_j_it_2022_10_001
crossref_primary_10_3233_JPD_191702
crossref_primary_10_1016_j_expneurol_2023_114644
crossref_primary_10_1016_j_virol_2024_110141
crossref_primary_10_3233_JPD_191703
crossref_primary_10_1159_000479653
crossref_primary_10_1016_j_tins_2021_06_006
crossref_primary_10_3390_ijms24065618
crossref_primary_10_1016_j_nbd_2023_106308
crossref_primary_10_1016_j_nbd_2022_105654
crossref_primary_10_3389_fneur_2022_968193
crossref_primary_10_1002_mds_28185
crossref_primary_10_3390_ijms252212079
crossref_primary_10_1007_s00702_022_02500_w
crossref_primary_10_3233_JPD_171240
crossref_primary_10_1111_ejn_13476
crossref_primary_10_1016_j_toxlet_2021_12_003
crossref_primary_10_1039_D3CS00878A
crossref_primary_10_1111_ejn_14286
crossref_primary_10_1038_s41380_022_01831_0
crossref_primary_10_3233_JPD_223240
crossref_primary_10_1016_j_bbrc_2021_10_042
crossref_primary_10_1186_s40035_021_00271_0
crossref_primary_10_1016_j_parkreldis_2023_105358
crossref_primary_10_3390_microorganisms10030599
crossref_primary_10_1007_s00401_024_02781_3
crossref_primary_10_1038_s41598_023_41240_z
crossref_primary_10_3389_fncel_2021_759571
crossref_primary_10_3389_fncel_2022_843790
crossref_primary_10_1039_D1NP00042J
crossref_primary_10_1128_jvi_00418_24
crossref_primary_10_3389_fimmu_2023_1154626
crossref_primary_10_1146_annurev_pathol_031920_092547
crossref_primary_10_1371_journal_ppat_1010670
crossref_primary_10_4103_1673_5374_300437
crossref_primary_10_3389_fneur_2023_1172416
crossref_primary_10_1016_j_jns_2018_11_003
crossref_primary_10_1016_j_celrep_2021_110090
crossref_primary_10_1186_s40478_024_01761_8
crossref_primary_10_1016_j_heliyon_2018_e00513
crossref_primary_10_1111_bph_14471
crossref_primary_10_3233_JPD_230315
crossref_primary_10_3390_ijms23179739
crossref_primary_10_3233_JPD_202279
crossref_primary_10_1016_j_tins_2020_10_009
crossref_primary_10_1111_ejn_14290
crossref_primary_10_1042_NS20200051
crossref_primary_10_3233_JPD_240195
crossref_primary_10_3390_pathogens11121535
crossref_primary_10_2174_0113892037275221240327042353
crossref_primary_10_1128_mSphere_00021_20
crossref_primary_10_1038_s41467_017_01447_x
crossref_primary_10_1038_s41531_023_00467_3
crossref_primary_10_1021_acs_jpclett_2c02278
crossref_primary_10_1038_s41531_025_00887_3
crossref_primary_10_1146_annurev_biochem_032620_105157
crossref_primary_10_3389_fneur_2021_697079
crossref_primary_10_1002_mds_28084
crossref_primary_10_3390_v13112164
crossref_primary_10_1002_pro_4736
crossref_primary_10_1007_s00702_017_1726_7
crossref_primary_10_1089_vim_2018_0075
crossref_primary_10_1126_scitranslmed_aar5280
crossref_primary_10_1134_S1990750818040029
crossref_primary_10_3389_fmicb_2016_00296
crossref_primary_10_3390_biomedicines11041215
crossref_primary_10_1038_s41467_018_05490_0
crossref_primary_10_3390_ijms22094643
crossref_primary_10_3390_life12060904
crossref_primary_10_1016_j_cell_2022_05_008
crossref_primary_10_3233_JAD_160607
crossref_primary_10_3390_ijms222111986
crossref_primary_10_1371_journal_ppat_1010018
crossref_primary_10_3390_biomedicines11092524
crossref_primary_10_1021_acschemneuro_0c00671
crossref_primary_10_3233_JPD_202320
crossref_primary_10_1111_febs_17023
crossref_primary_10_1126_scitranslmed_aas9292
crossref_primary_10_1007_s00018_020_03711_8
crossref_primary_10_3390_brainsci12020143
crossref_primary_10_1016_j_jneuroim_2023_578047
crossref_primary_10_1016_j_neulet_2017_12_003
crossref_primary_10_1007_s00415_021_10444_6
crossref_primary_10_1212_CPJ_0000000000000908
crossref_primary_10_1186_s40659_023_00482_x
crossref_primary_10_1016_j_ebiom_2024_105191
crossref_primary_10_3233_JPD_212929
crossref_primary_10_3389_fneur_2020_01044
crossref_primary_10_3389_fpsyt_2024_1480438
crossref_primary_10_3390_brainsci11121654
crossref_primary_10_1002_mds_27138
crossref_primary_10_1007_s00401_020_02202_1
crossref_primary_10_1038_s41467_021_25474_x
crossref_primary_10_1007_s40475_020_00200_7
crossref_primary_10_1038_s41467_022_32039_z
crossref_primary_10_1016_j_nbd_2022_105698
crossref_primary_10_3389_fnagi_2023_1138418
crossref_primary_10_1007_s44192_025_00128_2
crossref_primary_10_1007_s13311_023_01365_5
crossref_primary_10_3390_ijms21051890
crossref_primary_10_3390_geriatrics6010010
crossref_primary_10_3389_fncel_2021_691136
crossref_primary_10_1017_neu_2023_17
crossref_primary_10_3389_fneur_2019_00652
crossref_primary_10_1007_s15005_021_2010_9
crossref_primary_10_3389_fnagi_2021_776936
crossref_primary_10_1002_mds_28411
crossref_primary_10_1038_s41577_022_00684_6
crossref_primary_10_1016_j_nbd_2016_12_013
crossref_primary_10_1515_nipt_2023_0011
crossref_primary_10_1016_j_coi_2021_05_004
crossref_primary_10_1038_ni_3656
crossref_primary_10_2217_fvl_2023_0105
crossref_primary_10_3233_JPD_230070
crossref_primary_10_3233_ADR_170037
crossref_primary_10_1016_j_nbd_2017_11_004
crossref_primary_10_1212_WNL_0000000000210215
crossref_primary_10_1002_mds_28925
crossref_primary_10_1038_s41467_024_54628_w
crossref_primary_10_3390_ijms23063394
crossref_primary_10_1016_j_jneuroim_2020_577432
crossref_primary_10_1038_s41531_017_0035_z
crossref_primary_10_3389_fneur_2019_00122
crossref_primary_10_3389_fnins_2024_1467333
crossref_primary_10_1002_mds_27556
crossref_primary_10_1038_s41419_024_06534_8
Cites_doi 10.1126/science.1090278
10.1126/science.1195227
10.1038/ncb2131
10.1001/jama.290.4.511
10.1073/pnas.0900096106
10.1111/j.1750-3639.2007.00080.x
10.1128/JVI.02311-06
10.1056/NEJMoa1212628
10.1074/jbc.M114.619353
10.1038/nm.3108
10.1016/j.neuron.2013.09.004
10.1212/01.wnl.0000195890.70898.1f
10.1016/S0896-6273(00)80886-7
10.1212/01.WNL.0000101721.25345.DC
10.1074/jbc.M111.222703
10.1128/JVI.02097-12
10.1523/JNEUROSCI.2898-12.2013
10.1126/science.276.5321.2045
10.1126/science.1129462
10.1146/annurev.cellbio.042308.113313
10.1073/pnas.172514599
10.1089/ars.2009.2880
10.1128/JVI.01650-06
10.1091/mbc.E09-09-0801
10.1038/nm1068
10.1016/S0140-6736(04)17103-1
10.3109/13550284.2010.499890
10.1073/pnas.1416598111
10.1007/s13311-011-0086-5
10.1126/science.287.5456.1265
10.1056/NEJMra030476
10.1073/pnas.95.11.6469
10.1038/ng0298-106
10.1128/JVI.02050-10
10.1083/jcb.200907074
10.1523/JNEUROSCI.5367-11.2012
10.1126/science.1248465
10.1016/j.virol.2012.08.016
10.1038/nm1113
10.1128/JVI.01323-14
10.1016/j.bbadis.2008.08.001
10.1002/ana.10795
10.1016/S0140-6736(04)17104-3
10.1128/JVI.02944-13
ContentType Journal Article
Copyright Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
Copyright_xml – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/JVI.02949-15
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Alpha-Synuclein Restricts Virus in the Brain
EISSN 1098-5514
EndPage 2782
ExternalDocumentID PMC4810656
26719256
10_1128_JVI_02949_15
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01AI108725
– fundername: NIAID NIH HHS
  grantid: R01 AI108725
– fundername: University of Colorado Anschutz Medical Campus Center for Neuroscience
– fundername: University of Colorado Department of Medicine
– fundername: NIH/NIAID
  grantid: R01AI108725
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
UCJ
7X8
5PM
ID FETCH-LOGICAL-c450t-8750c0089c267f87e2e3f81da504fecb9e0c22a85f8d918f7ffe00ede70aa473
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 14:07:53 EDT 2025
Fri Jul 11 13:12:42 EDT 2025
Thu Jan 02 22:22:13 EST 2025
Thu Apr 24 22:56:36 EDT 2025
Tue Jul 01 01:02:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2016, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-8750c0089c267f87e2e3f81da504fecb9e0c22a85f8d918f7ffe00ede70aa473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Kristina S. Burrack, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
E.L.B. and A.M. are co-first authors and contributed equally to the article.
Citation Beatman EL, Massey A, Shives KD, Burrack KS, Chamanian M, Morrison TE, Beckham JD. 2016. Alpha-synuclein expression restricts RNA viral infections in the brain. J Virol 90:2767–2782. doi:10.1128/JVI.02949-15.
OpenAccessLink https://jvi.asm.org/content/jvi/90/6/2767.full.pdf
PMID 26719256
PQID 1768556740
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4810656
proquest_miscellaneous_1768556740
pubmed_primary_26719256
crossref_citationtrail_10_1128_JVI_02949_15
crossref_primary_10_1128_JVI_02949_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-15
PublicationDateYYYYMMDD 2016-03-15
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
National Research Council (e_1_3_2_29_2) 2011
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
Ali M (e_1_3_2_5_2) 2005; 26
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
15451224 - Lancet. 2004 Sep 25-Oct 1;364(9440):1167-9
14718715 - Neurology. 2004 Jan 13;62(1):128-31
12376616 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14524-9
21151134 - Nat Cell Biol. 2011 Jan;13(1):30-9
17610522 - Brain Pathol. 2007 Oct;17(4):354-62
23964935 - N Engl J Med. 2013 Aug 22;369(8):732-44
9462735 - Nat Genet. 1998 Feb;18(2):106-8
22939285 - Virology. 2012 Nov 10;433(1):262-72
23455712 - Nat Med. 2013 Apr;19(4):458-64
10678833 - Science. 2000 Feb 18;287(5456):1265-9
25246573 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4274-83
21191014 - J Virol. 2011 Mar;85(6):2723-32
23221566 - J Virol. 2013 Feb;87(4):2206-14
17035323 - J Virol. 2006 Dec;80(24):12060-9
18760350 - Biochim Biophys Acta. 2009 Jul;1792(7):714-21
23392688 - J Neurosci. 2013 Feb 6;33(6):2605-15
24198425 - J Virol. 2014 Jan;88(2):1080-9
25697356 - J Biol Chem. 2015 Apr 3;290(14):8949-63
14593171 - Science. 2003 Oct 31;302(5646):841
14755719 - Ann Neurol. 2004 Feb;55(2):164-73
15272270 - Nat Med. 2004 Jul;10 Suppl:S58-62
10707987 - Neuron. 2000 Jan;25(1):239-52
15451225 - Lancet. 2004 Sep 25-Oct 1;364(9440):1169-71
16382032 - Neurology. 2006 Feb 14;66(3):361-5
19948500 - J Cell Biol. 2009 Nov 16;187(4):525-36
21385877 - J Biol Chem. 2011 Apr 22;286(16):14226-36
12876094 - JAMA. 2003 Jul 23;290(4):511-5
20095866 - Antioxid Redox Signal. 2010 Sep 15;13(6):721-9
24920798 - J Virol. 2014 Aug;88(16):9458-71
22399753 - J Neurosci. 2012 Mar 7;32(10):3306-20
24050397 - Neuron. 2013 Sep 18;79(6):1044-66
24482115 - Science. 2014 Feb 14;343(6172):783-7
19667183 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14063-8
15269317 - N Engl J Med. 2004 Jul 22;351(4):370-8
20626234 - J Neurovirol. 2010 Jul;16(4):306-17
16794039 - Science. 2006 Jul 21;313(5785):324-8
22102180 - Neurotherapeutics. 2012 Jan;9(1):124-38
15709126 - AJNR Am J Neuroradiol. 2005 Feb;26(2):289-97
9600990 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6469-73
20392839 - Mol Biol Cell. 2010 Jun 1;21(11):1850-63
15459709 - Nat Med. 2004 Oct;10(10):1055-63
17192305 - J Virol. 2007 Mar;81(6):2614-23
9197268 - Science. 1997 Jun 27;276(5321):2045-7
20500090 - Annu Rev Cell Dev Biol. 2010;26:211-33
20798282 - Science. 2010 Sep 24;329(5999):1663-7
References_xml – ident: e_1_3_2_19_2
  doi: 10.1126/science.1090278
– ident: e_1_3_2_25_2
  doi: 10.1126/science.1195227
– ident: e_1_3_2_43_2
  doi: 10.1038/ncb2131
– ident: e_1_3_2_8_2
  doi: 10.1001/jama.290.4.511
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.0900096106
– ident: e_1_3_2_6_2
  doi: 10.1111/j.1750-3639.2007.00080.x
– ident: e_1_3_2_40_2
  doi: 10.1128/JVI.02311-06
– ident: e_1_3_2_3_2
  doi: 10.1056/NEJMoa1212628
– ident: e_1_3_2_46_2
  doi: 10.1074/jbc.M114.619353
– ident: e_1_3_2_11_2
  doi: 10.1038/nm.3108
– ident: e_1_3_2_41_2
  doi: 10.1016/j.neuron.2013.09.004
– ident: e_1_3_2_7_2
  doi: 10.1212/01.wnl.0000195890.70898.1f
– ident: e_1_3_2_23_2
  doi: 10.1016/S0896-6273(00)80886-7
– ident: e_1_3_2_20_2
  doi: 10.1212/01.WNL.0000101721.25345.DC
– ident: e_1_3_2_36_2
  doi: 10.1074/jbc.M111.222703
– ident: e_1_3_2_38_2
  doi: 10.1128/JVI.02097-12
– ident: e_1_3_2_42_2
  doi: 10.1523/JNEUROSCI.2898-12.2013
– ident: e_1_3_2_18_2
  doi: 10.1126/science.276.5321.2045
– ident: e_1_3_2_28_2
  doi: 10.1126/science.1129462
– volume: 26
  start-page: 289
  year: 2005
  ident: e_1_3_2_5_2
  article-title: West Nile virus infection: MR imaging findings in the nervous system
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_3_2_27_2
  doi: 10.1146/annurev.cellbio.042308.113313
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.172514599
– ident: e_1_3_2_45_2
  doi: 10.1089/ars.2009.2880
– ident: e_1_3_2_47_2
  doi: 10.1128/JVI.01650-06
– ident: e_1_3_2_44_2
  doi: 10.1091/mbc.E09-09-0801
– ident: e_1_3_2_13_2
  doi: 10.1038/nm1068
– ident: e_1_3_2_15_2
  doi: 10.1016/S0140-6736(04)17103-1
– ident: e_1_3_2_32_2
  doi: 10.3109/13550284.2010.499890
– ident: e_1_3_2_26_2
  doi: 10.1073/pnas.1416598111
– ident: e_1_3_2_2_2
  doi: 10.1007/s13311-011-0086-5
– ident: e_1_3_2_22_2
  doi: 10.1126/science.287.5456.1265
– volume-title: Guide for the care and use of laboratory animals
  year: 2011
  ident: e_1_3_2_29_2
– ident: e_1_3_2_4_2
  doi: 10.1056/NEJMra030476
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.95.11.6469
– ident: e_1_3_2_17_2
  doi: 10.1038/ng0298-106
– ident: e_1_3_2_35_2
  doi: 10.1128/JVI.02050-10
– ident: e_1_3_2_39_2
  doi: 10.1083/jcb.200907074
– ident: e_1_3_2_37_2
  doi: 10.1523/JNEUROSCI.5367-11.2012
– ident: e_1_3_2_34_2
  doi: 10.1126/science.1248465
– ident: e_1_3_2_30_2
  doi: 10.1016/j.virol.2012.08.016
– ident: e_1_3_2_12_2
  doi: 10.1038/nm1113
– ident: e_1_3_2_31_2
  doi: 10.1128/JVI.01323-14
– ident: e_1_3_2_10_2
  doi: 10.1016/j.bbadis.2008.08.001
– ident: e_1_3_2_21_2
  doi: 10.1002/ana.10795
– ident: e_1_3_2_16_2
  doi: 10.1016/S0140-6736(04)17104-3
– ident: e_1_3_2_33_2
  doi: 10.1128/JVI.02944-13
– reference: 23964935 - N Engl J Med. 2013 Aug 22;369(8):732-44
– reference: 24482115 - Science. 2014 Feb 14;343(6172):783-7
– reference: 20500090 - Annu Rev Cell Dev Biol. 2010;26:211-33
– reference: 21151134 - Nat Cell Biol. 2011 Jan;13(1):30-9
– reference: 25697356 - J Biol Chem. 2015 Apr 3;290(14):8949-63
– reference: 12876094 - JAMA. 2003 Jul 23;290(4):511-5
– reference: 20392839 - Mol Biol Cell. 2010 Jun 1;21(11):1850-63
– reference: 12376616 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14524-9
– reference: 19948500 - J Cell Biol. 2009 Nov 16;187(4):525-36
– reference: 20626234 - J Neurovirol. 2010 Jul;16(4):306-17
– reference: 14718715 - Neurology. 2004 Jan 13;62(1):128-31
– reference: 9462735 - Nat Genet. 1998 Feb;18(2):106-8
– reference: 25246573 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4274-83
– reference: 21191014 - J Virol. 2011 Mar;85(6):2723-32
– reference: 24050397 - Neuron. 2013 Sep 18;79(6):1044-66
– reference: 10678833 - Science. 2000 Feb 18;287(5456):1265-9
– reference: 22102180 - Neurotherapeutics. 2012 Jan;9(1):124-38
– reference: 15269317 - N Engl J Med. 2004 Jul 22;351(4):370-8
– reference: 17192305 - J Virol. 2007 Mar;81(6):2614-23
– reference: 16794039 - Science. 2006 Jul 21;313(5785):324-8
– reference: 18760350 - Biochim Biophys Acta. 2009 Jul;1792(7):714-21
– reference: 14593171 - Science. 2003 Oct 31;302(5646):841
– reference: 23392688 - J Neurosci. 2013 Feb 6;33(6):2605-15
– reference: 15272270 - Nat Med. 2004 Jul;10 Suppl:S58-62
– reference: 15459709 - Nat Med. 2004 Oct;10(10):1055-63
– reference: 10707987 - Neuron. 2000 Jan;25(1):239-52
– reference: 9197268 - Science. 1997 Jun 27;276(5321):2045-7
– reference: 23221566 - J Virol. 2013 Feb;87(4):2206-14
– reference: 23455712 - Nat Med. 2013 Apr;19(4):458-64
– reference: 15451225 - Lancet. 2004 Sep 25-Oct 1;364(9440):1169-71
– reference: 16382032 - Neurology. 2006 Feb 14;66(3):361-5
– reference: 9600990 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6469-73
– reference: 15451224 - Lancet. 2004 Sep 25-Oct 1;364(9440):1167-9
– reference: 17610522 - Brain Pathol. 2007 Oct;17(4):354-62
– reference: 22939285 - Virology. 2012 Nov 10;433(1):262-72
– reference: 15709126 - AJNR Am J Neuroradiol. 2005 Feb;26(2):289-97
– reference: 22399753 - J Neurosci. 2012 Mar 7;32(10):3306-20
– reference: 20095866 - Antioxid Redox Signal. 2010 Sep 15;13(6):721-9
– reference: 24198425 - J Virol. 2014 Jan;88(2):1080-9
– reference: 24920798 - J Virol. 2014 Aug;88(16):9458-71
– reference: 21385877 - J Biol Chem. 2011 Apr 22;286(16):14226-36
– reference: 17035323 - J Virol. 2006 Dec;80(24):12060-9
– reference: 19667183 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14063-8
– reference: 14755719 - Ann Neurol. 2004 Feb;55(2):164-73
– reference: 20798282 - Science. 2010 Sep 24;329(5999):1663-7
SSID ssj0014464
Score 2.5718975
Snippet We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2767
SubjectTerms alpha-Synuclein - biosynthesis
Animals
Brain - immunology
Brain - virology
Cells, Cultured
Encephalitis Virus, Venezuelan Equine - immunology
Encephalitis Virus, Venezuelan Equine - isolation & purification
Female
Gene Expression
Immunity, Innate
Male
Mice, Inbred C57BL
Mice, Knockout
Neurons - immunology
Neurons - virology
Pathogenesis and Immunity
RNA Virus Infections - immunology
RNA Virus Infections - prevention & control
RNA Virus Infections - virology
Survival Analysis
West Nile virus - immunology
West Nile virus - isolation & purification
Title Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain
URI https://www.ncbi.nlm.nih.gov/pubmed/26719256
https://www.proquest.com/docview/1768556740
https://pubmed.ncbi.nlm.nih.gov/PMC4810656
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxDflS0aCpyrDce04fuzQqjGNIrFs6lvkJLaohDKUpQ_jr-f8kaRZhzR4iSrXdVLfT5e7893vEPpQyUQZwVRUKcMjpgyJUsVFBJ6HLCspi7h02RbL5OiMHa_4aug26qpL2mK__H1jXcn_SBXGQK62SvYfJNsvCgPwGeQLV5AwXG8l47ktlI1Or2pLSryuLW-xT2t1YXnLvd9eTr8v59PzdeM4NXzilc8d95kBKjBv79qntgBuO-R-YDPSfbjUKc9pHzb-Cga4j3zPVTMc6586StsuZcOVGQ75xQebplFeFXs9U6sQhQ0hiDixOVi-CDNoTUtKak0v_1K5YSyoWt8ZNEBqpDeFb8qxq9CpLVI4Pv-yT6hksrvtiDd7-S1fnJ2c5NnhKruL7lFwGGgXtwnnSQA9l1_QPVRXAkHTT9trj42THY_jeuLsliWSPUIPg4jw3OPhMbqj6yfovm8qevUULa6hAg-owD0qMKACO1TgARUYJoOgsEPFM5QtDrPPR1HolhGVjJMWXmuclGDRyZImwqRCUz0z4I0oThisU0hNSkpVyk1ayTg1whhNiK60IEoxMXuO9uqLWr9EmMyYzc0wKtEVK5goFC0Mg18prgjX8QRNu13Ky8Akbxua_MydR0nTHPY0d3uax3yCPvazf3kGlb_Me99teA4qzp5bqVpfbC7zGFxizhPByAS98ALoV4L_Cj4KTyZIjETTT7D06eNv6vUPR6PO0hjs7-TVLe77Gj0YcP8G7bXNRr8FY7Qt3jmc_QHBjYw6
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpha-Synuclein+Expression+Restricts+RNA+Viral+Infections+in+the+Brain&rft.jtitle=Journal+of+virology&rft.au=Beatman%2C+Erica+L&rft.au=Massey%2C+Aaron&rft.au=Shives%2C+Katherine+D&rft.au=Burrack%2C+Kristina+S&rft.date=2016-03-15&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=90&rft.issue=6&rft.spage=2767&rft_id=info:doi/10.1128%2FJVI.02949-15&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon