Holographic duality from random tensor networks
A bstract Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of...
Saved in:
Published in | The journal of high energy physics Vol. 2016; no. 11; pp. 1 - 56 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge,
i.e.,
the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main results of the article define a more general form of bulk-boundary correspondence which could be useful for extending holography to other spacetimes. |
---|---|
AbstractList | A
bstract
Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge,
i.e.,
the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main results of the article define a more general form of bulk-boundary correspondence which could be useful for extending holography to other spacetimes. Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Renyi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main results of the article define a more general form of bulk-boundary correspondence which could be useful for extending holography to other spacetimes. Abstract Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main results of the article define a more general form of bulk-boundary correspondence which could be useful for extending holography to other spacetimes. |
ArticleNumber | 9 |
Author | Nezami, Sepehr Qi, Xiao-Liang Walter, Michael Hayden, Patrick Thomas, Nathaniel Yang, Zhao |
Author_xml | – sequence: 1 givenname: Patrick surname: Hayden fullname: Hayden, Patrick organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University – sequence: 2 givenname: Sepehr surname: Nezami fullname: Nezami, Sepehr organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University – sequence: 3 givenname: Xiao-Liang surname: Qi fullname: Qi, Xiao-Liang organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University – sequence: 4 givenname: Nathaniel surname: Thomas fullname: Thomas, Nathaniel organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University – sequence: 5 givenname: Michael surname: Walter fullname: Walter, Michael email: michael.walter@stanford.edu organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University – sequence: 6 givenname: Zhao surname: Yang fullname: Yang, Zhao organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University |
BookMark | eNp9kDFPwzAQRi1UJNrCzFqJpQyh5yS2kxFVhYIqwQCz5cR2SUntYjtC_fe4CkNVCaa74b27T98IDYw1CqFrDHcYgM2el4tXjKcpYHoLUJ6hIYa0TIqclYOj_QKNvN8AYIJLGKLZ0rZ27cTuo6knshNtE_YT7ex24oSRcQRlvHUTo8K3dZ_-Ep1r0Xp19TvH6P1h8TZfJquXx6f5_SqpcwIhKRiAYCoFRqASjGihgGhKciaFxEpSnRZVGjMwyWglS5GVWrJSkwJXaZ1m2RhN-7s7Z7865QPfNr5WbSuMsp3nuKA5YUWekYjenKAb2zkT00Uqo5gApUWkZj1VO-u9U5rvXLMVbs8x8EOBvC-QHwrkscBokBOjboIIjTXBiab9x4Pe8_GDWSt3lOcP5Qc8yYPz |
CitedBy_id | crossref_primary_10_1103_PhysRevD_105_046018 crossref_primary_10_1007_JHEP09_2022_190 crossref_primary_10_1116_5_0087122 crossref_primary_10_1007_JHEP02_2024_222 crossref_primary_10_1103_PhysRevD_109_L041901 crossref_primary_10_1007_JHEP06_2024_155 crossref_primary_10_1007_JHEP03_2018_006 crossref_primary_10_1007_JHEP01_2017_092 crossref_primary_10_1103_PhysRevResearch_1_033079 crossref_primary_10_1109_TMBMC_2023_3272158 crossref_primary_10_3390_e25111543 crossref_primary_10_1103_PhysRevD_109_126012 crossref_primary_10_21468_SciPostPhys_13_5_103 crossref_primary_10_1103_PhysRevD_100_024060 crossref_primary_10_1007_JHEP04_2019_119 crossref_primary_10_1103_PhysRevX_8_021014 crossref_primary_10_1007_JHEP04_2021_175 crossref_primary_10_1007_JHEP05_2022_127 crossref_primary_10_1103_PhysRevD_111_026012 crossref_primary_10_1007_JHEP08_2020_044 crossref_primary_10_1103_PhysRevB_99_155126 crossref_primary_10_1103_PhysRevX_12_041002 crossref_primary_10_1007_JHEP08_2019_140 crossref_primary_10_1103_PRXQuantum_5_040344 crossref_primary_10_1038_ncomms12472 crossref_primary_10_1103_PhysRevB_97_045153 crossref_primary_10_1007_JHEP07_2018_041 crossref_primary_10_1088_2058_9565_aaba1a crossref_primary_10_1103_PhysRevLett_124_201601 crossref_primary_10_1103_PhysRevB_109_195128 crossref_primary_10_1007_JHEP09_2020_002 crossref_primary_10_1103_PhysRevB_109_174307 crossref_primary_10_1007_JHEP05_2022_158 crossref_primary_10_1007_JHEP11_2019_175 crossref_primary_10_1007_s00220_024_05156_7 crossref_primary_10_1007_JHEP05_2022_162 crossref_primary_10_1007_s42484_024_00187_8 crossref_primary_10_1007_JHEP07_2018_050 crossref_primary_10_1007_JHEP03_2019_044 crossref_primary_10_1007_JHEP03_2019_165 crossref_primary_10_1007_JHEP06_2024_195 crossref_primary_10_1093_ptep_ptae137 crossref_primary_10_1007_JHEP09_2023_091 crossref_primary_10_1103_PhysRevB_107_224303 crossref_primary_10_1007_JHEP11_2019_069 crossref_primary_10_1103_PhysRevA_109_042414 crossref_primary_10_1103_PhysRevB_105_104306 crossref_primary_10_1103_PhysRevB_101_104301 crossref_primary_10_1103_PhysRevB_101_104302 crossref_primary_10_1146_annurev_conmatphys_033117_054219 crossref_primary_10_1007_JHEP03_2019_010 crossref_primary_10_1103_PhysRevLett_119_020501 crossref_primary_10_1103_PhysRevX_10_031066 crossref_primary_10_1103_PhysRevA_106_062418 crossref_primary_10_1007_JHEP04_2019_146 crossref_primary_10_21468_SciPostPhys_11_5_094 crossref_primary_10_3389_fams_2022_806549 crossref_primary_10_1088_1674_1137_ac69ba crossref_primary_10_1088_1751_8121_ab434b crossref_primary_10_21468_SciPostPhys_17_3_084 crossref_primary_10_1002_prop_201800067 crossref_primary_10_1103_PhysRevD_110_086002 crossref_primary_10_21468_SciPostPhys_8_5_073 crossref_primary_10_1007_JHEP12_2019_007 crossref_primary_10_1007_JHEP12_2019_128 crossref_primary_10_1088_1367_2630_aae9fa crossref_primary_10_1007_s00023_023_01358_2 crossref_primary_10_1103_PhysRevD_97_126002 crossref_primary_10_1007_JHEP05_2023_008 crossref_primary_10_1103_PhysRevD_107_086003 crossref_primary_10_1103_PhysRevD_107_086002 crossref_primary_10_21468_SciPostPhys_17_3_090 crossref_primary_10_1007_s11467_022_1162_5 crossref_primary_10_1007_JHEP01_2024_033 crossref_primary_10_1103_PhysRevD_97_026009 crossref_primary_10_1088_2632_2153_ac48a2 crossref_primary_10_1007_JHEP07_2019_042 crossref_primary_10_1103_PhysRevX_9_031009 crossref_primary_10_1007_JHEP04_2021_062 crossref_primary_10_1103_PhysRevX_8_011003 crossref_primary_10_1103_PhysRevX_9_031011 crossref_primary_10_1103_PhysRevLett_134_010401 crossref_primary_10_1103_PhysRevD_107_086016 crossref_primary_10_1007_JHEP10_2023_104 crossref_primary_10_1146_annurev_conmatphys_031720_030658 crossref_primary_10_1103_PhysRevD_97_026013 crossref_primary_10_1007_JHEP08_2017_141 crossref_primary_10_1007_JHEP04_2018_132 crossref_primary_10_1140_epjc_s10052_018_6140_2 crossref_primary_10_1103_PhysRevX_10_011009 crossref_primary_10_22331_q_2024_02_21_1261 crossref_primary_10_1103_PhysRevLett_123_110502 crossref_primary_10_1007_s10714_018_2426_9 crossref_primary_10_1103_PhysRevD_97_026012 crossref_primary_10_1007_JHEP04_2019_170 crossref_primary_10_1140_epjc_s10052_022_10377_y crossref_primary_10_1007_JHEP04_2021_069 crossref_primary_10_1007_JHEP01_2025_067 crossref_primary_10_1007_JHEP10_2024_012 crossref_primary_10_1103_PhysRevB_104_104205 crossref_primary_10_1007_JHEP04_2020_154 crossref_primary_10_1103_PRXQuantum_2_040308 crossref_primary_10_1093_ptep_ptae171 crossref_primary_10_22331_q_2022_02_03_643 crossref_primary_10_1007_s00023_021_01087_4 crossref_primary_10_21468_SciPostPhys_16_6_152 crossref_primary_10_1103_PhysRevD_97_106025 crossref_primary_10_1007_JHEP12_2019_170 crossref_primary_10_1002_prop_201800034 crossref_primary_10_1007_JHEP02_2024_191 crossref_primary_10_1103_PhysRevD_108_046010 crossref_primary_10_1007_JHEP05_2019_118 crossref_primary_10_1103_PhysRevB_106_144311 crossref_primary_10_1007_JHEP02_2023_018 crossref_primary_10_21468_SciPostPhys_16_6_144 crossref_primary_10_1103_PhysRevA_99_062334 crossref_primary_10_1103_PhysRevB_96_035101 crossref_primary_10_1103_PhysRevD_97_106010 crossref_primary_10_1007_JHEP04_2022_111 crossref_primary_10_1016_j_aop_2021_168618 crossref_primary_10_1088_1361_6382_aa6b0f crossref_primary_10_1007_s00220_021_04118_7 crossref_primary_10_1007_JHEP02_2019_145 crossref_primary_10_1007_JHEP04_2023_037 crossref_primary_10_1007_JHEP10_2020_052 crossref_primary_10_1103_PhysRevB_104_104305 crossref_primary_10_1007_JHEP10_2020_050 crossref_primary_10_1103_PhysRevLett_119_071602 crossref_primary_10_1103_PhysRevD_96_123536 crossref_primary_10_1007_s00220_024_04958_z crossref_primary_10_1103_PhysRevB_108_174308 crossref_primary_10_1007_JHEP12_2022_124 crossref_primary_10_1088_1751_8121_aab5de crossref_primary_10_1007_JHEP05_2024_251 crossref_primary_10_1007_JHEP10_2019_240 crossref_primary_10_1088_1361_6382_aabf55 crossref_primary_10_1007_JHEP07_2024_268 crossref_primary_10_1103_PhysRevD_103_026015 crossref_primary_10_1103_PRXQuantum_2_040340 crossref_primary_10_1007_JHEP12_2019_020 crossref_primary_10_1007_JHEP02_2024_151 crossref_primary_10_1007_JHEP04_2023_142 crossref_primary_10_1103_PhysRevB_100_245138 crossref_primary_10_1007_JHEP02_2024_040 crossref_primary_10_1007_JHEP05_2023_109 crossref_primary_10_1103_PhysRevX_9_031041 crossref_primary_10_1103_PhysRevD_107_026016 crossref_primary_10_1103_PhysRevX_11_041001 crossref_primary_10_1093_ptep_ptac112 crossref_primary_10_1007_JHEP01_2022_085 crossref_primary_10_1007_JHEP02_2023_245 crossref_primary_10_1038_s42005_022_01019_6 crossref_primary_10_1007_JHEP11_2023_188 crossref_primary_10_21468_SciPostPhys_15_5_218 crossref_primary_10_1103_PhysRevResearch_6_043246 crossref_primary_10_1103_PhysRevD_111_066003 crossref_primary_10_1103_PhysRevD_99_086007 crossref_primary_10_1103_PhysRevD_98_066005 crossref_primary_10_1088_2399_6528_abf9f7 crossref_primary_10_1103_PRXQuantum_6_010350 crossref_primary_10_1093_ptep_ptad156 crossref_primary_10_1007_JHEP12_2018_048 crossref_primary_10_1103_PhysRevD_105_125009 crossref_primary_10_1103_PhysRevLett_128_010604 crossref_primary_10_1103_PhysRevB_102_161119 crossref_primary_10_1007_JHEP04_2020_208 crossref_primary_10_1007_JHEP10_2019_118 crossref_primary_10_1007_JHEP10_2019_239 crossref_primary_10_3390_universe5100211 crossref_primary_10_1080_03610926_2021_2020843 crossref_primary_10_1007_JHEP05_2024_111 crossref_primary_10_1007_JHEP04_2017_093 crossref_primary_10_1007_JHEP01_2018_098 crossref_primary_10_1088_1674_1137_44_7_075102 crossref_primary_10_1093_ptep_ptad029 crossref_primary_10_1103_PhysRevB_97_045111 crossref_primary_10_1103_PhysRevD_110_066017 crossref_primary_10_1103_PRXQuantum_2_030337 crossref_primary_10_1007_JHEP05_2024_241 crossref_primary_10_1007_JHEP11_2021_177 crossref_primary_10_1007_JHEP01_2021_027 crossref_primary_10_1103_PhysRevB_98_085155 crossref_primary_10_1007_JHEP07_2018_086 crossref_primary_10_1103_PhysRevB_103_075145 crossref_primary_10_1103_PhysRevD_105_066005 crossref_primary_10_1103_PhysRevX_9_021040 crossref_primary_10_1126_science_aay9560 crossref_primary_10_1007_s10714_021_02896_y crossref_primary_10_1103_PhysRevB_101_224202 crossref_primary_10_1007_JHEP01_2023_067 crossref_primary_10_1007_JHEP01_2022_150 crossref_primary_10_1103_PhysRevB_108_104310 crossref_primary_10_1007_JHEP08_2019_017 crossref_primary_10_1007_JHEP02_2025_165 crossref_primary_10_1007_JHEP06_2021_094 crossref_primary_10_1103_PhysRevLett_127_221602 crossref_primary_10_1103_PhysRevD_106_L061903 crossref_primary_10_1007_JHEP02_2024_111 crossref_primary_10_1007_JHEP03_2020_191 crossref_primary_10_1007_s00220_021_04040_y crossref_primary_10_1007_JHEP07_2023_043 crossref_primary_10_1007_JHEP01_2021_009 crossref_primary_10_1103_PhysRevB_103_104306 crossref_primary_10_1103_PhysRevD_106_086008 crossref_primary_10_1007_JHEP02_2025_150 crossref_primary_10_1007_JHEP04_2022_020 crossref_primary_10_1103_PhysRevB_108_104203 crossref_primary_10_1007_JHEP06_2020_143 crossref_primary_10_1103_PhysRevD_103_046017 crossref_primary_10_1007_JHEP02_2022_180 crossref_primary_10_1007_JHEP12_2018_083 crossref_primary_10_1007_JHEP02_2022_056 crossref_primary_10_1007_JHEP08_2023_018 crossref_primary_10_1038_s41534_024_00822_z crossref_primary_10_1007_JHEP08_2022_102 crossref_primary_10_1007_JHEP05_2019_075 crossref_primary_10_1103_PhysRevD_103_126018 crossref_primary_10_1103_PhysRevD_110_046024 crossref_primary_10_1140_epjc_s10052_022_10382_1 crossref_primary_10_1080_00018732_2021_1876991 crossref_primary_10_1007_s00220_021_04274_w crossref_primary_10_1088_1751_8121_aaa151 crossref_primary_10_1007_JHEP03_2023_026 crossref_primary_10_1103_PhysRevD_98_026010 crossref_primary_10_1103_PhysRevD_95_024011 crossref_primary_10_1007_JHEP04_2017_040 crossref_primary_10_1007_JHEP03_2023_152 crossref_primary_10_1007_JHEP11_2017_097 crossref_primary_10_1007_JHEP06_2019_032 crossref_primary_10_1103_PhysRevLett_122_190501 crossref_primary_10_1007_JHEP07_2021_140 crossref_primary_10_1007_JHEP08_2022_118 crossref_primary_10_1103_PhysRevB_100_134203 crossref_primary_10_1103_PhysRevD_96_066017 crossref_primary_10_21468_SciPostPhys_9_5_067 crossref_primary_10_1007_JHEP07_2021_016 crossref_primary_10_1038_s41567_018_0075_2 crossref_primary_10_1007_JHEP05_2019_052 crossref_primary_10_1103_PhysRevB_109_235102 crossref_primary_10_1103_PhysRevD_109_086011 crossref_primary_10_22331_q_2024_12_11_1560 crossref_primary_10_1007_JHEP07_2021_011 crossref_primary_10_1103_PhysRevX_13_041045 crossref_primary_10_21468_SciPostPhys_12_5_157 crossref_primary_10_1103_PRXQuantum_6_010312 crossref_primary_10_21468_SciPostPhys_9_5_078 crossref_primary_10_1007_JHEP03_2021_213 crossref_primary_10_1103_PhysRevD_96_066005 crossref_primary_10_21468_SciPostPhys_2_3_016 crossref_primary_10_1103_PhysRevLett_119_231301 crossref_primary_10_1103_PhysRevLett_132_030401 crossref_primary_10_1007_JHEP02_2023_062 crossref_primary_10_1109_TIT_2023_3340503 crossref_primary_10_1007_JHEP06_2022_078 crossref_primary_10_1007_JHEP03_2017_090 crossref_primary_10_1103_PhysRevA_102_042407 crossref_primary_10_1007_JHEP04_2023_009 crossref_primary_10_1007_JHEP08_2024_152 crossref_primary_10_1007_JHEP02_2023_195 crossref_primary_10_1103_PhysRevD_111_046001 crossref_primary_10_1007_JHEP08_2024_016 crossref_primary_10_1038_s41567_018_0297_3 crossref_primary_10_22331_q_2022_02_16_655 crossref_primary_10_1007_JHEP04_2017_121 crossref_primary_10_1007_JHEP12_2016_145 crossref_primary_10_1103_PhysRevLett_130_131601 crossref_primary_10_1007_s00220_024_04953_4 crossref_primary_10_1007_JHEP06_2021_024 crossref_primary_10_1007_JHEP10_2021_164 crossref_primary_10_1007_JHEP01_2018_139 crossref_primary_10_1103_PRXQuantum_3_020314 crossref_primary_10_1007_JHEP12_2024_209 crossref_primary_10_1103_PhysRevB_111_054306 crossref_primary_10_1007_JHEP03_2022_052 crossref_primary_10_1007_JHEP06_2022_056 crossref_primary_10_1088_1361_6382_ab1c7d crossref_primary_10_1007_JHEP11_2017_048 crossref_primary_10_1088_1572_9494_acdd61 crossref_primary_10_1038_s41534_020_0255_7 crossref_primary_10_1103_PhysRevLett_129_270501 crossref_primary_10_1103_PhysRevLett_119_140502 crossref_primary_10_1103_RevModPhys_93_045003 crossref_primary_10_1007_JHEP12_2016_055 crossref_primary_10_1016_j_shpsb_2020_04_007 crossref_primary_10_1103_PhysRevLett_121_170402 crossref_primary_10_1103_PRXQuantum_2_010352 crossref_primary_10_1103_PRXQuantum_5_010334 crossref_primary_10_1103_PhysRevResearch_3_043199 crossref_primary_10_1007_s00220_019_03510_8 crossref_primary_10_1007_JHEP02_2024_079 crossref_primary_10_1007_JHEP07_2021_052 crossref_primary_10_1142_S0217751X23501166 crossref_primary_10_1103_PhysRevD_95_024031 crossref_primary_10_1103_PhysRevB_103_174309 crossref_primary_10_1103_PhysRevB_106_115138 crossref_primary_10_1088_1367_2630_aa7235 crossref_primary_10_22331_q_2023_02_02_910 crossref_primary_10_1103_PhysRevD_102_086009 crossref_primary_10_1103_PRXQuantum_3_020332 crossref_primary_10_1103_PhysRevLett_119_141602 crossref_primary_10_1103_PhysRevD_102_086001 crossref_primary_10_1103_PhysRevD_108_L081901 crossref_primary_10_1007_JHEP11_2024_105 crossref_primary_10_1007_JHEP12_2020_063 crossref_primary_10_1103_PhysRevResearch_3_043046 crossref_primary_10_1103_PhysRevX_7_021022 crossref_primary_10_1103_PhysRevLett_125_241602 crossref_primary_10_1007_JHEP11_2017_148 crossref_primary_10_1007_JHEP08_2022_189 crossref_primary_10_1103_PhysRevD_105_106002 crossref_primary_10_1103_PhysRevD_107_066021 crossref_primary_10_1126_sciadv_aaw0092 crossref_primary_10_1103_PhysRevD_107_066014 crossref_primary_10_1103_PhysRevD_102_126022 crossref_primary_10_21468_SciPostPhys_4_6_033 crossref_primary_10_1103_PhysRevD_99_106014 crossref_primary_10_1007_JHEP03_2017_153 crossref_primary_10_1103_PRXQuantum_4_030325 crossref_primary_10_1103_PhysRevLett_127_040507 crossref_primary_10_1103_PhysRevD_109_L101903 crossref_primary_10_1103_PhysRevD_109_L101902 crossref_primary_10_1007_JHEP11_2024_125 crossref_primary_10_1007_JHEP12_2020_083 crossref_primary_10_1103_PhysRevLett_128_050602 crossref_primary_10_1103_PRXQuantum_4_030333 crossref_primary_10_1103_PhysRevD_99_026008 crossref_primary_10_7566_JPSJ_91_062001 crossref_primary_10_1103_PhysRevB_104_094304 crossref_primary_10_1142_S0217751X24500155 crossref_primary_10_1038_s41534_019_0145_z crossref_primary_10_1007_JHEP09_2018_106 crossref_primary_10_1002_prop_202000094 crossref_primary_10_1088_2632_2153_ab94c5 crossref_primary_10_1007_JHEP08_2017_060 crossref_primary_10_1103_PhysRevB_98_014309 crossref_primary_10_1103_PRXQuantum_3_010333 crossref_primary_10_1007_JHEP03_2025_037 crossref_primary_10_1103_PhysRevD_111_046027 crossref_primary_10_21468_SciPostPhysCore_7_4_070 crossref_primary_10_1103_PhysRevB_102_064202 crossref_primary_10_1007_JHEP01_2025_022 crossref_primary_10_1103_PhysRevB_103_235155 crossref_primary_10_1103_PhysRevLett_122_250602 crossref_primary_10_1103_PhysRevX_12_021021 crossref_primary_10_1007_JHEP06_2024_120 crossref_primary_10_3938_jkps_75_845 crossref_primary_10_1007_JHEP09_2018_045 crossref_primary_10_1007_JHEP10_2023_040 crossref_primary_10_1038_s41467_023_42743_z crossref_primary_10_1103_PhysRevD_97_086013 crossref_primary_10_1007_JHEP05_2021_009 crossref_primary_10_1007_JHEP01_2019_225 crossref_primary_10_1007_JHEP05_2021_127 crossref_primary_10_1103_PhysRevB_108_214302 crossref_primary_10_1007_JHEP09_2019_021 crossref_primary_10_1103_PRXQuantum_4_010331 crossref_primary_10_1103_PhysRevX_7_031016 crossref_primary_10_1088_1751_8121_ab757e crossref_primary_10_1103_PhysRevD_95_066004 crossref_primary_10_1007_JHEP10_2023_030 crossref_primary_10_1103_PhysRevD_95_105007 crossref_primary_10_1103_PhysRevD_97_086003 crossref_primary_10_1142_S0217984924502865 crossref_primary_10_1007_JHEP08_2020_121 crossref_primary_10_3390_e19120671 crossref_primary_10_3390_universe8010001 crossref_primary_10_1007_JHEP08_2022_158 crossref_primary_10_1007_JHEP12_2020_025 crossref_primary_10_1103_PhysRevB_109_014303 crossref_primary_10_1007_JHEP02_2020_152 crossref_primary_10_1103_PhysRevD_111_026006 crossref_primary_10_1007_JHEP02_2022_076 crossref_primary_10_1103_PhysRevD_102_066001 crossref_primary_10_1007_JHEP03_2022_205 crossref_primary_10_1103_PhysRevB_100_125139 crossref_primary_10_1007_JHEP06_2017_118 crossref_primary_10_1007_s00220_017_2904_z crossref_primary_10_1016_j_laa_2020_12_014 crossref_primary_10_1007_JHEP02_2022_093 crossref_primary_10_1103_PhysRevD_105_026018 crossref_primary_10_1103_PhysRevB_99_174205 crossref_primary_10_1007_JHEP02_2020_013 crossref_primary_10_1103_PhysRevLett_129_080501 crossref_primary_10_1007_JHEP10_2017_069 crossref_primary_10_1142_S0217751X24501306 crossref_primary_10_1007_s00031_024_09863_2 crossref_primary_10_1007_JHEP10_2021_226 crossref_primary_10_1007_JHEP10_2017_187 crossref_primary_10_1007_s00220_019_03404_9 |
Cites_doi | 10.1016/0550-3213(94)90402-2 10.1088/1126-6708/2003/04/021 10.1088/1126-6708/2007/07/062 10.1038/163398a0 10.1007/JHEP01(2016)175 10.1007/BF01215300 10.1007/JHEP10(2012)165 10.1007/JHEP10(2012)106 10.1007/BF01208266 10.1007/JHEP11(2013)074 10.4310/ATMP.1998.v2.n2.a2 10.1007/JHEP05(2016)158 10.1103/PhysRevLett.96.181602 10.1098/rsta.1951.0006 10.1063/1.4954231 10.1103/PhysRevA.43.2046 10.1007/JHEP04(2015)163 10.1023/A:1026654312961 10.1088/1126-6708/2009/10/079 10.1063/1.4936880 10.1103/PhysRev.65.117 10.1007/JHEP09(2015)130 10.1007/JHEP06(2015)149 10.1007/JHEP06(2015)157 10.4310/ATMP.1998.v2.n3.a3 10.1088/1126-6708/2006/09/018 10.1038/ncomms12472 10.1063/1.4818950 10.1016/S0370-2693(98)00377-3 10.1088/1742-5468/2004/06/P06002 10.1103/PhysRev.162.436 10.1103/PhysRevA.72.052317 10.1109/TIT.2005.844076 10.1103/PhysRevLett.71.1291 10.1007/s00220-006-0118-x 10.1103/PhysRevE.50.888 10.1103/PhysRevA.75.064304 10.1103/PhysRevA.54.2629 10.1063/1.1737053 10.1023/A:1019653202562 10.1103/PhysRevA.69.052304 10.1007/3-540-49208-9_21 10.1007/s00220-013-1718-x |
ContentType | Journal Article |
Copyright | The Author(s) 2016 SISSA, Trieste, Italy 2016 |
Copyright_xml | – notice: The Author(s) 2016 – notice: SISSA, Trieste, Italy 2016 |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7U5 8FD H8D L7M |
DOI | 10.1007/JHEP11(2016)009 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 56 |
ExternalDocumentID | 4239438891 10_1007_JHEP11_2016_009 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHSBF AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ H13 HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c450t-8700a7e20750ba75fae05f6547dad1ed6f28b21517d76bd9a39fd79f581b2c233 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Fri Jul 11 15:33:46 EDT 2025 Sun Jul 13 03:10:18 EDT 2025 Thu Apr 24 23:00:16 EDT 2025 Tue Jul 01 03:51:34 EDT 2025 Fri Feb 21 02:40:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Black Holes in String Theory AdS-CFT Correspondence Gauge-gravity correspondence Random Systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-8700a7e20750ba75fae05f6547dad1ed6f28b21517d76bd9a39fd79f581b2c233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1836150668?pq-origsite=%requestingapplication% |
PQID | 1836150668 |
PQPubID | 2034718 |
PageCount | 56 |
ParticipantIDs | proquest_miscellaneous_1864578435 proquest_journals_1836150668 crossref_primary_10_1007_JHEP11_2016_009 crossref_citationtrail_10_1007_JHEP11_2016_009 springer_journals_10_1007_JHEP11_2016_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Deutsch (CR30) 1991; A 43 CR39 Maldacena (CR2) 1999; 38 Gubser, Klebanov, Polyakov (CR4) 1998; B 428 CR37 Onsager (CR41) 1944; 65 CR35 CR34 Collins, Nechita, Życzkowski (CR15) 2013; A 46 CR31 Collins, Nechita (CR13) 2016; 57 Pastawski, Yoshida, Harlow, Preskill (CR6) 2015; 06 Heemskerk, Marolf, Polchinski, Sully (CR24) 2012; 10 Swingle (CR1) 2012; D 86 Witten (CR3) 1998; 2 Fursaev (CR38) 2006; 09 CR7 El-Showk, Papadodimas (CR27) 2012; 10 CR49 Linden, Matus, Ruskai, Winter (CR55) 2013; 22 Gross, Walter (CR54) 2013; 54 CR46 CR45 Bao, Nezami, Ooguri, Stoica, Sully, Walter (CR22) 2015; 09 CR42 Burton, Cabrera, Frank (CR43) 1949; 163 CR40 Almheiri, Dong, Harlow (CR9) 2015; 04 Yang, Hayden, Qi (CR8) 2016; 01 Hawking, Page (CR11) 1983; 87 CR19 CR17 CR16 CR59 CR58 CR57 Faulkner, Lewkowycz, Maldacena (CR25) 2013; 11 Burton, Cabrera, Frank (CR44) 1951; A 243 CR53 CR52 Dong (CR10) 2016; 7 CR51 CR50 Dutil, Hayden (CR47) 2011; 11 Ryu, Takayanagi (CR5) 2006; 96 Maldacena (CR33) 2003; 04 Cui, Freedman, Sattath, Stong, Minton (CR18) 2016; 57 Lubkin, Lubkin (CR32) 1993; 32 Collins, Nechita, Życzkowski (CR14) 2010; A 43 CR29 Heemskerk, Penedones, Polchinski, Sully (CR26) 2009; 10 Witten (CR12) 1998; 2 CR21 CR20 Headrick, Takayanagi (CR56) 2007; D 76 CR60 Benjamin, Kachru, Keller, Paquette (CR28) 2016; 05 Czech, Hayden, Lashkari, Swingle (CR48) 2015; 06 Hubeny, Rangamani, Takayanagi (CR23) 2007; 07 Holzhey, Larsen, Wilczek (CR36) 1994; B 424 I Heemskerk (4945_CR24) 2012; 10 E Lubkin (4945_CR32) 1993; 32 J Deutsch (4945_CR30) 1991; A 43 SW Hawking (4945_CR11) 1983; 87 S El-Showk (4945_CR27) 2012; 10 VE Hubeny (4945_CR23) 2007; 07 4945_CR45 4945_CR46 4945_CR49 B Czech (4945_CR48) 2015; 06 S Ryu (4945_CR5) 2006; 96 A Almheiri (4945_CR9) 2015; 04 W Burton (4945_CR44) 1951; A 243 W Burton (4945_CR43) 1949; 163 4945_CR40 4945_CR42 SS Gubser (4945_CR4) 1998; B 428 4945_CR19 4945_CR57 E Witten (4945_CR12) 1998; 2 JM Maldacena (4945_CR33) 2003; 04 4945_CR58 4945_CR59 4945_CR16 4945_CR17 4945_CR50 4945_CR51 N Dutil (4945_CR47) 2011; 11 4945_CR52 4945_CR53 E Witten (4945_CR3) 1998; 2 B Swingle (4945_CR1) 2012; D 86 Z Yang (4945_CR8) 2016; 01 JM Maldacena (4945_CR2) 1999; 38 4945_CR29 4945_CR60 X Dong (4945_CR10) 2016; 7 N Linden (4945_CR55) 2013; 22 4945_CR20 4945_CR21 B Collins (4945_CR14) 2010; A 43 N Bao (4945_CR22) 2015; 09 F Pastawski (4945_CR6) 2015; 06 N Benjamin (4945_CR28) 2016; 05 D Gross (4945_CR54) 2013; 54 DV Fursaev (4945_CR38) 2006; 09 SX Cui (4945_CR18) 2016; 57 M Headrick (4945_CR56) 2007; D 76 C Holzhey (4945_CR36) 1994; B 424 L Onsager (4945_CR41) 1944; 65 B Collins (4945_CR13) 2016; 57 4945_CR34 4945_CR35 4945_CR37 4945_CR39 B Collins (4945_CR15) 2013; A 46 T Faulkner (4945_CR25) 2013; 11 I Heemskerk (4945_CR26) 2009; 10 4945_CR7 4945_CR31 |
References_xml | – ident: CR45 – volume: B 424 start-page: 443 year: 1994 ident: CR36 article-title: Geometric and renormalized entropy in conformal field theory publication-title: Nucl. Phys. doi: 10.1016/0550-3213(94)90402-2 – ident: CR49 – volume: 04 start-page: 021 year: 2003 ident: CR33 article-title: Eternal black holes in anti-de Sitter publication-title: JHEP doi: 10.1088/1126-6708/2003/04/021 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR35 – ident: CR29 – volume: 07 start-page: 062 year: 2007 ident: CR23 article-title: A covariant holographic entanglement entropy proposal publication-title: JHEP doi: 10.1088/1126-6708/2007/07/062 – ident: CR58 – volume: 163 start-page: 398 year: 1949 ident: CR43 article-title: Role of dislocations in crystal growth publication-title: Nature doi: 10.1038/163398a0 – volume: 01 start-page: 175 year: 2016 ident: CR8 article-title: Bidirectional holographic codes and sub-AdS locality publication-title: JHEP doi: 10.1007/JHEP01(2016)175 – volume: 32 start-page: 933 year: 1993 ident: CR32 article-title: Average quantal behavior and thermodynamic isolation publication-title: Int. J. Theor. Phys. doi: 10.1007/BF01215300 – volume: 10 start-page: 165 year: 2012 ident: CR24 article-title: Bulk and Transhorizon Measurements in AdS/CFT publication-title: JHEP doi: 10.1007/JHEP10(2012)165 – ident: CR42 – ident: CR21 – ident: CR46 – ident: CR19 – volume: 10 start-page: 106 year: 2012 ident: CR27 article-title: Emergent Spacetime and Holographic CFTs publication-title: JHEP doi: 10.1007/JHEP10(2012)106 – volume: 87 start-page: 577 year: 1983 ident: CR11 article-title: Thermodynamics of Black Holes in anti-de Sitter Space publication-title: Commun. Math. Phys. doi: 10.1007/BF01208266 – volume: 11 start-page: 074 year: 2013 ident: CR25 article-title: Quantum corrections to holographic entanglement entropy publication-title: JHEP doi: 10.1007/JHEP11(2013)074 – ident: CR50 – volume: 2 start-page: 253 year: 1998 ident: CR3 article-title: Anti-de Sitter space and holography publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – ident: CR57 – volume: D 76 start-page: 106013 year: 2007 ident: CR56 article-title: A Holographic proof of the strong subadditivity of entanglement entropy publication-title: Phys. Rev. – ident: CR60 – volume: A 43 start-page: 275303 year: 2010 ident: CR14 article-title: Random graph states, maximal flow and fuss-catalan distributions publication-title: J. Phys. – volume: 05 start-page: 158 year: 2016 ident: CR28 article-title: Emergent space-time and the supersymmetric index publication-title: JHEP doi: 10.1007/JHEP05(2016)158 – volume: 96 start-page: 181602 year: 2006 ident: CR5 article-title: Holographic derivation of entanglement entropy from AdS/CFT publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – volume: A 243 start-page: 299 year: 1951 ident: CR44 article-title: The growth of crystals and the equilibrium structure of their surfaces publication-title: Phil. Trans. Roy. Soc. Lond. doi: 10.1098/rsta.1951.0006 – volume: 22 start-page: 270 year: 2013 ident: CR55 article-title: , in publication-title: LIPICS – volume: 57 start-page: 062206 year: 2016 ident: CR18 article-title: Quantum Max-flow/Min-cut publication-title: J. Math. Phys. doi: 10.1063/1.4954231 – volume: A 46 start-page: 305302 year: 2013 ident: CR15 article-title: Area law for random graph states publication-title: J. Phys. – volume: A 43 start-page: 2046 year: 1991 ident: CR30 article-title: Quantum statistical mechanics in a closed system publication-title: Phys. Rev. doi: 10.1103/PhysRevA.43.2046 – volume: D 86 start-page: 065007 year: 2012 ident: CR1 article-title: Entanglement Renormalization and Holography publication-title: Phys. Rev. – volume: 04 start-page: 163 year: 2015 ident: CR9 article-title: Bulk Locality and Quantum Error Correction in AdS/CFT publication-title: JHEP doi: 10.1007/JHEP04(2015)163 – ident: CR37 – ident: CR53 – volume: 38 start-page: 1113 year: 1999 ident: CR2 article-title: The large-N limit of superconformal field theories and supergravity publication-title: Int. J. Theor. Phys. doi: 10.1023/A:1026654312961 – volume: 11 start-page: 496 year: 2011 ident: CR47 article-title: Assisted entanglement distillation publication-title: Quant. Inform. Comput. – volume: 10 start-page: 079 year: 2009 ident: CR26 article-title: Holography from Conformal Field Theory publication-title: JHEP doi: 10.1088/1126-6708/2009/10/079 – volume: 57 start-page: 015215 year: 2016 ident: CR13 article-title: Random matrix techniques in quantum information theory publication-title: J. Math. Phys. doi: 10.1063/1.4936880 – volume: 65 start-page: 117 year: 1944 ident: CR41 article-title: Crystal statistics. 1. A Two-dimensional model with an order disorder transition publication-title: Phys. Rev. doi: 10.1103/PhysRev.65.117 – volume: 09 start-page: 130 year: 2015 ident: CR22 article-title: The Holographic Entropy Cone publication-title: JHEP doi: 10.1007/JHEP09(2015)130 – ident: CR40 – volume: 06 start-page: 149 year: 2015 ident: CR6 article-title: Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence publication-title: JHEP doi: 10.1007/JHEP06(2015)149 – volume: 06 start-page: 157 year: 2015 ident: CR48 article-title: The Information Theoretic Interpretation of the Length of a Curve publication-title: JHEP doi: 10.1007/JHEP06(2015)157 – ident: CR52 – ident: CR17 – ident: CR31 – volume: 2 start-page: 505 year: 1998 ident: CR12 article-title: Anti-de Sitter space, thermal phase transition and confinement in gauge theories publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n3.a3 – volume: 09 start-page: 018 year: 2006 ident: CR38 article-title: Proof of the holographic formula for entanglement entropy publication-title: JHEP doi: 10.1088/1126-6708/2006/09/018 – volume: 7 start-page: 12472 year: 2016 ident: CR10 article-title: The Gravity Dual of Renyi Entropy publication-title: Nature Commun. doi: 10.1038/ncomms12472 – ident: CR34 – ident: CR7 – ident: CR59 – volume: 54 start-page: 082201 year: 2013 ident: CR54 article-title: Stabilizer information inequalities from phase space distributions publication-title: J. Math. Phys. doi: 10.1063/1.4818950 – volume: B 428 start-page: 105 year: 1998 ident: CR4 article-title: Gauge theory correlators from noncritical string theory publication-title: Phys. Lett. doi: 10.1016/S0370-2693(98)00377-3 – ident: CR20 – ident: 4945_CR37 doi: 10.1088/1742-5468/2004/06/P06002 – ident: 4945_CR39 – volume: 06 start-page: 157 year: 2015 ident: 4945_CR48 publication-title: JHEP doi: 10.1007/JHEP06(2015)157 – ident: 4945_CR16 – ident: 4945_CR42 doi: 10.1103/PhysRev.162.436 – volume: 65 start-page: 117 year: 1944 ident: 4945_CR41 publication-title: Phys. Rev. doi: 10.1103/PhysRev.65.117 – ident: 4945_CR46 doi: 10.1103/PhysRevA.72.052317 – volume: 2 start-page: 253 year: 1998 ident: 4945_CR3 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – volume: 04 start-page: 163 year: 2015 ident: 4945_CR9 publication-title: JHEP doi: 10.1007/JHEP04(2015)163 – volume: 163 start-page: 398 year: 1949 ident: 4945_CR43 publication-title: Nature doi: 10.1038/163398a0 – ident: 4945_CR53 doi: 10.1109/TIT.2005.844076 – volume: D 86 start-page: 065007 year: 2012 ident: 4945_CR1 publication-title: Phys. Rev. – volume: 96 start-page: 181602 year: 2006 ident: 4945_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – volume: 57 start-page: 015215 year: 2016 ident: 4945_CR13 publication-title: J. Math. Phys. doi: 10.1063/1.4936880 – volume: 09 start-page: 130 year: 2015 ident: 4945_CR22 publication-title: JHEP doi: 10.1007/JHEP09(2015)130 – volume: A 43 start-page: 275303 year: 2010 ident: 4945_CR14 publication-title: J. Phys. – volume: 38 start-page: 1113 year: 1999 ident: 4945_CR2 publication-title: Int. J. Theor. Phys. doi: 10.1023/A:1026654312961 – ident: 4945_CR50 – volume: A 243 start-page: 299 year: 1951 ident: 4945_CR44 publication-title: Phil. Trans. Roy. Soc. Lond. doi: 10.1098/rsta.1951.0006 – ident: 4945_CR29 doi: 10.1103/PhysRevLett.71.1291 – volume: 22 start-page: 270 year: 2013 ident: 4945_CR55 publication-title: LIPICS – ident: 4945_CR58 – volume: 57 start-page: 062206 year: 2016 ident: 4945_CR18 publication-title: J. Math. Phys. doi: 10.1063/1.4954231 – volume: 87 start-page: 577 year: 1983 ident: 4945_CR11 publication-title: Commun. Math. Phys. doi: 10.1007/BF01208266 – ident: 4945_CR40 – volume: 05 start-page: 158 year: 2016 ident: 4945_CR28 publication-title: JHEP doi: 10.1007/JHEP05(2016)158 – volume: B 428 start-page: 105 year: 1998 ident: 4945_CR4 publication-title: Phys. Lett. doi: 10.1016/S0370-2693(98)00377-3 – volume: A 46 start-page: 305302 year: 2013 ident: 4945_CR15 publication-title: J. Phys. – ident: 4945_CR49 doi: 10.1007/s00220-006-0118-x – volume: 10 start-page: 079 year: 2009 ident: 4945_CR26 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/079 – volume: 7 start-page: 12472 year: 2016 ident: 4945_CR10 publication-title: Nature Commun. doi: 10.1038/ncomms12472 – volume: 06 start-page: 149 year: 2015 ident: 4945_CR6 publication-title: JHEP doi: 10.1007/JHEP06(2015)149 – ident: 4945_CR31 doi: 10.1103/PhysRevE.50.888 – volume: 54 start-page: 082201 year: 2013 ident: 4945_CR54 publication-title: J. Math. Phys. doi: 10.1063/1.4818950 – volume: 10 start-page: 106 year: 2012 ident: 4945_CR27 publication-title: JHEP doi: 10.1007/JHEP10(2012)106 – ident: 4945_CR34 doi: 10.1103/PhysRevA.75.064304 – ident: 4945_CR57 – volume: B 424 start-page: 443 year: 1994 ident: 4945_CR36 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(94)90402-2 – volume: 01 start-page: 175 year: 2016 ident: 4945_CR8 publication-title: JHEP doi: 10.1007/JHEP01(2016)175 – ident: 4945_CR59 doi: 10.1103/PhysRevA.54.2629 – ident: 4945_CR20 – volume: 10 start-page: 165 year: 2012 ident: 4945_CR24 publication-title: JHEP doi: 10.1007/JHEP10(2012)165 – ident: 4945_CR51 doi: 10.1063/1.1737053 – volume: A 43 start-page: 2046 year: 1991 ident: 4945_CR30 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.43.2046 – ident: 4945_CR7 – ident: 4945_CR19 – volume: 04 start-page: 021 year: 2003 ident: 4945_CR33 publication-title: JHEP doi: 10.1088/1126-6708/2003/04/021 – volume: 32 start-page: 933 year: 1993 ident: 4945_CR32 publication-title: Int. J. Theor. Phys. doi: 10.1007/BF01215300 – volume: D 76 start-page: 106013 year: 2007 ident: 4945_CR56 publication-title: Phys. Rev. – ident: 4945_CR60 doi: 10.1023/A:1019653202562 – volume: 11 start-page: 074 year: 2013 ident: 4945_CR25 publication-title: JHEP doi: 10.1007/JHEP11(2013)074 – ident: 4945_CR52 – volume: 2 start-page: 505 year: 1998 ident: 4945_CR12 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n3.a3 – ident: 4945_CR35 doi: 10.1103/PhysRevA.69.052304 – volume: 11 start-page: 496 year: 2011 ident: 4945_CR47 publication-title: Quant. Inform. Comput. – ident: 4945_CR45 doi: 10.1007/3-540-49208-9_21 – ident: 4945_CR17 doi: 10.1007/s00220-013-1718-x – ident: 4945_CR21 – volume: 09 start-page: 018 year: 2006 ident: 4945_CR38 publication-title: JHEP doi: 10.1088/1126-6708/2006/09/018 – volume: 07 start-page: 062 year: 2007 ident: 4945_CR23 publication-title: JHEP doi: 10.1088/1126-6708/2007/07/062 |
SSID | ssj0015190 |
Score | 2.6679864 |
Snippet | A
bstract
Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to... Abstract Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to... Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Boundaries Classical and Quantum Gravitation Elementary Particles Entanglement High energy physics Mathematical analysis Mathematical models Minimal surfaces Networks Operators Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Tensors |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kIngRnxitEsFDe4jdJPtIjlJaQkHxYKG3sNkHCJJKHwf_vbN5VK168JRAZhP4dtj5wsx8A3Abc1oYGotA6BB_UDRJg0RaGxAbRjJSMuXC9Ts_PPJsSiczNmtEklwvzFb-fjDJRk9h2MMwxftVo94uC2PhZjQM-XCTLkAaQlrdnp-LvoecTx65lfqsIsr4EA4aKujf13t3BDumPIa9qiRTLU9gkLV60i_K11Xv47vvukF8DC8aL672fL7wy7qQe3kK0_HoeZgFzXiDQFFGVngOESKFiVzQLqRgVhrCrBsGrKUOjeY2SgoXkYUWvNCpjFOrRWoZMs1IRXF8Bp1yXppz8COWpCq1KlEMGQLliaZCSQRbFlZSIj24axHIVaP97UZQvOatanENWe4gyxEyD3qbBW-17MXfpt0W0rzx_2WOB4VTmuc88eBm8xg916UjZGnma2fDKZ4XyNc86Ldb8eUVv3_u4h-2l7DvbuvWwS50Vou1uUIOsSquK__5AO07vg0 priority: 102 providerName: Springer Nature |
Title | Holographic duality from random tensor networks |
URI | https://link.springer.com/article/10.1007/JHEP11(2016)009 https://www.proquest.com/docview/1836150668 https://www.proquest.com/docview/1864578435 |
Volume | 2016 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-wwEB90RfAi6lNcP5YKHvTQt2maJulJdNl1ERR5uOCtpEkDgnRXdz343zvTj1Xk6SWlNG1gZjrzS-YL4DSWIi9ErELlItygOJaG2ngfMh9xw61JpaJ859s7OZ6Im8fksTlwmzdhla1OrBS1m1o6I--j6FHtcin1xewlpK5R5F1tWmiswhqqYK07sHY1vLv_t_QjID5hbUEfpvo34-F9FJ2h0ZPnjGIQv9qiT4D5zSdamZrRFmw2GDG4rJm6DStFuQPrVaymnf-B_rgtNP1kA1clRb4HlCYSoN1xeKGg9OlrUNYR3vNdmIyGD4Nx2PQ9CK1I2AIVFGNGFZyseW5U4k3BEk9dgp1xUeGk5zonU62ckrlLTZx6p1KfIATllsfxHnTKaVnsQ8ATndrUW20ThA5CaieUNcgFk3sjmOnC35YCmW2KglNviuesLWdckywjkmVIsi6cLV-Y1fUwfp561JI0a36MefbJxi6cLB-jSJOfwpTF9I3mSIGKBIFcF85bVnz5xP-XO_h9uUPYoJl1GuERdBavb8Ux4olF3oNVPbruNaKDdwMuaJSDXrVDx3HCLz8ALKbMYA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKkQvqKVUXR4lSFSCQ7qO17GTA6oqYAlP9QASt9TxQ0JC2YVdhPhT_Y2dSdYLQsCNUw6JY2k8nu-z5wWw2ZOicqKnYmUTPKBYlseZ9j5mPuGaG51LRfnOp2eyuBBHl-nlDPwLuTAUVhlsYmOo7cDQHXkXVY9ql0uZ_RrexNQ1iryroYVGqxbH7uEej2yjncM9XN8fnPf3z3eLeNJVIDYiZWPc_oxp5ThhZaVV6rVjqacevFbbxFnpeVYRECqrZGVz3cu9VblPkeBxw-kCFE3-B9FDJKfM9P7B1GuBbIiF8kFMdY-K_T9JsoUQK7cZRTw-Rb5HOvvMA9sAW_8TLEwYafS7VaHPMOPqRZhrIkPN6At0i1DW-spEtknBfIgoKSVClLP4oBD4wW1Ut_HkoyW4eBd5fIXZelC7bxDxNMtN7k1mUiQqQmZWKKNxzXXltWC6Az-DBEozKUFOnTCuy1A8uRVZSSIrUWQd2JoOGLbVN17_dDWItJxsw1H5qDQd2Ji-xg1EXhFdu8EdfSMFmi2kjR3YDkvx5BcvT7f89nTrMF-cn56UJ4dnxyvwkUa1CYyrMDu-vXNryGTG1fdGfSL4-976-h8ngQNK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC5kxGUvsrrKjusjggt6yE6nJ-lODiI-Zhhfw7AoeMt2-gGCZFxnZPGv-eusmqRHEfXmKYek01D9ddXXXS-ArbaICxu3ZShNhAcUw7IwVc6FzEVcca0yISnf-bwvepfxyVVyNQOPPheGwiq9TpwoajPUdEfeQuhR7XIh0parwyIGR929238hdZAiT6tvp1FB5NQ-_Mfj22j3-AjX-hfn3c7FYS-sOwyEOk7YGFUBY0paTnazUDJxyrLEUT9eo0xkjXA8LcgoSiNFYTLVzpyRmUuQ7HHN6TIU1f-spFNRA2YPOv3Bn6kPA7kR88WEmGyd9DqDKNpGgyt2GMU_vrSDz-T2lT92Yua632C-5qfBfgWoBZix5SLMTeJE9eg7tHq-yPW1DswkIfMhoBSVAG2ewQcFxA_vgrKKLh8tweWnSGQZGuWwtD8g4Ema6czpVCdIW2KRmlhqhQhQhVMxU0347SWQ67ogOfXFuMl9KeVKZDmJLEeRNWF7OuC2qsXx_qerXqR5vSlH-TOEmrA5fY3biXwkqrTDe_pGxKjEkEQ2YccvxYtfvD3dysfTbcAXxGp-dtw__QlfaVCVzbgKjfHdvV1DWjMu1mv8BPD3syH7BIxnCNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Holographic+duality+from+random+tensor+networks&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Hayden%2C+Patrick&rft.au=Nezami%2C+Sepehr&rft.au=Qi%2C+Xiao-Liang&rft.au=Thomas%2C+Nathaniel&rft.date=2016-11-01&rft.eissn=1029-8479&rft.volume=2016&rft.issue=11&rft.spage=1&rft.epage=56&rft_id=info:doi/10.1007%2FJHEP11%282016%29009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |