Holographic duality from random tensor networks

A bstract Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2016; no. 11; pp. 1 - 56
Main Authors Hayden, Patrick, Nezami, Sepehr, Qi, Xiao-Liang, Thomas, Nathaniel, Walter, Michael, Yang, Zhao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main results of the article define a more general form of bulk-boundary correspondence which could be useful for extending holography to other spacetimes.
AbstractList A bstract Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main results of the article define a more general form of bulk-boundary correspondence which could be useful for extending holography to other spacetimes.
Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Renyi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main results of the article define a more general form of bulk-boundary correspondence which could be useful for extending holography to other spacetimes.
Abstract Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main results of the article define a more general form of bulk-boundary correspondence which could be useful for extending holography to other spacetimes.
ArticleNumber 9
Author Nezami, Sepehr
Qi, Xiao-Liang
Walter, Michael
Hayden, Patrick
Thomas, Nathaniel
Yang, Zhao
Author_xml – sequence: 1
  givenname: Patrick
  surname: Hayden
  fullname: Hayden, Patrick
  organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University
– sequence: 2
  givenname: Sepehr
  surname: Nezami
  fullname: Nezami, Sepehr
  organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University
– sequence: 3
  givenname: Xiao-Liang
  surname: Qi
  fullname: Qi, Xiao-Liang
  organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University
– sequence: 4
  givenname: Nathaniel
  surname: Thomas
  fullname: Thomas, Nathaniel
  organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University
– sequence: 5
  givenname: Michael
  surname: Walter
  fullname: Walter, Michael
  email: michael.walter@stanford.edu
  organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University
– sequence: 6
  givenname: Zhao
  surname: Yang
  fullname: Yang, Zhao
  organization: Stanford Institute for Theoretical Physics, Department of Physics, Stanford University
BookMark eNp9kDFPwzAQRi1UJNrCzFqJpQyh5yS2kxFVhYIqwQCz5cR2SUntYjtC_fe4CkNVCaa74b27T98IDYw1CqFrDHcYgM2el4tXjKcpYHoLUJ6hIYa0TIqclYOj_QKNvN8AYIJLGKLZ0rZ27cTuo6knshNtE_YT7ex24oSRcQRlvHUTo8K3dZ_-Ep1r0Xp19TvH6P1h8TZfJquXx6f5_SqpcwIhKRiAYCoFRqASjGihgGhKciaFxEpSnRZVGjMwyWglS5GVWrJSkwJXaZ1m2RhN-7s7Z7865QPfNr5WbSuMsp3nuKA5YUWekYjenKAb2zkT00Uqo5gApUWkZj1VO-u9U5rvXLMVbs8x8EOBvC-QHwrkscBokBOjboIIjTXBiab9x4Pe8_GDWSt3lOcP5Qc8yYPz
CitedBy_id crossref_primary_10_1103_PhysRevD_105_046018
crossref_primary_10_1007_JHEP09_2022_190
crossref_primary_10_1116_5_0087122
crossref_primary_10_1007_JHEP02_2024_222
crossref_primary_10_1103_PhysRevD_109_L041901
crossref_primary_10_1007_JHEP06_2024_155
crossref_primary_10_1007_JHEP03_2018_006
crossref_primary_10_1007_JHEP01_2017_092
crossref_primary_10_1103_PhysRevResearch_1_033079
crossref_primary_10_1109_TMBMC_2023_3272158
crossref_primary_10_3390_e25111543
crossref_primary_10_1103_PhysRevD_109_126012
crossref_primary_10_21468_SciPostPhys_13_5_103
crossref_primary_10_1103_PhysRevD_100_024060
crossref_primary_10_1007_JHEP04_2019_119
crossref_primary_10_1103_PhysRevX_8_021014
crossref_primary_10_1007_JHEP04_2021_175
crossref_primary_10_1007_JHEP05_2022_127
crossref_primary_10_1103_PhysRevD_111_026012
crossref_primary_10_1007_JHEP08_2020_044
crossref_primary_10_1103_PhysRevB_99_155126
crossref_primary_10_1103_PhysRevX_12_041002
crossref_primary_10_1007_JHEP08_2019_140
crossref_primary_10_1103_PRXQuantum_5_040344
crossref_primary_10_1038_ncomms12472
crossref_primary_10_1103_PhysRevB_97_045153
crossref_primary_10_1007_JHEP07_2018_041
crossref_primary_10_1088_2058_9565_aaba1a
crossref_primary_10_1103_PhysRevLett_124_201601
crossref_primary_10_1103_PhysRevB_109_195128
crossref_primary_10_1007_JHEP09_2020_002
crossref_primary_10_1103_PhysRevB_109_174307
crossref_primary_10_1007_JHEP05_2022_158
crossref_primary_10_1007_JHEP11_2019_175
crossref_primary_10_1007_s00220_024_05156_7
crossref_primary_10_1007_JHEP05_2022_162
crossref_primary_10_1007_s42484_024_00187_8
crossref_primary_10_1007_JHEP07_2018_050
crossref_primary_10_1007_JHEP03_2019_044
crossref_primary_10_1007_JHEP03_2019_165
crossref_primary_10_1007_JHEP06_2024_195
crossref_primary_10_1093_ptep_ptae137
crossref_primary_10_1007_JHEP09_2023_091
crossref_primary_10_1103_PhysRevB_107_224303
crossref_primary_10_1007_JHEP11_2019_069
crossref_primary_10_1103_PhysRevA_109_042414
crossref_primary_10_1103_PhysRevB_105_104306
crossref_primary_10_1103_PhysRevB_101_104301
crossref_primary_10_1103_PhysRevB_101_104302
crossref_primary_10_1146_annurev_conmatphys_033117_054219
crossref_primary_10_1007_JHEP03_2019_010
crossref_primary_10_1103_PhysRevLett_119_020501
crossref_primary_10_1103_PhysRevX_10_031066
crossref_primary_10_1103_PhysRevA_106_062418
crossref_primary_10_1007_JHEP04_2019_146
crossref_primary_10_21468_SciPostPhys_11_5_094
crossref_primary_10_3389_fams_2022_806549
crossref_primary_10_1088_1674_1137_ac69ba
crossref_primary_10_1088_1751_8121_ab434b
crossref_primary_10_21468_SciPostPhys_17_3_084
crossref_primary_10_1002_prop_201800067
crossref_primary_10_1103_PhysRevD_110_086002
crossref_primary_10_21468_SciPostPhys_8_5_073
crossref_primary_10_1007_JHEP12_2019_007
crossref_primary_10_1007_JHEP12_2019_128
crossref_primary_10_1088_1367_2630_aae9fa
crossref_primary_10_1007_s00023_023_01358_2
crossref_primary_10_1103_PhysRevD_97_126002
crossref_primary_10_1007_JHEP05_2023_008
crossref_primary_10_1103_PhysRevD_107_086003
crossref_primary_10_1103_PhysRevD_107_086002
crossref_primary_10_21468_SciPostPhys_17_3_090
crossref_primary_10_1007_s11467_022_1162_5
crossref_primary_10_1007_JHEP01_2024_033
crossref_primary_10_1103_PhysRevD_97_026009
crossref_primary_10_1088_2632_2153_ac48a2
crossref_primary_10_1007_JHEP07_2019_042
crossref_primary_10_1103_PhysRevX_9_031009
crossref_primary_10_1007_JHEP04_2021_062
crossref_primary_10_1103_PhysRevX_8_011003
crossref_primary_10_1103_PhysRevX_9_031011
crossref_primary_10_1103_PhysRevLett_134_010401
crossref_primary_10_1103_PhysRevD_107_086016
crossref_primary_10_1007_JHEP10_2023_104
crossref_primary_10_1146_annurev_conmatphys_031720_030658
crossref_primary_10_1103_PhysRevD_97_026013
crossref_primary_10_1007_JHEP08_2017_141
crossref_primary_10_1007_JHEP04_2018_132
crossref_primary_10_1140_epjc_s10052_018_6140_2
crossref_primary_10_1103_PhysRevX_10_011009
crossref_primary_10_22331_q_2024_02_21_1261
crossref_primary_10_1103_PhysRevLett_123_110502
crossref_primary_10_1007_s10714_018_2426_9
crossref_primary_10_1103_PhysRevD_97_026012
crossref_primary_10_1007_JHEP04_2019_170
crossref_primary_10_1140_epjc_s10052_022_10377_y
crossref_primary_10_1007_JHEP04_2021_069
crossref_primary_10_1007_JHEP01_2025_067
crossref_primary_10_1007_JHEP10_2024_012
crossref_primary_10_1103_PhysRevB_104_104205
crossref_primary_10_1007_JHEP04_2020_154
crossref_primary_10_1103_PRXQuantum_2_040308
crossref_primary_10_1093_ptep_ptae171
crossref_primary_10_22331_q_2022_02_03_643
crossref_primary_10_1007_s00023_021_01087_4
crossref_primary_10_21468_SciPostPhys_16_6_152
crossref_primary_10_1103_PhysRevD_97_106025
crossref_primary_10_1007_JHEP12_2019_170
crossref_primary_10_1002_prop_201800034
crossref_primary_10_1007_JHEP02_2024_191
crossref_primary_10_1103_PhysRevD_108_046010
crossref_primary_10_1007_JHEP05_2019_118
crossref_primary_10_1103_PhysRevB_106_144311
crossref_primary_10_1007_JHEP02_2023_018
crossref_primary_10_21468_SciPostPhys_16_6_144
crossref_primary_10_1103_PhysRevA_99_062334
crossref_primary_10_1103_PhysRevB_96_035101
crossref_primary_10_1103_PhysRevD_97_106010
crossref_primary_10_1007_JHEP04_2022_111
crossref_primary_10_1016_j_aop_2021_168618
crossref_primary_10_1088_1361_6382_aa6b0f
crossref_primary_10_1007_s00220_021_04118_7
crossref_primary_10_1007_JHEP02_2019_145
crossref_primary_10_1007_JHEP04_2023_037
crossref_primary_10_1007_JHEP10_2020_052
crossref_primary_10_1103_PhysRevB_104_104305
crossref_primary_10_1007_JHEP10_2020_050
crossref_primary_10_1103_PhysRevLett_119_071602
crossref_primary_10_1103_PhysRevD_96_123536
crossref_primary_10_1007_s00220_024_04958_z
crossref_primary_10_1103_PhysRevB_108_174308
crossref_primary_10_1007_JHEP12_2022_124
crossref_primary_10_1088_1751_8121_aab5de
crossref_primary_10_1007_JHEP05_2024_251
crossref_primary_10_1007_JHEP10_2019_240
crossref_primary_10_1088_1361_6382_aabf55
crossref_primary_10_1007_JHEP07_2024_268
crossref_primary_10_1103_PhysRevD_103_026015
crossref_primary_10_1103_PRXQuantum_2_040340
crossref_primary_10_1007_JHEP12_2019_020
crossref_primary_10_1007_JHEP02_2024_151
crossref_primary_10_1007_JHEP04_2023_142
crossref_primary_10_1103_PhysRevB_100_245138
crossref_primary_10_1007_JHEP02_2024_040
crossref_primary_10_1007_JHEP05_2023_109
crossref_primary_10_1103_PhysRevX_9_031041
crossref_primary_10_1103_PhysRevD_107_026016
crossref_primary_10_1103_PhysRevX_11_041001
crossref_primary_10_1093_ptep_ptac112
crossref_primary_10_1007_JHEP01_2022_085
crossref_primary_10_1007_JHEP02_2023_245
crossref_primary_10_1038_s42005_022_01019_6
crossref_primary_10_1007_JHEP11_2023_188
crossref_primary_10_21468_SciPostPhys_15_5_218
crossref_primary_10_1103_PhysRevResearch_6_043246
crossref_primary_10_1103_PhysRevD_111_066003
crossref_primary_10_1103_PhysRevD_99_086007
crossref_primary_10_1103_PhysRevD_98_066005
crossref_primary_10_1088_2399_6528_abf9f7
crossref_primary_10_1103_PRXQuantum_6_010350
crossref_primary_10_1093_ptep_ptad156
crossref_primary_10_1007_JHEP12_2018_048
crossref_primary_10_1103_PhysRevD_105_125009
crossref_primary_10_1103_PhysRevLett_128_010604
crossref_primary_10_1103_PhysRevB_102_161119
crossref_primary_10_1007_JHEP04_2020_208
crossref_primary_10_1007_JHEP10_2019_118
crossref_primary_10_1007_JHEP10_2019_239
crossref_primary_10_3390_universe5100211
crossref_primary_10_1080_03610926_2021_2020843
crossref_primary_10_1007_JHEP05_2024_111
crossref_primary_10_1007_JHEP04_2017_093
crossref_primary_10_1007_JHEP01_2018_098
crossref_primary_10_1088_1674_1137_44_7_075102
crossref_primary_10_1093_ptep_ptad029
crossref_primary_10_1103_PhysRevB_97_045111
crossref_primary_10_1103_PhysRevD_110_066017
crossref_primary_10_1103_PRXQuantum_2_030337
crossref_primary_10_1007_JHEP05_2024_241
crossref_primary_10_1007_JHEP11_2021_177
crossref_primary_10_1007_JHEP01_2021_027
crossref_primary_10_1103_PhysRevB_98_085155
crossref_primary_10_1007_JHEP07_2018_086
crossref_primary_10_1103_PhysRevB_103_075145
crossref_primary_10_1103_PhysRevD_105_066005
crossref_primary_10_1103_PhysRevX_9_021040
crossref_primary_10_1126_science_aay9560
crossref_primary_10_1007_s10714_021_02896_y
crossref_primary_10_1103_PhysRevB_101_224202
crossref_primary_10_1007_JHEP01_2023_067
crossref_primary_10_1007_JHEP01_2022_150
crossref_primary_10_1103_PhysRevB_108_104310
crossref_primary_10_1007_JHEP08_2019_017
crossref_primary_10_1007_JHEP02_2025_165
crossref_primary_10_1007_JHEP06_2021_094
crossref_primary_10_1103_PhysRevLett_127_221602
crossref_primary_10_1103_PhysRevD_106_L061903
crossref_primary_10_1007_JHEP02_2024_111
crossref_primary_10_1007_JHEP03_2020_191
crossref_primary_10_1007_s00220_021_04040_y
crossref_primary_10_1007_JHEP07_2023_043
crossref_primary_10_1007_JHEP01_2021_009
crossref_primary_10_1103_PhysRevB_103_104306
crossref_primary_10_1103_PhysRevD_106_086008
crossref_primary_10_1007_JHEP02_2025_150
crossref_primary_10_1007_JHEP04_2022_020
crossref_primary_10_1103_PhysRevB_108_104203
crossref_primary_10_1007_JHEP06_2020_143
crossref_primary_10_1103_PhysRevD_103_046017
crossref_primary_10_1007_JHEP02_2022_180
crossref_primary_10_1007_JHEP12_2018_083
crossref_primary_10_1007_JHEP02_2022_056
crossref_primary_10_1007_JHEP08_2023_018
crossref_primary_10_1038_s41534_024_00822_z
crossref_primary_10_1007_JHEP08_2022_102
crossref_primary_10_1007_JHEP05_2019_075
crossref_primary_10_1103_PhysRevD_103_126018
crossref_primary_10_1103_PhysRevD_110_046024
crossref_primary_10_1140_epjc_s10052_022_10382_1
crossref_primary_10_1080_00018732_2021_1876991
crossref_primary_10_1007_s00220_021_04274_w
crossref_primary_10_1088_1751_8121_aaa151
crossref_primary_10_1007_JHEP03_2023_026
crossref_primary_10_1103_PhysRevD_98_026010
crossref_primary_10_1103_PhysRevD_95_024011
crossref_primary_10_1007_JHEP04_2017_040
crossref_primary_10_1007_JHEP03_2023_152
crossref_primary_10_1007_JHEP11_2017_097
crossref_primary_10_1007_JHEP06_2019_032
crossref_primary_10_1103_PhysRevLett_122_190501
crossref_primary_10_1007_JHEP07_2021_140
crossref_primary_10_1007_JHEP08_2022_118
crossref_primary_10_1103_PhysRevB_100_134203
crossref_primary_10_1103_PhysRevD_96_066017
crossref_primary_10_21468_SciPostPhys_9_5_067
crossref_primary_10_1007_JHEP07_2021_016
crossref_primary_10_1038_s41567_018_0075_2
crossref_primary_10_1007_JHEP05_2019_052
crossref_primary_10_1103_PhysRevB_109_235102
crossref_primary_10_1103_PhysRevD_109_086011
crossref_primary_10_22331_q_2024_12_11_1560
crossref_primary_10_1007_JHEP07_2021_011
crossref_primary_10_1103_PhysRevX_13_041045
crossref_primary_10_21468_SciPostPhys_12_5_157
crossref_primary_10_1103_PRXQuantum_6_010312
crossref_primary_10_21468_SciPostPhys_9_5_078
crossref_primary_10_1007_JHEP03_2021_213
crossref_primary_10_1103_PhysRevD_96_066005
crossref_primary_10_21468_SciPostPhys_2_3_016
crossref_primary_10_1103_PhysRevLett_119_231301
crossref_primary_10_1103_PhysRevLett_132_030401
crossref_primary_10_1007_JHEP02_2023_062
crossref_primary_10_1109_TIT_2023_3340503
crossref_primary_10_1007_JHEP06_2022_078
crossref_primary_10_1007_JHEP03_2017_090
crossref_primary_10_1103_PhysRevA_102_042407
crossref_primary_10_1007_JHEP04_2023_009
crossref_primary_10_1007_JHEP08_2024_152
crossref_primary_10_1007_JHEP02_2023_195
crossref_primary_10_1103_PhysRevD_111_046001
crossref_primary_10_1007_JHEP08_2024_016
crossref_primary_10_1038_s41567_018_0297_3
crossref_primary_10_22331_q_2022_02_16_655
crossref_primary_10_1007_JHEP04_2017_121
crossref_primary_10_1007_JHEP12_2016_145
crossref_primary_10_1103_PhysRevLett_130_131601
crossref_primary_10_1007_s00220_024_04953_4
crossref_primary_10_1007_JHEP06_2021_024
crossref_primary_10_1007_JHEP10_2021_164
crossref_primary_10_1007_JHEP01_2018_139
crossref_primary_10_1103_PRXQuantum_3_020314
crossref_primary_10_1007_JHEP12_2024_209
crossref_primary_10_1103_PhysRevB_111_054306
crossref_primary_10_1007_JHEP03_2022_052
crossref_primary_10_1007_JHEP06_2022_056
crossref_primary_10_1088_1361_6382_ab1c7d
crossref_primary_10_1007_JHEP11_2017_048
crossref_primary_10_1088_1572_9494_acdd61
crossref_primary_10_1038_s41534_020_0255_7
crossref_primary_10_1103_PhysRevLett_129_270501
crossref_primary_10_1103_PhysRevLett_119_140502
crossref_primary_10_1103_RevModPhys_93_045003
crossref_primary_10_1007_JHEP12_2016_055
crossref_primary_10_1016_j_shpsb_2020_04_007
crossref_primary_10_1103_PhysRevLett_121_170402
crossref_primary_10_1103_PRXQuantum_2_010352
crossref_primary_10_1103_PRXQuantum_5_010334
crossref_primary_10_1103_PhysRevResearch_3_043199
crossref_primary_10_1007_s00220_019_03510_8
crossref_primary_10_1007_JHEP02_2024_079
crossref_primary_10_1007_JHEP07_2021_052
crossref_primary_10_1142_S0217751X23501166
crossref_primary_10_1103_PhysRevD_95_024031
crossref_primary_10_1103_PhysRevB_103_174309
crossref_primary_10_1103_PhysRevB_106_115138
crossref_primary_10_1088_1367_2630_aa7235
crossref_primary_10_22331_q_2023_02_02_910
crossref_primary_10_1103_PhysRevD_102_086009
crossref_primary_10_1103_PRXQuantum_3_020332
crossref_primary_10_1103_PhysRevLett_119_141602
crossref_primary_10_1103_PhysRevD_102_086001
crossref_primary_10_1103_PhysRevD_108_L081901
crossref_primary_10_1007_JHEP11_2024_105
crossref_primary_10_1007_JHEP12_2020_063
crossref_primary_10_1103_PhysRevResearch_3_043046
crossref_primary_10_1103_PhysRevX_7_021022
crossref_primary_10_1103_PhysRevLett_125_241602
crossref_primary_10_1007_JHEP11_2017_148
crossref_primary_10_1007_JHEP08_2022_189
crossref_primary_10_1103_PhysRevD_105_106002
crossref_primary_10_1103_PhysRevD_107_066021
crossref_primary_10_1126_sciadv_aaw0092
crossref_primary_10_1103_PhysRevD_107_066014
crossref_primary_10_1103_PhysRevD_102_126022
crossref_primary_10_21468_SciPostPhys_4_6_033
crossref_primary_10_1103_PhysRevD_99_106014
crossref_primary_10_1007_JHEP03_2017_153
crossref_primary_10_1103_PRXQuantum_4_030325
crossref_primary_10_1103_PhysRevLett_127_040507
crossref_primary_10_1103_PhysRevD_109_L101903
crossref_primary_10_1103_PhysRevD_109_L101902
crossref_primary_10_1007_JHEP11_2024_125
crossref_primary_10_1007_JHEP12_2020_083
crossref_primary_10_1103_PhysRevLett_128_050602
crossref_primary_10_1103_PRXQuantum_4_030333
crossref_primary_10_1103_PhysRevD_99_026008
crossref_primary_10_7566_JPSJ_91_062001
crossref_primary_10_1103_PhysRevB_104_094304
crossref_primary_10_1142_S0217751X24500155
crossref_primary_10_1038_s41534_019_0145_z
crossref_primary_10_1007_JHEP09_2018_106
crossref_primary_10_1002_prop_202000094
crossref_primary_10_1088_2632_2153_ab94c5
crossref_primary_10_1007_JHEP08_2017_060
crossref_primary_10_1103_PhysRevB_98_014309
crossref_primary_10_1103_PRXQuantum_3_010333
crossref_primary_10_1007_JHEP03_2025_037
crossref_primary_10_1103_PhysRevD_111_046027
crossref_primary_10_21468_SciPostPhysCore_7_4_070
crossref_primary_10_1103_PhysRevB_102_064202
crossref_primary_10_1007_JHEP01_2025_022
crossref_primary_10_1103_PhysRevB_103_235155
crossref_primary_10_1103_PhysRevLett_122_250602
crossref_primary_10_1103_PhysRevX_12_021021
crossref_primary_10_1007_JHEP06_2024_120
crossref_primary_10_3938_jkps_75_845
crossref_primary_10_1007_JHEP09_2018_045
crossref_primary_10_1007_JHEP10_2023_040
crossref_primary_10_1038_s41467_023_42743_z
crossref_primary_10_1103_PhysRevD_97_086013
crossref_primary_10_1007_JHEP05_2021_009
crossref_primary_10_1007_JHEP01_2019_225
crossref_primary_10_1007_JHEP05_2021_127
crossref_primary_10_1103_PhysRevB_108_214302
crossref_primary_10_1007_JHEP09_2019_021
crossref_primary_10_1103_PRXQuantum_4_010331
crossref_primary_10_1103_PhysRevX_7_031016
crossref_primary_10_1088_1751_8121_ab757e
crossref_primary_10_1103_PhysRevD_95_066004
crossref_primary_10_1007_JHEP10_2023_030
crossref_primary_10_1103_PhysRevD_95_105007
crossref_primary_10_1103_PhysRevD_97_086003
crossref_primary_10_1142_S0217984924502865
crossref_primary_10_1007_JHEP08_2020_121
crossref_primary_10_3390_e19120671
crossref_primary_10_3390_universe8010001
crossref_primary_10_1007_JHEP08_2022_158
crossref_primary_10_1007_JHEP12_2020_025
crossref_primary_10_1103_PhysRevB_109_014303
crossref_primary_10_1007_JHEP02_2020_152
crossref_primary_10_1103_PhysRevD_111_026006
crossref_primary_10_1007_JHEP02_2022_076
crossref_primary_10_1103_PhysRevD_102_066001
crossref_primary_10_1007_JHEP03_2022_205
crossref_primary_10_1103_PhysRevB_100_125139
crossref_primary_10_1007_JHEP06_2017_118
crossref_primary_10_1007_s00220_017_2904_z
crossref_primary_10_1016_j_laa_2020_12_014
crossref_primary_10_1007_JHEP02_2022_093
crossref_primary_10_1103_PhysRevD_105_026018
crossref_primary_10_1103_PhysRevB_99_174205
crossref_primary_10_1007_JHEP02_2020_013
crossref_primary_10_1103_PhysRevLett_129_080501
crossref_primary_10_1007_JHEP10_2017_069
crossref_primary_10_1142_S0217751X24501306
crossref_primary_10_1007_s00031_024_09863_2
crossref_primary_10_1007_JHEP10_2021_226
crossref_primary_10_1007_JHEP10_2017_187
crossref_primary_10_1007_s00220_019_03404_9
Cites_doi 10.1016/0550-3213(94)90402-2
10.1088/1126-6708/2003/04/021
10.1088/1126-6708/2007/07/062
10.1038/163398a0
10.1007/JHEP01(2016)175
10.1007/BF01215300
10.1007/JHEP10(2012)165
10.1007/JHEP10(2012)106
10.1007/BF01208266
10.1007/JHEP11(2013)074
10.4310/ATMP.1998.v2.n2.a2
10.1007/JHEP05(2016)158
10.1103/PhysRevLett.96.181602
10.1098/rsta.1951.0006
10.1063/1.4954231
10.1103/PhysRevA.43.2046
10.1007/JHEP04(2015)163
10.1023/A:1026654312961
10.1088/1126-6708/2009/10/079
10.1063/1.4936880
10.1103/PhysRev.65.117
10.1007/JHEP09(2015)130
10.1007/JHEP06(2015)149
10.1007/JHEP06(2015)157
10.4310/ATMP.1998.v2.n3.a3
10.1088/1126-6708/2006/09/018
10.1038/ncomms12472
10.1063/1.4818950
10.1016/S0370-2693(98)00377-3
10.1088/1742-5468/2004/06/P06002
10.1103/PhysRev.162.436
10.1103/PhysRevA.72.052317
10.1109/TIT.2005.844076
10.1103/PhysRevLett.71.1291
10.1007/s00220-006-0118-x
10.1103/PhysRevE.50.888
10.1103/PhysRevA.75.064304
10.1103/PhysRevA.54.2629
10.1063/1.1737053
10.1023/A:1019653202562
10.1103/PhysRevA.69.052304
10.1007/3-540-49208-9_21
10.1007/s00220-013-1718-x
ContentType Journal Article
Copyright The Author(s) 2016
SISSA, Trieste, Italy 2016
Copyright_xml – notice: The Author(s) 2016
– notice: SISSA, Trieste, Italy 2016
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7U5
8FD
H8D
L7M
DOI 10.1007/JHEP11(2016)009
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 56
ExternalDocumentID 4239438891
10_1007_JHEP11_2016_009
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHSBF
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
H13
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c450t-8700a7e20750ba75fae05f6547dad1ed6f28b21517d76bd9a39fd79f581b2c233
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Fri Jul 11 15:33:46 EDT 2025
Sun Jul 13 03:10:18 EDT 2025
Thu Apr 24 23:00:16 EDT 2025
Tue Jul 01 03:51:34 EDT 2025
Fri Feb 21 02:40:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Black Holes in String Theory
AdS-CFT Correspondence
Gauge-gravity correspondence
Random Systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-8700a7e20750ba75fae05f6547dad1ed6f28b21517d76bd9a39fd79f581b2c233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1836150668?pq-origsite=%requestingapplication%
PQID 1836150668
PQPubID 2034718
PageCount 56
ParticipantIDs proquest_miscellaneous_1864578435
proquest_journals_1836150668
crossref_primary_10_1007_JHEP11_2016_009
crossref_citationtrail_10_1007_JHEP11_2016_009
springer_journals_10_1007_JHEP11_2016_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Deutsch (CR30) 1991; A 43
CR39
Maldacena (CR2) 1999; 38
Gubser, Klebanov, Polyakov (CR4) 1998; B 428
CR37
Onsager (CR41) 1944; 65
CR35
CR34
Collins, Nechita, Życzkowski (CR15) 2013; A 46
CR31
Collins, Nechita (CR13) 2016; 57
Pastawski, Yoshida, Harlow, Preskill (CR6) 2015; 06
Heemskerk, Marolf, Polchinski, Sully (CR24) 2012; 10
Swingle (CR1) 2012; D 86
Witten (CR3) 1998; 2
Fursaev (CR38) 2006; 09
CR7
El-Showk, Papadodimas (CR27) 2012; 10
CR49
Linden, Matus, Ruskai, Winter (CR55) 2013; 22
Gross, Walter (CR54) 2013; 54
CR46
CR45
Bao, Nezami, Ooguri, Stoica, Sully, Walter (CR22) 2015; 09
CR42
Burton, Cabrera, Frank (CR43) 1949; 163
CR40
Almheiri, Dong, Harlow (CR9) 2015; 04
Yang, Hayden, Qi (CR8) 2016; 01
Hawking, Page (CR11) 1983; 87
CR19
CR17
CR16
CR59
CR58
CR57
Faulkner, Lewkowycz, Maldacena (CR25) 2013; 11
Burton, Cabrera, Frank (CR44) 1951; A 243
CR53
CR52
Dong (CR10) 2016; 7
CR51
CR50
Dutil, Hayden (CR47) 2011; 11
Ryu, Takayanagi (CR5) 2006; 96
Maldacena (CR33) 2003; 04
Cui, Freedman, Sattath, Stong, Minton (CR18) 2016; 57
Lubkin, Lubkin (CR32) 1993; 32
Collins, Nechita, Życzkowski (CR14) 2010; A 43
CR29
Heemskerk, Penedones, Polchinski, Sully (CR26) 2009; 10
Witten (CR12) 1998; 2
CR21
CR20
Headrick, Takayanagi (CR56) 2007; D 76
CR60
Benjamin, Kachru, Keller, Paquette (CR28) 2016; 05
Czech, Hayden, Lashkari, Swingle (CR48) 2015; 06
Hubeny, Rangamani, Takayanagi (CR23) 2007; 07
Holzhey, Larsen, Wilczek (CR36) 1994; B 424
I Heemskerk (4945_CR24) 2012; 10
E Lubkin (4945_CR32) 1993; 32
J Deutsch (4945_CR30) 1991; A 43
SW Hawking (4945_CR11) 1983; 87
S El-Showk (4945_CR27) 2012; 10
VE Hubeny (4945_CR23) 2007; 07
4945_CR45
4945_CR46
4945_CR49
B Czech (4945_CR48) 2015; 06
S Ryu (4945_CR5) 2006; 96
A Almheiri (4945_CR9) 2015; 04
W Burton (4945_CR44) 1951; A 243
W Burton (4945_CR43) 1949; 163
4945_CR40
4945_CR42
SS Gubser (4945_CR4) 1998; B 428
4945_CR19
4945_CR57
E Witten (4945_CR12) 1998; 2
JM Maldacena (4945_CR33) 2003; 04
4945_CR58
4945_CR59
4945_CR16
4945_CR17
4945_CR50
4945_CR51
N Dutil (4945_CR47) 2011; 11
4945_CR52
4945_CR53
E Witten (4945_CR3) 1998; 2
B Swingle (4945_CR1) 2012; D 86
Z Yang (4945_CR8) 2016; 01
JM Maldacena (4945_CR2) 1999; 38
4945_CR29
4945_CR60
X Dong (4945_CR10) 2016; 7
N Linden (4945_CR55) 2013; 22
4945_CR20
4945_CR21
B Collins (4945_CR14) 2010; A 43
N Bao (4945_CR22) 2015; 09
F Pastawski (4945_CR6) 2015; 06
N Benjamin (4945_CR28) 2016; 05
D Gross (4945_CR54) 2013; 54
DV Fursaev (4945_CR38) 2006; 09
SX Cui (4945_CR18) 2016; 57
M Headrick (4945_CR56) 2007; D 76
C Holzhey (4945_CR36) 1994; B 424
L Onsager (4945_CR41) 1944; 65
B Collins (4945_CR13) 2016; 57
4945_CR34
4945_CR35
4945_CR37
4945_CR39
B Collins (4945_CR15) 2013; A 46
T Faulkner (4945_CR25) 2013; 11
I Heemskerk (4945_CR26) 2009; 10
4945_CR7
4945_CR31
References_xml – ident: CR45
– volume: B 424
  start-page: 443
  year: 1994
  ident: CR36
  article-title: Geometric and renormalized entropy in conformal field theory
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(94)90402-2
– ident: CR49
– volume: 04
  start-page: 021
  year: 2003
  ident: CR33
  article-title: Eternal black holes in anti-de Sitter
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/04/021
– ident: CR39
– ident: CR16
– ident: CR51
– ident: CR35
– ident: CR29
– volume: 07
  start-page: 062
  year: 2007
  ident: CR23
  article-title: A covariant holographic entanglement entropy proposal
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/07/062
– ident: CR58
– volume: 163
  start-page: 398
  year: 1949
  ident: CR43
  article-title: Role of dislocations in crystal growth
  publication-title: Nature
  doi: 10.1038/163398a0
– volume: 01
  start-page: 175
  year: 2016
  ident: CR8
  article-title: Bidirectional holographic codes and sub-AdS locality
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)175
– volume: 32
  start-page: 933
  year: 1993
  ident: CR32
  article-title: Average quantal behavior and thermodynamic isolation
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF01215300
– volume: 10
  start-page: 165
  year: 2012
  ident: CR24
  article-title: Bulk and Transhorizon Measurements in AdS/CFT
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)165
– ident: CR42
– ident: CR21
– ident: CR46
– ident: CR19
– volume: 10
  start-page: 106
  year: 2012
  ident: CR27
  article-title: Emergent Spacetime and Holographic CFTs
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)106
– volume: 87
  start-page: 577
  year: 1983
  ident: CR11
  article-title: Thermodynamics of Black Holes in anti-de Sitter Space
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01208266
– volume: 11
  start-page: 074
  year: 2013
  ident: CR25
  article-title: Quantum corrections to holographic entanglement entropy
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)074
– ident: CR50
– volume: 2
  start-page: 253
  year: 1998
  ident: CR3
  article-title: Anti-de Sitter space and holography
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– ident: CR57
– volume: D 76
  start-page: 106013
  year: 2007
  ident: CR56
  article-title: A Holographic proof of the strong subadditivity of entanglement entropy
  publication-title: Phys. Rev.
– ident: CR60
– volume: A 43
  start-page: 275303
  year: 2010
  ident: CR14
  article-title: Random graph states, maximal flow and fuss-catalan distributions
  publication-title: J. Phys.
– volume: 05
  start-page: 158
  year: 2016
  ident: CR28
  article-title: Emergent space-time and the supersymmetric index
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)158
– volume: 96
  start-page: 181602
  year: 2006
  ident: CR5
  article-title: Holographic derivation of entanglement entropy from AdS/CFT
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– volume: A 243
  start-page: 299
  year: 1951
  ident: CR44
  article-title: The growth of crystals and the equilibrium structure of their surfaces
  publication-title: Phil. Trans. Roy. Soc. Lond.
  doi: 10.1098/rsta.1951.0006
– volume: 22
  start-page: 270
  year: 2013
  ident: CR55
  article-title: , in
  publication-title: LIPICS
– volume: 57
  start-page: 062206
  year: 2016
  ident: CR18
  article-title: Quantum Max-flow/Min-cut
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4954231
– volume: A 46
  start-page: 305302
  year: 2013
  ident: CR15
  article-title: Area law for random graph states
  publication-title: J. Phys.
– volume: A 43
  start-page: 2046
  year: 1991
  ident: CR30
  article-title: Quantum statistical mechanics in a closed system
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.43.2046
– volume: D 86
  start-page: 065007
  year: 2012
  ident: CR1
  article-title: Entanglement Renormalization and Holography
  publication-title: Phys. Rev.
– volume: 04
  start-page: 163
  year: 2015
  ident: CR9
  article-title: Bulk Locality and Quantum Error Correction in AdS/CFT
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)163
– ident: CR37
– ident: CR53
– volume: 38
  start-page: 1113
  year: 1999
  ident: CR2
  article-title: The large-N limit of superconformal field theories and supergravity
  publication-title: Int. J. Theor. Phys.
  doi: 10.1023/A:1026654312961
– volume: 11
  start-page: 496
  year: 2011
  ident: CR47
  article-title: Assisted entanglement distillation
  publication-title: Quant. Inform. Comput.
– volume: 10
  start-page: 079
  year: 2009
  ident: CR26
  article-title: Holography from Conformal Field Theory
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/079
– volume: 57
  start-page: 015215
  year: 2016
  ident: CR13
  article-title: Random matrix techniques in quantum information theory
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4936880
– volume: 65
  start-page: 117
  year: 1944
  ident: CR41
  article-title: Crystal statistics. 1. A Two-dimensional model with an order disorder transition
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.65.117
– volume: 09
  start-page: 130
  year: 2015
  ident: CR22
  article-title: The Holographic Entropy Cone
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)130
– ident: CR40
– volume: 06
  start-page: 149
  year: 2015
  ident: CR6
  article-title: Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)149
– volume: 06
  start-page: 157
  year: 2015
  ident: CR48
  article-title: The Information Theoretic Interpretation of the Length of a Curve
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)157
– ident: CR52
– ident: CR17
– ident: CR31
– volume: 2
  start-page: 505
  year: 1998
  ident: CR12
  article-title: Anti-de Sitter space, thermal phase transition and confinement in gauge theories
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n3.a3
– volume: 09
  start-page: 018
  year: 2006
  ident: CR38
  article-title: Proof of the holographic formula for entanglement entropy
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/09/018
– volume: 7
  start-page: 12472
  year: 2016
  ident: CR10
  article-title: The Gravity Dual of Renyi Entropy
  publication-title: Nature Commun.
  doi: 10.1038/ncomms12472
– ident: CR34
– ident: CR7
– ident: CR59
– volume: 54
  start-page: 082201
  year: 2013
  ident: CR54
  article-title: Stabilizer information inequalities from phase space distributions
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4818950
– volume: B 428
  start-page: 105
  year: 1998
  ident: CR4
  article-title: Gauge theory correlators from noncritical string theory
  publication-title: Phys. Lett.
  doi: 10.1016/S0370-2693(98)00377-3
– ident: CR20
– ident: 4945_CR37
  doi: 10.1088/1742-5468/2004/06/P06002
– ident: 4945_CR39
– volume: 06
  start-page: 157
  year: 2015
  ident: 4945_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)157
– ident: 4945_CR16
– ident: 4945_CR42
  doi: 10.1103/PhysRev.162.436
– volume: 65
  start-page: 117
  year: 1944
  ident: 4945_CR41
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.65.117
– ident: 4945_CR46
  doi: 10.1103/PhysRevA.72.052317
– volume: 2
  start-page: 253
  year: 1998
  ident: 4945_CR3
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– volume: 04
  start-page: 163
  year: 2015
  ident: 4945_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)163
– volume: 163
  start-page: 398
  year: 1949
  ident: 4945_CR43
  publication-title: Nature
  doi: 10.1038/163398a0
– ident: 4945_CR53
  doi: 10.1109/TIT.2005.844076
– volume: D 86
  start-page: 065007
  year: 2012
  ident: 4945_CR1
  publication-title: Phys. Rev.
– volume: 96
  start-page: 181602
  year: 2006
  ident: 4945_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– volume: 57
  start-page: 015215
  year: 2016
  ident: 4945_CR13
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4936880
– volume: 09
  start-page: 130
  year: 2015
  ident: 4945_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)130
– volume: A 43
  start-page: 275303
  year: 2010
  ident: 4945_CR14
  publication-title: J. Phys.
– volume: 38
  start-page: 1113
  year: 1999
  ident: 4945_CR2
  publication-title: Int. J. Theor. Phys.
  doi: 10.1023/A:1026654312961
– ident: 4945_CR50
– volume: A 243
  start-page: 299
  year: 1951
  ident: 4945_CR44
  publication-title: Phil. Trans. Roy. Soc. Lond.
  doi: 10.1098/rsta.1951.0006
– ident: 4945_CR29
  doi: 10.1103/PhysRevLett.71.1291
– volume: 22
  start-page: 270
  year: 2013
  ident: 4945_CR55
  publication-title: LIPICS
– ident: 4945_CR58
– volume: 57
  start-page: 062206
  year: 2016
  ident: 4945_CR18
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4954231
– volume: 87
  start-page: 577
  year: 1983
  ident: 4945_CR11
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01208266
– ident: 4945_CR40
– volume: 05
  start-page: 158
  year: 2016
  ident: 4945_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)158
– volume: B 428
  start-page: 105
  year: 1998
  ident: 4945_CR4
  publication-title: Phys. Lett.
  doi: 10.1016/S0370-2693(98)00377-3
– volume: A 46
  start-page: 305302
  year: 2013
  ident: 4945_CR15
  publication-title: J. Phys.
– ident: 4945_CR49
  doi: 10.1007/s00220-006-0118-x
– volume: 10
  start-page: 079
  year: 2009
  ident: 4945_CR26
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/079
– volume: 7
  start-page: 12472
  year: 2016
  ident: 4945_CR10
  publication-title: Nature Commun.
  doi: 10.1038/ncomms12472
– volume: 06
  start-page: 149
  year: 2015
  ident: 4945_CR6
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)149
– ident: 4945_CR31
  doi: 10.1103/PhysRevE.50.888
– volume: 54
  start-page: 082201
  year: 2013
  ident: 4945_CR54
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4818950
– volume: 10
  start-page: 106
  year: 2012
  ident: 4945_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)106
– ident: 4945_CR34
  doi: 10.1103/PhysRevA.75.064304
– ident: 4945_CR57
– volume: B 424
  start-page: 443
  year: 1994
  ident: 4945_CR36
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(94)90402-2
– volume: 01
  start-page: 175
  year: 2016
  ident: 4945_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)175
– ident: 4945_CR59
  doi: 10.1103/PhysRevA.54.2629
– ident: 4945_CR20
– volume: 10
  start-page: 165
  year: 2012
  ident: 4945_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)165
– ident: 4945_CR51
  doi: 10.1063/1.1737053
– volume: A 43
  start-page: 2046
  year: 1991
  ident: 4945_CR30
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.43.2046
– ident: 4945_CR7
– ident: 4945_CR19
– volume: 04
  start-page: 021
  year: 2003
  ident: 4945_CR33
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/04/021
– volume: 32
  start-page: 933
  year: 1993
  ident: 4945_CR32
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF01215300
– volume: D 76
  start-page: 106013
  year: 2007
  ident: 4945_CR56
  publication-title: Phys. Rev.
– ident: 4945_CR60
  doi: 10.1023/A:1019653202562
– volume: 11
  start-page: 074
  year: 2013
  ident: 4945_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)074
– ident: 4945_CR52
– volume: 2
  start-page: 505
  year: 1998
  ident: 4945_CR12
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n3.a3
– ident: 4945_CR35
  doi: 10.1103/PhysRevA.69.052304
– volume: 11
  start-page: 496
  year: 2011
  ident: 4945_CR47
  publication-title: Quant. Inform. Comput.
– ident: 4945_CR45
  doi: 10.1007/3-540-49208-9_21
– ident: 4945_CR17
  doi: 10.1007/s00220-013-1718-x
– ident: 4945_CR21
– volume: 09
  start-page: 018
  year: 2006
  ident: 4945_CR38
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/09/018
– volume: 07
  start-page: 062
  year: 2007
  ident: 4945_CR23
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/07/062
SSID ssj0015190
Score 2.6679864
Snippet A bstract Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to...
Abstract Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to...
Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Boundaries
Classical and Quantum Gravitation
Elementary Particles
Entanglement
High energy physics
Mathematical analysis
Mathematical models
Minimal surfaces
Networks
Operators
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Tensors
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kIngRnxitEsFDe4jdJPtIjlJaQkHxYKG3sNkHCJJKHwf_vbN5VK168JRAZhP4dtj5wsx8A3Abc1oYGotA6BB_UDRJg0RaGxAbRjJSMuXC9Ts_PPJsSiczNmtEklwvzFb-fjDJRk9h2MMwxftVo94uC2PhZjQM-XCTLkAaQlrdnp-LvoecTx65lfqsIsr4EA4aKujf13t3BDumPIa9qiRTLU9gkLV60i_K11Xv47vvukF8DC8aL672fL7wy7qQe3kK0_HoeZgFzXiDQFFGVngOESKFiVzQLqRgVhrCrBsGrKUOjeY2SgoXkYUWvNCpjFOrRWoZMs1IRXF8Bp1yXppz8COWpCq1KlEMGQLliaZCSQRbFlZSIj24axHIVaP97UZQvOatanENWe4gyxEyD3qbBW-17MXfpt0W0rzx_2WOB4VTmuc88eBm8xg916UjZGnma2fDKZ4XyNc86Ldb8eUVv3_u4h-2l7DvbuvWwS50Vou1uUIOsSquK__5AO07vg0
  priority: 102
  providerName: Springer Nature
Title Holographic duality from random tensor networks
URI https://link.springer.com/article/10.1007/JHEP11(2016)009
https://www.proquest.com/docview/1836150668
https://www.proquest.com/docview/1864578435
Volume 2016
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-wwEB90RfAi6lNcP5YKHvTQt2maJulJdNl1ERR5uOCtpEkDgnRXdz343zvTj1Xk6SWlNG1gZjrzS-YL4DSWIi9ErELlItygOJaG2ngfMh9xw61JpaJ859s7OZ6Im8fksTlwmzdhla1OrBS1m1o6I--j6FHtcin1xewlpK5R5F1tWmiswhqqYK07sHY1vLv_t_QjID5hbUEfpvo34-F9FJ2h0ZPnjGIQv9qiT4D5zSdamZrRFmw2GDG4rJm6DStFuQPrVaymnf-B_rgtNP1kA1clRb4HlCYSoN1xeKGg9OlrUNYR3vNdmIyGD4Nx2PQ9CK1I2AIVFGNGFZyseW5U4k3BEk9dgp1xUeGk5zonU62ckrlLTZx6p1KfIATllsfxHnTKaVnsQ8ATndrUW20ThA5CaieUNcgFk3sjmOnC35YCmW2KglNviuesLWdckywjkmVIsi6cLV-Y1fUwfp561JI0a36MefbJxi6cLB-jSJOfwpTF9I3mSIGKBIFcF85bVnz5xP-XO_h9uUPYoJl1GuERdBavb8Ux4olF3oNVPbruNaKDdwMuaJSDXrVDx3HCLz8ALKbMYA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKkQvqKVUXR4lSFSCQ7qO17GTA6oqYAlP9QASt9TxQ0JC2YVdhPhT_Y2dSdYLQsCNUw6JY2k8nu-z5wWw2ZOicqKnYmUTPKBYlseZ9j5mPuGaG51LRfnOp2eyuBBHl-nlDPwLuTAUVhlsYmOo7cDQHXkXVY9ql0uZ_RrexNQ1iryroYVGqxbH7uEej2yjncM9XN8fnPf3z3eLeNJVIDYiZWPc_oxp5ThhZaVV6rVjqacevFbbxFnpeVYRECqrZGVz3cu9VblPkeBxw-kCFE3-B9FDJKfM9P7B1GuBbIiF8kFMdY-K_T9JsoUQK7cZRTw-Rb5HOvvMA9sAW_8TLEwYafS7VaHPMOPqRZhrIkPN6At0i1DW-spEtknBfIgoKSVClLP4oBD4wW1Ut_HkoyW4eBd5fIXZelC7bxDxNMtN7k1mUiQqQmZWKKNxzXXltWC6Az-DBEozKUFOnTCuy1A8uRVZSSIrUWQd2JoOGLbVN17_dDWItJxsw1H5qDQd2Ji-xg1EXhFdu8EdfSMFmi2kjR3YDkvx5BcvT7f89nTrMF-cn56UJ4dnxyvwkUa1CYyrMDu-vXNryGTG1fdGfSL4-976-h8ngQNK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC5kxGUvsrrKjusjggt6yE6nJ-lODiI-Zhhfw7AoeMt2-gGCZFxnZPGv-eusmqRHEfXmKYek01D9ddXXXS-ArbaICxu3ZShNhAcUw7IwVc6FzEVcca0yISnf-bwvepfxyVVyNQOPPheGwiq9TpwoajPUdEfeQuhR7XIh0parwyIGR929238hdZAiT6tvp1FB5NQ-_Mfj22j3-AjX-hfn3c7FYS-sOwyEOk7YGFUBY0paTnazUDJxyrLEUT9eo0xkjXA8LcgoSiNFYTLVzpyRmUuQ7HHN6TIU1f-spFNRA2YPOv3Bn6kPA7kR88WEmGyd9DqDKNpGgyt2GMU_vrSDz-T2lT92Yua632C-5qfBfgWoBZix5SLMTeJE9eg7tHq-yPW1DswkIfMhoBSVAG2ewQcFxA_vgrKKLh8tweWnSGQZGuWwtD8g4Ema6czpVCdIW2KRmlhqhQhQhVMxU0347SWQ67ogOfXFuMl9KeVKZDmJLEeRNWF7OuC2qsXx_qerXqR5vSlH-TOEmrA5fY3biXwkqrTDe_pGxKjEkEQ2YccvxYtfvD3dysfTbcAXxGp-dtw__QlfaVCVzbgKjfHdvV1DWjMu1mv8BPD3syH7BIxnCNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Holographic+duality+from+random+tensor+networks&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Hayden%2C+Patrick&rft.au=Nezami%2C+Sepehr&rft.au=Qi%2C+Xiao-Liang&rft.au=Thomas%2C+Nathaniel&rft.date=2016-11-01&rft.eissn=1029-8479&rft.volume=2016&rft.issue=11&rft.spage=1&rft.epage=56&rft_id=info:doi/10.1007%2FJHEP11%282016%29009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon