New non-destructive optical approach to determine the crystallization kinetics of PLA under a CO2 atmosphere with spatial and temporal resolution

The kinetics of crystallization of Polylactic Acid (PLA) in the presence of CO2 pressures from 1.5 to 4 MPa, has been studied by measuring the optical absorbance evolution of the material with time. To perform this study, an own-designed pressure vessel provided with windows has been used. The non-d...

Full description

Saved in:
Bibliographic Details
Published inPolymer testing Vol. 98; p. 107201
Main Authors Martín-de León, J., Bernardo, V., Solórzano, E., Rodriguez-Pérez, M.A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The kinetics of crystallization of Polylactic Acid (PLA) in the presence of CO2 pressures from 1.5 to 4 MPa, has been studied by measuring the optical absorbance evolution of the material with time. To perform this study, an own-designed pressure vessel provided with windows has been used. The non-destructive approach presented in this paper allows for obtaining very accurate crystallinity data as a function of time for a wide range of pressures. Besides, this new approach allows measuring with spatial resolution, i.e., obtaining the crystallization kinetics' evolution in different areas of the samples, which helps to analyze in detail the crystallization mechanisms by using the Avrami approach. The results obtained have allowed observing an unexpected peak in the absorbance curve connected with the physical phenomena taking place during the CO2 uptake and the associated crystallization of PLA. •A new optical technique allows determining the crystallization kinetics of PLA under CO2 atmosphere.•The absorbance evolution is related to crystallinity evolution.•The crystallization kinetics can be obtained with spatial and temporal resolution.•The new non-destructive method allows using large dimensions samples.
AbstractList The kinetics of crystallization of Polylactic Acid (PLA) in the presence of CO2 pressures from 1.5 to 4 MPa, has been studied by measuring the optical absorbance evolution of the material with time. To perform this study, an own-designed pressure vessel provided with windows has been used. The non-destructive approach presented in this paper allows for obtaining very accurate crystallinity data as a function of time for a wide range of pressures. Besides, this new approach allows measuring with spatial resolution, i.e., obtaining the crystallization kinetics' evolution in different areas of the samples, which helps to analyze in detail the crystallization mechanisms by using the Avrami approach. The results obtained have allowed observing an unexpected peak in the absorbance curve connected with the physical phenomena taking place during the CO2 uptake and the associated crystallization of PLA.
The kinetics of crystallization of Polylactic Acid (PLA) in the presence of CO2 pressures from 1.5 to 4 MPa, has been studied by measuring the optical absorbance evolution of the material with time. To perform this study, an own-designed pressure vessel provided with windows has been used. The non-destructive approach presented in this paper allows for obtaining very accurate crystallinity data as a function of time for a wide range of pressures. Besides, this new approach allows measuring with spatial resolution, i.e., obtaining the crystallization kinetics' evolution in different areas of the samples, which helps to analyze in detail the crystallization mechanisms by using the Avrami approach. The results obtained have allowed observing an unexpected peak in the absorbance curve connected with the physical phenomena taking place during the CO2 uptake and the associated crystallization of PLA. •A new optical technique allows determining the crystallization kinetics of PLA under CO2 atmosphere.•The absorbance evolution is related to crystallinity evolution.•The crystallization kinetics can be obtained with spatial and temporal resolution.•The new non-destructive method allows using large dimensions samples.
ArticleNumber 107201
Author Solórzano, E.
Martín-de León, J.
Bernardo, V.
Rodriguez-Pérez, M.A.
Author_xml – sequence: 1
  givenname: J.
  surname: Martín-de León
  fullname: Martín-de León, J.
  email: jmadeleon@fmc.uva.es
– sequence: 2
  givenname: V.
  surname: Bernardo
  fullname: Bernardo, V.
– sequence: 3
  givenname: E.
  surname: Solórzano
  fullname: Solórzano, E.
– sequence: 4
  givenname: M.A.
  surname: Rodriguez-Pérez
  fullname: Rodriguez-Pérez, M.A.
BookMark eNqN0c1uEzEUBWALFYm08A5esJ1wbY_nR2JTRRQqRZQFrK0b-07jMDMe2U6r8Ba8MQ5BSOxYWfbV-WzrXLOrOczE2FsBawGieXdYL2E8TRQzpeznx7UEKcqolSBesJXoWlVJVXdXbAWillVfi-4Vu07pAAC6CCv28zM988JWrhDxaLN_Ih6W7C2OHJclBrR7ngN3lClOfiae98RtPKWM4-h_YPZh5t_LoGQSDwP_sr3lx9lR5Mg3D5JjnkJa9hSJP_u852kpmbM-O55pWkIsm0gpjMez9Zq9HHBM9ObPesO-3X34uvlUbR8-3m9ut5WtNeSqE1oPWjc1uA6bRlpw0g5dOyinWmGd6zRZrXZa695hjT0B9i1SB62od65RN-z-4rqAB7NEP2E8mYDe_D4I8dFgLH8ayWhswYFSgvoi1c3OSVAEami0INsPxXp_sWwMKUUa_noCzLkqU274pypzrspcqirxu0ucyn-fPEWTrKfZkvORbC4P8v8H_QKU_6tI
CitedBy_id crossref_primary_10_1016_j_indcrop_2023_116516
crossref_primary_10_1016_j_ijbiomac_2023_128469
crossref_primary_10_1016_j_polymertesting_2021_107456
crossref_primary_10_1021_acsomega_1c06777
crossref_primary_10_1016_j_polymer_2023_125797
crossref_primary_10_1039_D1CE01109J
Cites_doi 10.1016/j.polymer.2013.02.049
10.1016/j.ces.2012.02.051
10.1002/pen.20017
10.1166/jbmb.2007.004
10.1007/s10924-011-0317-1
10.1021/ma0484983
10.1021/ie101637f
10.1016/j.molstruc.2021.129954
10.1016/j.progpolymsci.2008.05.004
10.1002/polb.21154
10.1002/pen.21385
10.1002/jbm.b.31523
10.1021/ie302625e
10.1007/BF01498927
10.3390/ijms10125381
10.1002/app.30338
10.1016/0142-9612(94)90197-X
10.1016/j.progpolymsci.2014.04.001
10.1021/ie0401399
10.1016/j.polymer.2012.04.054
10.1002/pi.2540
10.3390/polym9010018
10.1089/ten.1999.5.421
10.1016/j.polymer.2015.05.048
10.1002/cjce.23818
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.polymertesting.2021.107201
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2348
ExternalDocumentID oai_doaj_org_article_5a70d0331e9a4a46bd203e03f651ec9f
10_1016_j_polymertesting_2021_107201
S0142941821001513
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
WUQ
XPP
ZMT
~G-
0SF
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c450t-8155f55640d8a662c0d2cf87f3d371cdd85ec53b5559da4a9e0a97ae80714bd63
IEDL.DBID DOA
ISSN 0142-9418
IngestDate Tue Oct 22 15:14:15 EDT 2024
Thu Sep 26 16:11:28 EDT 2024
Fri Feb 23 02:45:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords PLA
Crystallization kinetics
CO2
Avrami
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-8155f55640d8a662c0d2cf87f3d371cdd85ec53b5559da4a9e0a97ae80714bd63
OpenAccessLink https://doaj.org/article/5a70d0331e9a4a46bd203e03f651ec9f
ParticipantIDs doaj_primary_oai_doaj_org_article_5a70d0331e9a4a46bd203e03f651ec9f
crossref_primary_10_1016_j_polymertesting_2021_107201
elsevier_sciencedirect_doi_10_1016_j_polymertesting_2021_107201
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Polymer testing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Nofar, Park (bib22) 2014
Puchalski, Kwolek, Szparaga, Chrzanowski, Krucinska (bib8) 2017; 9
Wang, Zhu, Zhang, Park (bib14) 2012; 75
Nofar, Tabatabaei, Park (bib33) 2013; 54
DuPont (bib6) 2016
Fischer, Sterzel, Wegner (bib32) 1973; 251
Foglia, De Meo, Iozzino, Volpe, Pantani (bib9) 2020
Kramschuster, Turng (bib17) 2010; 92
Pilla, Kim, Auer, Gong, Park (bib13) 2009; 49
Folino, Karageorgiou, Calabrò, Komilis (bib7) 2020; 12
Kramschuster, Gong, Turng, Li, Li (bib16) 2008; 1
Lassen, Warming, Jakobsen, Novichkov, Strand, Feld, Bach (bib1) 2019
Zhai, Ko, Zhu, Wong, Park (bib29) 2009; 10
Ishikawa, Kentaro, Ohshima (bib15) 2006; 52
Lim, Auras, Rubino (bib2) 2008; 33
Nofar, Zhu, Park (bib21) 2012; 53
Choi, Chung, Yoon (bib26) 2005; 44
Nofar, Zhu, Park (bib30) 2012; 53
Mikos, Lyman, Freed, Langer (bib11) 1994; 15
Yu, Liu, Dean (bib28) 2009; 58
Nofar, Ameli, Park (bib3) 2015; 69
Luckachan, Pillai (bib4) 2011; 19
Nofar (bib19) 2013
Takada, Hasegawa, Ohshima (bib27) 2004; 44
Meszlenyi, Mikos (bib10) 1999; 5
Park, Nofar (bib18) 2018
Marrazzo, Di Maio, Iannace (bib24) 2007; 48
MIhai, Huneault, Favis (bib12) 2009; 50
Taki, Kitano, Ohshima (bib25) 2011; 50
Siripurapu, Coughlan, Spontak, Khan (bib34) 2004; 37
Wu, Wu, Wu, Xu, Zhang, Zhang (bib31) 2007; 45
MIhai, Huneault, Favis (bib23) 2009; 113
Yusoff, Pal, Narayanan, de Souza (bib5) 2021; 1232
Nofar, Guo, Park (bib20) 2013; 52
Luckachan (10.1016/j.polymertesting.2021.107201_bib4) 2011; 19
Pilla (10.1016/j.polymertesting.2021.107201_bib13) 2009; 49
Foglia (10.1016/j.polymertesting.2021.107201_bib9) 2020
Taki (10.1016/j.polymertesting.2021.107201_bib25) 2011; 50
Lassen (10.1016/j.polymertesting.2021.107201_bib1) 2019
Folino (10.1016/j.polymertesting.2021.107201_bib7) 2020; 12
Ishikawa (10.1016/j.polymertesting.2021.107201_bib15) 2006; 52
Takada (10.1016/j.polymertesting.2021.107201_bib27) 2004; 44
Zhai (10.1016/j.polymertesting.2021.107201_bib29) 2009; 10
Wu (10.1016/j.polymertesting.2021.107201_bib31) 2007; 45
Meszlenyi (10.1016/j.polymertesting.2021.107201_bib10) 1999; 5
Puchalski (10.1016/j.polymertesting.2021.107201_bib8) 2017; 9
Park (10.1016/j.polymertesting.2021.107201_bib18) 2018
DuPont (10.1016/j.polymertesting.2021.107201_bib6) 2016
Choi (10.1016/j.polymertesting.2021.107201_bib26) 2005; 44
Wang (10.1016/j.polymertesting.2021.107201_bib14) 2012; 75
Nofar (10.1016/j.polymertesting.2021.107201_bib19) 2013
MIhai (10.1016/j.polymertesting.2021.107201_bib12) 2009; 50
Kramschuster (10.1016/j.polymertesting.2021.107201_bib16) 2008; 1
Siripurapu (10.1016/j.polymertesting.2021.107201_bib34) 2004; 37
Nofar (10.1016/j.polymertesting.2021.107201_bib3) 2015; 69
Yu (10.1016/j.polymertesting.2021.107201_bib28) 2009; 58
Mikos (10.1016/j.polymertesting.2021.107201_bib11) 1994; 15
Nofar (10.1016/j.polymertesting.2021.107201_bib22) 2014
Yusoff (10.1016/j.polymertesting.2021.107201_bib5) 2021; 1232
Nofar (10.1016/j.polymertesting.2021.107201_bib21) 2012; 53
Marrazzo (10.1016/j.polymertesting.2021.107201_bib24) 2007; 48
Nofar (10.1016/j.polymertesting.2021.107201_bib33) 2013; 54
MIhai (10.1016/j.polymertesting.2021.107201_bib23) 2009; 113
Fischer (10.1016/j.polymertesting.2021.107201_bib32) 1973; 251
Lim (10.1016/j.polymertesting.2021.107201_bib2) 2008; 33
Nofar (10.1016/j.polymertesting.2021.107201_bib20) 2013; 52
Nofar (10.1016/j.polymertesting.2021.107201_bib30) 2012; 53
Kramschuster (10.1016/j.polymertesting.2021.107201_bib17) 2010; 92
References_xml – start-page: 1998
  year: 2020
  end-page: 2007
  ident: bib9
  article-title: Isothermal crystallization of PLA: nucleation density and growth rates of α and α' phases
  publication-title: Can. J. Chem. Eng.
  contributor:
    fullname: Pantani
– year: 2018
  ident: bib18
  article-title: METHOD FOR THE PREPARATION OF PLA BEAD FOAMS
  contributor:
    fullname: Nofar
– volume: 44
  start-page: 2776
  year: 2005
  end-page: 2780
  ident: bib26
  article-title: Formation of double melting peak of poly(propylene-co-ethylene-co-1-butene) during the preexpansion process for production of expanded polypropylene
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Yoon
– volume: 12
  start-page: 1
  year: 2020
  end-page: 37
  ident: bib7
  article-title: Biodegradation of wasted bioplastics in natural and industrial environments: a review
  publication-title: Sustain. Times
  contributor:
    fullname: Komilis
– volume: 10
  start-page: 5381
  year: 2009
  end-page: 5397
  ident: bib29
  article-title: A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2
  publication-title: Int. J. Mol. Sci.
  contributor:
    fullname: Park
– volume: 49
  year: 2009
  ident: bib13
  article-title: Microcellular extrusion-foaming of polylactide with chain extender
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: Park
– volume: 58
  start-page: 368
  year: 2009
  end-page: 372
  ident: bib28
  article-title: Thermal behaviour of poly(lactic acid) in contact with compressed carbon dioxide
  publication-title: Polym. Int.
  contributor:
    fullname: Dean
– volume: 50
  start-page: 3247
  year: 2011
  end-page: 3252
  ident: bib25
  article-title: Effect of growing crystalline phase on bubble nucleation in poly(L -lactide)/CO2 batch foaming
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Ohshima
– volume: 1
  start-page: 37
  year: 2008
  end-page: 45
  ident: bib16
  article-title: Injection-molded solid and microcellular polylactide and polylactide nanocomposites
  publication-title: J. Biobased Mater. Bioenergy
  contributor:
    fullname: Li
– year: 2013
  ident: bib19
  article-title: Expanded PLA Bead Foaming: Analysis of Crystallization Kinetics and Development of a Novel Technology
  contributor:
    fullname: Nofar
– year: 2019
  ident: bib1
  article-title: Survey of polystyrene foam ( Eps and Xps ) in the Baltic Sea, Danish fish. Agency/minist
  publication-title: Environ. Food Denmark
  contributor:
    fullname: Bach
– volume: 251
  start-page: 980
  year: 1973
  end-page: 990
  ident: bib32
  article-title: Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions
  publication-title: Kolloid-Z. Z. Polym.
  contributor:
    fullname: Wegner
– volume: 5
  start-page: 421
  year: 1999
  end-page: 433
  ident: bib10
  article-title: P. D, of poly ( DL-lactic-co-glycolic acid ) foam scaffolds
  publication-title: Tissue Eng.
  contributor:
    fullname: Mikos
– volume: 75
  start-page: 390
  year: 2012
  end-page: 399
  ident: bib14
  article-title: Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Park
– volume: 52
  year: 2006
  ident: bib15
  article-title: Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core-Back foam injection molding
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: Ohshima
– volume: 92
  start-page: 366
  year: 2010
  end-page: 376
  ident: bib17
  article-title: An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  contributor:
    fullname: Turng
– volume: 15
  start-page: 55
  year: 1994
  end-page: 58
  ident: bib11
  article-title: Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture
  publication-title: Biomaterials
  contributor:
    fullname: Langer
– volume: 53
  start-page: 3341
  year: 2012
  end-page: 3353
  ident: bib30
  article-title: Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA
  publication-title: Polymer
  contributor:
    fullname: Park
– volume: 53
  start-page: 3341
  year: 2012
  end-page: 3353
  ident: bib21
  article-title: Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA
  publication-title: Polymer
  contributor:
    fullname: Park
– volume: 1232
  start-page: 129954
  year: 2021
  ident: bib5
  article-title: Recent trends on bioplastics synthesis and characterizations: polylactic acid (PLA) incorporated with tapioca starch for packaging applications
  publication-title: J. Mol. Struct.
  contributor:
    fullname: de Souza
– start-page: 2016
  year: 2016
  ident: bib6
  article-title: Food and Beverage Packaging Materials
  contributor:
    fullname: DuPont
– volume: 44
  start-page: 186
  year: 2004
  end-page: 196
  ident: bib27
  article-title: Crystallization kinetics of poly(L-lactide) in contact with pressurized CO2
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: Ohshima
– year: 2014
  ident: bib22
  article-title: Poly (lactic acid) foaming
  publication-title: Prog. Polym. Sci.
  contributor:
    fullname: Park
– volume: 50
  year: 2009
  ident: bib12
  article-title: Rheology and extrusion foaming of chain-branched poly(lactic acid)
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: Favis
– volume: 69
  start-page: 83
  year: 2015
  end-page: 94
  ident: bib3
  article-title: Development of polylactide bead foams with double crystal melting peaks
  publication-title: Polymer
  contributor:
    fullname: Park
– volume: 54
  start-page: 2382
  year: 2013
  end-page: 2391
  ident: bib33
  article-title: Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO 2 mixtures
  publication-title: Polymer
  contributor:
    fullname: Park
– volume: 52
  start-page: 2297
  year: 2013
  end-page: 2303
  ident: bib20
  article-title: Double crystal melting peak generation for expanded polypropylene bead foam manufacturing
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Park
– volume: 45
  start-page: 1100
  year: 2007
  end-page: 1113
  ident: bib31
  article-title: Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites
  publication-title: Appl. Polym. Sci.
  contributor:
    fullname: Zhang
– volume: 9
  year: 2017
  ident: bib8
  article-title: Investigation of the influence of PLA molecular structure on the crystalline forms (α" and α) and Mechanical Properties ofWet Spinning Fibres
  publication-title: Polymers
  contributor:
    fullname: Krucinska
– volume: 48
  year: 2007
  ident: bib24
  article-title: Conventional and nanometric nucleating agents in poly(e-caprolactone) foaming: crystals vs. Bubbles nucleation
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: Iannace
– volume: 113
  start-page: 2920
  year: 2009
  end-page: 2932
  ident: bib23
  article-title: Crystallinity development in cellular poly(lactic acid) in the presence of Supercritical carbon dioxide
  publication-title: J. Appl. Polym. Sci.
  contributor:
    fullname: Favis
– volume: 37
  start-page: 9872
  year: 2004
  end-page: 9879
  ident: bib34
  article-title: Surface-constrained foaming of polymer thin films with Supercritical carbon dioxide
  publication-title: Macromolecules
  contributor:
    fullname: Khan
– volume: 33
  start-page: 820
  year: 2008
  end-page: 852
  ident: bib2
  article-title: Processing technologies for poly(lactic acid)
  publication-title: Prog. Polym. Sci.
  contributor:
    fullname: Rubino
– volume: 19
  start-page: 637
  year: 2011
  end-page: 676
  ident: bib4
  article-title: Biodegradable polymers- A review on recent trends and Emerging perspectives
  publication-title: J. Polym. Environ.
  contributor:
    fullname: Pillai
– volume: 54
  start-page: 2382
  year: 2013
  ident: 10.1016/j.polymertesting.2021.107201_bib33
  article-title: Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO 2 mixtures
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.02.049
  contributor:
    fullname: Nofar
– volume: 75
  start-page: 390
  year: 2012
  ident: 10.1016/j.polymertesting.2021.107201_bib14
  article-title: Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.02.051
  contributor:
    fullname: Wang
– volume: 44
  start-page: 186
  year: 2004
  ident: 10.1016/j.polymertesting.2021.107201_bib27
  article-title: Crystallization kinetics of poly(L-lactide) in contact with pressurized CO2
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.20017
  contributor:
    fullname: Takada
– volume: 1
  start-page: 37
  year: 2008
  ident: 10.1016/j.polymertesting.2021.107201_bib16
  article-title: Injection-molded solid and microcellular polylactide and polylactide nanocomposites
  publication-title: J. Biobased Mater. Bioenergy
  doi: 10.1166/jbmb.2007.004
  contributor:
    fullname: Kramschuster
– volume: 19
  start-page: 637
  year: 2011
  ident: 10.1016/j.polymertesting.2021.107201_bib4
  article-title: Biodegradable polymers- A review on recent trends and Emerging perspectives
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-011-0317-1
  contributor:
    fullname: Luckachan
– volume: 37
  start-page: 9872
  year: 2004
  ident: 10.1016/j.polymertesting.2021.107201_bib34
  article-title: Surface-constrained foaming of polymer thin films with Supercritical carbon dioxide
  publication-title: Macromolecules
  doi: 10.1021/ma0484983
  contributor:
    fullname: Siripurapu
– start-page: 2016
  year: 2016
  ident: 10.1016/j.polymertesting.2021.107201_bib6
  contributor:
    fullname: DuPont
– volume: 50
  start-page: 3247
  year: 2011
  ident: 10.1016/j.polymertesting.2021.107201_bib25
  article-title: Effect of growing crystalline phase on bubble nucleation in poly(L -lactide)/CO2 batch foaming
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie101637f
  contributor:
    fullname: Taki
– volume: 50
  year: 2009
  ident: 10.1016/j.polymertesting.2021.107201_bib12
  article-title: Rheology and extrusion foaming of chain-branched poly(lactic acid)
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: MIhai
– volume: 1232
  start-page: 129954
  year: 2021
  ident: 10.1016/j.polymertesting.2021.107201_bib5
  article-title: Recent trends on bioplastics synthesis and characterizations: polylactic acid (PLA) incorporated with tapioca starch for packaging applications
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2021.129954
  contributor:
    fullname: Yusoff
– year: 2018
  ident: 10.1016/j.polymertesting.2021.107201_bib18
  contributor:
    fullname: Park
– volume: 48
  year: 2007
  ident: 10.1016/j.polymertesting.2021.107201_bib24
  article-title: Conventional and nanometric nucleating agents in poly(e-caprolactone) foaming: crystals vs. Bubbles nucleation
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: Marrazzo
– volume: 33
  start-page: 820
  year: 2008
  ident: 10.1016/j.polymertesting.2021.107201_bib2
  article-title: Processing technologies for poly(lactic acid)
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2008.05.004
  contributor:
    fullname: Lim
– year: 2019
  ident: 10.1016/j.polymertesting.2021.107201_bib1
  article-title: Survey of polystyrene foam ( Eps and Xps ) in the Baltic Sea, Danish fish. Agency/minist
  publication-title: Environ. Food Denmark
  contributor:
    fullname: Lassen
– volume: 45
  start-page: 1100
  year: 2007
  ident: 10.1016/j.polymertesting.2021.107201_bib31
  article-title: Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites
  publication-title: Appl. Polym. Sci.
  doi: 10.1002/polb.21154
  contributor:
    fullname: Wu
– volume: 49
  year: 2009
  ident: 10.1016/j.polymertesting.2021.107201_bib13
  article-title: Microcellular extrusion-foaming of polylactide with chain extender
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.21385
  contributor:
    fullname: Pilla
– volume: 92
  start-page: 366
  year: 2010
  ident: 10.1016/j.polymertesting.2021.107201_bib17
  article-title: An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.31523
  contributor:
    fullname: Kramschuster
– volume: 52
  start-page: 2297
  year: 2013
  ident: 10.1016/j.polymertesting.2021.107201_bib20
  article-title: Double crystal melting peak generation for expanded polypropylene bead foam manufacturing
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302625e
  contributor:
    fullname: Nofar
– volume: 251
  start-page: 980
  year: 1973
  ident: 10.1016/j.polymertesting.2021.107201_bib32
  article-title: Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions
  publication-title: Kolloid-Z. Z. Polym.
  doi: 10.1007/BF01498927
  contributor:
    fullname: Fischer
– volume: 10
  start-page: 5381
  year: 2009
  ident: 10.1016/j.polymertesting.2021.107201_bib29
  article-title: A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms10125381
  contributor:
    fullname: Zhai
– volume: 113
  start-page: 2920
  year: 2009
  ident: 10.1016/j.polymertesting.2021.107201_bib23
  article-title: Crystallinity development in cellular poly(lactic acid) in the presence of Supercritical carbon dioxide
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.30338
  contributor:
    fullname: MIhai
– volume: 15
  start-page: 55
  year: 1994
  ident: 10.1016/j.polymertesting.2021.107201_bib11
  article-title: Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(94)90197-X
  contributor:
    fullname: Mikos
– year: 2014
  ident: 10.1016/j.polymertesting.2021.107201_bib22
  article-title: Poly (lactic acid) foaming
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2014.04.001
  contributor:
    fullname: Nofar
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.polymertesting.2021.107201_bib7
  article-title: Biodegradation of wasted bioplastics in natural and industrial environments: a review
  publication-title: Sustain. Times
  contributor:
    fullname: Folino
– volume: 44
  start-page: 2776
  year: 2005
  ident: 10.1016/j.polymertesting.2021.107201_bib26
  article-title: Formation of double melting peak of poly(propylene-co-ethylene-co-1-butene) during the preexpansion process for production of expanded polypropylene
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0401399
  contributor:
    fullname: Choi
– volume: 52
  year: 2006
  ident: 10.1016/j.polymertesting.2021.107201_bib15
  article-title: Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core-Back foam injection molding
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: Ishikawa
– year: 2013
  ident: 10.1016/j.polymertesting.2021.107201_bib19
  contributor:
    fullname: Nofar
– volume: 53
  start-page: 3341
  year: 2012
  ident: 10.1016/j.polymertesting.2021.107201_bib30
  article-title: Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.04.054
  contributor:
    fullname: Nofar
– volume: 53
  start-page: 3341
  year: 2012
  ident: 10.1016/j.polymertesting.2021.107201_bib21
  article-title: Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.04.054
  contributor:
    fullname: Nofar
– volume: 58
  start-page: 368
  year: 2009
  ident: 10.1016/j.polymertesting.2021.107201_bib28
  article-title: Thermal behaviour of poly(lactic acid) in contact with compressed carbon dioxide
  publication-title: Polym. Int.
  doi: 10.1002/pi.2540
  contributor:
    fullname: Yu
– volume: 9
  year: 2017
  ident: 10.1016/j.polymertesting.2021.107201_bib8
  article-title: Investigation of the influence of PLA molecular structure on the crystalline forms (α" and α) and Mechanical Properties ofWet Spinning Fibres
  publication-title: Polymers
  doi: 10.3390/polym9010018
  contributor:
    fullname: Puchalski
– volume: 5
  start-page: 421
  year: 1999
  ident: 10.1016/j.polymertesting.2021.107201_bib10
  article-title: P. D, of poly ( DL-lactic-co-glycolic acid ) foam scaffolds
  publication-title: Tissue Eng.
  doi: 10.1089/ten.1999.5.421
  contributor:
    fullname: Meszlenyi
– volume: 69
  start-page: 83
  year: 2015
  ident: 10.1016/j.polymertesting.2021.107201_bib3
  article-title: Development of polylactide bead foams with double crystal melting peaks
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.05.048
  contributor:
    fullname: Nofar
– start-page: 1998
  year: 2020
  ident: 10.1016/j.polymertesting.2021.107201_bib9
  article-title: Isothermal crystallization of PLA: nucleation density and growth rates of α and α' phases
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23818
  contributor:
    fullname: Foglia
SSID ssj0005016
Score 2.3811636
Snippet The kinetics of crystallization of Polylactic Acid (PLA) in the presence of CO2 pressures from 1.5 to 4 MPa, has been studied by measuring the optical...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 107201
SubjectTerms Avrami
CO2
Crystallization kinetics
PLA
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHngcEC0glpfm0GtYJ34kPqGyoqqqqnCgUm-RkxlXC9vNahsh9cJ_4B8zThzY3pA4xnYsxzMZz1jffCPEkazK4FRFmZHkM619mTmFmNmSFQatQ08DQPbCnl7qsytztScWUy5MhFUm2z_a9MFap5Z52s35ZrmcR1hS4TT7x5FGyAyVazUff6zT73_uwDzkUP40Ds7i6Afi6C_Ga9Ot7m5o20dCi_U1R4tFzl1lkUrETMfUwOa_c1rtnEAnT8WT5DrC8bi6A7FH60PxcDFVbDsUj3fIBZ-JX2y_gIP7DCmRxP4g6DbD3TVMVOLQd4AJEUPAziC02zt2GFerlJ8J37kjUjlDF-DL-THEpLMteFh8LsD3N91t5CUgiPe5cBvh2XH2NULivFoBx_NJvZ-Ly5NPXxenWSrAkLW8k31WsbMRjLFaYuWtLVqJRRtYugpVmbeIlaHWqMZwWIJee0fSu9JTFbOiGrTqhdjn76SXAhyiopzaQC6wD2EbpXWwBf_-SMrl1UyYab_rzcizUU8AtG_1fTnVUU71KKeZ-BiF8-edyJY9NHTb6zqpS218KVEqlZPjVWrbYCEVSRWs4SW5MBMfJtHW95SPp1r-0zJe_fcMr8Wj-DSi0N6IfVYMesv-Tt-8GxT6N1UVA5A
  priority: 102
  providerName: Elsevier
Title New non-destructive optical approach to determine the crystallization kinetics of PLA under a CO2 atmosphere with spatial and temporal resolution
URI https://dx.doi.org/10.1016/j.polymertesting.2021.107201
https://doaj.org/article/5a70d0331e9a4a46bd203e03f651ec9f
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JjtQwELVgkFgOCAYQzdKqw1wDTrwkPqGmxahZNHBgpLlFTqqMgJ5OqydCmgv_wB9TThxoTnDgGiuW41exX1nPr4Q4klUZnKooM5J8prUvM6cQM1tywKB16GkQyJ7Y1al-c2bO9kp9RU3YaA88Ttxz40uJUqmcnNde2wYLqUiqYE1OrQvD6ivdlExN4g45FD1l_l9kTufVdXH0W9m17daX57Tro43F5hPniEXOTWWRCsNMm9Pg4b-3R-3tO8d3xO1EGGExDvSuuEKbQ3FjOdVpOxS39iwF74kfvGoBp_QZUrKG_UbQbYcTa5gMxKHvAJMOhoApILS7S6aJ63W6lQlfuSEaOEMX4MO7BcSrZjvwsHxfgO_Pu4voRkAQT3HhIoqyY-8bhOR0tQbO4lNQ3xenx68-LldZKruQtdrIPquYYgRjrJZYeWuLVmLRBsZUoSrzFrEy1BrVGE5GkDFxJL0rPVXxLlSDVj0QB_yd9FCAQ1TEMAVygZmDbZTWwRb80yMpl1czYab5rreju0Y9yc6-1H_iVEec6hGnmXgZwfn1TvTIHh5w5NQpcuq_Rc5MvJigrRPdGGkEd_X5n4bx6H8M47G4Gbsc5WdPxAHHBj1lotM3c3H12fd8Lq4tXr9dncyHCP8JWr4Blw
link.rule.ids 315,783,787,867,2109,4509,24128,27936,27937,45597,45691
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqVqJwQFBALM859GqtEz8Sn9CyotrSZeHQSr1FTjyptmw3q22E1J_BP2acOHR7Q-Iax9bEMxnPWN98w9ixyLPayhy5Fui4Ui7jVnrPTUYG4431DjuA7MLMLtTXS325x6ZDLUyAVUbf3_v0zlvHJ-O4m-PNcjkOsKTUKoqPA42QDp1rDygasPR3HkxOz2aLe6SH6Dqghvd5mPCIHd_DvDbN6u4Gt23gtFhfUcKYJjSUpbFLzHBSdYT-OwfWziF08ow9jdEjTHoBn7M9XB-xw-nQtO2IPdnhF3zBfpMLA8rvucfIE_sLodl019cwsIlD24CPoBgEigeh2t5RzLhaxRJN-EkDgc0Zmhp-zCcQ6s624GD6PQXX3jS3gZoAIVzpwm1AaIfV1x4i7dUKKKWPFv6SXZx8OZ_OeOzBwCulRctzijdqrY0SPnfGpJXwaVWTgqWXWVJ5n2ustCw1ZSbeKWdROJs5zENhVOmNfMX26TvxNQPrvcQEqxptTWGEKaVStUnJA3iUNslHTA_7XWx6qo1iwKBdFw_1VAQ9Fb2eRuxzUM7fOYEwu3vQbK-KaDGFdpnwQsoELUmpTOlTIVHI2mgSydYj9mlQbfHA_mip5T-J8ea_V_jIDmfn3-bF_HRx9pY9DiM9KO0d2ycjwfcU_rTlh2jefwBc6wfS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+non-destructive+optical+approach+to+determine+the+crystallization+kinetics+of+PLA+under+a+CO2+atmosphere+with+spatial+and+temporal+resolution&rft.jtitle=Polymer+testing&rft.au=J.+Mart%C3%ADn-de+Le%C3%B3n&rft.au=V.+Bernardo&rft.au=E.+Sol%C3%B3rzano&rft.au=M.A.+Rodriguez-P%C3%A9rez&rft.date=2021-06-01&rft.pub=Elsevier&rft.issn=0142-9418&rft.volume=98&rft.spage=107201&rft_id=info:doi/10.1016%2Fj.polymertesting.2021.107201&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5a70d0331e9a4a46bd203e03f651ec9f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9418&client=summon