Glycan engineering of the SARS-CoV-2 receptor-binding domain elicits cross-neutralizing antibodies for SARS-related viruses
Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and...
Saved in:
Published in | The Journal of experimental medicine Vol. 218; no. 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
06.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD–specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines. |
---|---|
AbstractList | Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines. Shinnakasu et al. show that the glycan engineering immunogens of SARS-CoV-2 spike receptor-binding domain (RBD) elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibodies, thereby manifesting significant neutralizing activity not only for SARS-CoV-2 but also for more broad SARS-related viruses. Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD–specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines. Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines.Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines. |
Author | Inoue, Takeshi Shinkai, Masaharu Onodera, Taishi Yamamoto, Hiromi Wang, Po-hung Adachi, Yu Sax, Nicolas Shinnakasu, Ryo Yamanaka, Atsushi Hashii, Noritaka Ono, Chikako Moriyama, Saya Takahashi, Yoshimasa Yamashita, Kazuo Suzuki, Ryosuke Sato, Takashi Matsuura, Yoshiharu Sakakibara, Shuhei Kurosaki, Tomohiro |
AuthorAffiliation | 12 Laboratory for Lymphocyte Differentiation, Research Center for Allergy and Immunology, RIKEN, Yokohama, Japan 2 Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan 10 Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan 5 Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan 6 Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan 13 Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan 4 KOTAI Biotechnologies, Inc., Osaka, Japan 7 Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 3 Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan 8 Mahidol-Osaka Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan 9 Tok |
AuthorAffiliation_xml | – name: 11 Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan – name: 6 Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan – name: 9 Tokyo Shinagawa Hospital, Tokyo, Japan – name: 10 Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan – name: 2 Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan – name: 8 Mahidol-Osaka Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan – name: 3 Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan – name: 12 Laboratory for Lymphocyte Differentiation, Research Center for Allergy and Immunology, RIKEN, Yokohama, Japan – name: 7 Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand – name: 5 Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan – name: 1 Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan – name: 13 Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan – name: 4 KOTAI Biotechnologies, Inc., Osaka, Japan |
Author_xml | – sequence: 1 givenname: Ryo orcidid: 0000-0002-5369-3424 surname: Shinnakasu fullname: Shinnakasu, Ryo – sequence: 2 givenname: Shuhei orcidid: 0000-0003-3157-5870 surname: Sakakibara fullname: Sakakibara, Shuhei – sequence: 3 givenname: Hiromi orcidid: 0000-0002-3495-9936 surname: Yamamoto fullname: Yamamoto, Hiromi – sequence: 4 givenname: Po-hung orcidid: 0000-0001-6770-1918 surname: Wang fullname: Wang, Po-hung – sequence: 5 givenname: Saya orcidid: 0000-0003-2057-9198 surname: Moriyama fullname: Moriyama, Saya – sequence: 6 givenname: Nicolas orcidid: 0000-0003-3241-4737 surname: Sax fullname: Sax, Nicolas – sequence: 7 givenname: Chikako orcidid: 0000-0002-3965-6715 surname: Ono fullname: Ono, Chikako – sequence: 8 givenname: Atsushi orcidid: 0000-0002-2757-2792 surname: Yamanaka fullname: Yamanaka, Atsushi – sequence: 9 givenname: Yu orcidid: 0000-0002-8573-987X surname: Adachi fullname: Adachi, Yu – sequence: 10 givenname: Taishi orcidid: 0000-0002-7079-3339 surname: Onodera fullname: Onodera, Taishi – sequence: 11 givenname: Takashi orcidid: 0000-0002-2676-3781 surname: Sato fullname: Sato, Takashi – sequence: 12 givenname: Masaharu orcidid: 0000-0002-4012-2518 surname: Shinkai fullname: Shinkai, Masaharu – sequence: 13 givenname: Ryosuke orcidid: 0000-0003-0296-8843 surname: Suzuki fullname: Suzuki, Ryosuke – sequence: 14 givenname: Yoshiharu orcidid: 0000-0001-9091-8285 surname: Matsuura fullname: Matsuura, Yoshiharu – sequence: 15 givenname: Noritaka orcidid: 0000-0003-1363-2050 surname: Hashii fullname: Hashii, Noritaka – sequence: 16 givenname: Yoshimasa orcidid: 0000-0001-6342-4087 surname: Takahashi fullname: Takahashi, Yoshimasa – sequence: 17 givenname: Takeshi orcidid: 0000-0002-9972-6105 surname: Inoue fullname: Inoue, Takeshi – sequence: 18 givenname: Kazuo orcidid: 0000-0002-0085-2057 surname: Yamashita fullname: Yamashita, Kazuo – sequence: 19 givenname: Tomohiro orcidid: 0000-0002-6352-304X surname: Kurosaki fullname: Kurosaki, Tomohiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34623376$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc9vFCEcxYlpY7fVm2czRw9S-TEwMxeTZqPVpIlJq14JMN_Z0szACkyT6j8v0-021vREgM97D973GB344AGhN5ScUtLWH25gOmWEUUoIf4FWVNQEd4K3B2hFCGO4nDdH6DilG0JoXQv5Eh3xWjLOG7lCf87HO6t9BX7jPEB0flOFocrXUF2dXV7hdfiJWRXBwjaHiI3z_YL0YdKuqEZnXU6VjSEl7GHOUY_u90Jon50JvYNUDSHuzCKMOkNf3bo4J0iv0OGgxwSvH9YT9OPzp-_rL_ji2_nX9dkFtrUgGcvBUEulGYTpesOa8tnWCuioNoQy3unONC2AAN6KoWdlx4FQDdLShjVc8hP0cee7nc0EvQW_PFNto5t0vFNBO_X0xrtrtQm3qpU1ZUIUg3cPBjH8miFlNblkYRy1hzAnxURLZMeJ5AV9-2_WY8i-8QKwHXDfWYRBlQZ1dmGJdqOiRC1jVWWsaj_WInr_n2jv-yz-F2cqpbc |
CitedBy_id | crossref_primary_10_1016_j_celrep_2022_110561 crossref_primary_10_1038_s41577_023_00897_3 crossref_primary_10_1371_journal_ppat_1012599 crossref_primary_10_1084_jem_20221786 crossref_primary_10_1126_science_abq0839 crossref_primary_10_1093_intimm_dxad017 crossref_primary_10_3390_v14071382 crossref_primary_10_1111_apm_13284 crossref_primary_10_1002_jmv_29893 crossref_primary_10_1038_s41467_024_54865_z crossref_primary_10_3389_fimmu_2022_902260 crossref_primary_10_1002_jev2_12290 crossref_primary_10_1038_s41467_023_36295_5 crossref_primary_10_26508_lsa_202402774 crossref_primary_10_1016_j_celrep_2022_110318 crossref_primary_10_1016_j_bcp_2022_115335 crossref_primary_10_1021_acsinfecdis_3c00483 crossref_primary_10_1038_s44298_024_00067_9 crossref_primary_10_1084_jem_20241019 crossref_primary_10_1186_s12985_022_01818_x |
Cites_doi | 10.1038/s41586-020-2852-1 10.1038/s41586-020-2169-0 10.1038/s41467-021-21968-w 10.1073/pnas.1517719113 10.1093/bib/bbx108 10.1101/cshperspect.a013359 10.1016/j.immuni.2020.10.023 10.1093/intimm/dxz049 10.1038/s41586-020-2179-y 10.1016/j.cell.2015.06.026 10.1038/s41392-020-00402-5 10.1038/s41577-020-00480-0 10.1093/nar/gkn180 10.1038/s41586-020-2349-y 10.1038/s41564-020-0688-y 10.1038/nm.3985 10.1128/JVI.02608-13 10.1038/s41586-020-2456-9 10.1038/s41594-020-0480-y 10.1126/science.abc5902 10.1093/intimm/dxaa012 10.1038/s41467-021-21240-1 10.1101/2021.04.23.441195 10.1038/nature12711 10.3201/eid2607.200092 10.1038/s41467-021-23074-3 10.1126/science.abd2321 10.1038/s41596-020-0394-5 10.1038/s41467-020-19568-1 10.1038/s41598-021-85202-9 10.1038/s41594-021-00596-4 10.1016/j.cell.2020.06.043 10.1126/science.aac7263 10.1080/21655979.2020.1814683 10.1016/j.immuni.2018.07.005 10.3389/fmicb.2018.02991 10.1016/j.cell.2020.10.043 10.1128/JVI.02377-07 10.1126/science.1234150 10.1126/science.abc7424 10.1084/jem.20200866 10.1016/j.cell.2020.08.012 10.1038/s41577-020-00410-0 10.1093/bioinformatics/btv359 10.1016/j.cell.2021.03.036 10.1128/JVI.02499-09 10.1038/s41586-020-2381-y 10.1038/srep22666 10.1016/j.chom.2019.04.003 10.1016/j.cell.2020.06.025 10.1038/s41591-021-01294-w 10.1016/j.cell.2020.12.015 10.1038/srep05885 |
ContentType | Journal Article |
Copyright | 2021 Shinnakasu et al. 2021 Shinnakasu et al. 2021 |
Copyright_xml | – notice: 2021 Shinnakasu et al. – notice: 2021 Shinnakasu et al. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1084/jem.20211003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Glycan-engineered RBD induces bnAbs for SARS-CoVs |
EISSN | 1540-9538 |
ExternalDocumentID | PMC8641255 34623376 10_1084_jem_20211003 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development grantid: JP20fk0108104 – fundername: Japan Society for the Promotion of Science grantid: JP19H01028 – fundername: ; grantid: JP19H01028 – fundername: ; grantid: JP20fk0108104; JP21fk0108534 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EMB F5P F9R GX1 H13 HYE IH2 KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF FRP NPM RHF RPM 7X8 5PM |
ID | FETCH-LOGICAL-c450t-6fb1c16bf5b9db272028c5e91ab01239a9b78ee5e385fd29b73e01ae6c1727363 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 14:05:29 EDT 2025 Thu Jul 10 22:38:39 EDT 2025 Thu Jan 02 22:40:54 EST 2025 Thu Apr 24 23:02:20 EDT 2025 Tue Jul 01 00:41:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2021 Shinnakasu et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-6fb1c16bf5b9db272028c5e91ab01239a9b78ee5e385fd29b73e01ae6c1727363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 R. Shinnakasu and S. Sakakibara contributed equally to this paper. Disclosures: R. Shinnakasu, S. Sakakibara, and T. Kurosaki reported a patent to "glycan engineering of the SARS-CoV-2 receptor-binding domain elicits cross-neutralizing antibodies for SARS-related viruses" pending. N. Sax and K. Yamashita reported personal fees from KOTAI Biotechnologies, Inc. outside the submitted work. No other disclosures were reported. |
ORCID | 0000-0003-3241-4737 0000-0002-3495-9936 0000-0001-6342-4087 0000-0002-4012-2518 0000-0003-3157-5870 0000-0001-6770-1918 0000-0002-0085-2057 0000-0003-1363-2050 0000-0001-9091-8285 0000-0002-9972-6105 0000-0002-2676-3781 0000-0003-0296-8843 0000-0002-7079-3339 0000-0002-8573-987X 0000-0002-6352-304X 0000-0002-5369-3424 0000-0002-2757-2792 0000-0003-2057-9198 0000-0002-3965-6715 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8641255 |
PMID | 34623376 |
PQID | 2580693063 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8641255 proquest_miscellaneous_2580693063 pubmed_primary_34623376 crossref_citationtrail_10_1084_jem_20211003 crossref_primary_10_1084_jem_20211003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-06 |
PublicationDateYYYYMMDD | 2021-12-06 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2021 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | 2023072802122067400_bib20 Garcia-Beltran (2023072802122067400_bib13) 2021; 184 Wang (2023072802122067400_bib47) 2020; 11 Liu (2023072802122067400_bib28) 2020; 5 Barnes (2023072802122067400_bib2) 2020; 588 Chen (2023072802122067400_bib7) 2021; 27 Valkenburg (2023072802122067400_bib43) 2016; 6 Hoffmann (2023072802122067400_bib16) 2021; 184 Bajic (2023072802122067400_bib1) 2019; 25 Wang (2023072802122067400_bib46) 2015; 162 Menachery (2023072802122067400_bib29) 2015; 21 Shi (2023072802122067400_bib38) 2020; 584 Bournazos (2023072802122067400_bib4) 2020; 20 Tajiri-Tsukada (2023072802122067400_bib42) 2020; 11 Impagliazzo (2023072802122067400_bib17) 2015; 349 Smatti (2023072802122067400_bib39) 2018; 9 Lau (2023072802122067400_bib24) 2020; 26 Dai (2023072802122067400_bib8) 2021; 21 Lam (2023072802122067400_bib23) 2020; 583 Katoh (2023072802122067400_bib21) 2019; 20 Wacharapluesadee (2023072802122067400_bib44) 2021; 12 Wec (2023072802122067400_bib49) 2020; 369 Korber (2023072802122067400_bib22) 2020; 182 Dodev (2023072802122067400_bib10) 2014; 4 Letko (2023072802122067400_bib26) 2020; 5 Tani (2023072802122067400_bib52) 2010; 84 Nie (2023072802122067400_bib31) 2020; 15 Song (2023072802122067400_bib40) 2021; 12 Brouwer (2023072802122067400_bib6) 2020; 369 Pinto (2023072802122067400_bib32) 2020; 583 Yuan (2023072802122067400_bib50) 2020; 369 Rockx (2023072802122067400_bib34) 2008; 82 Breitling (2023072802122067400_bib5) 2013; 5 Liu (2023072802122067400_bib27) 2020; 53 Sauer (2023072802122067400_bib36) 2021; 28 Robbiani (2023072802122067400_bib33) 2020; 584 Wang (2023072802122067400_bib48) 2021; 12 Eggink (2023072802122067400_bib12) 2014; 88 Leach (2023072802122067400_bib25) 2019; 31 Sato (2023072802122067400_bib35) 2020; 32 Walls (2023072802122067400_bib45) 2020; 183 Starr (2023072802122067400_bib41) 2020; 182 Gupta (2023072802122067400_bib15) 2015; 31 Dereeper (2023072802122067400_bib9) 2008; 36 Duan (2023072802122067400_bib11) 2018; 49 Menachery (2023072802122067400_bib30) 2016; 113 Ge (2023072802122067400_bib14) 2013; 503 Barnes (2023072802122067400_bib3) 2020; 182 Inoue (2023072802122067400_bib18) 2021; 218 Yoshida (2023072802122067400_bib53) 2021; 11 Jardine (2023072802122067400_bib19) 2013; 340 Shang (2023072802122067400_bib37) 2020; 581 Zhou (2023072802122067400_bib51) 2020; 27 |
References_xml | – volume: 588 start-page: 682 year: 2020 ident: 2023072802122067400_bib2 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature. doi: 10.1038/s41586-020-2852-1 – volume: 583 start-page: 282 year: 2020 ident: 2023072802122067400_bib23 article-title: Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins publication-title: Nature. doi: 10.1038/s41586-020-2169-0 – volume: 12 start-page: 1715 year: 2021 ident: 2023072802122067400_bib48 article-title: A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies publication-title: Nat. Commun. doi: 10.1038/s41467-021-21968-w – volume: 113 start-page: 3048 year: 2016 ident: 2023072802122067400_bib30 article-title: SARS-like WIV1-CoV poised for human emergence publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1517719113 – volume: 20 start-page: 1160 year: 2019 ident: 2023072802122067400_bib21 article-title: MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx108 – volume: 5 year: 2013 ident: 2023072802122067400_bib5 article-title: N-linked protein glycosylation in the endoplasmic reticulum publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a013359 – volume: 53 start-page: 1272 year: 2020 ident: 2023072802122067400_bib27 article-title: Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity publication-title: Immunity. doi: 10.1016/j.immuni.2020.10.023 – volume: 31 start-page: 771 year: 2019 ident: 2023072802122067400_bib25 article-title: Requirement for memory B-cell activation in protection from heterologous influenza virus reinfection publication-title: Int. Immunol. doi: 10.1093/intimm/dxz049 – volume: 581 start-page: 221 year: 2020 ident: 2023072802122067400_bib37 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature. doi: 10.1038/s41586-020-2179-y – volume: 162 start-page: 160 year: 2015 ident: 2023072802122067400_bib46 article-title: Anti-HA Glycoforms Drive B Cell Affinity Selection and Determine Influenza Vaccine Efficacy publication-title: Cell. doi: 10.1016/j.cell.2015.06.026 – volume: 5 start-page: 282 year: 2020 ident: 2023072802122067400_bib28 article-title: RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-020-00402-5 – volume: 21 start-page: 73 year: 2021 ident: 2023072802122067400_bib8 article-title: Viral targets for vaccines against COVID-19 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-00480-0 – volume: 36 issue: Web Server issue year: 2008 ident: 2023072802122067400_bib9 article-title: Phylogeny.fr: robust phylogenetic analysis for the non-specialist publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn180 – volume: 583 start-page: 290 year: 2020 ident: 2023072802122067400_bib32 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature. doi: 10.1038/s41586-020-2349-y – volume: 5 start-page: 562 year: 2020 ident: 2023072802122067400_bib26 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – volume: 21 start-page: 1508 year: 2015 ident: 2023072802122067400_bib29 article-title: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence publication-title: Nat. Med. doi: 10.1038/nm.3985 – volume: 88 start-page: 699 year: 2014 ident: 2023072802122067400_bib12 article-title: Guiding the immune response against influenza virus hemagglutinin toward the conserved stalk domain by hyperglycosylation of the globular head domain publication-title: J. Virol. doi: 10.1128/JVI.02608-13 – volume: 584 start-page: 437 year: 2020 ident: 2023072802122067400_bib33 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature. doi: 10.1038/s41586-020-2456-9 – volume: 27 start-page: 950 year: 2020 ident: 2023072802122067400_bib51 article-title: Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0480-y – volume: 369 start-page: 643 year: 2020 ident: 2023072802122067400_bib6 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science. doi: 10.1126/science.abc5902 – volume: 32 start-page: 499 year: 2020 ident: 2023072802122067400_bib35 article-title: Repurposing the psoriasis drug Oxarol to an ointment adjuvant for the influenza vaccine publication-title: Int. Immunol. doi: 10.1093/intimm/dxaa012 – volume: 12 start-page: 972 year: 2021 ident: 2023072802122067400_bib44 article-title: Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia publication-title: Nat. Commun. doi: 10.1038/s41467-021-21240-1 – ident: 2023072802122067400_bib20 doi: 10.1101/2021.04.23.441195 – volume: 503 start-page: 535 year: 2013 ident: 2023072802122067400_bib14 article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor publication-title: Nature. doi: 10.1038/nature12711 – volume: 26 start-page: 1542 year: 2020 ident: 2023072802122067400_bib24 article-title: Possible Bat Origin of Severe Acute Respiratory Syndrome Coronavirus 2 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2607.200092 – volume: 12 start-page: 2938 year: 2021 ident: 2023072802122067400_bib40 article-title: Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection publication-title: Nat. Commun. doi: 10.1038/s41467-021-23074-3 – volume: 369 start-page: 1119 year: 2020 ident: 2023072802122067400_bib50 article-title: Structural basis of a shared antibody response to SARS-CoV-2 publication-title: Science. doi: 10.1126/science.abd2321 – volume: 15 start-page: 3699 year: 2020 ident: 2023072802122067400_bib31 article-title: Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0394-5 – volume: 11 start-page: 5752 year: 2020 ident: 2023072802122067400_bib47 article-title: Characterization of neutralizing antibody with prophylactic and therapeutic efficacy against SARS-CoV-2 in rhesus monkeys publication-title: Nat. Commun. doi: 10.1038/s41467-020-19568-1 – volume: 11 issue: 1 year: 2021 ident: 2023072802122067400_bib53 article-title: SARS-CoV-2-induced humoral immunity through B cell epitope analysis in COVID-19 infected individuals publication-title: Sci. Rep doi: 10.1038/s41598-021-85202-9 – volume: 28 start-page: 478 year: 2021 ident: 2023072802122067400_bib36 article-title: Structural basis for broad coronavirus neutralization publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-021-00596-4 – volume: 182 start-page: 812 year: 2020 ident: 2023072802122067400_bib22 article-title: Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus publication-title: Cell. doi: 10.1016/j.cell.2020.06.043 – volume: 349 start-page: 1301 year: 2015 ident: 2023072802122067400_bib17 article-title: A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen publication-title: Science. doi: 10.1126/science.aac7263 – volume: 11 start-page: 984 year: 2020 ident: 2023072802122067400_bib42 article-title: Establishment of a highly precise multi-attribute method for the characterization and quality control of therapeutic monoclonal antibodies publication-title: Bioengineered. doi: 10.1080/21655979.2020.1814683 – volume: 49 start-page: 301 year: 2018 ident: 2023072802122067400_bib11 article-title: Glycan Masking Focuses Immune Responses to the HIV-1 CD4-Binding Site and Enhances Elicitation of VRC01-Class Precursor Antibodies publication-title: Immunity. doi: 10.1016/j.immuni.2018.07.005 – volume: 9 start-page: 2991 year: 2018 ident: 2023072802122067400_bib39 article-title: Viral-Induced Enhanced Disease Illness publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02991 – volume: 183 start-page: 1367 year: 2020 ident: 2023072802122067400_bib45 article-title: Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2 publication-title: Cell. doi: 10.1016/j.cell.2020.10.043 – volume: 82 start-page: 3220 year: 2008 ident: 2023072802122067400_bib34 article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge publication-title: J. Virol. doi: 10.1128/JVI.02377-07 – volume: 340 start-page: 711 year: 2013 ident: 2023072802122067400_bib19 article-title: Rational HIV immunogen design to target specific germline B cell receptors publication-title: Science. doi: 10.1126/science.1234150 – volume: 369 start-page: 731 year: 2020 ident: 2023072802122067400_bib49 article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies publication-title: Science. doi: 10.1126/science.abc7424 – volume: 218 year: 2021 ident: 2023072802122067400_bib18 article-title: Exit from germinal center to become quiescent memory B cells depends on metabolic reprograming and provision of a survival signal publication-title: J. Exp. Med. doi: 10.1084/jem.20200866 – volume: 182 start-page: 1295 year: 2020 ident: 2023072802122067400_bib41 article-title: Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding publication-title: Cell. doi: 10.1016/j.cell.2020.08.012 – volume: 20 start-page: 633 year: 2020 ident: 2023072802122067400_bib4 article-title: The role of IgG Fc receptors in antibody-dependent enhancement publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-00410-0 – volume: 31 start-page: 3356 year: 2015 ident: 2023072802122067400_bib15 article-title: Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btv359 – volume: 184 start-page: 2384 year: 2021 ident: 2023072802122067400_bib16 article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies publication-title: Cell. doi: 10.1016/j.cell.2021.03.036 – volume: 84 start-page: 2798 year: 2010 ident: 2023072802122067400_bib52 article-title: Involvement of Ceramide in the Propagation of Japanese Encephalitis Virus publication-title: J. Virol doi: 10.1128/JVI.02499-09 – volume: 584 start-page: 120 year: 2020 ident: 2023072802122067400_bib38 article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 publication-title: Nature. doi: 10.1038/s41586-020-2381-y – volume: 6 start-page: 22666 year: 2016 ident: 2023072802122067400_bib43 article-title: Stalking influenza by vaccination with pre-fusion headless HA mini-stem publication-title: Sci. Rep. doi: 10.1038/srep22666 – volume: 25 start-page: 827 year: 2019 ident: 2023072802122067400_bib1 article-title: Influenza Antigen Engineering Focuses Immune Responses to a Subdominant but Broadly Protective Viral Epitope publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2019.04.003 – volume: 182 start-page: 828 year: 2020 ident: 2023072802122067400_bib3 article-title: Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies publication-title: Cell. doi: 10.1016/j.cell.2020.06.025 – volume: 27 start-page: 717 year: 2021 ident: 2023072802122067400_bib7 article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies publication-title: Nat. Med. doi: 10.1038/s41591-021-01294-w – volume: 184 start-page: 476 year: 2021 ident: 2023072802122067400_bib13 article-title: COVID-19-neutralizing antibodies predict disease severity and survival publication-title: Cell. doi: 10.1016/j.cell.2020.12.015 – volume: 4 start-page: 5885 year: 2014 ident: 2023072802122067400_bib10 article-title: A tool kit for rapid cloning and expression of recombinant antibodies publication-title: Sci. Rep. doi: 10.1038/srep05885 |
SSID | ssj0014456 |
Score | 2.4754448 |
Snippet | Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding... Shinnakasu et al. show that the glycan engineering immunogens of SARS-CoV-2 spike receptor-binding domain (RBD) elicited higher proportions of the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Amino Acid Motifs Animals Antibodies, Viral - immunology Broadly Neutralizing Antibodies - immunology COVID-19 - genetics COVID-19 - immunology COVID-19 - prevention & control COVID-19 Vaccines - genetics COVID-19 Vaccines - immunology Female Humans Infectious Disease and Host Defense Male Mice Mice, Inbred BALB C Polysaccharides - genetics Polysaccharides - immunology Protein Domains SARS-CoV-2 - genetics SARS-CoV-2 - immunology Severe acute respiratory syndrome-related coronavirus - genetics Severe acute respiratory syndrome-related coronavirus - immunology Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology |
Title | Glycan engineering of the SARS-CoV-2 receptor-binding domain elicits cross-neutralizing antibodies for SARS-related viruses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34623376 https://www.proquest.com/docview/2580693063 https://pubmed.ncbi.nlm.nih.gov/PMC8641255 |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkKa9oHEvA2QkeJoCSRo7yeM0ARXSEKIb9C2yE0fN1iZVmyBtvPLDOcdxLm2ZBLxEie04Ur-vx-f4XEzI6zS2U1xGLAGrm-UxKSwh4C7kfpJKDtJQYO7w2Wc-vvA-Tdl0MPjVi1qqSvk2vvljXsn_oAptgCtmyf4Dsu2k0AD3gC9cAWG4_hXGH-fXKMRUV1OwcflPTr5OrNPim-Ueg0hTS7Cs0QbWGSxJsRBYKGSexeg10OuklatK73nc1EmLZSYLjC_UUYh6Mp30Atrpj2xVrU3g4WVHtZ5iu3FowLbvfjLL8lxciXWlwb0u2g5ovMrQ96E3ZGfVTGWtSBILAZTSu7rjbFUs2p7vZrv7S2GNK7MImz0M19HxIKYCtpG7no2e5KAvmN1OMldNtPWOxLcDDyW-wqoCaMzqigllD_zlQqM_8kDRG_lbZbfNQl533SF3XTA2dMr4tA0UAouTcZMyAR971__UAdlvXt7Ua3aMle2Y254Sc35I7hmQ6ElNpftkoPIHZP_MYPSQ_KwZRXuMokVKgVG0YxTdZhStGUUNo-guo2jHKAqMon1GUcOoR-Tiw_vz07FljuewYo_ZpcVT6cQOlymTYSLRn-8GMVOhIyQq6qEIpR8oxdQoYGniwtNI2Y5QPNZKMx89Jnt5kaunhMZK-AmoTYFkoadkKG0hGcwtEjRREjYkx82PG8Wmdj0eoTKPdAxF4EWAStSgMiRv2tHLumbLLeNeNThFIFTRUyZyVVTryGWBjWeEchjzpMatnakBfEj8DUTbAViwfbMnz2a6cHvAPbAn2LNb5zwiB93f4znZK1eVegFKbylfak7-BtSwsxU |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glycan+engineering+of+the+SARS-CoV-2+receptor-binding+domain+elicits+cross-neutralizing+antibodies+for+SARS-related+viruses&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Shinnakasu%2C+Ryo&rft.au=Sakakibara%2C+Shuhei&rft.au=Yamamoto%2C+Hiromi&rft.au=Wang%2C+Po-Hung&rft.date=2021-12-06&rft.eissn=1540-9538&rft.volume=218&rft.issue=12&rft_id=info:doi/10.1084%2Fjem.20211003&rft_id=info%3Apmid%2F34623376&rft.externalDocID=34623376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |