Greenhouse gas mitigation potential of the world’s grazing lands: Modeling soil carbon and nitrogen fluxes of mitigation practices
•Net sequestration potential in world’s grazing lands is estimated at 295Tg CO2yr−1.•Improved grazing management could sequester 148Tg CO2yr−1 of this total potential.•Legume sowing has net sequestration potential of 147Tg CO2-eqyr−1.•There are high risks of the practices increasing soil-based GHGs...
Saved in:
Published in | Agriculture, ecosystems & environment Vol. 207; pp. 91 - 100 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Net sequestration potential in world’s grazing lands is estimated at 295Tg CO2yr−1.•Improved grazing management could sequester 148Tg CO2yr−1 of this total potential.•Legume sowing has net sequestration potential of 147Tg CO2-eqyr−1.•There are high risks of the practices increasing soil-based GHGs in many areas.•Ruminant GHG emissions linked to more forage could fully offset mitigation benefits.
This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world’s native and cultivated grazing lands. The Century and Daycent models are used to calculate the changes in soil carbon stocks, soil N2O emissions, and forage removals by ruminants associated with these practices. GLEAM is used in combination with these models to establish grazing area boundaries and to parameterize links between forage consumption, animal production and animal GHG emissions. This study provides an alternative to the usual approach of extrapolating from a small number of field studies and by modeling the linkage between soil, forage and animals it sheds new light on the net mitigation potential of C sequestration practices in the world’s grazing lands. Three different mitigation practices are assessed in this study, namely, improved grazing management, legume sowing and N fertilization. We estimate that optimization of grazing pressure could sequester 148Tg CO2yr−1. The soil C sequestration potential of 203Tg CO2yr−1 for legume sowing was higher than for improved grazing management, despite being applied over a much smaller total area. However, N2O emissions from legumes were estimated to offset 28% of its global C sequestration benefits, in CO2 equivalent terms. Conversely, N2O emissions from N fertilization exceeded soil C sequestration, in all regions. Our estimated potential for increasing C stocks though in grazing lands is lower than earlier worldwide estimates (Smith et al., 2007; Lal, 2004), mainly due to the much smaller grazing land area over which we estimate mitigation practices to be effective. A big concern is the high risk of the practices, particularly legumes, increasing soil-based GHGs if applied outside of this relatively small effective area. More work is needed to develop indicators, based on biophysical and management characteristics of grazing lands, to identify amenable areas before these practices can be considered ready for large scale implementation. The additional ruminant GHG emissions associated with higher forage output are likely to substantially reduce the mitigation potential of these practices, but could contribute to more GHG-efficient livestock production. |
---|---|
AbstractList | This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world's native and cultivated grazing lands. The Century and Daycent models are used to calculate the changes in soil carbon stocks, soil N2O emissions, and forage removals by ruminants associated with these practices. GLEAM is used in combination with these models to establish grazing area boundaries and to parameterize links between forage consumption, animal production and animal GHG emissions. This study provides an alternative to the usual approach of extrapolating from a small number of field studies and by modeling the linkage between soil, forage and animals it sheds new light on the net mitigation potential of C sequestration practices in the world's grazing lands. Three different mitigation practices are assessed in this study, namely, improved grazing management, legume sowing and N fertilization. We estimate that optimization of grazing pressure could sequester 148Tg CO2 yr-1. The soil C sequestration potential of 203Tg CO2 yr-1 for legume sowing was higher than for improved grazing management, despite being applied over a much smaller total area. However, N2O emissions from legumes were estimated to offset 28% of its global C sequestration benefits, in CO2 equivalent terms. Conversely, N2O emissions from N fertilization exceeded soil C sequestration, in all regions. Our estimated potential for increasing C stocks though in grazing lands is lower than earlier worldwide estimates (Smith et al., 2007; Lal, 2004), mainly due to the much smaller grazing land area over which we estimate mitigation practices to be effective. A big concern is the high risk of the practices, particularly legumes, increasing soil-based GHGs if applied outside of this relatively small effective area. More work is needed to develop indicators, based on biophysical and management characteristics of grazing lands, to identify amenable areas before these practices can be considered ready for large scale implementation. The additional ruminant GHG emissions associated with higher forage output are likely to substantially reduce the mitigation potential of these practices, but could contribute to more GHG-efficient livestock production. This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world’s native and cultivated grazing lands. The Century and Daycent models are used to calculate the changes in soil carbon stocks, soil N2O emissions, and forage removals by ruminantsassociated with these practices. GLEAM is used in combination with these models to establish grazing area boundaries and to parameterize links between forage consumption, animal production and animal GHG emissions. This study provides an alternative to the usual approach of extrapolating from a smallnumber of field studies and by modeling the linkage between soil, forage and animals it sheds new light on the net mitigation potential of C sequestration practices in the world’s grazing lands. Three different mitigation practices are assessed in this study, namely, improved grazing management, legume sowingand N fertilization. We estimate that optimization of grazing pressure could sequester 148 Tg CO2 yr1. The soil C sequestration potential of 203 Tg CO2 yr1 for legume sowing was higher than for improved grazing management, despite being applied over a much smaller total area. However, N2O emissions fromlegumes were estimated to offset 28% of its global C sequestration benefits, in CO2 equivalent terms. Conversely, N2O emissions from N fertilization exceeded soil C sequestration, in all regions. Our estimated potential for increasing C stocks though in grazing lands is lower than earlier worldwide estimates (Smith et al., 2007; Lal, 2004), mainly due to the much smaller grazing land area over which we estimate mitigation practices to be effective. A big concern is the high risk of the practices, particularly legumes, increasing soil-based GHGs if applied outside of this relatively small effective area. More work is needed to develop indicators, based on biophysical and management characteristics of grazing lands, to identify amenable areas before these practices can be considered ready for large scale implementation. The additional ruminant GHG emissions associated with higher forage output are likely to substantially reduce the mitigation potential of these practices, but could contribute to more GHG-efficient livestock production. •Net sequestration potential in world’s grazing lands is estimated at 295Tg CO2yr−1.•Improved grazing management could sequester 148Tg CO2yr−1 of this total potential.•Legume sowing has net sequestration potential of 147Tg CO2-eqyr−1.•There are high risks of the practices increasing soil-based GHGs in many areas.•Ruminant GHG emissions linked to more forage could fully offset mitigation benefits. This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world’s native and cultivated grazing lands. The Century and Daycent models are used to calculate the changes in soil carbon stocks, soil N2O emissions, and forage removals by ruminants associated with these practices. GLEAM is used in combination with these models to establish grazing area boundaries and to parameterize links between forage consumption, animal production and animal GHG emissions. This study provides an alternative to the usual approach of extrapolating from a small number of field studies and by modeling the linkage between soil, forage and animals it sheds new light on the net mitigation potential of C sequestration practices in the world’s grazing lands. Three different mitigation practices are assessed in this study, namely, improved grazing management, legume sowing and N fertilization. We estimate that optimization of grazing pressure could sequester 148Tg CO2yr−1. The soil C sequestration potential of 203Tg CO2yr−1 for legume sowing was higher than for improved grazing management, despite being applied over a much smaller total area. However, N2O emissions from legumes were estimated to offset 28% of its global C sequestration benefits, in CO2 equivalent terms. Conversely, N2O emissions from N fertilization exceeded soil C sequestration, in all regions. Our estimated potential for increasing C stocks though in grazing lands is lower than earlier worldwide estimates (Smith et al., 2007; Lal, 2004), mainly due to the much smaller grazing land area over which we estimate mitigation practices to be effective. A big concern is the high risk of the practices, particularly legumes, increasing soil-based GHGs if applied outside of this relatively small effective area. More work is needed to develop indicators, based on biophysical and management characteristics of grazing lands, to identify amenable areas before these practices can be considered ready for large scale implementation. The additional ruminant GHG emissions associated with higher forage output are likely to substantially reduce the mitigation potential of these practices, but could contribute to more GHG-efficient livestock production. This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world’s native and cultivated grazing lands. The Century and Daycent models are used to calculate the changes in soil carbon stocks, soil N2O emissions, and forage removals by ruminants associated with these practices. GLEAM is used in combination with these models to establish grazing area boundaries and to parameterize links between forage consumption, animal production and animal GHG emissions. This study provides an alternative to the usual approach of extrapolating from a small number of field studies and by modeling the linkage between soil, forage and animals it sheds new light on the net mitigation potential of C sequestration practices in the world’s grazing lands. Three different mitigation practices are assessed in this study, namely, improved grazing management, legume sowing and N fertilization. We estimate that optimization of grazing pressure could sequester 148Tg CO2yr−1. The soil C sequestration potential of 203Tg CO2yr−1 for legume sowing was higher than for improved grazing management, despite being applied over a much smaller total area. However, N2O emissions from legumes were estimated to offset 28% of its global C sequestration benefits, in CO2 equivalent terms. Conversely, N2O emissions from N fertilization exceeded soil C sequestration, in all regions. Our estimated potential for increasing C stocks though in grazing lands is lower than earlier worldwide estimates (Smith et al., 2007; Lal, 2004), mainly due to the much smaller grazing land area over which we estimate mitigation practices to be effective. A big concern is the high risk of the practices, particularly legumes, increasing soil-based GHGs if applied outside of this relatively small effective area. More work is needed to develop indicators, based on biophysical and management characteristics of grazing lands, to identify amenable areas before these practices can be considered ready for large scale implementation. The additional ruminant GHG emissions associated with higher forage output are likely to substantially reduce the mitigation potential of these practices, but could contribute to more GHG-efficient livestock production. |
Author | Conant, Richard T. Ojima, Dennis S. Hilinski, Tom E. Salvatore, Mirella Falcucci, Alessandra Gerber, Pierre J. Henderson, Benjamin B. |
Author_xml | – sequence: 1 givenname: Benjamin B. surname: Henderson fullname: Henderson, Benjamin B. email: ben.henderson@csiro.au organization: UN Food and Agriculture Organization, Rome, Italy – sequence: 2 givenname: Pierre J. surname: Gerber fullname: Gerber, Pierre J. organization: UN Food and Agriculture Organization, Rome, Italy – sequence: 3 givenname: Tom E. surname: Hilinski fullname: Hilinski, Tom E. organization: Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States – sequence: 4 givenname: Alessandra surname: Falcucci fullname: Falcucci, Alessandra organization: UN Food and Agriculture Organization, Rome, Italy – sequence: 5 givenname: Dennis S. surname: Ojima fullname: Ojima, Dennis S. organization: Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States – sequence: 6 givenname: Mirella surname: Salvatore fullname: Salvatore, Mirella organization: UN Food and Agriculture Organization, Rome, Italy – sequence: 7 givenname: Richard T. surname: Conant fullname: Conant, Richard T. organization: Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States |
BookMark | eNqNks2OFCEUhStmTOwZfQFXLN1Ue4H6gYkbM9HRZIwbXROKulVDh4YWKFtdufAlfD2fRMp2YVyMEhJCON_lcjjn1ZkPHqvqMYUtBdo93W31jLhlQNst8C0wea_aUNHzmnFoz6pNEfW1ECAfVOcp7aAMxsWm-nYdEf1tWBKSWSeyt9nOOtvgySFk9NlqR8JE8i2SY4hu_PH1eyJz1F-sn4nTfkyX5E0Y0a37FKwjRseh4OWIeJtjmNGTyS2fMK2F_rwgapOtwfSwuj9pl_DR7_Wiev_yxburV_XN2-vXV89vatO0kOtuEIyN0GDfgDSSNnSYRmPEMFKATsMwSKF7yTQYHOWEA4JmzYhtS_XU94JfVJenusfili8No1deR2OTCtoqZ4eo42d1XKLybl0Oy5BUI9uWywI_OcGHGD4smLLa22TQFQ-w2Keo4F23TvZvad8D56KT_D-knAkGHazdi5PUxJBSxEkZm385maO2TlFQaxbUTq1ZUGsWFHBVslBQ9hd6iHa_vvVO6NkJwvIlHy1GlYxFX7y1EU1WY7B34T8BBJbUlA |
CitedBy_id | crossref_primary_10_1002_saj2_70003 crossref_primary_10_1016_j_scitotenv_2018_11_082 crossref_primary_10_1002_ldr_3217 crossref_primary_10_1146_annurev_environ_112321_103821 crossref_primary_10_1016_j_agee_2017_03_020 crossref_primary_10_15446_ing_investig_94777 crossref_primary_10_3389_fpls_2022_925548 crossref_primary_10_1002_ecs2_2452 crossref_primary_10_1111_gcb_13431 crossref_primary_10_3390_rs15071890 crossref_primary_10_1111_gcb_14878 crossref_primary_10_1038_s41558_019_0591_9 crossref_primary_10_1016_j_jclepro_2017_01_126 crossref_primary_10_1016_j_jag_2020_102205 crossref_primary_10_1111_1365_2745_12884 crossref_primary_10_3390_rs16132256 crossref_primary_10_1038_s43016_024_01039_1 crossref_primary_10_1016_j_scitotenv_2019_01_130 crossref_primary_10_3390_land12010060 crossref_primary_10_1111_gfs_12580 crossref_primary_10_1016_j_inpa_2016_09_001 crossref_primary_10_1016_j_landusepol_2018_10_014 crossref_primary_10_3390_su15010125 crossref_primary_10_1002_ece3_10102 crossref_primary_10_1088_1748_9326_ace91f crossref_primary_10_46830_writn_23_00043_v2 crossref_primary_10_3390_land9110457 crossref_primary_10_1016_j_agee_2015_07_014 crossref_primary_10_1016_j_agee_2021_107702 crossref_primary_10_1146_annurev_environ_031113_093503 crossref_primary_10_1016_j_applanim_2018_05_032 crossref_primary_10_1111_gcb_13050 crossref_primary_10_1007_s11027_020_09931_4 crossref_primary_10_1016_j_animal_2021_100360 crossref_primary_10_3390_su12093847 crossref_primary_10_1111_gcb_15509 crossref_primary_10_3390_agriculture15030235 crossref_primary_10_1088_1748_9326_acacb3 crossref_primary_10_1016_j_jclepro_2018_12_245 crossref_primary_10_1016_j_envsci_2019_05_013 crossref_primary_10_1016_j_agsy_2025_104276 crossref_primary_10_1038_nclimate2925 crossref_primary_10_3390_land12112078 crossref_primary_10_1007_s11250_023_03748_4 crossref_primary_10_3390_su11123433 crossref_primary_10_1079_PAVSNNR202116044 crossref_primary_10_12973_eurasia_2017_00771a crossref_primary_10_1146_annurev_resource_111820_032340 crossref_primary_10_46830_wrirpt_23_00010 crossref_primary_10_1016_j_envdev_2016_06_001 crossref_primary_10_1016_j_scitotenv_2021_152687 crossref_primary_10_3390_su11153997 crossref_primary_10_1002_jeq2_20315 crossref_primary_10_1111_gcb_13995 crossref_primary_10_1016_j_gfs_2017_01_001 crossref_primary_10_1139_cjps_2019_0212 crossref_primary_10_1088_1748_9326_aa8c83 crossref_primary_10_1111_gcb_15816 crossref_primary_10_1088_1748_9326_ace06f crossref_primary_10_1016_j_scitotenv_2020_141790 crossref_primary_10_1016_j_jenvman_2025_124456 crossref_primary_10_1126_sciadv_aat1869 crossref_primary_10_1080_03066150_2020_1741551 crossref_primary_10_1111_gcb_13591 crossref_primary_10_1007_s10584_020_02673_x crossref_primary_10_1371_journal_pgph_0003892 crossref_primary_10_46830_writn_23_00043 crossref_primary_10_1029_2023EF003586 crossref_primary_10_1007_s11027_017_9737_0 crossref_primary_10_1016_j_envsci_2020_01_006 crossref_primary_10_1071_AN17743 crossref_primary_10_1016_j_scitotenv_2022_160634 crossref_primary_10_1016_j_jclepro_2021_126447 crossref_primary_10_1016_j_tjnut_2022_10_016 crossref_primary_10_1088_1748_9326_aa849b crossref_primary_10_1088_1748_9326_aabf9f crossref_primary_10_1016_j_geoderma_2020_114666 crossref_primary_10_1016_j_ecolind_2018_03_087 crossref_primary_10_3390_su10041301 crossref_primary_10_1007_s11027_015_9673_9 crossref_primary_10_1111_gcb_13068 crossref_primary_10_3390_environments6060067 crossref_primary_10_1016_j_rama_2019_03_002 crossref_primary_10_3390_atmos15030348 crossref_primary_10_1016_j_rama_2023_06_001 crossref_primary_10_1126_sciadv_aaq0932 crossref_primary_10_1016_j_scitotenv_2021_146582 crossref_primary_10_1016_j_agee_2025_109538 crossref_primary_10_1016_j_scitotenv_2019_05_038 crossref_primary_10_1016_j_scitotenv_2020_139092 crossref_primary_10_3390_ani12141745 crossref_primary_10_1016_j_eja_2019_03_008 crossref_primary_10_1016_j_still_2024_106342 crossref_primary_10_3389_fsufs_2020_549483 crossref_primary_10_3389_fsoil_2022_927452 crossref_primary_10_1016_j_jclepro_2018_03_162 crossref_primary_10_1016_j_ecolind_2023_111509 crossref_primary_10_1073_pnas_1710465114 crossref_primary_10_1088_1748_9326_aacc75 crossref_primary_10_1002_ael2_20086 crossref_primary_10_1007_s11829_023_09964_x crossref_primary_10_1002_eap_1473 crossref_primary_10_1016_j_geoderma_2022_116061 crossref_primary_10_1016_j_agee_2024_109403 crossref_primary_10_1016_j_agee_2025_109548 crossref_primary_10_1002_glr2_12074 crossref_primary_10_1007_s10113_016_0986_3 crossref_primary_10_1016_j_landusepol_2019_03_032 crossref_primary_10_1080_21683565_2019_1633455 crossref_primary_10_1016_j_crm_2017_02_001 crossref_primary_10_11628_ksppe_2024_27_4_329 crossref_primary_10_1038_s41467_023_38577_4 crossref_primary_10_1071_AN20564 crossref_primary_10_1126_science_aam5324 |
Cites_doi | 10.1016/S0921-8181(98)00040-X 10.2111/08-225.1 10.1098/rstb.2007.2184 10.1007/s00267-003-9104-7 10.1007/s10021-012-9534-2 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 10.2136/sssaj1987.03615995005100050015x 10.1126/science.1097396 10.1002/joc.1181 10.1086/285435 10.1111/j.1365-2494.2004.00423.x 10.1002/wcc.101 10.2111/1551-501X(2008)30[12:CCIOAR]2.0.CO;2 10.1007/s00267-003-9105-6 10.1073/pnas.0912890107 10.1016/S0377-8401(03)00041-5 10.1038/363234a0 10.2111/08-255.1 10.1029/2000WR900130 10.1111/j.1365-2486.2009.01958.x 10.2134/jeq2007.0099 10.1146/annurev.energy.29.062403.102142 10.1029/2001GB001661 10.1890/12-1548.1 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Wageningen University & Research |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Wageningen University & Research |
DBID | AAYXX CITATION 7SN 7ST 7TG 7U1 C1K KL. SOI 8FD FR3 KR7 7S9 L.6 QVL |
DOI | 10.1016/j.agee.2015.03.029 |
DatabaseName | CrossRef Ecology Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts Risk Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef Risk Abstracts Meteorological & Geoastrophysical Abstracts Ecology Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Risk Abstracts Technology Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Environmental Sciences |
EISSN | 1873-2305 |
EndPage | 100 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_495539 10_1016_j_agee_2015_03_029 S0167880915001139 |
GroupedDBID | --K --M .~1 0R~ 186 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABBQC ABFNM ABFRF ABFYP ABGRD ABKYH ABLST ABLVK ABMAC ABMZM ABRWV ABYKQ ACDAQ ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFRAH AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLECG BLXMC BNPGV CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LCYCR LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 QYZTP RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SNL SPCBC SSA SSH SSJ SSZ T5K Y6R ~02 ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACIEU ACMHX ACRPL ACVFH ADCNI ADMUD ADNMO ADSLC ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AGWPP AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- SEW VH1 WUQ 7SN 7ST 7TG 7U1 C1K EFKBS KL. SOI 8FD FR3 KR7 7S9 L.6 AALMO ABPIF ABPTK ABQIS ADALY IPNFZ QVL |
ID | FETCH-LOGICAL-c450t-6b822d04e7409c9141bfdcc8bd1006a0bb98a792a0ced9febe0a24de551af7783 |
IEDL.DBID | .~1 |
ISSN | 0167-8809 |
IngestDate | Thu Oct 13 09:31:14 EDT 2022 Fri Jul 11 15:32:00 EDT 2025 Fri Jul 11 07:51:22 EDT 2025 Tue Aug 05 11:19:01 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Tue Jul 01 02:37:19 EDT 2025 Fri Feb 23 02:22:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Daycent Century Fertilization Grazing management Legume |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-6b822d04e7409c9141bfdcc8bd1006a0bb98a792a0ced9febe0a24de551af7783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1732820608 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_495539 proquest_miscellaneous_1836636632 proquest_miscellaneous_1770338693 proquest_miscellaneous_1732820608 crossref_citationtrail_10_1016_j_agee_2015_03_029 crossref_primary_10_1016_j_agee_2015_03_029 elsevier_sciencedirect_doi_10_1016_j_agee_2015_03_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Agriculture, ecosystems & environment |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Farrior, Tilman, Dybzinski, Reich, Levin, Pacala (bib0065) 2013; 94 Parton, Schimel, Cole, Ojima (bib0175) 1987; 51 Smith, Martino, Cai (bib0205) 2007 Conant, Paustian (bib0035) 2004; 33 Follett, Reed (bib0070) 2010; 63 (accessed 22.04.13). Frank, Pontes, McFarlane (bib0075) 2012; 15 Gerber, Steinfeld, Henderson (bib0080) 2013 Eagle, Olander, Henry, Haugen-Kozyra, Millar, Robertson (bib0040) 2012 Rochon, Doyle, Greef (bib0195) 2004; 59 Conant, Paustian, Elliott (bib0020) 2001; 11 (accessed 10.03.14). Min, Barry, Attwood, McNabb (bib0135) 2003; 106 FAO (bib0050) 2007 Coates, Mannetje (bib0015) 1990; 24 Eagle, Henry, Olander, Haugen-Kozyra, Millar, Robertson (bib0045) 2011 IIASA/FAO (bib0095) 2012 Holland, Parton, Detling, Coppock (bib0090) 1992; 140 Ministéro da Agricultura, 2014. Recuperação de Áreas Degradadas. Available from Pineiro, Paruelo, Oesterheld, Jobbagy (bib0185) 2010; 63 Parton, Hartman, Ojima, Schimel (bib0170) 1998; 19 IPCC (bib0100) 2007 Opio, Gerber, Mottet (bib0165) 2013 Asner, Elmore, Olander, Martin, Harris (bib0010) 2004; 29 ADB (bib0005) 2014 Hoffman, Vogel (bib0085) 2008; 30 Lal (bib0110) 2004; 304 FAOSTAT, 2013. Resources (Land). Available from Thornton, Herrero (bib0215) 2010; 107 Conant, Paustian (bib0025) 2002; 16 Reynolds, Jackson, Rawls (bib0190) 2000; 36 Mannetje, Jones (bib0125) 1990; 24 FAO (bib0055) 2011 MacLeod, Cook (bib0120) 2004; 38 Melillo, McGuire, Kicklighter (bib0130) 1993; 363 Mitchell, Jones (bib0145) 2005; 25 Schlesinger (bib0200) 2010; 16 Smith, Martino, Cai (bib0210) 2008; 363 Khan, Mulvaney, Ellsworth, Boast (bib0105) 2007; 36 Larson, Dinar, Frisbie (bib0115) 2011 NRCS (bib0155) 1992 Ogle, Conant, Paustian (bib0160) 2004; 33 NRCS (bib0150) 1997 Conant (bib0030) 2011; 2 Paustian, Collins, Paul (bib0180) 1997 Conant (10.1016/j.agee.2015.03.029_bib0025) 2002; 16 ADB (10.1016/j.agee.2015.03.029_bib0005) 2014 NRCS (10.1016/j.agee.2015.03.029_bib0150) 1997 Schlesinger (10.1016/j.agee.2015.03.029_bib0200) 2010; 16 Conant (10.1016/j.agee.2015.03.029_bib0020) 2001; 11 NRCS (10.1016/j.agee.2015.03.029_bib0155) 1992 Opio (10.1016/j.agee.2015.03.029_bib0165) 2013 Thornton (10.1016/j.agee.2015.03.029_bib0215) 2010; 107 Ogle (10.1016/j.agee.2015.03.029_bib0160) 2004; 33 IPCC (10.1016/j.agee.2015.03.029_bib0100) 2007 Lal (10.1016/j.agee.2015.03.029_bib0110) 2004; 304 Mannetje (10.1016/j.agee.2015.03.029_bib0125) 1990; 24 Reynolds (10.1016/j.agee.2015.03.029_bib0190) 2000; 36 Follett (10.1016/j.agee.2015.03.029_bib0070) 2010; 63 Hoffman (10.1016/j.agee.2015.03.029_bib0085) 2008; 30 Conant (10.1016/j.agee.2015.03.029_bib0035) 2004; 33 FAO (10.1016/j.agee.2015.03.029_bib0050) 2007 Mitchell (10.1016/j.agee.2015.03.029_bib0145) 2005; 25 Smith (10.1016/j.agee.2015.03.029_bib0210) 2008; 363 Parton (10.1016/j.agee.2015.03.029_bib0170) 1998; 19 Smith (10.1016/j.agee.2015.03.029_bib0205) 2007 Larson (10.1016/j.agee.2015.03.029_bib0115) 2011 Coates (10.1016/j.agee.2015.03.029_bib0015) 1990; 24 Khan (10.1016/j.agee.2015.03.029_bib0105) 2007; 36 Melillo (10.1016/j.agee.2015.03.029_bib0130) 1993; 363 Gerber (10.1016/j.agee.2015.03.029_bib0080) 2013 Min (10.1016/j.agee.2015.03.029_bib0135) 2003; 106 Paustian (10.1016/j.agee.2015.03.029_bib0180) 1997 Pineiro (10.1016/j.agee.2015.03.029_bib0185) 2010; 63 Frank (10.1016/j.agee.2015.03.029_bib0075) 2012; 15 IIASA/FAO (10.1016/j.agee.2015.03.029_bib0095) 2012 Parton (10.1016/j.agee.2015.03.029_bib0175) 1987; 51 Holland (10.1016/j.agee.2015.03.029_bib0090) 1992; 140 Conant (10.1016/j.agee.2015.03.029_bib0030) 2011; 2 FAO (10.1016/j.agee.2015.03.029_bib0055) 2011 10.1016/j.agee.2015.03.029_bib0140 Asner (10.1016/j.agee.2015.03.029_bib0010) 2004; 29 Eagle (10.1016/j.agee.2015.03.029_bib0040) 2012 10.1016/j.agee.2015.03.029_bib0060 Farrior (10.1016/j.agee.2015.03.029_bib0065) 2013; 94 Rochon (10.1016/j.agee.2015.03.029_bib0195) 2004; 59 MacLeod (10.1016/j.agee.2015.03.029_bib0120) 2004; 38 Eagle (10.1016/j.agee.2015.03.029_bib0045) 2011 |
References_xml | – volume: 19 start-page: 35 year: 1998 end-page: 48 ident: bib0170 article-title: DAYCENT: its land surface submodel: description and testing publication-title: Global Planet. Change – volume: 107 start-page: 19667 year: 2010 end-page: 19672 ident: bib0215 article-title: Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 1997 ident: bib0150 article-title: National Range and Pasture Handbook – year: 2011 ident: bib0115 article-title: Agriculture and the Clean Development Mechanism. Policy Research Working Paper 5621 – volume: 38 start-page: 140 year: 2004 end-page: 153 ident: bib0120 article-title: The economic performance of steers grazing black speargrass pastures oversown with legumes in south Queensland publication-title: Aust. Trop. Grasslands – year: 2012 ident: bib0095 article-title: Global Agro-ecological Zones (GAEZ v3.0). International Institute for Applied Systems Analysis, Laxenburg – volume: 16 start-page: 1143 year: 2002 ident: bib0025 article-title: Potential soil carbon sequestration in overgrazed grassland ecosystems publication-title: Global Biogeochem. Cycles – year: 2012 ident: bib0040 article-title: Greenhouse Gas Mitigation Potential of Agricultural Land Management in the United States: A Synthesis of the Literature. Report NI R 10-04 – year: 2007 ident: bib0050 article-title: Gridded Livestock of the World 2007 – reference: Ministéro da Agricultura, 2014. Recuperação de Áreas Degradadas. Available from: – volume: 25 start-page: 693 year: 2005 end-page: 712 ident: bib0145 article-title: An improved method of constructing a database of monthly climate observations and associated high-resolution grids publication-title: Int. J. Climatol. – volume: 30 start-page: 12 year: 2008 end-page: 17 ident: bib0085 article-title: Climate change impacts on African rangelands publication-title: Rangelands – volume: 363 start-page: 234 year: 1993 end-page: 240 ident: bib0130 article-title: Global climate change and terrestrial net primary production publication-title: Nature – volume: 94 start-page: 2505 year: 2013 end-page: 2517 ident: bib0065 article-title: Resource limitation in a competitive context determines complex plant responses to experimental resource additions publication-title: Ecology – start-page: 15 year: 1997 end-page: 49 ident: bib0180 article-title: Management controls on soil carbon publication-title: Soil Organic Matter in Temperate Agroecosystems – volume: 29 start-page: 261 year: 2004 end-page: 299 ident: bib0010 article-title: Grazing systems ecosystem response, and global change publication-title: Annu. Rev. Environ. Resour. – volume: 36 start-page: 3653 year: 2000 end-page: 3662 ident: bib0190 article-title: Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions publication-title: Water Resour. Res. – year: 2013 ident: bib0080 article-title: Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities – year: 2007 ident: bib0100 article-title: Climate change 2007: the physical science basis publication-title: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 11 start-page: 343 year: 2001 end-page: 355 ident: bib0020 article-title: Grassland management and conversion into grassland: effects on soil carbon publication-title: Ecol. Appl. – volume: 63 start-page: 109 year: 2010 end-page: 119 ident: bib0185 article-title: Pathways of grazing effects on soil organic carbon and nitrogen publication-title: Rangeland Ecol. Manage. – year: 2011 ident: bib0045 article-title: Greenhouse Gas Mitigation Potential of Agricultural Land Management in the United States A Synthesis of the Literature, third ed. Report NI R 10-04, second ed. – volume: 59 start-page: 197 year: 2004 end-page: 214 ident: bib0195 article-title: Grazing legumes in Europe: a review of their status management, benefits, research needs and future prospects publication-title: Grass Forage Sci. – volume: 15 start-page: 604 year: 2012 end-page: 615 ident: bib0075 article-title: Controls on soil organic carbon stocks and turnover among North American ecosystems publication-title: Ecosystems – year: 2011 ident: bib0055 article-title: Global Livestock Production Systems – reference: FAOSTAT, 2013. Resources (Land). Available from: – year: 1992 ident: bib0155 article-title: Instructions for Collecting 1992 National Resources Inventory Sample Data – year: 2014 ident: bib0005 article-title: Strengthening Carbon Financing for Grassland Management in the People’s Republic of China Incentive Mechanisms and Implications – volume: 33 start-page: 474 year: 2004 end-page: 484 ident: bib0160 article-title: Deriving grassland management factors for a carbon accounting approach developed by the Intergovernmental Panel on Climate Change publication-title: Environ. Manage. – reference: (accessed 10.03.14). – volume: 24 start-page: 269 year: 1990 end-page: 281 ident: bib0125 article-title: Pastures and animal productivity of buffel grass with Siratro: lucerne and nitrogen fertilizer publication-title: Trop. Grasslands – year: 2013 ident: bib0165 article-title: Greenhouse Gas Emissions from Ruminant Supply Chains – A Global Life Cycle Assessment – start-page: 499 year: 2007 end-page: 540 ident: bib0205 article-title: Agriculture publication-title: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 33 start-page: 467 year: 2004 end-page: 473 ident: bib0035 article-title: Grassland management activity data: current sources and future needs publication-title: Environ. Manage. – volume: 2 start-page: 238 year: 2011 end-page: 254 ident: bib0030 article-title: Sequestration through forestry and agriculture publication-title: Wiley Interdiscip. Rev. Clim. Change – volume: 36 start-page: 1821 year: 2007 end-page: 1832 ident: bib0105 article-title: The myth of nitrogen fertilization for soil carbon sequestration publication-title: J. Environ. Qual. – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: bib0110 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 51 start-page: 1173 year: 1987 end-page: 1179 ident: bib0175 article-title: Analysis of factors controlling soil organic matter levels in Great Plains grasslands publication-title: Soil Sci. Soc. Am. J. – volume: 140 start-page: 685 year: 1992 end-page: 706 ident: bib0090 article-title: Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow publication-title: Am. Nat. – volume: 63 start-page: 4 year: 2010 end-page: 15 ident: bib0070 article-title: Soil carbon sequestration in grazing lands: societal benefits and policy implications publication-title: Rangeland Ecol. Manage. – volume: 363 start-page: 789 year: 2008 end-page: 813 ident: bib0210 article-title: Greenhouse gas mitigation in agriculture publication-title: Philoso. Trans. R. Soc. B Biol. Sci. – volume: 16 start-page: 849 year: 2010 end-page: 850 ident: bib0200 article-title: On fertilizer-induced soil carbon sequestration in China’s croplands publication-title: Global Change Biol. – reference: (accessed 22.04.13). – volume: 106 start-page: 3 year: 2003 end-page: 19 ident: bib0135 article-title: The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review publication-title: Anim. Feed Sci. Technol. – volume: 24 start-page: 46 year: 1990 end-page: 54 ident: bib0015 article-title: Productivity of cows and calves on native and improved pasture in subcoastal, subtropical Queensland publication-title: Trop. Grasslands – volume: 24 start-page: 269 year: 1990 ident: 10.1016/j.agee.2015.03.029_bib0125 article-title: Pastures and animal productivity of buffel grass with Siratro: lucerne and nitrogen fertilizer publication-title: Trop. Grasslands – volume: 19 start-page: 35 year: 1998 ident: 10.1016/j.agee.2015.03.029_bib0170 article-title: DAYCENT: its land surface submodel: description and testing publication-title: Global Planet. Change doi: 10.1016/S0921-8181(98)00040-X – year: 2014 ident: 10.1016/j.agee.2015.03.029_bib0005 – year: 2013 ident: 10.1016/j.agee.2015.03.029_bib0165 – ident: 10.1016/j.agee.2015.03.029_bib0060 – volume: 63 start-page: 4 year: 2010 ident: 10.1016/j.agee.2015.03.029_bib0070 article-title: Soil carbon sequestration in grazing lands: societal benefits and policy implications publication-title: Rangeland Ecol. Manage. doi: 10.2111/08-225.1 – year: 1997 ident: 10.1016/j.agee.2015.03.029_bib0150 – volume: 363 start-page: 789 year: 2008 ident: 10.1016/j.agee.2015.03.029_bib0210 article-title: Greenhouse gas mitigation in agriculture publication-title: Philoso. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2007.2184 – volume: 33 start-page: 467 year: 2004 ident: 10.1016/j.agee.2015.03.029_bib0035 article-title: Grassland management activity data: current sources and future needs publication-title: Environ. Manage. doi: 10.1007/s00267-003-9104-7 – volume: 15 start-page: 604 year: 2012 ident: 10.1016/j.agee.2015.03.029_bib0075 article-title: Controls on soil organic carbon stocks and turnover among North American ecosystems publication-title: Ecosystems doi: 10.1007/s10021-012-9534-2 – year: 2012 ident: 10.1016/j.agee.2015.03.029_bib0095 – volume: 11 start-page: 343 year: 2001 ident: 10.1016/j.agee.2015.03.029_bib0020 article-title: Grassland management and conversion into grassland: effects on soil carbon publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 – year: 2012 ident: 10.1016/j.agee.2015.03.029_bib0040 – volume: 51 start-page: 1173 year: 1987 ident: 10.1016/j.agee.2015.03.029_bib0175 article-title: Analysis of factors controlling soil organic matter levels in Great Plains grasslands publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1987.03615995005100050015x – volume: 304 start-page: 1623 year: 2004 ident: 10.1016/j.agee.2015.03.029_bib0110 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science doi: 10.1126/science.1097396 – year: 2011 ident: 10.1016/j.agee.2015.03.029_bib0045 – year: 2007 ident: 10.1016/j.agee.2015.03.029_bib0050 – volume: 25 start-page: 693 year: 2005 ident: 10.1016/j.agee.2015.03.029_bib0145 article-title: An improved method of constructing a database of monthly climate observations and associated high-resolution grids publication-title: Int. J. Climatol. doi: 10.1002/joc.1181 – volume: 24 start-page: 46 year: 1990 ident: 10.1016/j.agee.2015.03.029_bib0015 article-title: Productivity of cows and calves on native and improved pasture in subcoastal, subtropical Queensland publication-title: Trop. Grasslands – year: 2007 ident: 10.1016/j.agee.2015.03.029_bib0100 article-title: Climate change 2007: the physical science basis – volume: 140 start-page: 685 year: 1992 ident: 10.1016/j.agee.2015.03.029_bib0090 article-title: Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow publication-title: Am. Nat. doi: 10.1086/285435 – volume: 59 start-page: 197 year: 2004 ident: 10.1016/j.agee.2015.03.029_bib0195 article-title: Grazing legumes in Europe: a review of their status management, benefits, research needs and future prospects publication-title: Grass Forage Sci. doi: 10.1111/j.1365-2494.2004.00423.x – year: 2011 ident: 10.1016/j.agee.2015.03.029_bib0115 – volume: 2 start-page: 238 year: 2011 ident: 10.1016/j.agee.2015.03.029_bib0030 article-title: Sequestration through forestry and agriculture publication-title: Wiley Interdiscip. Rev. Clim. Change doi: 10.1002/wcc.101 – start-page: 499 year: 2007 ident: 10.1016/j.agee.2015.03.029_bib0205 article-title: Agriculture – volume: 30 start-page: 12 year: 2008 ident: 10.1016/j.agee.2015.03.029_bib0085 article-title: Climate change impacts on African rangelands publication-title: Rangelands doi: 10.2111/1551-501X(2008)30[12:CCIOAR]2.0.CO;2 – year: 2013 ident: 10.1016/j.agee.2015.03.029_bib0080 – volume: 33 start-page: 474 year: 2004 ident: 10.1016/j.agee.2015.03.029_bib0160 article-title: Deriving grassland management factors for a carbon accounting approach developed by the Intergovernmental Panel on Climate Change publication-title: Environ. Manage. doi: 10.1007/s00267-003-9105-6 – volume: 107 start-page: 19667 year: 2010 ident: 10.1016/j.agee.2015.03.029_bib0215 article-title: Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0912890107 – volume: 38 start-page: 140 year: 2004 ident: 10.1016/j.agee.2015.03.029_bib0120 article-title: The economic performance of steers grazing black speargrass pastures oversown with legumes in south Queensland publication-title: Aust. Trop. Grasslands – volume: 106 start-page: 3 year: 2003 ident: 10.1016/j.agee.2015.03.029_bib0135 article-title: The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review publication-title: Anim. Feed Sci. Technol. doi: 10.1016/S0377-8401(03)00041-5 – volume: 363 start-page: 234 year: 1993 ident: 10.1016/j.agee.2015.03.029_bib0130 article-title: Global climate change and terrestrial net primary production publication-title: Nature doi: 10.1038/363234a0 – volume: 63 start-page: 109 year: 2010 ident: 10.1016/j.agee.2015.03.029_bib0185 article-title: Pathways of grazing effects on soil organic carbon and nitrogen publication-title: Rangeland Ecol. Manage. doi: 10.2111/08-255.1 – volume: 36 start-page: 3653 year: 2000 ident: 10.1016/j.agee.2015.03.029_bib0190 article-title: Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions publication-title: Water Resour. Res. doi: 10.1029/2000WR900130 – volume: 16 start-page: 849 year: 2010 ident: 10.1016/j.agee.2015.03.029_bib0200 article-title: On fertilizer-induced soil carbon sequestration in China’s croplands publication-title: Global Change Biol. doi: 10.1111/j.1365-2486.2009.01958.x – volume: 36 start-page: 1821 year: 2007 ident: 10.1016/j.agee.2015.03.029_bib0105 article-title: The myth of nitrogen fertilization for soil carbon sequestration publication-title: J. Environ. Qual. doi: 10.2134/jeq2007.0099 – start-page: 15 year: 1997 ident: 10.1016/j.agee.2015.03.029_bib0180 article-title: Management controls on soil carbon – year: 2011 ident: 10.1016/j.agee.2015.03.029_bib0055 – volume: 29 start-page: 261 year: 2004 ident: 10.1016/j.agee.2015.03.029_bib0010 article-title: Grazing systems ecosystem response, and global change publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev.energy.29.062403.102142 – ident: 10.1016/j.agee.2015.03.029_bib0140 – volume: 16 start-page: 1143 year: 2002 ident: 10.1016/j.agee.2015.03.029_bib0025 article-title: Potential soil carbon sequestration in overgrazed grassland ecosystems publication-title: Global Biogeochem. Cycles doi: 10.1029/2001GB001661 – volume: 94 start-page: 2505 year: 2013 ident: 10.1016/j.agee.2015.03.029_bib0065 article-title: Resource limitation in a competitive context determines complex plant responses to experimental resource additions publication-title: Ecology doi: 10.1890/12-1548.1 – year: 1992 ident: 10.1016/j.agee.2015.03.029_bib0155 |
SSID | ssj0000238 |
Score | 2.5094237 |
Snippet | •Net sequestration potential in world’s grazing lands is estimated at 295Tg CO2yr−1.•Improved grazing management could sequester 148Tg CO2yr−1 of this total... This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world's native and cultivated grazing... This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world’s native and cultivated grazing... |
SourceID | wageningen proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 91 |
SubjectTerms | Animal Production Systems carbon carbon dioxide carbon sequestration carbon sinks Century Daycent Dierlijke Productiesystemen Estimates Fertilization field experimentation forage Forages Grazing grazing intensity grazing lands Grazing management greenhouse gas emissions greenhouse gases Leerstoelgroep Dierlijke productiesystemen Legume Legumes livestock production Management nitrogen nitrous oxide Nitrous oxides range management Rangelands risk Ruminantia ruminants soil Soil (material) sowing |
Title | Greenhouse gas mitigation potential of the world’s grazing lands: Modeling soil carbon and nitrogen fluxes of mitigation practices |
URI | https://dx.doi.org/10.1016/j.agee.2015.03.029 https://www.proquest.com/docview/1732820608 https://www.proquest.com/docview/1770338693 https://www.proquest.com/docview/1836636632 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F495539 |
Volume | 207 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1V7aUcKhqoCB_VInFDJmt7_cUtqloFInoAKnpb7dq7aarUjuxE5YQ48Cf4e_wSZuw1CRLKASnSKsls4mRmdt4m894CvEqjwgbKBh7WrsgTWJE9TZ05UWCoHsRWKyI4f7iMJ1fi_XV0vQdnPReG2ird2t-t6e1q7R4ZuW9ztJzPR5-ogR6jL0NIg0EaEolPiISi_M23TZsH1aRe35usHXGm6_HClCWpTD9qhU5bmPnP4rQFPg_vcVLZEp-2CtHFQzhyCJKNu4s8hj1TDuDBeFY7FQ0zgJPzDX0NTV3-No_gR9tmc4O7fcNmqmF3805ioyrZslpR4xCaV5YhKmStluqv7z8bNqtJg3rGWlrwW0bHpxGJnTXVfMFyVWucjk8xXB3qCq-Y2cX6q2nohbbfwPGxmsdwdXH--WziuXMYvFxEfOXFGlFEwYVJcDOYZ77wtS3yPNWFjzmruEbvqiQLFEenZRbDgqtAFAbBmLJJkoYnsF9WpXkCTPtcK2LnZmkhEmGzIkbEJnIaFIK9Ifi9A2TuRMrprIyF7LvRbiU5TZLTJA8lOm0Ir__MWXYSHTuto96v8q9Ak1hDds572QeBxAykv1VUadBf0ie9o4DHPN1lgytrmMZZuMMmDRH-4S0YQriJMlnSoVKNJB1w98uevF_XslzQgEnbSNzkRmH29D8_2TM4pHtd49xz2F_Va_MCkdZKn7apdAoH43fTySWN049fpr8BrOIvQQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcqA9IChUpLwWCU7IxI_1C4lDBa1S-rjQSr0tu_Y6pErtyJsocEEc-if6O_hH_BJm7DUJEsoBqVIkS_GsvfbMzswm33wD8DIJ88KXhe9g7AodjhHZUYTMCX1N8SAqlKQC5-OTaHDGP56H52vws6uFIVil9f2tT2-8tf2mb99mfzIa9T8RgB6tL8WUBo00SC2y8lB_m-O-zbw7-IBKfuX7-3un7weObS3gZDx0p06kMDDmLtcx7m-y1OOeKvIsS1TuoRlKV-GEZZz60sV5pAU-qSt9nmvML2QRx0mA170Ftzm6C2qb8Ob7AldCQbAjFKfp2UqdFlSGPoK4Ob2wYVZt8tp_RsOlbHdjjoPKptJqKfLt34O7NmVlu-1buQ9rutyCzd1hbWk79BZs7y3q5VDUOgzzAK4aXM-XamY0G0rDLkctp0dVskk1JaQSilcFwzSUNeStv35cGzasifR6yJo65LeM-rVR1Twz1WjMMlkrHI6nGLqjusIZs2I8-6oNXWj5BrYAzDyEsxvRzjasl1WpHwFTnqsklQOnSc5jXqR5hCkiz-ggMbvsgdcpQGSWFZ2ac4xFB3-7EKQ0QUoTbiBQaT14_WfMpOUEWSkddnoVf1m2wKC1ctyLzggELnn6H0eWGvUlPCJY8t3ITVbJoCsPkigNVsgkAeab-PF7ECysTJTUxcoIIh63PyWK-awW5ZgO6CWMwF11GKQ7__lkz-HO4PT4SBwdnBw-hg0606L2nsD6tJ7pp5jmTdWzZlkx-HzT6_g3vE9qYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greenhouse+gas+mitigation+potential+of+the+world%E2%80%99s+grazing+lands%3A+Modeling+soil+carbon+and+nitrogen+fluxes+of+mitigation+practices&rft.jtitle=Agriculture%2C+ecosystems+%26+environment&rft.au=Henderson%2C+Benjamin+B.&rft.au=Gerber%2C+Pierre+J.&rft.au=Hilinski%2C+Tom+E.&rft.au=Falcucci%2C+Alessandra&rft.date=2015-09-01&rft.issn=0167-8809&rft.volume=207&rft.spage=91&rft.epage=100&rft_id=info:doi/10.1016%2Fj.agee.2015.03.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agee_2015_03_029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8809&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8809&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8809&client=summon |