Greenhouse gas mitigation potential of the world’s grazing lands: Modeling soil carbon and nitrogen fluxes of mitigation practices

•Net sequestration potential in world’s grazing lands is estimated at 295Tg CO2yr−1.•Improved grazing management could sequester 148Tg CO2yr−1 of this total potential.•Legume sowing has net sequestration potential of 147Tg CO2-eqyr−1.•There are high risks of the practices increasing soil-based GHGs...

Full description

Saved in:
Bibliographic Details
Published inAgriculture, ecosystems & environment Vol. 207; pp. 91 - 100
Main Authors Henderson, Benjamin B., Gerber, Pierre J., Hilinski, Tom E., Falcucci, Alessandra, Ojima, Dennis S., Salvatore, Mirella, Conant, Richard T.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Net sequestration potential in world’s grazing lands is estimated at 295Tg CO2yr−1.•Improved grazing management could sequester 148Tg CO2yr−1 of this total potential.•Legume sowing has net sequestration potential of 147Tg CO2-eqyr−1.•There are high risks of the practices increasing soil-based GHGs in many areas.•Ruminant GHG emissions linked to more forage could fully offset mitigation benefits. This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world’s native and cultivated grazing lands. The Century and Daycent models are used to calculate the changes in soil carbon stocks, soil N2O emissions, and forage removals by ruminants associated with these practices. GLEAM is used in combination with these models to establish grazing area boundaries and to parameterize links between forage consumption, animal production and animal GHG emissions. This study provides an alternative to the usual approach of extrapolating from a small number of field studies and by modeling the linkage between soil, forage and animals it sheds new light on the net mitigation potential of C sequestration practices in the world’s grazing lands. Three different mitigation practices are assessed in this study, namely, improved grazing management, legume sowing and N fertilization. We estimate that optimization of grazing pressure could sequester 148Tg CO2yr−1. The soil C sequestration potential of 203Tg CO2yr−1 for legume sowing was higher than for improved grazing management, despite being applied over a much smaller total area. However, N2O emissions from legumes were estimated to offset 28% of its global C sequestration benefits, in CO2 equivalent terms. Conversely, N2O emissions from N fertilization exceeded soil C sequestration, in all regions. Our estimated potential for increasing C stocks though in grazing lands is lower than earlier worldwide estimates (Smith et al., 2007; Lal, 2004), mainly due to the much smaller grazing land area over which we estimate mitigation practices to be effective. A big concern is the high risk of the practices, particularly legumes, increasing soil-based GHGs if applied outside of this relatively small effective area. More work is needed to develop indicators, based on biophysical and management characteristics of grazing lands, to identify amenable areas before these practices can be considered ready for large scale implementation. The additional ruminant GHG emissions associated with higher forage output are likely to substantially reduce the mitigation potential of these practices, but could contribute to more GHG-efficient livestock production.
AbstractList This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world's native and cultivated grazing lands. The Century and Daycent models are used to calculate the changes in soil carbon stocks, soil N2O emissions, and forage removals by ruminants associated with these practices. GLEAM is used in combination with these models to establish grazing area boundaries and to parameterize links between forage consumption, animal production and animal GHG emissions. This study provides an alternative to the usual approach of extrapolating from a small number of field studies and by modeling the linkage between soil, forage and animals it sheds new light on the net mitigation potential of C sequestration practices in the world's grazing lands. Three different mitigation practices are assessed in this study, namely, improved grazing management, legume sowing and N fertilization. We estimate that optimization of grazing pressure could sequester 148Tg CO2 yr-1. The soil C sequestration potential of 203Tg CO2 yr-1 for legume sowing was higher than for improved grazing management, despite being applied over a much smaller total area. However, N2O emissions from legumes were estimated to offset 28% of its global C sequestration benefits, in CO2 equivalent terms. Conversely, N2O emissions from N fertilization exceeded soil C sequestration, in all regions. Our estimated potential for increasing C stocks though in grazing lands is lower than earlier worldwide estimates (Smith et al., 2007; Lal, 2004), mainly due to the much smaller grazing land area over which we estimate mitigation practices to be effective. A big concern is the high risk of the practices, particularly legumes, increasing soil-based GHGs if applied outside of this relatively small effective area. More work is needed to develop indicators, based on biophysical and management characteristics of grazing lands, to identify amenable areas before these practices can be considered ready for large scale implementation. The additional ruminant GHG emissions associated with higher forage output are likely to substantially reduce the mitigation potential of these practices, but could contribute to more GHG-efficient livestock production.
This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world’s native and cultivated grazing lands. The Century and Daycent models are used to calculate the changes in soil carbon stocks, soil N2O emissions, and forage removals by ruminantsassociated with these practices. GLEAM is used in combination with these models to establish grazing area boundaries and to parameterize links between forage consumption, animal production and animal GHG emissions. This study provides an alternative to the usual approach of extrapolating from a smallnumber of field studies and by modeling the linkage between soil, forage and animals it sheds new light on the net mitigation potential of C sequestration practices in the world’s grazing lands. Three different mitigation practices are assessed in this study, namely, improved grazing management, legume sowingand N fertilization. We estimate that optimization of grazing pressure could sequester 148 Tg CO2 yr1. The soil C sequestration potential of 203 Tg CO2 yr1 for legume sowing was higher than for improved grazing management, despite being applied over a much smaller total area. However, N2O emissions fromlegumes were estimated to offset 28% of its global C sequestration benefits, in CO2 equivalent terms. Conversely, N2O emissions from N fertilization exceeded soil C sequestration, in all regions. Our estimated potential for increasing C stocks though in grazing lands is lower than earlier worldwide estimates (Smith et al., 2007; Lal, 2004), mainly due to the much smaller grazing land area over which we estimate mitigation practices to be effective. A big concern is the high risk of the practices, particularly legumes, increasing soil-based GHGs if applied outside of this relatively small effective area. More work is needed to develop indicators, based on biophysical and management characteristics of grazing lands, to identify amenable areas before these practices can be considered ready for large scale implementation. The additional ruminant GHG emissions associated with higher forage output are likely to substantially reduce the mitigation potential of these practices, but could contribute to more GHG-efficient livestock production.
•Net sequestration potential in world’s grazing lands is estimated at 295Tg CO2yr−1.•Improved grazing management could sequester 148Tg CO2yr−1 of this total potential.•Legume sowing has net sequestration potential of 147Tg CO2-eqyr−1.•There are high risks of the practices increasing soil-based GHGs in many areas.•Ruminant GHG emissions linked to more forage could fully offset mitigation benefits. This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world’s native and cultivated grazing lands. The Century and Daycent models are used to calculate the changes in soil carbon stocks, soil N2O emissions, and forage removals by ruminants associated with these practices. GLEAM is used in combination with these models to establish grazing area boundaries and to parameterize links between forage consumption, animal production and animal GHG emissions. This study provides an alternative to the usual approach of extrapolating from a small number of field studies and by modeling the linkage between soil, forage and animals it sheds new light on the net mitigation potential of C sequestration practices in the world’s grazing lands. Three different mitigation practices are assessed in this study, namely, improved grazing management, legume sowing and N fertilization. We estimate that optimization of grazing pressure could sequester 148Tg CO2yr−1. The soil C sequestration potential of 203Tg CO2yr−1 for legume sowing was higher than for improved grazing management, despite being applied over a much smaller total area. However, N2O emissions from legumes were estimated to offset 28% of its global C sequestration benefits, in CO2 equivalent terms. Conversely, N2O emissions from N fertilization exceeded soil C sequestration, in all regions. Our estimated potential for increasing C stocks though in grazing lands is lower than earlier worldwide estimates (Smith et al., 2007; Lal, 2004), mainly due to the much smaller grazing land area over which we estimate mitigation practices to be effective. A big concern is the high risk of the practices, particularly legumes, increasing soil-based GHGs if applied outside of this relatively small effective area. More work is needed to develop indicators, based on biophysical and management characteristics of grazing lands, to identify amenable areas before these practices can be considered ready for large scale implementation. The additional ruminant GHG emissions associated with higher forage output are likely to substantially reduce the mitigation potential of these practices, but could contribute to more GHG-efficient livestock production.
This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world’s native and cultivated grazing lands. The Century and Daycent models are used to calculate the changes in soil carbon stocks, soil N2O emissions, and forage removals by ruminants associated with these practices. GLEAM is used in combination with these models to establish grazing area boundaries and to parameterize links between forage consumption, animal production and animal GHG emissions. This study provides an alternative to the usual approach of extrapolating from a small number of field studies and by modeling the linkage between soil, forage and animals it sheds new light on the net mitigation potential of C sequestration practices in the world’s grazing lands. Three different mitigation practices are assessed in this study, namely, improved grazing management, legume sowing and N fertilization. We estimate that optimization of grazing pressure could sequester 148Tg CO2yr−1. The soil C sequestration potential of 203Tg CO2yr−1 for legume sowing was higher than for improved grazing management, despite being applied over a much smaller total area. However, N2O emissions from legumes were estimated to offset 28% of its global C sequestration benefits, in CO2 equivalent terms. Conversely, N2O emissions from N fertilization exceeded soil C sequestration, in all regions. Our estimated potential for increasing C stocks though in grazing lands is lower than earlier worldwide estimates (Smith et al., 2007; Lal, 2004), mainly due to the much smaller grazing land area over which we estimate mitigation practices to be effective. A big concern is the high risk of the practices, particularly legumes, increasing soil-based GHGs if applied outside of this relatively small effective area. More work is needed to develop indicators, based on biophysical and management characteristics of grazing lands, to identify amenable areas before these practices can be considered ready for large scale implementation. The additional ruminant GHG emissions associated with higher forage output are likely to substantially reduce the mitigation potential of these practices, but could contribute to more GHG-efficient livestock production.
Author Conant, Richard T.
Ojima, Dennis S.
Hilinski, Tom E.
Salvatore, Mirella
Falcucci, Alessandra
Gerber, Pierre J.
Henderson, Benjamin B.
Author_xml – sequence: 1
  givenname: Benjamin B.
  surname: Henderson
  fullname: Henderson, Benjamin B.
  email: ben.henderson@csiro.au
  organization: UN Food and Agriculture Organization, Rome, Italy
– sequence: 2
  givenname: Pierre J.
  surname: Gerber
  fullname: Gerber, Pierre J.
  organization: UN Food and Agriculture Organization, Rome, Italy
– sequence: 3
  givenname: Tom E.
  surname: Hilinski
  fullname: Hilinski, Tom E.
  organization: Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States
– sequence: 4
  givenname: Alessandra
  surname: Falcucci
  fullname: Falcucci, Alessandra
  organization: UN Food and Agriculture Organization, Rome, Italy
– sequence: 5
  givenname: Dennis S.
  surname: Ojima
  fullname: Ojima, Dennis S.
  organization: Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States
– sequence: 6
  givenname: Mirella
  surname: Salvatore
  fullname: Salvatore, Mirella
  organization: UN Food and Agriculture Organization, Rome, Italy
– sequence: 7
  givenname: Richard T.
  surname: Conant
  fullname: Conant, Richard T.
  organization: Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States
BookMark eNqNks2OFCEUhStmTOwZfQFXLN1Ue4H6gYkbM9HRZIwbXROKulVDh4YWKFtdufAlfD2fRMp2YVyMEhJCON_lcjjn1ZkPHqvqMYUtBdo93W31jLhlQNst8C0wea_aUNHzmnFoz6pNEfW1ECAfVOcp7aAMxsWm-nYdEf1tWBKSWSeyt9nOOtvgySFk9NlqR8JE8i2SY4hu_PH1eyJz1F-sn4nTfkyX5E0Y0a37FKwjRseh4OWIeJtjmNGTyS2fMK2F_rwgapOtwfSwuj9pl_DR7_Wiev_yxburV_XN2-vXV89vatO0kOtuEIyN0GDfgDSSNnSYRmPEMFKATsMwSKF7yTQYHOWEA4JmzYhtS_XU94JfVJenusfili8No1deR2OTCtoqZ4eo42d1XKLybl0Oy5BUI9uWywI_OcGHGD4smLLa22TQFQ-w2Keo4F23TvZvad8D56KT_D-knAkGHazdi5PUxJBSxEkZm385maO2TlFQaxbUTq1ZUGsWFHBVslBQ9hd6iHa_vvVO6NkJwvIlHy1GlYxFX7y1EU1WY7B34T8BBJbUlA
CitedBy_id crossref_primary_10_1002_saj2_70003
crossref_primary_10_1016_j_scitotenv_2018_11_082
crossref_primary_10_1002_ldr_3217
crossref_primary_10_1146_annurev_environ_112321_103821
crossref_primary_10_1016_j_agee_2017_03_020
crossref_primary_10_15446_ing_investig_94777
crossref_primary_10_3389_fpls_2022_925548
crossref_primary_10_1002_ecs2_2452
crossref_primary_10_1111_gcb_13431
crossref_primary_10_3390_rs15071890
crossref_primary_10_1111_gcb_14878
crossref_primary_10_1038_s41558_019_0591_9
crossref_primary_10_1016_j_jclepro_2017_01_126
crossref_primary_10_1016_j_jag_2020_102205
crossref_primary_10_1111_1365_2745_12884
crossref_primary_10_3390_rs16132256
crossref_primary_10_1038_s43016_024_01039_1
crossref_primary_10_1016_j_scitotenv_2019_01_130
crossref_primary_10_3390_land12010060
crossref_primary_10_1111_gfs_12580
crossref_primary_10_1016_j_inpa_2016_09_001
crossref_primary_10_1016_j_landusepol_2018_10_014
crossref_primary_10_3390_su15010125
crossref_primary_10_1002_ece3_10102
crossref_primary_10_1088_1748_9326_ace91f
crossref_primary_10_46830_writn_23_00043_v2
crossref_primary_10_3390_land9110457
crossref_primary_10_1016_j_agee_2015_07_014
crossref_primary_10_1016_j_agee_2021_107702
crossref_primary_10_1146_annurev_environ_031113_093503
crossref_primary_10_1016_j_applanim_2018_05_032
crossref_primary_10_1111_gcb_13050
crossref_primary_10_1007_s11027_020_09931_4
crossref_primary_10_1016_j_animal_2021_100360
crossref_primary_10_3390_su12093847
crossref_primary_10_1111_gcb_15509
crossref_primary_10_3390_agriculture15030235
crossref_primary_10_1088_1748_9326_acacb3
crossref_primary_10_1016_j_jclepro_2018_12_245
crossref_primary_10_1016_j_envsci_2019_05_013
crossref_primary_10_1016_j_agsy_2025_104276
crossref_primary_10_1038_nclimate2925
crossref_primary_10_3390_land12112078
crossref_primary_10_1007_s11250_023_03748_4
crossref_primary_10_3390_su11123433
crossref_primary_10_1079_PAVSNNR202116044
crossref_primary_10_12973_eurasia_2017_00771a
crossref_primary_10_1146_annurev_resource_111820_032340
crossref_primary_10_46830_wrirpt_23_00010
crossref_primary_10_1016_j_envdev_2016_06_001
crossref_primary_10_1016_j_scitotenv_2021_152687
crossref_primary_10_3390_su11153997
crossref_primary_10_1002_jeq2_20315
crossref_primary_10_1111_gcb_13995
crossref_primary_10_1016_j_gfs_2017_01_001
crossref_primary_10_1139_cjps_2019_0212
crossref_primary_10_1088_1748_9326_aa8c83
crossref_primary_10_1111_gcb_15816
crossref_primary_10_1088_1748_9326_ace06f
crossref_primary_10_1016_j_scitotenv_2020_141790
crossref_primary_10_1016_j_jenvman_2025_124456
crossref_primary_10_1126_sciadv_aat1869
crossref_primary_10_1080_03066150_2020_1741551
crossref_primary_10_1111_gcb_13591
crossref_primary_10_1007_s10584_020_02673_x
crossref_primary_10_1371_journal_pgph_0003892
crossref_primary_10_46830_writn_23_00043
crossref_primary_10_1029_2023EF003586
crossref_primary_10_1007_s11027_017_9737_0
crossref_primary_10_1016_j_envsci_2020_01_006
crossref_primary_10_1071_AN17743
crossref_primary_10_1016_j_scitotenv_2022_160634
crossref_primary_10_1016_j_jclepro_2021_126447
crossref_primary_10_1016_j_tjnut_2022_10_016
crossref_primary_10_1088_1748_9326_aa849b
crossref_primary_10_1088_1748_9326_aabf9f
crossref_primary_10_1016_j_geoderma_2020_114666
crossref_primary_10_1016_j_ecolind_2018_03_087
crossref_primary_10_3390_su10041301
crossref_primary_10_1007_s11027_015_9673_9
crossref_primary_10_1111_gcb_13068
crossref_primary_10_3390_environments6060067
crossref_primary_10_1016_j_rama_2019_03_002
crossref_primary_10_3390_atmos15030348
crossref_primary_10_1016_j_rama_2023_06_001
crossref_primary_10_1126_sciadv_aaq0932
crossref_primary_10_1016_j_scitotenv_2021_146582
crossref_primary_10_1016_j_agee_2025_109538
crossref_primary_10_1016_j_scitotenv_2019_05_038
crossref_primary_10_1016_j_scitotenv_2020_139092
crossref_primary_10_3390_ani12141745
crossref_primary_10_1016_j_eja_2019_03_008
crossref_primary_10_1016_j_still_2024_106342
crossref_primary_10_3389_fsufs_2020_549483
crossref_primary_10_3389_fsoil_2022_927452
crossref_primary_10_1016_j_jclepro_2018_03_162
crossref_primary_10_1016_j_ecolind_2023_111509
crossref_primary_10_1073_pnas_1710465114
crossref_primary_10_1088_1748_9326_aacc75
crossref_primary_10_1002_ael2_20086
crossref_primary_10_1007_s11829_023_09964_x
crossref_primary_10_1002_eap_1473
crossref_primary_10_1016_j_geoderma_2022_116061
crossref_primary_10_1016_j_agee_2024_109403
crossref_primary_10_1016_j_agee_2025_109548
crossref_primary_10_1002_glr2_12074
crossref_primary_10_1007_s10113_016_0986_3
crossref_primary_10_1016_j_landusepol_2019_03_032
crossref_primary_10_1080_21683565_2019_1633455
crossref_primary_10_1016_j_crm_2017_02_001
crossref_primary_10_11628_ksppe_2024_27_4_329
crossref_primary_10_1038_s41467_023_38577_4
crossref_primary_10_1071_AN20564
crossref_primary_10_1126_science_aam5324
Cites_doi 10.1016/S0921-8181(98)00040-X
10.2111/08-225.1
10.1098/rstb.2007.2184
10.1007/s00267-003-9104-7
10.1007/s10021-012-9534-2
10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
10.2136/sssaj1987.03615995005100050015x
10.1126/science.1097396
10.1002/joc.1181
10.1086/285435
10.1111/j.1365-2494.2004.00423.x
10.1002/wcc.101
10.2111/1551-501X(2008)30[12:CCIOAR]2.0.CO;2
10.1007/s00267-003-9105-6
10.1073/pnas.0912890107
10.1016/S0377-8401(03)00041-5
10.1038/363234a0
10.2111/08-255.1
10.1029/2000WR900130
10.1111/j.1365-2486.2009.01958.x
10.2134/jeq2007.0099
10.1146/annurev.energy.29.062403.102142
10.1029/2001GB001661
10.1890/12-1548.1
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Wageningen University & Research
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Wageningen University & Research
DBID AAYXX
CITATION
7SN
7ST
7TG
7U1
C1K
KL.
SOI
8FD
FR3
KR7
7S9
L.6
QVL
DOI 10.1016/j.agee.2015.03.029
DatabaseName CrossRef
Ecology Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Risk Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
Risk Abstracts
Meteorological & Geoastrophysical Abstracts
Ecology Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Risk Abstracts
Technology Research Database


AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Environmental Sciences
EISSN 1873-2305
EndPage 100
ExternalDocumentID oai_library_wur_nl_wurpubs_495539
10_1016_j_agee_2015_03_029
S0167880915001139
GroupedDBID --K
--M
.~1
0R~
186
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABBQC
ABFNM
ABFRF
ABFYP
ABGRD
ABKYH
ABLST
ABLVK
ABMAC
ABMZM
ABRWV
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFRAH
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LCYCR
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
QYZTP
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SNL
SPCBC
SSA
SSH
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADSLC
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AGWPP
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
SEW
VH1
WUQ
7SN
7ST
7TG
7U1
C1K
EFKBS
KL.
SOI
8FD
FR3
KR7
7S9
L.6
AALMO
ABPIF
ABPTK
ABQIS
ADALY
IPNFZ
QVL
ID FETCH-LOGICAL-c450t-6b822d04e7409c9141bfdcc8bd1006a0bb98a792a0ced9febe0a24de551af7783
IEDL.DBID .~1
ISSN 0167-8809
IngestDate Thu Oct 13 09:31:14 EDT 2022
Fri Jul 11 15:32:00 EDT 2025
Fri Jul 11 07:51:22 EDT 2025
Tue Aug 05 11:19:01 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Tue Jul 01 02:37:19 EDT 2025
Fri Feb 23 02:22:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Daycent
Century
Fertilization
Grazing management
Legume
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-6b822d04e7409c9141bfdcc8bd1006a0bb98a792a0ced9febe0a24de551af7783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1732820608
PQPubID 23462
PageCount 10
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_495539
proquest_miscellaneous_1836636632
proquest_miscellaneous_1770338693
proquest_miscellaneous_1732820608
crossref_citationtrail_10_1016_j_agee_2015_03_029
crossref_primary_10_1016_j_agee_2015_03_029
elsevier_sciencedirect_doi_10_1016_j_agee_2015_03_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Agriculture, ecosystems & environment
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Farrior, Tilman, Dybzinski, Reich, Levin, Pacala (bib0065) 2013; 94
Parton, Schimel, Cole, Ojima (bib0175) 1987; 51
Smith, Martino, Cai (bib0205) 2007
Conant, Paustian (bib0035) 2004; 33
Follett, Reed (bib0070) 2010; 63
(accessed 22.04.13).
Frank, Pontes, McFarlane (bib0075) 2012; 15
Gerber, Steinfeld, Henderson (bib0080) 2013
Eagle, Olander, Henry, Haugen-Kozyra, Millar, Robertson (bib0040) 2012
Rochon, Doyle, Greef (bib0195) 2004; 59
Conant, Paustian, Elliott (bib0020) 2001; 11
(accessed 10.03.14).
Min, Barry, Attwood, McNabb (bib0135) 2003; 106
FAO (bib0050) 2007
Coates, Mannetje (bib0015) 1990; 24
Eagle, Henry, Olander, Haugen-Kozyra, Millar, Robertson (bib0045) 2011
IIASA/FAO (bib0095) 2012
Holland, Parton, Detling, Coppock (bib0090) 1992; 140
Ministéro da Agricultura, 2014. Recuperação de Áreas Degradadas. Available from
Pineiro, Paruelo, Oesterheld, Jobbagy (bib0185) 2010; 63
Parton, Hartman, Ojima, Schimel (bib0170) 1998; 19
IPCC (bib0100) 2007
Opio, Gerber, Mottet (bib0165) 2013
Asner, Elmore, Olander, Martin, Harris (bib0010) 2004; 29
ADB (bib0005) 2014
Hoffman, Vogel (bib0085) 2008; 30
Lal (bib0110) 2004; 304
FAOSTAT, 2013. Resources (Land). Available from
Thornton, Herrero (bib0215) 2010; 107
Conant, Paustian (bib0025) 2002; 16
Reynolds, Jackson, Rawls (bib0190) 2000; 36
Mannetje, Jones (bib0125) 1990; 24
FAO (bib0055) 2011
MacLeod, Cook (bib0120) 2004; 38
Melillo, McGuire, Kicklighter (bib0130) 1993; 363
Mitchell, Jones (bib0145) 2005; 25
Schlesinger (bib0200) 2010; 16
Smith, Martino, Cai (bib0210) 2008; 363
Khan, Mulvaney, Ellsworth, Boast (bib0105) 2007; 36
Larson, Dinar, Frisbie (bib0115) 2011
NRCS (bib0155) 1992
Ogle, Conant, Paustian (bib0160) 2004; 33
NRCS (bib0150) 1997
Conant (bib0030) 2011; 2
Paustian, Collins, Paul (bib0180) 1997
Conant (10.1016/j.agee.2015.03.029_bib0025) 2002; 16
ADB (10.1016/j.agee.2015.03.029_bib0005) 2014
NRCS (10.1016/j.agee.2015.03.029_bib0150) 1997
Schlesinger (10.1016/j.agee.2015.03.029_bib0200) 2010; 16
Conant (10.1016/j.agee.2015.03.029_bib0020) 2001; 11
NRCS (10.1016/j.agee.2015.03.029_bib0155) 1992
Opio (10.1016/j.agee.2015.03.029_bib0165) 2013
Thornton (10.1016/j.agee.2015.03.029_bib0215) 2010; 107
Ogle (10.1016/j.agee.2015.03.029_bib0160) 2004; 33
IPCC (10.1016/j.agee.2015.03.029_bib0100) 2007
Lal (10.1016/j.agee.2015.03.029_bib0110) 2004; 304
Mannetje (10.1016/j.agee.2015.03.029_bib0125) 1990; 24
Reynolds (10.1016/j.agee.2015.03.029_bib0190) 2000; 36
Follett (10.1016/j.agee.2015.03.029_bib0070) 2010; 63
Hoffman (10.1016/j.agee.2015.03.029_bib0085) 2008; 30
Conant (10.1016/j.agee.2015.03.029_bib0035) 2004; 33
FAO (10.1016/j.agee.2015.03.029_bib0050) 2007
Mitchell (10.1016/j.agee.2015.03.029_bib0145) 2005; 25
Smith (10.1016/j.agee.2015.03.029_bib0210) 2008; 363
Parton (10.1016/j.agee.2015.03.029_bib0170) 1998; 19
Smith (10.1016/j.agee.2015.03.029_bib0205) 2007
Larson (10.1016/j.agee.2015.03.029_bib0115) 2011
Coates (10.1016/j.agee.2015.03.029_bib0015) 1990; 24
Khan (10.1016/j.agee.2015.03.029_bib0105) 2007; 36
Melillo (10.1016/j.agee.2015.03.029_bib0130) 1993; 363
Gerber (10.1016/j.agee.2015.03.029_bib0080) 2013
Min (10.1016/j.agee.2015.03.029_bib0135) 2003; 106
Paustian (10.1016/j.agee.2015.03.029_bib0180) 1997
Pineiro (10.1016/j.agee.2015.03.029_bib0185) 2010; 63
Frank (10.1016/j.agee.2015.03.029_bib0075) 2012; 15
IIASA/FAO (10.1016/j.agee.2015.03.029_bib0095) 2012
Parton (10.1016/j.agee.2015.03.029_bib0175) 1987; 51
Holland (10.1016/j.agee.2015.03.029_bib0090) 1992; 140
Conant (10.1016/j.agee.2015.03.029_bib0030) 2011; 2
FAO (10.1016/j.agee.2015.03.029_bib0055) 2011
10.1016/j.agee.2015.03.029_bib0140
Asner (10.1016/j.agee.2015.03.029_bib0010) 2004; 29
Eagle (10.1016/j.agee.2015.03.029_bib0040) 2012
10.1016/j.agee.2015.03.029_bib0060
Farrior (10.1016/j.agee.2015.03.029_bib0065) 2013; 94
Rochon (10.1016/j.agee.2015.03.029_bib0195) 2004; 59
MacLeod (10.1016/j.agee.2015.03.029_bib0120) 2004; 38
Eagle (10.1016/j.agee.2015.03.029_bib0045) 2011
References_xml – volume: 19
  start-page: 35
  year: 1998
  end-page: 48
  ident: bib0170
  article-title: DAYCENT: its land surface submodel: description and testing
  publication-title: Global Planet. Change
– volume: 107
  start-page: 19667
  year: 2010
  end-page: 19672
  ident: bib0215
  article-title: Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 1997
  ident: bib0150
  article-title: National Range and Pasture Handbook
– year: 2011
  ident: bib0115
  article-title: Agriculture and the Clean Development Mechanism. Policy Research Working Paper 5621
– volume: 38
  start-page: 140
  year: 2004
  end-page: 153
  ident: bib0120
  article-title: The economic performance of steers grazing black speargrass pastures oversown with legumes in south Queensland
  publication-title: Aust. Trop. Grasslands
– year: 2012
  ident: bib0095
  article-title: Global Agro-ecological Zones (GAEZ v3.0). International Institute for Applied Systems Analysis, Laxenburg
– volume: 16
  start-page: 1143
  year: 2002
  ident: bib0025
  article-title: Potential soil carbon sequestration in overgrazed grassland ecosystems
  publication-title: Global Biogeochem. Cycles
– year: 2012
  ident: bib0040
  article-title: Greenhouse Gas Mitigation Potential of Agricultural Land Management in the United States: A Synthesis of the Literature. Report NI R 10-04
– year: 2007
  ident: bib0050
  article-title: Gridded Livestock of the World 2007
– reference: Ministéro da Agricultura, 2014. Recuperação de Áreas Degradadas. Available from:
– volume: 25
  start-page: 693
  year: 2005
  end-page: 712
  ident: bib0145
  article-title: An improved method of constructing a database of monthly climate observations and associated high-resolution grids
  publication-title: Int. J. Climatol.
– volume: 30
  start-page: 12
  year: 2008
  end-page: 17
  ident: bib0085
  article-title: Climate change impacts on African rangelands
  publication-title: Rangelands
– volume: 363
  start-page: 234
  year: 1993
  end-page: 240
  ident: bib0130
  article-title: Global climate change and terrestrial net primary production
  publication-title: Nature
– volume: 94
  start-page: 2505
  year: 2013
  end-page: 2517
  ident: bib0065
  article-title: Resource limitation in a competitive context determines complex plant responses to experimental resource additions
  publication-title: Ecology
– start-page: 15
  year: 1997
  end-page: 49
  ident: bib0180
  article-title: Management controls on soil carbon
  publication-title: Soil Organic Matter in Temperate Agroecosystems
– volume: 29
  start-page: 261
  year: 2004
  end-page: 299
  ident: bib0010
  article-title: Grazing systems ecosystem response, and global change
  publication-title: Annu. Rev. Environ. Resour.
– volume: 36
  start-page: 3653
  year: 2000
  end-page: 3662
  ident: bib0190
  article-title: Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions
  publication-title: Water Resour. Res.
– year: 2013
  ident: bib0080
  article-title: Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities
– year: 2007
  ident: bib0100
  article-title: Climate change 2007: the physical science basis
  publication-title: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 11
  start-page: 343
  year: 2001
  end-page: 355
  ident: bib0020
  article-title: Grassland management and conversion into grassland: effects on soil carbon
  publication-title: Ecol. Appl.
– volume: 63
  start-page: 109
  year: 2010
  end-page: 119
  ident: bib0185
  article-title: Pathways of grazing effects on soil organic carbon and nitrogen
  publication-title: Rangeland Ecol. Manage.
– year: 2011
  ident: bib0045
  article-title: Greenhouse Gas Mitigation Potential of Agricultural Land Management in the United States A Synthesis of the Literature, third ed. Report NI R 10-04, second ed.
– volume: 59
  start-page: 197
  year: 2004
  end-page: 214
  ident: bib0195
  article-title: Grazing legumes in Europe: a review of their status management, benefits, research needs and future prospects
  publication-title: Grass Forage Sci.
– volume: 15
  start-page: 604
  year: 2012
  end-page: 615
  ident: bib0075
  article-title: Controls on soil organic carbon stocks and turnover among North American ecosystems
  publication-title: Ecosystems
– year: 2011
  ident: bib0055
  article-title: Global Livestock Production Systems
– reference: FAOSTAT, 2013. Resources (Land). Available from:
– year: 1992
  ident: bib0155
  article-title: Instructions for Collecting 1992 National Resources Inventory Sample Data
– year: 2014
  ident: bib0005
  article-title: Strengthening Carbon Financing for Grassland Management in the People’s Republic of China Incentive Mechanisms and Implications
– volume: 33
  start-page: 474
  year: 2004
  end-page: 484
  ident: bib0160
  article-title: Deriving grassland management factors for a carbon accounting approach developed by the Intergovernmental Panel on Climate Change
  publication-title: Environ. Manage.
– reference: (accessed 10.03.14).
– volume: 24
  start-page: 269
  year: 1990
  end-page: 281
  ident: bib0125
  article-title: Pastures and animal productivity of buffel grass with Siratro: lucerne and nitrogen fertilizer
  publication-title: Trop. Grasslands
– year: 2013
  ident: bib0165
  article-title: Greenhouse Gas Emissions from Ruminant Supply Chains – A Global Life Cycle Assessment
– start-page: 499
  year: 2007
  end-page: 540
  ident: bib0205
  article-title: Agriculture
  publication-title: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 33
  start-page: 467
  year: 2004
  end-page: 473
  ident: bib0035
  article-title: Grassland management activity data: current sources and future needs
  publication-title: Environ. Manage.
– volume: 2
  start-page: 238
  year: 2011
  end-page: 254
  ident: bib0030
  article-title: Sequestration through forestry and agriculture
  publication-title: Wiley Interdiscip. Rev. Clim. Change
– volume: 36
  start-page: 1821
  year: 2007
  end-page: 1832
  ident: bib0105
  article-title: The myth of nitrogen fertilization for soil carbon sequestration
  publication-title: J. Environ. Qual.
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  ident: bib0110
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 51
  start-page: 1173
  year: 1987
  end-page: 1179
  ident: bib0175
  article-title: Analysis of factors controlling soil organic matter levels in Great Plains grasslands
  publication-title: Soil Sci. Soc. Am. J.
– volume: 140
  start-page: 685
  year: 1992
  end-page: 706
  ident: bib0090
  article-title: Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow
  publication-title: Am. Nat.
– volume: 63
  start-page: 4
  year: 2010
  end-page: 15
  ident: bib0070
  article-title: Soil carbon sequestration in grazing lands: societal benefits and policy implications
  publication-title: Rangeland Ecol. Manage.
– volume: 363
  start-page: 789
  year: 2008
  end-page: 813
  ident: bib0210
  article-title: Greenhouse gas mitigation in agriculture
  publication-title: Philoso. Trans. R. Soc. B Biol. Sci.
– volume: 16
  start-page: 849
  year: 2010
  end-page: 850
  ident: bib0200
  article-title: On fertilizer-induced soil carbon sequestration in China’s croplands
  publication-title: Global Change Biol.
– reference: (accessed 22.04.13).
– volume: 106
  start-page: 3
  year: 2003
  end-page: 19
  ident: bib0135
  article-title: The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review
  publication-title: Anim. Feed Sci. Technol.
– volume: 24
  start-page: 46
  year: 1990
  end-page: 54
  ident: bib0015
  article-title: Productivity of cows and calves on native and improved pasture in subcoastal, subtropical Queensland
  publication-title: Trop. Grasslands
– volume: 24
  start-page: 269
  year: 1990
  ident: 10.1016/j.agee.2015.03.029_bib0125
  article-title: Pastures and animal productivity of buffel grass with Siratro: lucerne and nitrogen fertilizer
  publication-title: Trop. Grasslands
– volume: 19
  start-page: 35
  year: 1998
  ident: 10.1016/j.agee.2015.03.029_bib0170
  article-title: DAYCENT: its land surface submodel: description and testing
  publication-title: Global Planet. Change
  doi: 10.1016/S0921-8181(98)00040-X
– year: 2014
  ident: 10.1016/j.agee.2015.03.029_bib0005
– year: 2013
  ident: 10.1016/j.agee.2015.03.029_bib0165
– ident: 10.1016/j.agee.2015.03.029_bib0060
– volume: 63
  start-page: 4
  year: 2010
  ident: 10.1016/j.agee.2015.03.029_bib0070
  article-title: Soil carbon sequestration in grazing lands: societal benefits and policy implications
  publication-title: Rangeland Ecol. Manage.
  doi: 10.2111/08-225.1
– year: 1997
  ident: 10.1016/j.agee.2015.03.029_bib0150
– volume: 363
  start-page: 789
  year: 2008
  ident: 10.1016/j.agee.2015.03.029_bib0210
  article-title: Greenhouse gas mitigation in agriculture
  publication-title: Philoso. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2007.2184
– volume: 33
  start-page: 467
  year: 2004
  ident: 10.1016/j.agee.2015.03.029_bib0035
  article-title: Grassland management activity data: current sources and future needs
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-003-9104-7
– volume: 15
  start-page: 604
  year: 2012
  ident: 10.1016/j.agee.2015.03.029_bib0075
  article-title: Controls on soil organic carbon stocks and turnover among North American ecosystems
  publication-title: Ecosystems
  doi: 10.1007/s10021-012-9534-2
– year: 2012
  ident: 10.1016/j.agee.2015.03.029_bib0095
– volume: 11
  start-page: 343
  year: 2001
  ident: 10.1016/j.agee.2015.03.029_bib0020
  article-title: Grassland management and conversion into grassland: effects on soil carbon
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
– year: 2012
  ident: 10.1016/j.agee.2015.03.029_bib0040
– volume: 51
  start-page: 1173
  year: 1987
  ident: 10.1016/j.agee.2015.03.029_bib0175
  article-title: Analysis of factors controlling soil organic matter levels in Great Plains grasslands
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1987.03615995005100050015x
– volume: 304
  start-page: 1623
  year: 2004
  ident: 10.1016/j.agee.2015.03.029_bib0110
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
  doi: 10.1126/science.1097396
– year: 2011
  ident: 10.1016/j.agee.2015.03.029_bib0045
– year: 2007
  ident: 10.1016/j.agee.2015.03.029_bib0050
– volume: 25
  start-page: 693
  year: 2005
  ident: 10.1016/j.agee.2015.03.029_bib0145
  article-title: An improved method of constructing a database of monthly climate observations and associated high-resolution grids
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1181
– volume: 24
  start-page: 46
  year: 1990
  ident: 10.1016/j.agee.2015.03.029_bib0015
  article-title: Productivity of cows and calves on native and improved pasture in subcoastal, subtropical Queensland
  publication-title: Trop. Grasslands
– year: 2007
  ident: 10.1016/j.agee.2015.03.029_bib0100
  article-title: Climate change 2007: the physical science basis
– volume: 140
  start-page: 685
  year: 1992
  ident: 10.1016/j.agee.2015.03.029_bib0090
  article-title: Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow
  publication-title: Am. Nat.
  doi: 10.1086/285435
– volume: 59
  start-page: 197
  year: 2004
  ident: 10.1016/j.agee.2015.03.029_bib0195
  article-title: Grazing legumes in Europe: a review of their status management, benefits, research needs and future prospects
  publication-title: Grass Forage Sci.
  doi: 10.1111/j.1365-2494.2004.00423.x
– year: 2011
  ident: 10.1016/j.agee.2015.03.029_bib0115
– volume: 2
  start-page: 238
  year: 2011
  ident: 10.1016/j.agee.2015.03.029_bib0030
  article-title: Sequestration through forestry and agriculture
  publication-title: Wiley Interdiscip. Rev. Clim. Change
  doi: 10.1002/wcc.101
– start-page: 499
  year: 2007
  ident: 10.1016/j.agee.2015.03.029_bib0205
  article-title: Agriculture
– volume: 30
  start-page: 12
  year: 2008
  ident: 10.1016/j.agee.2015.03.029_bib0085
  article-title: Climate change impacts on African rangelands
  publication-title: Rangelands
  doi: 10.2111/1551-501X(2008)30[12:CCIOAR]2.0.CO;2
– year: 2013
  ident: 10.1016/j.agee.2015.03.029_bib0080
– volume: 33
  start-page: 474
  year: 2004
  ident: 10.1016/j.agee.2015.03.029_bib0160
  article-title: Deriving grassland management factors for a carbon accounting approach developed by the Intergovernmental Panel on Climate Change
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-003-9105-6
– volume: 107
  start-page: 19667
  year: 2010
  ident: 10.1016/j.agee.2015.03.029_bib0215
  article-title: Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0912890107
– volume: 38
  start-page: 140
  year: 2004
  ident: 10.1016/j.agee.2015.03.029_bib0120
  article-title: The economic performance of steers grazing black speargrass pastures oversown with legumes in south Queensland
  publication-title: Aust. Trop. Grasslands
– volume: 106
  start-page: 3
  year: 2003
  ident: 10.1016/j.agee.2015.03.029_bib0135
  article-title: The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/S0377-8401(03)00041-5
– volume: 363
  start-page: 234
  year: 1993
  ident: 10.1016/j.agee.2015.03.029_bib0130
  article-title: Global climate change and terrestrial net primary production
  publication-title: Nature
  doi: 10.1038/363234a0
– volume: 63
  start-page: 109
  year: 2010
  ident: 10.1016/j.agee.2015.03.029_bib0185
  article-title: Pathways of grazing effects on soil organic carbon and nitrogen
  publication-title: Rangeland Ecol. Manage.
  doi: 10.2111/08-255.1
– volume: 36
  start-page: 3653
  year: 2000
  ident: 10.1016/j.agee.2015.03.029_bib0190
  article-title: Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900130
– volume: 16
  start-page: 849
  year: 2010
  ident: 10.1016/j.agee.2015.03.029_bib0200
  article-title: On fertilizer-induced soil carbon sequestration in China’s croplands
  publication-title: Global Change Biol.
  doi: 10.1111/j.1365-2486.2009.01958.x
– volume: 36
  start-page: 1821
  year: 2007
  ident: 10.1016/j.agee.2015.03.029_bib0105
  article-title: The myth of nitrogen fertilization for soil carbon sequestration
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2007.0099
– start-page: 15
  year: 1997
  ident: 10.1016/j.agee.2015.03.029_bib0180
  article-title: Management controls on soil carbon
– year: 2011
  ident: 10.1016/j.agee.2015.03.029_bib0055
– volume: 29
  start-page: 261
  year: 2004
  ident: 10.1016/j.agee.2015.03.029_bib0010
  article-title: Grazing systems ecosystem response, and global change
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev.energy.29.062403.102142
– ident: 10.1016/j.agee.2015.03.029_bib0140
– volume: 16
  start-page: 1143
  year: 2002
  ident: 10.1016/j.agee.2015.03.029_bib0025
  article-title: Potential soil carbon sequestration in overgrazed grassland ecosystems
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/2001GB001661
– volume: 94
  start-page: 2505
  year: 2013
  ident: 10.1016/j.agee.2015.03.029_bib0065
  article-title: Resource limitation in a competitive context determines complex plant responses to experimental resource additions
  publication-title: Ecology
  doi: 10.1890/12-1548.1
– year: 1992
  ident: 10.1016/j.agee.2015.03.029_bib0155
SSID ssj0000238
Score 2.5094237
Snippet •Net sequestration potential in world’s grazing lands is estimated at 295Tg CO2yr−1.•Improved grazing management could sequester 148Tg CO2yr−1 of this total...
This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world's native and cultivated grazing...
This study provides estimates of the net GHG mitigation potential of a selected range of management practices in the world’s native and cultivated grazing...
SourceID wageningen
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 91
SubjectTerms Animal Production Systems
carbon
carbon dioxide
carbon sequestration
carbon sinks
Century
Daycent
Dierlijke Productiesystemen
Estimates
Fertilization
field experimentation
forage
Forages
Grazing
grazing intensity
grazing lands
Grazing management
greenhouse gas emissions
greenhouse gases
Leerstoelgroep Dierlijke productiesystemen
Legume
Legumes
livestock production
Management
nitrogen
nitrous oxide
Nitrous oxides
range management
Rangelands
risk
Ruminantia
ruminants
soil
Soil (material)
sowing
Title Greenhouse gas mitigation potential of the world’s grazing lands: Modeling soil carbon and nitrogen fluxes of mitigation practices
URI https://dx.doi.org/10.1016/j.agee.2015.03.029
https://www.proquest.com/docview/1732820608
https://www.proquest.com/docview/1770338693
https://www.proquest.com/docview/1836636632
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F495539
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1V7aUcKhqoCB_VInFDJmt7_cUtqloFInoAKnpb7dq7aarUjuxE5YQ48Cf4e_wSZuw1CRLKASnSKsls4mRmdt4m894CvEqjwgbKBh7WrsgTWJE9TZ05UWCoHsRWKyI4f7iMJ1fi_XV0vQdnPReG2ird2t-t6e1q7R4ZuW9ztJzPR5-ogR6jL0NIg0EaEolPiISi_M23TZsH1aRe35usHXGm6_HClCWpTD9qhU5bmPnP4rQFPg_vcVLZEp-2CtHFQzhyCJKNu4s8hj1TDuDBeFY7FQ0zgJPzDX0NTV3-No_gR9tmc4O7fcNmqmF3805ioyrZslpR4xCaV5YhKmStluqv7z8bNqtJg3rGWlrwW0bHpxGJnTXVfMFyVWucjk8xXB3qCq-Y2cX6q2nohbbfwPGxmsdwdXH--WziuXMYvFxEfOXFGlFEwYVJcDOYZ77wtS3yPNWFjzmruEbvqiQLFEenZRbDgqtAFAbBmLJJkoYnsF9WpXkCTPtcK2LnZmkhEmGzIkbEJnIaFIK9Ifi9A2TuRMrprIyF7LvRbiU5TZLTJA8lOm0Ir__MWXYSHTuto96v8q9Ak1hDds572QeBxAykv1VUadBf0ie9o4DHPN1lgytrmMZZuMMmDRH-4S0YQriJMlnSoVKNJB1w98uevF_XslzQgEnbSNzkRmH29D8_2TM4pHtd49xz2F_Va_MCkdZKn7apdAoH43fTySWN049fpr8BrOIvQQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcqA9IChUpLwWCU7IxI_1C4lDBa1S-rjQSr0tu_Y6pErtyJsocEEc-if6O_hH_BJm7DUJEsoBqVIkS_GsvfbMzswm33wD8DIJ88KXhe9g7AodjhHZUYTMCX1N8SAqlKQC5-OTaHDGP56H52vws6uFIVil9f2tT2-8tf2mb99mfzIa9T8RgB6tL8WUBo00SC2y8lB_m-O-zbw7-IBKfuX7-3un7weObS3gZDx0p06kMDDmLtcx7m-y1OOeKvIsS1TuoRlKV-GEZZz60sV5pAU-qSt9nmvML2QRx0mA170Ftzm6C2qb8Ob7AldCQbAjFKfp2UqdFlSGPoK4Ob2wYVZt8tp_RsOlbHdjjoPKptJqKfLt34O7NmVlu-1buQ9rutyCzd1hbWk79BZs7y3q5VDUOgzzAK4aXM-XamY0G0rDLkctp0dVskk1JaQSilcFwzSUNeStv35cGzasifR6yJo65LeM-rVR1Twz1WjMMlkrHI6nGLqjusIZs2I8-6oNXWj5BrYAzDyEsxvRzjasl1WpHwFTnqsklQOnSc5jXqR5hCkiz-ggMbvsgdcpQGSWFZ2ac4xFB3-7EKQ0QUoTbiBQaT14_WfMpOUEWSkddnoVf1m2wKC1ctyLzggELnn6H0eWGvUlPCJY8t3ITVbJoCsPkigNVsgkAeab-PF7ECysTJTUxcoIIh63PyWK-awW5ZgO6CWMwF11GKQ7__lkz-HO4PT4SBwdnBw-hg0606L2nsD6tJ7pp5jmTdWzZlkx-HzT6_g3vE9qYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greenhouse+gas+mitigation+potential+of+the+world%E2%80%99s+grazing+lands%3A+Modeling+soil+carbon+and+nitrogen+fluxes+of+mitigation+practices&rft.jtitle=Agriculture%2C+ecosystems+%26+environment&rft.au=Henderson%2C+Benjamin+B.&rft.au=Gerber%2C+Pierre+J.&rft.au=Hilinski%2C+Tom+E.&rft.au=Falcucci%2C+Alessandra&rft.date=2015-09-01&rft.issn=0167-8809&rft.volume=207&rft.spage=91&rft.epage=100&rft_id=info:doi/10.1016%2Fj.agee.2015.03.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agee_2015_03_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8809&client=summon