High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses
Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replicat...
Saved in:
Published in | Journal of virology Vol. 93; no. 12 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs
in vitro
. Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.
Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing
Renilla
luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs
in vitro
. We screened 56 hits from the HTS data and validated 36 compounds
in vitro
using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs
in vitro
at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of
in vivo
real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection.
IMPORTANCE
Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs
in vitro
. Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future. |
---|---|
AbstractList | Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs
in vitro
. Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.
Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing
Renilla
luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs
in vitro
. We screened 56 hits from the HTS data and validated 36 compounds
in vitro
using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs
in vitro
at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of
in vivo
real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection.
IMPORTANCE
Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs
in vitro
. Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future. Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing Renilla luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs in vitro We screened 56 hits from the HTS data and validated 36 compounds in vitro using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs in vitro at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of in vivo real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection.IMPORTANCE Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing Renilla luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs in vitro We screened 56 hits from the HTS data and validated 36 compounds in vitro using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs in vitro at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of in vivo real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection.IMPORTANCE Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future. Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs We screened 56 hits from the HTS data and validated 36 compounds using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection. Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future. |
Author | Zhu, Na Shen, Liang Wang, Chunhua Tan, Wenjie Ye, Fei Wang, Wenling Deng, Yao Huang, Baoying Niu, Junwei Cen, Shan Wang, Huijuan |
Author_xml | – sequence: 1 givenname: Liang surname: Shen fullname: Shen, Liang organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China – sequence: 2 givenname: Junwei surname: Niu fullname: Niu, Junwei organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China – sequence: 3 givenname: Chunhua surname: Wang fullname: Wang, Chunhua organization: National Institutes for Food and Drug Control, Beijing, China – sequence: 4 givenname: Baoying surname: Huang fullname: Huang, Baoying organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China – sequence: 5 givenname: Wenling surname: Wang fullname: Wang, Wenling organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China – sequence: 6 givenname: Na surname: Zhu fullname: Zhu, Na organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China – sequence: 7 givenname: Yao surname: Deng fullname: Deng, Yao organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China – sequence: 8 givenname: Huijuan surname: Wang fullname: Wang, Huijuan organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China – sequence: 9 givenname: Fei surname: Ye fullname: Ye, Fei organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China – sequence: 10 givenname: Shan surname: Cen fullname: Cen, Shan organization: Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China – sequence: 11 givenname: Wenjie surname: Tan fullname: Tan, Wenjie organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30918074$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUFrGzEQhUVJqR23t57DHnPIpqPdlVa6FBLTJA6BFmJKb0K7K3lV1pIjaQP995HtxCShp4GZb94M7x2jI-usQugrhnOMC_bt9vfiHACKMsf8A5pi4CwnBFdHaJq6RU5K9meCjkP4C4Crilaf0KQEjhnU1RTJG7Pq82Xv3bjqN2PM7luvlDV2lUnbZYtO2Wi0aWU0zmZOZ79cTK3s0jvZ5fcb1UY_rrOF7U1jovNhy8ydd1Y-Gj8GFT6jj1oOQX15rjO0vPqxnN_kdz-vF_OLu7ytCMScVoqQBpgm0PCmLjWlHeg0IiAL3WGKJeeEAVDN66ohmhWsZBoTBRIkLWfo-152MzZr1bXpSS8HsfFmLf0_4aQRbyfW9GLlHgWluKwpSQKnzwLePYwqRLE2oVXDIK1yYxAF5sm0guA6oSevbx2OvNiagLM90HoXglf6gGAQ29RESk3sUhOYJ7x4h7cm7hxPn5rh_0tPHcObag |
CitedBy_id | crossref_primary_10_1002_rmv_2149 crossref_primary_10_1016_j_joim_2020_02_005 crossref_primary_10_3389_fcimb_2022_794264 crossref_primary_10_3389_fmicb_2021_675419 crossref_primary_10_3390_v14071381 crossref_primary_10_2174_1566524023666230417112543 crossref_primary_10_1016_j_antiviral_2022_105476 crossref_primary_10_1016_j_biopha_2020_111035 crossref_primary_10_2174_1573401316999200901181217 crossref_primary_10_3390_ph13120428 crossref_primary_10_3390_ph13030051 crossref_primary_10_3390_plants9060800 crossref_primary_10_12677_ACM_2022_12111495 crossref_primary_10_2174_2772574X12666211122113318 crossref_primary_10_3390_v14081734 crossref_primary_10_1007_s12250_021_00438_z crossref_primary_10_1186_s12967_020_02480_z crossref_primary_10_1002_advs_202203499 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1016_j_bioorg_2022_106185 crossref_primary_10_3390_v12010014 crossref_primary_10_1002_ptr_7442 crossref_primary_10_2478_jvetres_2021_0029 crossref_primary_10_1016_j_antiviral_2021_105183 crossref_primary_10_1155_2021_6632623 crossref_primary_10_3390_v15020578 crossref_primary_10_21673_anadoluklin_724210 crossref_primary_10_3390_v12040442 crossref_primary_10_3389_fphar_2020_01333 crossref_primary_10_1080_07391102_2023_2220040 crossref_primary_10_1080_20002297_2022_2030094 crossref_primary_10_3389_fpls_2020_568890 crossref_primary_10_1016_j_virs_2023_06_007 crossref_primary_10_1007_s00210_023_02610_6 crossref_primary_10_1016_j_bmcl_2023_129211 crossref_primary_10_3390_bios12060400 crossref_primary_10_1016_j_apsb_2021_07_026 crossref_primary_10_1039_D0CS01492C crossref_primary_10_1080_07391102_2021_1946715 crossref_primary_10_1016_j_arabjc_2020_08_004 crossref_primary_10_1128_spectrum_01679_23 crossref_primary_10_1080_22221751_2020_1720527 crossref_primary_10_1002_slct_202103301 crossref_primary_10_3389_fcimb_2022_845368 crossref_primary_10_1016_j_lfs_2020_118096 crossref_primary_10_4062_biomolther_2019_202 crossref_primary_10_31083_j_rcm2202043 crossref_primary_10_3390_microorganisms10081631 crossref_primary_10_1007_s11227_022_05014_0 crossref_primary_10_3390_microorganisms9030521 crossref_primary_10_1002_asia_202101215 crossref_primary_10_1016_j_fct_2021_112333 crossref_primary_10_3390_ijms222111739 crossref_primary_10_1021_acsptsci_2c00045 crossref_primary_10_1093_bib_bbab211 crossref_primary_10_1016_j_ejphar_2021_173977 crossref_primary_10_1016_j_phymed_2020_153311 crossref_primary_10_1007_s00284_023_03366_1 crossref_primary_10_1016_j_phymed_2024_155576 crossref_primary_10_1371_journal_ppat_1009439 crossref_primary_10_2217_fmb_2021_0019 crossref_primary_10_1016_j_antiviral_2024_105955 crossref_primary_10_1016_j_jaut_2024_103302 crossref_primary_10_1016_j_bj_2020_08_006 crossref_primary_10_1080_07391102_2021_1902395 crossref_primary_10_1177_1934578X221126303 crossref_primary_10_3389_fmicb_2022_862205 crossref_primary_10_1001_jamacardio_2020_2159 crossref_primary_10_1002_med_21763 crossref_primary_10_1016_j_ejmcr_2024_100173 crossref_primary_10_1007_s42451_020_00205_6 crossref_primary_10_1016_j_drudis_2020_05_002 crossref_primary_10_3389_fmicb_2020_01840 crossref_primary_10_3390_ijms25147930 crossref_primary_10_1007_s11094_021_02540_8 crossref_primary_10_2174_1573406418666220829144746 crossref_primary_10_3390_v11100964 crossref_primary_10_1080_17460441_2023_2192921 crossref_primary_10_3389_fphar_2021_652335 crossref_primary_10_3390_microorganisms9040780 crossref_primary_10_1016_j_intimp_2020_107245 crossref_primary_10_1038_s41597_021_00848_4 crossref_primary_10_3390_biomedicines10123249 crossref_primary_10_3390_ijms222312638 crossref_primary_10_3851_IMP3368 crossref_primary_10_3389_fmicb_2020_01858 crossref_primary_10_1002_jmv_26264 crossref_primary_10_1016_j_bj_2022_03_011 crossref_primary_10_1016_j_ygeno_2020_07_033 crossref_primary_10_1016_j_ejmech_2025_117422 crossref_primary_10_1016_j_jafr_2023_100632 crossref_primary_10_1186_s12866_023_02884_z crossref_primary_10_18231_j_ijmmtd_2022_022 crossref_primary_10_3390_v14050861 crossref_primary_10_3390_nano13172455 crossref_primary_10_3906_biy_2005_114 crossref_primary_10_1080_07391102_2023_2172456 crossref_primary_10_1016_j_jhin_2021_04_004 crossref_primary_10_1080_19390211_2021_2006387 crossref_primary_10_1111_1348_0421_12828 crossref_primary_10_1186_s43141_021_00209_z crossref_primary_10_2174_1389450122666211005115313 crossref_primary_10_1002_jmv_25733 crossref_primary_10_1371_journal_ppat_1011041 crossref_primary_10_1021_acs_jmedchem_0c00626 crossref_primary_10_1016_j_intimp_2020_107228 crossref_primary_10_22159_ijpps_2024v16i9_51681 crossref_primary_10_3390_molecules25081876 crossref_primary_10_1111_idh_12652 crossref_primary_10_25100_re_v31i1_12669 crossref_primary_10_1017_erm_2022_11 crossref_primary_10_1007_s11356_022_19770_2 crossref_primary_10_1016_j_bmc_2020_115757 crossref_primary_10_1177_0022034520967933 crossref_primary_10_1016_j_antiviral_2020_104786 crossref_primary_10_22207_JPAM_17_3_38 crossref_primary_10_3390_biomedicines11102619 crossref_primary_10_1515_znc_2023_0075 crossref_primary_10_3390_pathogens12060823 crossref_primary_10_4103_jacm_jacm_18_22 crossref_primary_10_1016_j_drudis_2024_104107 crossref_primary_10_1016_j_isci_2024_110019 crossref_primary_10_1002_prp2_691 crossref_primary_10_1007_s00784_023_05078_z crossref_primary_10_1016_j_bj_2020_05_003 crossref_primary_10_1038_s41420_021_00654_2 crossref_primary_10_3390_pathogens9060426 crossref_primary_10_3390_v13091866 crossref_primary_10_3389_fcell_2020_580202 crossref_primary_10_2174_1389557521666210805113231 crossref_primary_10_1007_s11095_020_02799_8 crossref_primary_10_1080_14656566_2020_1790526 crossref_primary_10_1016_j_csbj_2020_11_011 crossref_primary_10_1002_ptr_6873 crossref_primary_10_3389_fddsv_2022_1065231 crossref_primary_10_1038_s41586_020_2332_7 crossref_primary_10_3389_frai_2020_00065 crossref_primary_10_3389_fcell_2020_00589 crossref_primary_10_3390_ph14101054 crossref_primary_10_1016_j_bsheal_2024_11_006 crossref_primary_10_1097_TXD_0000000000001292 crossref_primary_10_1016_j_antiviral_2021_105019 crossref_primary_10_1007_s11101_023_09855_2 crossref_primary_10_1039_D0RA06038K crossref_primary_10_1002_ptr_7039 crossref_primary_10_1016_j_bcp_2022_115279 crossref_primary_10_1128_AAC_00440_20 crossref_primary_10_1016_j_ejmcr_2022_100079 crossref_primary_10_3389_fcimb_2022_929430 crossref_primary_10_3892_ijmm_2020_4608 crossref_primary_10_1002_ptr_7833 crossref_primary_10_2174_0126667975292612240219084431 crossref_primary_10_1002_jcp_29785 crossref_primary_10_3390_plants11243447 crossref_primary_10_3390_molecules26102917 crossref_primary_10_3390_molecules27175621 crossref_primary_10_1007_s11655_021_3504_5 crossref_primary_10_1002_jcp_30998 crossref_primary_10_1016_j_phymed_2020_153440 crossref_primary_10_1038_s41598_022_18367_6 crossref_primary_10_1016_j_jtcme_2020_05_003 crossref_primary_10_1016_j_virusres_2024_199322 crossref_primary_10_3389_fphar_2020_586993 crossref_primary_10_3390_biom13010017 crossref_primary_10_1002_ddr_21961 crossref_primary_10_1016_j_meegid_2021_104944 crossref_primary_10_1016_j_phymed_2022_154480 crossref_primary_10_3390_molecules26061775 crossref_primary_10_1128_AAC_00398_21 crossref_primary_10_1007_s00784_020_03413_2 crossref_primary_10_3390_medicina57050435 crossref_primary_10_1016_j_sajb_2021_05_023 crossref_primary_10_3390_bios15010018 crossref_primary_10_1016_j_joim_2022_08_001 crossref_primary_10_1016_j_hlife_2023_12_001 crossref_primary_10_1007_s00705_022_05368_z crossref_primary_10_1016_j_bj_2020_12_002 crossref_primary_10_1080_0886022X_2021_1876730 crossref_primary_10_15252_msb_202110239 crossref_primary_10_1177_00220345211029269 crossref_primary_10_1016_j_biochi_2020_08_006 crossref_primary_10_2174_1381612826666201118103416 crossref_primary_10_1016_j_drudis_2021_08_002 crossref_primary_10_1016_j_sajb_2022_03_004 crossref_primary_10_3389_fphar_2020_01013 crossref_primary_10_1111_jcpe_13746 crossref_primary_10_3390_molecules26020448 crossref_primary_10_1021_acsomega_4c03023 crossref_primary_10_1016_j_cscee_2021_100105 crossref_primary_10_3389_fphar_2021_702472 crossref_primary_10_3390_ijms21207465 crossref_primary_10_1016_j_micpath_2021_104933 crossref_primary_10_1021_acsinfecdis_1c00053 crossref_primary_10_3389_fmicb_2021_751909 crossref_primary_10_3389_fphar_2022_970494 crossref_primary_10_3390_ijtm2030030 crossref_primary_10_3390_ijms231911250 crossref_primary_10_1080_15384101_2022_2100575 crossref_primary_10_1002_ptr_6700 crossref_primary_10_1111_ctr_14330 crossref_primary_10_1111_1346_8138_16182 crossref_primary_10_2174_1568026621666211012110819 crossref_primary_10_1186_s43556_020_00018_9 crossref_primary_10_34133_adi_0008 crossref_primary_10_1073_pnas_2021579118 crossref_primary_10_1016_j_jphs_2023_02_004 crossref_primary_10_1016_j_ijid_2020_02_018 crossref_primary_10_1371_journal_pone_0297291 crossref_primary_10_1007_s00392_020_01722_w crossref_primary_10_3390_ijms232415917 crossref_primary_10_1016_j_bsheal_2025_01_003 |
Cites_doi | 10.1099/vir.0.061911-0 10.1016/0031-9422(83)83051-9 10.1126/scitranslmed.3008140 10.1128/CMR.00102-14 10.1056/NEJMoa030685 10.1016/0168-1702(84)90070-4 10.1093/infdis/jiv392 10.1099/jmm.0.000565 10.1016/S1473-3099(15)70090-3 10.1128/CMR.00023-07 10.1016/j.bmcl.2017.11.021 10.1128/AAC.00814-16 10.2807/ese.17.49.20334-en 10.1016/j.bbrc.2004.04.083 10.1371/journal.pone.0038638 10.1021/np50089a003 10.1128/AAC.03011-14 10.2174/138955710791112604 10.1056/NEJMoa1211721 10.1016/j.ebiom.2015.08.031 10.1001/jama.290.24.3222 10.1016/j.antiviral.2017.06.006 10.3390/molecules200611474 10.1542/peds.113.1.e73 10.1073/pnas.1222552110 10.1093/jac/dkv085 10.1016/j.jinf.2013.09.029 10.1001/jama.289.21.JOC30885 10.1093/infdis/jiy311 10.4172/jaa.1000009 10.1128/AAC.02274-15 10.1016/j.antiviral.2017.12.010 10.1002/j.1460-2075.1982.tb01346.x 10.1038/nrd.2015.37 10.1038/nrmicro.2016.81 10.1016/j.bmc.2008.10.061 10.1016/j.jmb.2006.09.074 10.1371/journal.ppat.1007314 10.1371/journal.pone.0071508 10.1038/srep01686 10.1128/AAC.01509-08 10.1111/irv.12035 10.1128/JVI.78.16.8824-8834.2004 10.1006/viro.1995.1123 10.1016/j.micpath.2017.12.037 10.1371/journal.ppat.1000896 10.3181/0903-MR-94 10.1128/mBio.00221-18 10.1093/infdis/jiv325 10.1016/j.antiviral.2005.02.007 10.1111/j.1755-148X.2012.01036.x 10.1016/j.antiviral.2007.12.009 10.1016/j.tim.2016.03.003 10.1056/NEJMc1509458 10.3892/mmr.2016.5594 10.1371/journal.ppat.1005717 10.1016/S0042-6822(03)00323-4 10.1186/1475-2875-12-359 10.1126/scitranslmed.aal3653 10.1016/j.bmc.2010.05.023 10.1016/S0140-6736(15)60454-8 10.1128/AAC.03036-14 10.3390/v10060283 10.1186/1743-422X-8-483 10.1371/journal.ppat.1007188 10.1038/s41421-018-0034-1 |
ContentType | Journal Article |
Copyright | Copyright © 2019 American Society for Microbiology. Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2019 American Society for Microbiology. – notice: Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1128/JVI.00023-19 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Broad-Spectrum Inhibitors of CoV Infection |
EISSN | 1098-5514 |
ExternalDocumentID | PMC6613765 30918074 10_1128_JVI_00023_19 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2016YFC1200200 – fundername: ; grantid: 2016YFD0500300 – fundername: ; grantid: 2016ZX10004001-003 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c450t-64e55b08f50b9b73f66d0f45050a2fd161a9958006f974b5f82838f15e0a0a63 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 13:39:12 EDT 2025 Fri Jul 11 09:38:35 EDT 2025 Thu Apr 03 06:59:37 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 Tue Jul 01 01:03:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | bioluminescence imaging Coronaviruses inhibitor mice broad-spectrum high-throughput screening |
Language | English |
License | Copyright © 2019 American Society for Microbiology. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-64e55b08f50b9b73f66d0f45050a2fd161a9958006f974b5f82838f15e0a0a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Shen L, Niu J, Wang C, Huang B, Wang W, Zhu N, Deng Y, Wang H, Ye F, Cen S, Tan W. 2019. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J Virol 93:e00023-19. https://doi.org/10.1128/JVI.00023-19. L.S. and J.N. contributed equally to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6613765 |
PMID | 30918074 |
PQID | 2199182517 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6613765 proquest_miscellaneous_2199182517 pubmed_primary_30918074 crossref_primary_10_1128_JVI_00023_19 crossref_citationtrail_10_1128_JVI_00023_19 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-15 |
PublicationDateYYYYMMDD | 2019-06-15 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2019 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_35_2 doi: 10.1099/vir.0.061911-0 – ident: e_1_3_3_20_2 doi: 10.1016/0031-9422(83)83051-9 – ident: e_1_3_3_43_2 doi: 10.1126/scitranslmed.3008140 – ident: e_1_3_3_32_2 doi: 10.1128/CMR.00102-14 – ident: e_1_3_3_11_2 doi: 10.1056/NEJMoa030685 – ident: e_1_3_3_62_2 doi: 10.1016/0168-1702(84)90070-4 – ident: e_1_3_3_61_2 doi: 10.1093/infdis/jiv392 – ident: e_1_3_3_39_2 doi: 10.1099/jmm.0.000565 – ident: e_1_3_3_9_2 doi: 10.1016/S1473-3099(15)70090-3 – ident: e_1_3_3_31_2 doi: 10.1128/CMR.00023-07 – ident: e_1_3_3_22_2 doi: 10.1016/j.bmcl.2017.11.021 – ident: e_1_3_3_19_2 doi: 10.1128/AAC.00814-16 – ident: e_1_3_3_66_2 doi: 10.2807/ese.17.49.20334-en – ident: e_1_3_3_36_2 doi: 10.1016/j.bbrc.2004.04.083 – ident: e_1_3_3_65_2 doi: 10.1371/journal.pone.0038638 – ident: e_1_3_3_49_2 doi: 10.1021/np50089a003 – ident: e_1_3_3_15_2 doi: 10.1128/AAC.03011-14 – ident: e_1_3_3_44_2 doi: 10.2174/138955710791112604 – ident: e_1_3_3_4_2 doi: 10.1056/NEJMoa1211721 – ident: e_1_3_3_67_2 doi: 10.1016/j.ebiom.2015.08.031 – ident: e_1_3_3_10_2 doi: 10.1001/jama.290.24.3222 – ident: e_1_3_3_57_2 doi: 10.1016/j.antiviral.2017.06.006 – ident: e_1_3_3_56_2 doi: 10.3390/molecules200611474 – ident: e_1_3_3_30_2 doi: 10.1542/peds.113.1.e73 – ident: e_1_3_3_48_2 doi: 10.1073/pnas.1222552110 – ident: e_1_3_3_12_2 doi: 10.1093/jac/dkv085 – ident: e_1_3_3_37_2 doi: 10.1016/j.jinf.2013.09.029 – ident: e_1_3_3_13_2 doi: 10.1001/jama.289.21.JOC30885 – ident: e_1_3_3_42_2 doi: 10.1093/infdis/jiy311 – ident: e_1_3_3_55_2 doi: 10.4172/jaa.1000009 – ident: e_1_3_3_52_2 doi: 10.1128/AAC.02274-15 – ident: e_1_3_3_17_2 doi: 10.1016/j.antiviral.2017.12.010 – ident: e_1_3_3_63_2 doi: 10.1002/j.1460-2075.1982.tb01346.x – ident: e_1_3_3_14_2 doi: 10.1038/nrd.2015.37 – ident: e_1_3_3_8_2 doi: 10.1038/nrmicro.2016.81 – ident: e_1_3_3_46_2 doi: 10.1016/j.bmc.2008.10.061 – ident: e_1_3_3_6_2 doi: 10.1016/j.jmb.2006.09.074 – ident: e_1_3_3_2_2 doi: 10.1371/journal.ppat.1007314 – ident: e_1_3_3_25_2 doi: 10.1371/journal.pone.0071508 – ident: e_1_3_3_34_2 doi: 10.1038/srep01686 – ident: e_1_3_3_26_2 doi: 10.1128/AAC.01509-08 – ident: e_1_3_3_53_2 doi: 10.1111/irv.12035 – ident: e_1_3_3_28_2 doi: 10.1128/JVI.78.16.8824-8834.2004 – ident: e_1_3_3_64_2 doi: 10.1006/viro.1995.1123 – ident: e_1_3_3_23_2 doi: 10.1016/j.micpath.2017.12.037 – ident: e_1_3_3_5_2 doi: 10.1371/journal.ppat.1000896 – ident: e_1_3_3_3_2 doi: 10.3181/0903-MR-94 – ident: e_1_3_3_40_2 doi: 10.1128/mBio.00221-18 – ident: e_1_3_3_41_2 doi: 10.1093/infdis/jiv325 – ident: e_1_3_3_50_2 doi: 10.1016/j.antiviral.2005.02.007 – ident: e_1_3_3_21_2 doi: 10.1111/j.1755-148X.2012.01036.x – ident: e_1_3_3_47_2 doi: 10.1016/j.antiviral.2007.12.009 – ident: e_1_3_3_7_2 doi: 10.1016/j.tim.2016.03.003 – ident: e_1_3_3_29_2 doi: 10.1056/NEJMc1509458 – ident: e_1_3_3_24_2 doi: 10.3892/mmr.2016.5594 – ident: e_1_3_3_59_2 doi: 10.1371/journal.ppat.1005717 – ident: e_1_3_3_27_2 doi: 10.1016/S0042-6822(03)00323-4 – ident: e_1_3_3_54_2 doi: 10.1186/1475-2875-12-359 – ident: e_1_3_3_18_2 doi: 10.1126/scitranslmed.aal3653 – ident: e_1_3_3_45_2 doi: 10.1016/j.bmc.2010.05.023 – ident: e_1_3_3_33_2 doi: 10.1016/S0140-6736(15)60454-8 – ident: e_1_3_3_16_2 doi: 10.1128/AAC.03036-14 – ident: e_1_3_3_38_2 doi: 10.3390/v10060283 – ident: e_1_3_3_51_2 doi: 10.1186/1743-422X-8-483 – ident: e_1_3_3_58_2 doi: 10.1371/journal.ppat.1007188 – ident: e_1_3_3_60_2 doi: 10.1038/s41421-018-0034-1 |
SSID | ssj0014464 |
Score | 2.6645348 |
Snippet | Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on... Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Vaccines and Antiviral Agents |
Title | High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30918074 https://www.proquest.com/docview/2199182517 https://pubmed.ncbi.nlm.nih.gov/PMC6613765 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4s3yUpDghFyyjp3HEapWpVqVAynaW2QnNhsJslWbgMqvZ8Z2kk27SIVLtHIsb-T5PJ6x55sh5E2ZRHrOE0kN2NaUC6WpkpLRTAnOWMnSqrLZPo_jwxN-tBTLsUqnZZe0arf8vZVX8j9ShTaQK7Jk_0Gyw6DQAL9BvvAECcPzWjLGIA2au0o7p10LCxWjaHraoePgGn8o54LdWrz6B9dbVhQrz7dn3Q9QEata1bbqDsZmYEoD-bM-6859eOFV0xW5cZun8V88xWMBWPs23nR0jvbR_NL1eG7vdMveqmtWnRxB5ds_yvVFv5n6swikP8XUsTG9-sTspGiDud1lS5vXua4qYo8ttl2XM-QnHH39tGuz8lCvWicps48_Fwcni0WR7y_zm-QWA18h6o9s_FUS-Ls2tKD_jJ79wNL3m2NP7ZIrzsblmNkNIyS_R-56EQQfHBTukxu6eUBuu3qiFw-JvASIYABEAIAIpoAI1iZwgAimgAhGQGCfCSAekfxgP987pL6GBi25CFsacy2EClMjQpWpJDJxXIUGXolQMlOBvS-zTIDXEBvwLJUw4IFHqZkLHcpQxtFjstOsG_2UBMIwIzhXsJ4Nl1miynQuqkhrzKkYazMj7_oJLEqfXx7LnHwvrJ_J0gKmu7DTXcyzGXk79D51eVX-0u91L4sCFB_eZslGr7vzgmHQHhKvkxl54mQzjBSBFYxZnmYkmUht6IBJ1advmnplk6uDvQp7rnh2jf99Tu6Mi-AF2QER6ZdgorbqlYXgHzB1lYw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Throughput+Screening+and+Identification+of+Potent+Broad-Spectrum+Inhibitors+of+Coronaviruses&rft.jtitle=Journal+of+virology&rft.au=Shen%2C+Liang&rft.au=Niu%2C+Junwei&rft.au=Wang%2C+Chunhua&rft.au=Huang%2C+Baoying&rft.date=2019-06-15&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=93&rft.issue=12&rft_id=info:doi/10.1128%2FJVI.00023-19&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |