High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses

Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replicat...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 93; no. 12
Main Authors Shen, Liang, Niu, Junwei, Wang, Chunhua, Huang, Baoying, Wang, Wenling, Zhu, Na, Deng, Yao, Wang, Huijuan, Ye, Fei, Cen, Shan, Tan, Wenjie
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 15.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro . Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future. Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing Renilla luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs in vitro . We screened 56 hits from the HTS data and validated 36 compounds in vitro using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs in vitro at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of in vivo real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection. IMPORTANCE Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro . Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.
AbstractList Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro . Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future. Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing Renilla luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs in vitro . We screened 56 hits from the HTS data and validated 36 compounds in vitro using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs in vitro at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of in vivo real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection. IMPORTANCE Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro . Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.
Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing Renilla luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs in vitro We screened 56 hits from the HTS data and validated 36 compounds in vitro using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs in vitro at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of in vivo real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection.IMPORTANCE Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing Renilla luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs in vitro We screened 56 hits from the HTS data and validated 36 compounds in vitro using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs in vitro at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of in vivo real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection.IMPORTANCE Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.
Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs We screened 56 hits from the HTS data and validated 36 compounds using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection. Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.
Author Zhu, Na
Shen, Liang
Wang, Chunhua
Tan, Wenjie
Ye, Fei
Wang, Wenling
Deng, Yao
Huang, Baoying
Niu, Junwei
Cen, Shan
Wang, Huijuan
Author_xml – sequence: 1
  givenname: Liang
  surname: Shen
  fullname: Shen, Liang
  organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
– sequence: 2
  givenname: Junwei
  surname: Niu
  fullname: Niu, Junwei
  organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
– sequence: 3
  givenname: Chunhua
  surname: Wang
  fullname: Wang, Chunhua
  organization: National Institutes for Food and Drug Control, Beijing, China
– sequence: 4
  givenname: Baoying
  surname: Huang
  fullname: Huang, Baoying
  organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
– sequence: 5
  givenname: Wenling
  surname: Wang
  fullname: Wang, Wenling
  organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
– sequence: 6
  givenname: Na
  surname: Zhu
  fullname: Zhu, Na
  organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
– sequence: 7
  givenname: Yao
  surname: Deng
  fullname: Deng, Yao
  organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
– sequence: 8
  givenname: Huijuan
  surname: Wang
  fullname: Wang, Huijuan
  organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
– sequence: 9
  givenname: Fei
  surname: Ye
  fullname: Ye, Fei
  organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
– sequence: 10
  givenname: Shan
  surname: Cen
  fullname: Cen, Shan
  organization: Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
– sequence: 11
  givenname: Wenjie
  surname: Tan
  fullname: Tan, Wenjie
  organization: NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30918074$$D View this record in MEDLINE/PubMed
BookMark eNptkUFrGzEQhUVJqR23t57DHnPIpqPdlVa6FBLTJA6BFmJKb0K7K3lV1pIjaQP995HtxCShp4GZb94M7x2jI-usQugrhnOMC_bt9vfiHACKMsf8A5pi4CwnBFdHaJq6RU5K9meCjkP4C4Crilaf0KQEjhnU1RTJG7Pq82Xv3bjqN2PM7luvlDV2lUnbZYtO2Wi0aWU0zmZOZ79cTK3s0jvZ5fcb1UY_rrOF7U1jovNhy8ydd1Y-Gj8GFT6jj1oOQX15rjO0vPqxnN_kdz-vF_OLu7ytCMScVoqQBpgm0PCmLjWlHeg0IiAL3WGKJeeEAVDN66ohmhWsZBoTBRIkLWfo-152MzZr1bXpSS8HsfFmLf0_4aQRbyfW9GLlHgWluKwpSQKnzwLePYwqRLE2oVXDIK1yYxAF5sm0guA6oSevbx2OvNiagLM90HoXglf6gGAQ29RESk3sUhOYJ7x4h7cm7hxPn5rh_0tPHcObag
CitedBy_id crossref_primary_10_1002_rmv_2149
crossref_primary_10_1016_j_joim_2020_02_005
crossref_primary_10_3389_fcimb_2022_794264
crossref_primary_10_3389_fmicb_2021_675419
crossref_primary_10_3390_v14071381
crossref_primary_10_2174_1566524023666230417112543
crossref_primary_10_1016_j_antiviral_2022_105476
crossref_primary_10_1016_j_biopha_2020_111035
crossref_primary_10_2174_1573401316999200901181217
crossref_primary_10_3390_ph13120428
crossref_primary_10_3390_ph13030051
crossref_primary_10_3390_plants9060800
crossref_primary_10_12677_ACM_2022_12111495
crossref_primary_10_2174_2772574X12666211122113318
crossref_primary_10_3390_v14081734
crossref_primary_10_1007_s12250_021_00438_z
crossref_primary_10_1186_s12967_020_02480_z
crossref_primary_10_1002_advs_202203499
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_1016_j_bioorg_2022_106185
crossref_primary_10_3390_v12010014
crossref_primary_10_1002_ptr_7442
crossref_primary_10_2478_jvetres_2021_0029
crossref_primary_10_1016_j_antiviral_2021_105183
crossref_primary_10_1155_2021_6632623
crossref_primary_10_3390_v15020578
crossref_primary_10_21673_anadoluklin_724210
crossref_primary_10_3390_v12040442
crossref_primary_10_3389_fphar_2020_01333
crossref_primary_10_1080_07391102_2023_2220040
crossref_primary_10_1080_20002297_2022_2030094
crossref_primary_10_3389_fpls_2020_568890
crossref_primary_10_1016_j_virs_2023_06_007
crossref_primary_10_1007_s00210_023_02610_6
crossref_primary_10_1016_j_bmcl_2023_129211
crossref_primary_10_3390_bios12060400
crossref_primary_10_1016_j_apsb_2021_07_026
crossref_primary_10_1039_D0CS01492C
crossref_primary_10_1080_07391102_2021_1946715
crossref_primary_10_1016_j_arabjc_2020_08_004
crossref_primary_10_1128_spectrum_01679_23
crossref_primary_10_1080_22221751_2020_1720527
crossref_primary_10_1002_slct_202103301
crossref_primary_10_3389_fcimb_2022_845368
crossref_primary_10_1016_j_lfs_2020_118096
crossref_primary_10_4062_biomolther_2019_202
crossref_primary_10_31083_j_rcm2202043
crossref_primary_10_3390_microorganisms10081631
crossref_primary_10_1007_s11227_022_05014_0
crossref_primary_10_3390_microorganisms9030521
crossref_primary_10_1002_asia_202101215
crossref_primary_10_1016_j_fct_2021_112333
crossref_primary_10_3390_ijms222111739
crossref_primary_10_1021_acsptsci_2c00045
crossref_primary_10_1093_bib_bbab211
crossref_primary_10_1016_j_ejphar_2021_173977
crossref_primary_10_1016_j_phymed_2020_153311
crossref_primary_10_1007_s00284_023_03366_1
crossref_primary_10_1016_j_phymed_2024_155576
crossref_primary_10_1371_journal_ppat_1009439
crossref_primary_10_2217_fmb_2021_0019
crossref_primary_10_1016_j_antiviral_2024_105955
crossref_primary_10_1016_j_jaut_2024_103302
crossref_primary_10_1016_j_bj_2020_08_006
crossref_primary_10_1080_07391102_2021_1902395
crossref_primary_10_1177_1934578X221126303
crossref_primary_10_3389_fmicb_2022_862205
crossref_primary_10_1001_jamacardio_2020_2159
crossref_primary_10_1002_med_21763
crossref_primary_10_1016_j_ejmcr_2024_100173
crossref_primary_10_1007_s42451_020_00205_6
crossref_primary_10_1016_j_drudis_2020_05_002
crossref_primary_10_3389_fmicb_2020_01840
crossref_primary_10_3390_ijms25147930
crossref_primary_10_1007_s11094_021_02540_8
crossref_primary_10_2174_1573406418666220829144746
crossref_primary_10_3390_v11100964
crossref_primary_10_1080_17460441_2023_2192921
crossref_primary_10_3389_fphar_2021_652335
crossref_primary_10_3390_microorganisms9040780
crossref_primary_10_1016_j_intimp_2020_107245
crossref_primary_10_1038_s41597_021_00848_4
crossref_primary_10_3390_biomedicines10123249
crossref_primary_10_3390_ijms222312638
crossref_primary_10_3851_IMP3368
crossref_primary_10_3389_fmicb_2020_01858
crossref_primary_10_1002_jmv_26264
crossref_primary_10_1016_j_bj_2022_03_011
crossref_primary_10_1016_j_ygeno_2020_07_033
crossref_primary_10_1016_j_ejmech_2025_117422
crossref_primary_10_1016_j_jafr_2023_100632
crossref_primary_10_1186_s12866_023_02884_z
crossref_primary_10_18231_j_ijmmtd_2022_022
crossref_primary_10_3390_v14050861
crossref_primary_10_3390_nano13172455
crossref_primary_10_3906_biy_2005_114
crossref_primary_10_1080_07391102_2023_2172456
crossref_primary_10_1016_j_jhin_2021_04_004
crossref_primary_10_1080_19390211_2021_2006387
crossref_primary_10_1111_1348_0421_12828
crossref_primary_10_1186_s43141_021_00209_z
crossref_primary_10_2174_1389450122666211005115313
crossref_primary_10_1002_jmv_25733
crossref_primary_10_1371_journal_ppat_1011041
crossref_primary_10_1021_acs_jmedchem_0c00626
crossref_primary_10_1016_j_intimp_2020_107228
crossref_primary_10_22159_ijpps_2024v16i9_51681
crossref_primary_10_3390_molecules25081876
crossref_primary_10_1111_idh_12652
crossref_primary_10_25100_re_v31i1_12669
crossref_primary_10_1017_erm_2022_11
crossref_primary_10_1007_s11356_022_19770_2
crossref_primary_10_1016_j_bmc_2020_115757
crossref_primary_10_1177_0022034520967933
crossref_primary_10_1016_j_antiviral_2020_104786
crossref_primary_10_22207_JPAM_17_3_38
crossref_primary_10_3390_biomedicines11102619
crossref_primary_10_1515_znc_2023_0075
crossref_primary_10_3390_pathogens12060823
crossref_primary_10_4103_jacm_jacm_18_22
crossref_primary_10_1016_j_drudis_2024_104107
crossref_primary_10_1016_j_isci_2024_110019
crossref_primary_10_1002_prp2_691
crossref_primary_10_1007_s00784_023_05078_z
crossref_primary_10_1016_j_bj_2020_05_003
crossref_primary_10_1038_s41420_021_00654_2
crossref_primary_10_3390_pathogens9060426
crossref_primary_10_3390_v13091866
crossref_primary_10_3389_fcell_2020_580202
crossref_primary_10_2174_1389557521666210805113231
crossref_primary_10_1007_s11095_020_02799_8
crossref_primary_10_1080_14656566_2020_1790526
crossref_primary_10_1016_j_csbj_2020_11_011
crossref_primary_10_1002_ptr_6873
crossref_primary_10_3389_fddsv_2022_1065231
crossref_primary_10_1038_s41586_020_2332_7
crossref_primary_10_3389_frai_2020_00065
crossref_primary_10_3389_fcell_2020_00589
crossref_primary_10_3390_ph14101054
crossref_primary_10_1016_j_bsheal_2024_11_006
crossref_primary_10_1097_TXD_0000000000001292
crossref_primary_10_1016_j_antiviral_2021_105019
crossref_primary_10_1007_s11101_023_09855_2
crossref_primary_10_1039_D0RA06038K
crossref_primary_10_1002_ptr_7039
crossref_primary_10_1016_j_bcp_2022_115279
crossref_primary_10_1128_AAC_00440_20
crossref_primary_10_1016_j_ejmcr_2022_100079
crossref_primary_10_3389_fcimb_2022_929430
crossref_primary_10_3892_ijmm_2020_4608
crossref_primary_10_1002_ptr_7833
crossref_primary_10_2174_0126667975292612240219084431
crossref_primary_10_1002_jcp_29785
crossref_primary_10_3390_plants11243447
crossref_primary_10_3390_molecules26102917
crossref_primary_10_3390_molecules27175621
crossref_primary_10_1007_s11655_021_3504_5
crossref_primary_10_1002_jcp_30998
crossref_primary_10_1016_j_phymed_2020_153440
crossref_primary_10_1038_s41598_022_18367_6
crossref_primary_10_1016_j_jtcme_2020_05_003
crossref_primary_10_1016_j_virusres_2024_199322
crossref_primary_10_3389_fphar_2020_586993
crossref_primary_10_3390_biom13010017
crossref_primary_10_1002_ddr_21961
crossref_primary_10_1016_j_meegid_2021_104944
crossref_primary_10_1016_j_phymed_2022_154480
crossref_primary_10_3390_molecules26061775
crossref_primary_10_1128_AAC_00398_21
crossref_primary_10_1007_s00784_020_03413_2
crossref_primary_10_3390_medicina57050435
crossref_primary_10_1016_j_sajb_2021_05_023
crossref_primary_10_3390_bios15010018
crossref_primary_10_1016_j_joim_2022_08_001
crossref_primary_10_1016_j_hlife_2023_12_001
crossref_primary_10_1007_s00705_022_05368_z
crossref_primary_10_1016_j_bj_2020_12_002
crossref_primary_10_1080_0886022X_2021_1876730
crossref_primary_10_15252_msb_202110239
crossref_primary_10_1177_00220345211029269
crossref_primary_10_1016_j_biochi_2020_08_006
crossref_primary_10_2174_1381612826666201118103416
crossref_primary_10_1016_j_drudis_2021_08_002
crossref_primary_10_1016_j_sajb_2022_03_004
crossref_primary_10_3389_fphar_2020_01013
crossref_primary_10_1111_jcpe_13746
crossref_primary_10_3390_molecules26020448
crossref_primary_10_1021_acsomega_4c03023
crossref_primary_10_1016_j_cscee_2021_100105
crossref_primary_10_3389_fphar_2021_702472
crossref_primary_10_3390_ijms21207465
crossref_primary_10_1016_j_micpath_2021_104933
crossref_primary_10_1021_acsinfecdis_1c00053
crossref_primary_10_3389_fmicb_2021_751909
crossref_primary_10_3389_fphar_2022_970494
crossref_primary_10_3390_ijtm2030030
crossref_primary_10_3390_ijms231911250
crossref_primary_10_1080_15384101_2022_2100575
crossref_primary_10_1002_ptr_6700
crossref_primary_10_1111_ctr_14330
crossref_primary_10_1111_1346_8138_16182
crossref_primary_10_2174_1568026621666211012110819
crossref_primary_10_1186_s43556_020_00018_9
crossref_primary_10_34133_adi_0008
crossref_primary_10_1073_pnas_2021579118
crossref_primary_10_1016_j_jphs_2023_02_004
crossref_primary_10_1016_j_ijid_2020_02_018
crossref_primary_10_1371_journal_pone_0297291
crossref_primary_10_1007_s00392_020_01722_w
crossref_primary_10_3390_ijms232415917
crossref_primary_10_1016_j_bsheal_2025_01_003
Cites_doi 10.1099/vir.0.061911-0
10.1016/0031-9422(83)83051-9
10.1126/scitranslmed.3008140
10.1128/CMR.00102-14
10.1056/NEJMoa030685
10.1016/0168-1702(84)90070-4
10.1093/infdis/jiv392
10.1099/jmm.0.000565
10.1016/S1473-3099(15)70090-3
10.1128/CMR.00023-07
10.1016/j.bmcl.2017.11.021
10.1128/AAC.00814-16
10.2807/ese.17.49.20334-en
10.1016/j.bbrc.2004.04.083
10.1371/journal.pone.0038638
10.1021/np50089a003
10.1128/AAC.03011-14
10.2174/138955710791112604
10.1056/NEJMoa1211721
10.1016/j.ebiom.2015.08.031
10.1001/jama.290.24.3222
10.1016/j.antiviral.2017.06.006
10.3390/molecules200611474
10.1542/peds.113.1.e73
10.1073/pnas.1222552110
10.1093/jac/dkv085
10.1016/j.jinf.2013.09.029
10.1001/jama.289.21.JOC30885
10.1093/infdis/jiy311
10.4172/jaa.1000009
10.1128/AAC.02274-15
10.1016/j.antiviral.2017.12.010
10.1002/j.1460-2075.1982.tb01346.x
10.1038/nrd.2015.37
10.1038/nrmicro.2016.81
10.1016/j.bmc.2008.10.061
10.1016/j.jmb.2006.09.074
10.1371/journal.ppat.1007314
10.1371/journal.pone.0071508
10.1038/srep01686
10.1128/AAC.01509-08
10.1111/irv.12035
10.1128/JVI.78.16.8824-8834.2004
10.1006/viro.1995.1123
10.1016/j.micpath.2017.12.037
10.1371/journal.ppat.1000896
10.3181/0903-MR-94
10.1128/mBio.00221-18
10.1093/infdis/jiv325
10.1016/j.antiviral.2005.02.007
10.1111/j.1755-148X.2012.01036.x
10.1016/j.antiviral.2007.12.009
10.1016/j.tim.2016.03.003
10.1056/NEJMc1509458
10.3892/mmr.2016.5594
10.1371/journal.ppat.1005717
10.1016/S0042-6822(03)00323-4
10.1186/1475-2875-12-359
10.1126/scitranslmed.aal3653
10.1016/j.bmc.2010.05.023
10.1016/S0140-6736(15)60454-8
10.1128/AAC.03036-14
10.3390/v10060283
10.1186/1743-422X-8-483
10.1371/journal.ppat.1007188
10.1038/s41421-018-0034-1
ContentType Journal Article
Copyright Copyright © 2019 American Society for Microbiology.
Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology
Copyright_xml – notice: Copyright © 2019 American Society for Microbiology.
– notice: Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1128/JVI.00023-19
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Broad-Spectrum Inhibitors of CoV Infection
EISSN 1098-5514
ExternalDocumentID PMC6613765
30918074
10_1128_JVI_00023_19
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2016YFC1200200
– fundername: ;
  grantid: 2016YFD0500300
– fundername: ;
  grantid: 2016ZX10004001-003
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
NPM
7X8
5PM
ID FETCH-LOGICAL-c450t-64e55b08f50b9b73f66d0f45050a2fd161a9958006f974b5f82838f15e0a0a63
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 13:39:12 EDT 2025
Fri Jul 11 09:38:35 EDT 2025
Thu Apr 03 06:59:37 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
Tue Jul 01 01:03:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords bioluminescence imaging
Coronaviruses
inhibitor
mice
broad-spectrum
high-throughput screening
Language English
License Copyright © 2019 American Society for Microbiology.
This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-64e55b08f50b9b73f66d0f45050a2fd161a9958006f974b5f82838f15e0a0a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Shen L, Niu J, Wang C, Huang B, Wang W, Zhu N, Deng Y, Wang H, Ye F, Cen S, Tan W. 2019. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J Virol 93:e00023-19. https://doi.org/10.1128/JVI.00023-19.
L.S. and J.N. contributed equally to this work.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6613765
PMID 30918074
PQID 2199182517
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6613765
proquest_miscellaneous_2199182517
pubmed_primary_30918074
crossref_primary_10_1128_JVI_00023_19
crossref_citationtrail_10_1128_JVI_00023_19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-15
PublicationDateYYYYMMDD 2019-06-15
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2019
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
References_xml – ident: e_1_3_3_35_2
  doi: 10.1099/vir.0.061911-0
– ident: e_1_3_3_20_2
  doi: 10.1016/0031-9422(83)83051-9
– ident: e_1_3_3_43_2
  doi: 10.1126/scitranslmed.3008140
– ident: e_1_3_3_32_2
  doi: 10.1128/CMR.00102-14
– ident: e_1_3_3_11_2
  doi: 10.1056/NEJMoa030685
– ident: e_1_3_3_62_2
  doi: 10.1016/0168-1702(84)90070-4
– ident: e_1_3_3_61_2
  doi: 10.1093/infdis/jiv392
– ident: e_1_3_3_39_2
  doi: 10.1099/jmm.0.000565
– ident: e_1_3_3_9_2
  doi: 10.1016/S1473-3099(15)70090-3
– ident: e_1_3_3_31_2
  doi: 10.1128/CMR.00023-07
– ident: e_1_3_3_22_2
  doi: 10.1016/j.bmcl.2017.11.021
– ident: e_1_3_3_19_2
  doi: 10.1128/AAC.00814-16
– ident: e_1_3_3_66_2
  doi: 10.2807/ese.17.49.20334-en
– ident: e_1_3_3_36_2
  doi: 10.1016/j.bbrc.2004.04.083
– ident: e_1_3_3_65_2
  doi: 10.1371/journal.pone.0038638
– ident: e_1_3_3_49_2
  doi: 10.1021/np50089a003
– ident: e_1_3_3_15_2
  doi: 10.1128/AAC.03011-14
– ident: e_1_3_3_44_2
  doi: 10.2174/138955710791112604
– ident: e_1_3_3_4_2
  doi: 10.1056/NEJMoa1211721
– ident: e_1_3_3_67_2
  doi: 10.1016/j.ebiom.2015.08.031
– ident: e_1_3_3_10_2
  doi: 10.1001/jama.290.24.3222
– ident: e_1_3_3_57_2
  doi: 10.1016/j.antiviral.2017.06.006
– ident: e_1_3_3_56_2
  doi: 10.3390/molecules200611474
– ident: e_1_3_3_30_2
  doi: 10.1542/peds.113.1.e73
– ident: e_1_3_3_48_2
  doi: 10.1073/pnas.1222552110
– ident: e_1_3_3_12_2
  doi: 10.1093/jac/dkv085
– ident: e_1_3_3_37_2
  doi: 10.1016/j.jinf.2013.09.029
– ident: e_1_3_3_13_2
  doi: 10.1001/jama.289.21.JOC30885
– ident: e_1_3_3_42_2
  doi: 10.1093/infdis/jiy311
– ident: e_1_3_3_55_2
  doi: 10.4172/jaa.1000009
– ident: e_1_3_3_52_2
  doi: 10.1128/AAC.02274-15
– ident: e_1_3_3_17_2
  doi: 10.1016/j.antiviral.2017.12.010
– ident: e_1_3_3_63_2
  doi: 10.1002/j.1460-2075.1982.tb01346.x
– ident: e_1_3_3_14_2
  doi: 10.1038/nrd.2015.37
– ident: e_1_3_3_8_2
  doi: 10.1038/nrmicro.2016.81
– ident: e_1_3_3_46_2
  doi: 10.1016/j.bmc.2008.10.061
– ident: e_1_3_3_6_2
  doi: 10.1016/j.jmb.2006.09.074
– ident: e_1_3_3_2_2
  doi: 10.1371/journal.ppat.1007314
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.pone.0071508
– ident: e_1_3_3_34_2
  doi: 10.1038/srep01686
– ident: e_1_3_3_26_2
  doi: 10.1128/AAC.01509-08
– ident: e_1_3_3_53_2
  doi: 10.1111/irv.12035
– ident: e_1_3_3_28_2
  doi: 10.1128/JVI.78.16.8824-8834.2004
– ident: e_1_3_3_64_2
  doi: 10.1006/viro.1995.1123
– ident: e_1_3_3_23_2
  doi: 10.1016/j.micpath.2017.12.037
– ident: e_1_3_3_5_2
  doi: 10.1371/journal.ppat.1000896
– ident: e_1_3_3_3_2
  doi: 10.3181/0903-MR-94
– ident: e_1_3_3_40_2
  doi: 10.1128/mBio.00221-18
– ident: e_1_3_3_41_2
  doi: 10.1093/infdis/jiv325
– ident: e_1_3_3_50_2
  doi: 10.1016/j.antiviral.2005.02.007
– ident: e_1_3_3_21_2
  doi: 10.1111/j.1755-148X.2012.01036.x
– ident: e_1_3_3_47_2
  doi: 10.1016/j.antiviral.2007.12.009
– ident: e_1_3_3_7_2
  doi: 10.1016/j.tim.2016.03.003
– ident: e_1_3_3_29_2
  doi: 10.1056/NEJMc1509458
– ident: e_1_3_3_24_2
  doi: 10.3892/mmr.2016.5594
– ident: e_1_3_3_59_2
  doi: 10.1371/journal.ppat.1005717
– ident: e_1_3_3_27_2
  doi: 10.1016/S0042-6822(03)00323-4
– ident: e_1_3_3_54_2
  doi: 10.1186/1475-2875-12-359
– ident: e_1_3_3_18_2
  doi: 10.1126/scitranslmed.aal3653
– ident: e_1_3_3_45_2
  doi: 10.1016/j.bmc.2010.05.023
– ident: e_1_3_3_33_2
  doi: 10.1016/S0140-6736(15)60454-8
– ident: e_1_3_3_16_2
  doi: 10.1128/AAC.03036-14
– ident: e_1_3_3_38_2
  doi: 10.3390/v10060283
– ident: e_1_3_3_51_2
  doi: 10.1186/1743-422X-8-483
– ident: e_1_3_3_58_2
  doi: 10.1371/journal.ppat.1007188
– ident: e_1_3_3_60_2
  doi: 10.1038/s41421-018-0034-1
SSID ssj0014464
Score 2.6645348
Snippet Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on...
Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Vaccines and Antiviral Agents
Title High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses
URI https://www.ncbi.nlm.nih.gov/pubmed/30918074
https://www.proquest.com/docview/2199182517
https://pubmed.ncbi.nlm.nih.gov/PMC6613765
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4s3yUpDghFyyjp3HEapWpVqVAynaW2QnNhsJslWbgMqvZ8Z2kk27SIVLtHIsb-T5PJ6x55sh5E2ZRHrOE0kN2NaUC6WpkpLRTAnOWMnSqrLZPo_jwxN-tBTLsUqnZZe0arf8vZVX8j9ShTaQK7Jk_0Gyw6DQAL9BvvAECcPzWjLGIA2au0o7p10LCxWjaHraoePgGn8o54LdWrz6B9dbVhQrz7dn3Q9QEata1bbqDsZmYEoD-bM-6859eOFV0xW5cZun8V88xWMBWPs23nR0jvbR_NL1eG7vdMveqmtWnRxB5ds_yvVFv5n6swikP8XUsTG9-sTspGiDud1lS5vXua4qYo8ttl2XM-QnHH39tGuz8lCvWicps48_Fwcni0WR7y_zm-QWA18h6o9s_FUS-Ls2tKD_jJ79wNL3m2NP7ZIrzsblmNkNIyS_R-56EQQfHBTukxu6eUBuu3qiFw-JvASIYABEAIAIpoAI1iZwgAimgAhGQGCfCSAekfxgP987pL6GBi25CFsacy2EClMjQpWpJDJxXIUGXolQMlOBvS-zTIDXEBvwLJUw4IFHqZkLHcpQxtFjstOsG_2UBMIwIzhXsJ4Nl1miynQuqkhrzKkYazMj7_oJLEqfXx7LnHwvrJ_J0gKmu7DTXcyzGXk79D51eVX-0u91L4sCFB_eZslGr7vzgmHQHhKvkxl54mQzjBSBFYxZnmYkmUht6IBJ1advmnplk6uDvQp7rnh2jf99Tu6Mi-AF2QER6ZdgorbqlYXgHzB1lYw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Throughput+Screening+and+Identification+of+Potent+Broad-Spectrum+Inhibitors+of+Coronaviruses&rft.jtitle=Journal+of+virology&rft.au=Shen%2C+Liang&rft.au=Niu%2C+Junwei&rft.au=Wang%2C+Chunhua&rft.au=Huang%2C+Baoying&rft.date=2019-06-15&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=93&rft.issue=12&rft_id=info:doi/10.1128%2FJVI.00023-19&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon