Identification of Anti-Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Oxysterol Derivatives In Vitro

The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives o...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 6; p. 3163
Main Authors Ohashi, Hirofumi, Wang, Feng, Stappenbeck, Frank, Tsuchimoto, Kana, Kobayashi, Chisa, Saso, Wakana, Kataoka, Michiyo, Yamasaki, Masako, Kuramochi, Kouji, Muramatsu, Masamichi, Suzuki, Tadaki, Sureau, Camille, Takeda, Makoto, Wakita, Takaji, Parhami, Farhad, Watashi, Koichi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 19.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 μM and 99% at 15 μM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 μM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.
AbstractList The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 μM and 99% at 15 μM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 μM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 μM and 99% at 15 μM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 μM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.
The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22( )-hydroxycholesterol, 24( )-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 μM and 99% at 15 μM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 μM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.
The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 μM and 99% at 15 μM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 μM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.
The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22( R )-hydroxycholesterol, 24( S )-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 μM and 99% at 15 μM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 μM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.
Author Ohashi, Hirofumi
Watashi, Koichi
Suzuki, Tadaki
Stappenbeck, Frank
Takeda, Makoto
Kataoka, Michiyo
Sureau, Camille
Wakita, Takaji
Parhami, Farhad
Kobayashi, Chisa
Wang, Feng
Yamasaki, Masako
Saso, Wakana
Muramatsu, Masamichi
Kuramochi, Kouji
Tsuchimoto, Kana
AuthorAffiliation 9 Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
3 MAX BioPharma, Inc., 2870 Colorado Avenue, Santa Monica, CA 90404, USA; fwang@maxbiopharma.com (F.W.); fstappenbeck@maxbiopharma.com (F.S.)
8 Department of Virology III, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; mtakeda@nih.go.jp
2 Department of Applied Biological Sciences, Tokyo University of Science, Noda 278-8510, Japan; kuramoch@rs.tus.ac.jp
1 Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; hiro4@nih.go.jp (H.O.); kanatcmt@nih.go.jp (K.T.); k-chisa@nih.go.jp (C.K.); wsaso@nih.go.jp (W.S.); mayamasa@nih.go.jp (M.Y.); muramatsu@nih.go.jp (M.M.); wakita@nih.go.jp (T.W.)
7 Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, 75739 Paris, France; csureau@ints.fr
10 MIRAI, JST, Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi City, Saitama 332-0012, Japan
6 Department of Pathology, National Institute o
AuthorAffiliation_xml – name: 7 Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, 75739 Paris, France; csureau@ints.fr
– name: 10 MIRAI, JST, Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi City, Saitama 332-0012, Japan
– name: 4 The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
– name: 8 Department of Virology III, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; mtakeda@nih.go.jp
– name: 6 Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; michiyo@nih.go.jp (M.K.); tksuzuki@nih.go.jp (T.S.)
– name: 2 Department of Applied Biological Sciences, Tokyo University of Science, Noda 278-8510, Japan; kuramoch@rs.tus.ac.jp
– name: 9 Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
– name: 1 Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; hiro4@nih.go.jp (H.O.); kanatcmt@nih.go.jp (K.T.); k-chisa@nih.go.jp (C.K.); wsaso@nih.go.jp (W.S.); mayamasa@nih.go.jp (M.Y.); muramatsu@nih.go.jp (M.M.); wakita@nih.go.jp (T.W.)
– name: 3 MAX BioPharma, Inc., 2870 Colorado Avenue, Santa Monica, CA 90404, USA; fwang@maxbiopharma.com (F.W.); fstappenbeck@maxbiopharma.com (F.S.)
– name: 5 AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
Author_xml – sequence: 1
  givenname: Hirofumi
  surname: Ohashi
  fullname: Ohashi, Hirofumi
– sequence: 2
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
– sequence: 3
  givenname: Frank
  surname: Stappenbeck
  fullname: Stappenbeck, Frank
– sequence: 4
  givenname: Kana
  surname: Tsuchimoto
  fullname: Tsuchimoto, Kana
– sequence: 5
  givenname: Chisa
  surname: Kobayashi
  fullname: Kobayashi, Chisa
– sequence: 6
  givenname: Wakana
  surname: Saso
  fullname: Saso, Wakana
– sequence: 7
  givenname: Michiyo
  surname: Kataoka
  fullname: Kataoka, Michiyo
– sequence: 8
  givenname: Masako
  surname: Yamasaki
  fullname: Yamasaki, Masako
– sequence: 9
  givenname: Kouji
  orcidid: 0000-0003-0571-9703
  surname: Kuramochi
  fullname: Kuramochi, Kouji
– sequence: 10
  givenname: Masamichi
  surname: Muramatsu
  fullname: Muramatsu, Masamichi
– sequence: 11
  givenname: Tadaki
  orcidid: 0000-0002-3820-9542
  surname: Suzuki
  fullname: Suzuki, Tadaki
– sequence: 12
  givenname: Camille
  orcidid: 0000-0002-0517-4646
  surname: Sureau
  fullname: Sureau, Camille
– sequence: 13
  givenname: Makoto
  orcidid: 0000-0002-8194-7727
  surname: Takeda
  fullname: Takeda, Makoto
– sequence: 14
  givenname: Takaji
  surname: Wakita
  fullname: Wakita, Takaji
– sequence: 15
  givenname: Farhad
  surname: Parhami
  fullname: Parhami, Farhad
– sequence: 16
  givenname: Koichi
  surname: Watashi
  fullname: Watashi, Koichi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33808940$$D View this record in MEDLINE/PubMed
BookMark eNptUU1v1DAQtVAR_YAbZ-RjKxEY2xvHviCtFgorVaq0C71adjIBV0m82E7E8utJaYsWhOYwM5o372nenJKjIQxIyEsGb4TQ8Nbf9olzkIJJ8YScsAXnBYCsjg7qY3Ka0i0AF7zUz8ixEAqUXsAJ-blucMi-9bXNPgw0tHQ598UWJ4xIl_WYkW4w7Xy0OcQ93e6HJoYeiw12NmNDVyGGwU4-jolyer5dbrbFKtwU_IJe_9injDF09D1GP80KEya6HuiNzzE8J09b2yV88ZDPyJfLD59Xn4qr64_r1fKqqBcl5EKyVlt0EhyTJZeSO-WsBNBO6LYCbVldKscWtVTcusaWqnKNVsyVMEeF4oy8u-fdja7Hpp7vjbYzu-h7G_cmWG_-ngz-m_kaJqMARKXlTHD-QBDD9xFTNr1PNXadHTCMyfASVFkxpdkMfXWo9Ufk0fAZwO8BdQwpRWxN7fNv62dp3xkG5u6r5vCr89Lrf5Yeef8L_wXVlaS7
CitedBy_id crossref_primary_10_1016_j_jlr_2021_100165
crossref_primary_10_1371_journal_ppat_1011323
crossref_primary_10_1002_eji_202350501
crossref_primary_10_1089_vim_2024_0011
crossref_primary_10_1080_07391102_2023_2205942
crossref_primary_10_1128_spectrum_00566_23
crossref_primary_10_1080_08830185_2024_2314577
crossref_primary_10_1016_j_jsbmb_2021_105996
crossref_primary_10_3389_fimmu_2022_791267
crossref_primary_10_1016_j_jsbmb_2021_105939
crossref_primary_10_1248_bpb_b23_00797
crossref_primary_10_1016_j_bbrc_2023_07_014
crossref_primary_10_1080_07391102_2022_2072392
crossref_primary_10_3389_fimmu_2023_1268854
crossref_primary_10_1016_j_ajcnut_2024_01_017
Cites_doi 10.1038/s41579-020-0406-z
10.1016/j.bbrc.2004.05.107
10.5501/wjv.v2.i2.32
10.1038/s41467-020-20542-0
10.1038/s41422-020-0282-0
10.1016/j.spinee.2014.11.014
10.1074/jbc.RA118.005033
10.1111/cmi.12372
10.1016/j.redox.2017.03.016
10.1016/j.bbrc.2020.10.094
10.1016/j.immuni.2017.02.012
10.1073/pnas.2002589117
10.3390/cells8050509
10.1016/j.redox.2020.101682
10.1038/s41421-020-0156-0
10.1042/BST20180135
10.1021/acs.jcim.0c00861
10.1002/jbmr.2213
10.1016/j.bbrc.2006.03.059
10.1038/srep07487
10.1126/science.abd3629
10.1002/cbf.3182
10.1016/j.freeradbiomed.2006.12.013
10.1007/s00586-017-5149-9
10.1099/jgv.0.001453
10.1128/JVI.01855-15
10.1371/journal.pone.0215822
10.3390/v11020097
10.3390/cells8101297
10.1016/j.bbrc.2013.12.052
10.1016/j.redox.2018.09.003
10.1016/j.redox.2017.07.014
10.1016/j.jhep.2020.11.032
10.2807/1560-7917.ES.2020.25.3.2000045
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.3390/ijms22063163
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8003796
33808940
10_3390_ijms22063163
Genre Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development
  grantid: JP20fk0108274j0201
– fundername: Japan Society for the Promotion of Science
  grantid: JP20H03499
– fundername: Japan Agency for Medical Research and Development
  grantid: JP19fk0108111
– fundername: Japan Agency for Medical Research and Development
  grantid: JP19fk0108156j0101
– fundername: Japan Society for the Promotion of Science
  grantid: JP20K16267
– fundername: Japan Agency for Medical Research and Development
  grantid: JP20fk0108104
– fundername: Japan Agency for Medical Research and Development
  grantid: JP20fk0108179j0101
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
5PM
PJZUB
ID FETCH-LOGICAL-c450t-61f9aeb60b1652662b8ba6009b39f709a1c58b14c682abda587bd981b505057e3
IEDL.DBID M48
ISSN 1422-0067
IngestDate Thu Aug 21 14:39:36 EDT 2025
Fri Jul 11 04:59:05 EDT 2025
Thu Apr 03 07:03:13 EDT 2025
Tue Jul 01 03:07:18 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords COVID-19
replication
SARS-CoV-2
double membrane vesicle
oxysterols
antiviral
pharmacokinetics
coronavirus
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-61f9aeb60b1652662b8ba6009b39f709a1c58b14c682abda587bd981b505057e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0517-4646
0000-0002-8194-7727
0000-0003-0571-9703
0000-0002-3820-9542
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22063163
PMID 33808940
PQID 2508571891
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8003796
proquest_miscellaneous_2508571891
pubmed_primary_33808940
crossref_citationtrail_10_3390_ijms22063163
crossref_primary_10_3390_ijms22063163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210319
PublicationDateYYYYMMDD 2021-03-19
PublicationDate_xml – month: 3
  year: 2021
  text: 20210319
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2021
Publisher MDPI
Publisher_xml – name: MDPI
References Iwamoto (ref_6) 2014; 443
(ref_17) 2020; 18
Paul (ref_26) 2013; 2
Luchetti (ref_5) 2017; 13
Cagno (ref_7) 2017; 12
Li (ref_11) 2017; 46
Wolff (ref_18) 2020; 369
Matsuyama (ref_20) 2020; 117
Civra (ref_8) 2014; 4
Ogando (ref_28) 2020; 101
Liu (ref_24) 2020; 6
Kokic (ref_25) 2021; 12
ref_16
ref_15
Goto (ref_30) 2006; 343
Blanchard (ref_19) 2015; 17
Mizutani (ref_32) 2004; 319
Arca (ref_22) 2007; 42
Buser (ref_14) 2017; 26
Ohashi (ref_33) 2018; 293
Scott (ref_13) 2015; 15
Edwards (ref_3) 2020; 60
ref_29
Kaneko (ref_34) 2015; 89
Akpovwa (ref_23) 2016; 34
Wang (ref_2) 2020; 30
ref_9
Montgomery (ref_12) 2014; 29
Marcello (ref_21) 2020; 36
Griffiths (ref_4) 2019; 47
Civra (ref_10) 2018; 19
Corman (ref_31) 2020; 25
Zhang (ref_27) 2021; 74
Watashi (ref_1) 2020; 538
References_xml – volume: 18
  start-page: 411
  year: 2020
  ident: ref_17
  article-title: Coronavirus replication factories
  publication-title: Nat. Rev. Microbiol. Genet.
  doi: 10.1038/s41579-020-0406-z
– volume: 319
  start-page: 1228
  year: 2004
  ident: ref_32
  article-title: Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.05.107
– volume: 2
  start-page: 32
  year: 2013
  ident: ref_26
  article-title: Architecture and biogenesis of plus-strand RNA virus replication factories
  publication-title: World J. Virol.
  doi: 10.5501/wjv.v2.i2.32
– volume: 12
  start-page: 279
  year: 2021
  ident: ref_25
  article-title: Mechanism of SARS-CoV-2 polymerase stalling by remdesivir
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20542-0
– volume: 30
  start-page: 269
  year: 2020
  ident: ref_2
  article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-0282-0
– volume: 15
  start-page: 733
  year: 2015
  ident: ref_13
  article-title: Comparison of a novel oxysterol molecule and rhBMP2 fusion rates in a rabbit posterolateral lumbar spine model
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2014.11.014
– volume: 293
  start-page: 19559
  year: 2018
  ident: ref_33
  article-title: The aryl hydrocarbon receptor–cytochrome P450 1A1 pathway controls lipid accumulation and enhances the permissiveness for hepatitis C virus assembly
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.005033
– volume: 17
  start-page: 45
  year: 2015
  ident: ref_19
  article-title: Virus-induced double-membrane vesicles
  publication-title: Cell. Microbiol.
  doi: 10.1111/cmi.12372
– volume: 12
  start-page: 522
  year: 2017
  ident: ref_7
  article-title: Inhibition of herpes simplex-1 virus replication by 25-hydroxycholesterol and 27-hydroxycholesterol
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.03.016
– volume: 538
  start-page: 137
  year: 2020
  ident: ref_1
  article-title: Identifying and repurposing antiviral drugs against severe acute respiratory syndrome coronavirus 2 with in silico and in vitro approaches
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.10.094
– volume: 46
  start-page: 446
  year: 2017
  ident: ref_11
  article-title: 25-Hydroxycholesterol Protects Host against Zika Virus Infection and Its Associated Microcephaly in a Mouse Model
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.02.012
– volume: 117
  start-page: 7001
  year: 2020
  ident: ref_20
  article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2002589117
– ident: ref_15
  doi: 10.3390/cells8050509
– volume: 36
  start-page: 101682
  year: 2020
  ident: ref_21
  article-title: The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients
  publication-title: Redox. Biol.
  doi: 10.1016/j.redox.2020.101682
– volume: 6
  start-page: 16
  year: 2020
  ident: ref_24
  article-title: Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro
  publication-title: Cell Discov.
  doi: 10.1038/s41421-020-0156-0
– volume: 47
  start-page: 517
  year: 2019
  ident: ref_4
  article-title: Oxysterol research: A brief review
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20180135
– volume: 60
  start-page: 5727
  year: 2020
  ident: ref_3
  article-title: What Are the Odds of Finding a COVID-19 Drug from a Lab Repurposing Screen?
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00861
– volume: 29
  start-page: 1872
  year: 2014
  ident: ref_12
  article-title: A Novel Osteogenic Oxysterol Compound for Therapeutic Development to Promote Bone Growth: Activation of Hedgehog Signaling and Osteogenesis Through Smoothened Binding
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2213
– volume: 343
  start-page: 879
  year: 2006
  ident: ref_30
  article-title: Evaluation of the anti-hepatitis C virus effects of cyclophilin inhibitors, cyclosporin A, and NIM811
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.03.059
– volume: 4
  start-page: 7487
  year: 2014
  ident: ref_8
  article-title: Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol
  publication-title: Sci. Rep.
  doi: 10.1038/srep07487
– volume: 369
  start-page: 1395
  year: 2020
  ident: ref_18
  article-title: A molecular pore spans the double membrane of the coronavirus replication organelle
  publication-title: Science
  doi: 10.1126/science.abd3629
– volume: 34
  start-page: 191
  year: 2016
  ident: ref_23
  article-title: Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity
  publication-title: Cell Biochem. Funct.
  doi: 10.1002/cbf.3182
– volume: 42
  start-page: 698
  year: 2007
  ident: ref_22
  article-title: Increased plasma levels of oxysterols, in vivo markers of oxidative stress, in patients with familial combined hyperlipidemia: Reduction during atorvastatin and fenofibrate therapy
  publication-title: Free. Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.12.013
– volume: 26
  start-page: 2763
  year: 2017
  ident: ref_14
  article-title: Effect of Oxy133, an osteogenic oxysterol, on new bone formation in rat two-level posterolateral fusion model
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-017-5149-9
– volume: 101
  start-page: 925
  year: 2020
  ident: ref_28
  article-title: SARS-coronavirus-2 replication in Vero E6 cells: Replication kinetics, rapid adaptation and cytopathology
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.001453
– volume: 89
  start-page: 11945
  year: 2015
  ident: ref_34
  article-title: A Novel Tricyclic Polyketide, Vanitaracin A, Specifically Inhibits the Entry of Hepatitis B and D Viruses by Targeting Sodium Taurocholate Cotransporting Polypeptide
  publication-title: J. Virol.
  doi: 10.1128/JVI.01855-15
– ident: ref_29
  doi: 10.1371/journal.pone.0215822
– ident: ref_9
  doi: 10.3390/v11020097
– ident: ref_16
  doi: 10.3390/cells8101297
– volume: 443
  start-page: 808
  year: 2014
  ident: ref_6
  article-title: Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2013.12.052
– volume: 19
  start-page: 318
  year: 2018
  ident: ref_10
  article-title: 25-Hydroxycholesterol and 27-hydroxycholesterol inhibit human rotavirus infection by sequestering viral particles into late endosomes
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2018.09.003
– volume: 13
  start-page: 581
  year: 2017
  ident: ref_5
  article-title: Endothelial cells, endoplasmic reticulum stress and oxysterols
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.07.014
– volume: 74
  start-page: 686
  year: 2021
  ident: ref_27
  article-title: New insights into HDV persistence: The role of interferon response and implications for upcoming novel therapies
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.11.032
– volume: 25
  start-page: 23
  year: 2020
  ident: ref_31
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.3.2000045
SSID ssj0023259
Score 2.4195173
Snippet The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3163
SubjectTerms Administration, Oral
Animals
Antiviral Agents - administration & dosage
Antiviral Agents - chemistry
Antiviral Agents - pharmacokinetics
Antiviral Agents - pharmacology
Cell Survival - drug effects
Chlorocebus aethiops
COVID-19 - drug therapy
Mice
Nucleocapsid Proteins - drug effects
Oxysterols - administration & dosage
Oxysterols - chemistry
Oxysterols - pharmacokinetics
Oxysterols - pharmacology
SARS-CoV-2 - drug effects
SARS-CoV-2 - genetics
Vero Cells
Viral Replication Compartments - drug effects
Virus Replication - drug effects
Title Identification of Anti-Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Oxysterol Derivatives In Vitro
URI https://www.ncbi.nlm.nih.gov/pubmed/33808940
https://www.proquest.com/docview/2508571891
https://pubmed.ncbi.nlm.nih.gov/PMC8003796
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3ah0B7mfimAyojgQRCHo0bfz1MqJSVgbSBWjr1LbITRxSVBJJ02vj1u27S0jF44SVSFNsPvrbuOfH1OQDPrJIy1amgLBCaIt9w1FiLnEch19AIUWTq7zsfn4ijcfhxwicbsHQbbSaw_Cu1835S42K2f_7z4g1u-APPOJGyv55--14yhrkWscUmbGNOkt7L4DhcnScgbOC6Lnu_1mMHbiJN6yjt_3-s56ZrgPPPusm1RDS4BbsNgiS9OuS3YcNld-BG7Sl5cRd-1Vdv0-ZfHMlT0sN3OnK4aB3pxfPKkeHvA3YyajQL6KIuziWk70UNzNm0mJeEkRej3nBE-_kpZS_Jp3Mv_FzkM_IOV-7ZQjS8JB8ycjqtivwejAeHX_pHtDFYoHHIOxXSxlQbZ0XHBoJjpmZWWYMISNuuTmVHmyDmygZhLBQzNjFcSZtoBLrc-99J170PW1meuYdAukqkKXcBDpyEYWKVlkEiEoHTHTNtkha8Wk5tFDfq494EYxYhC_ExidZj0oLnq9Y_atWNf7R7uoxShNvCn3WYzOXzMkJkpzjmXR204EEdtdVIy3C3QF6J56qBl9y--iWbfl1Ibyuv16PF3n_3fAQ7zFfF-IpA_Ri2qmLuniCsqWwbNuVE4lMN3rdh--3hyedh2yca3l6s5UuGmv4A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Anti-Severe+Acute+Respiratory+Syndrome-Related+Coronavirus+2+%28SARS-CoV-2%29+Oxysterol+Derivatives+In+Vitro&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Ohashi%2C+Hirofumi&rft.au=Wang%2C+Feng&rft.au=Stappenbeck%2C+Frank&rft.au=Tsuchimoto%2C+Kana&rft.date=2021-03-19&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=22&rft.issue=6&rft_id=info:doi/10.3390%2Fijms22063163&rft_id=info%3Apmid%2F33808940&rft.externalDocID=PMC8003796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon