Characterization of Recombinant Flaviviridae Viruses Possessing a Small Reporter Tag
The family consists of four genera, , , , and , and comprises important pathogens of human and animals. Although the construction of recombinant viruses carrying reporter genes encoding fluorescent and bioluminescent proteins has been reported, the stable insertion of foreign genes into viral genome...
Saved in:
Published in | Journal of virology Vol. 92; no. 2 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The family
consists of four genera,
,
,
, and
, and comprises important pathogens of human and animals. Although the construction of recombinant viruses carrying reporter genes encoding fluorescent and bioluminescent proteins has been reported, the stable insertion of foreign genes into viral genomes retaining infectivity remains difficult. Here, we applied the 11-amino-acid subunit derived from NanoLuc luciferase to the engineering of the
viruses and then examined the biological characteristics of the viruses. We successfully generated recombinant viruses carrying the split-luciferase gene, including dengue virus, Japanese encephalitis virus, hepatitis C virus (HCV), and bovine viral diarrhea virus. The stability of the viruses was confirmed by five rounds of serial passages in the respective susceptible cell lines. The propagation of the recombinant luciferase viruses in each cell line was comparable to that of the parental viruses. By using a purified counterpart luciferase protein, this split-luciferase assay can be applicable in various cell lines, even when it is difficult to transduce the counterpart gene. The efficacy of antiviral reagents against the recombinant viruses could be monitored by the reduction of luciferase expression, which was correlated with that of viral RNA, and the recombinant HCV was also useful to examine viral dynamics
Taken together, our findings indicate that the recombinant
viruses possessing the split NanoLuc luciferase gene generated here provide powerful tools to understand viral life cycle and pathogenesis and a robust platform to develop novel antivirals against
viruses.
The construction of reporter viruses possessing a stable transgene capable of expressing specific signals is crucial to investigations of viral life cycle and pathogenesis and the development of antivirals. However, it is difficult to maintain the stability of a large foreign gene, such as those for fluorescence and bioluminescence, after insertion into a viral genome. Here, we successfully generated recombinant
viruses carrying the 11-amino-acid subunit derived from NanoLuc luciferase and demonstrated that these viruses are applicable to
and
experiments, suggesting that these recombinant
viruses are powerful tools for increasing our understanding of viral life cycle and pathogenesis and that these recombinant viruses will provide a robust platform to develop antivirals against
viruses. |
---|---|
AbstractList | The family
consists of four genera,
,
,
, and
, and comprises important pathogens of human and animals. Although the construction of recombinant viruses carrying reporter genes encoding fluorescent and bioluminescent proteins has been reported, the stable insertion of foreign genes into viral genomes retaining infectivity remains difficult. Here, we applied the 11-amino-acid subunit derived from NanoLuc luciferase to the engineering of the
viruses and then examined the biological characteristics of the viruses. We successfully generated recombinant viruses carrying the split-luciferase gene, including dengue virus, Japanese encephalitis virus, hepatitis C virus (HCV), and bovine viral diarrhea virus. The stability of the viruses was confirmed by five rounds of serial passages in the respective susceptible cell lines. The propagation of the recombinant luciferase viruses in each cell line was comparable to that of the parental viruses. By using a purified counterpart luciferase protein, this split-luciferase assay can be applicable in various cell lines, even when it is difficult to transduce the counterpart gene. The efficacy of antiviral reagents against the recombinant viruses could be monitored by the reduction of luciferase expression, which was correlated with that of viral RNA, and the recombinant HCV was also useful to examine viral dynamics
Taken together, our findings indicate that the recombinant
viruses possessing the split NanoLuc luciferase gene generated here provide powerful tools to understand viral life cycle and pathogenesis and a robust platform to develop novel antivirals against
viruses.
The construction of reporter viruses possessing a stable transgene capable of expressing specific signals is crucial to investigations of viral life cycle and pathogenesis and the development of antivirals. However, it is difficult to maintain the stability of a large foreign gene, such as those for fluorescence and bioluminescence, after insertion into a viral genome. Here, we successfully generated recombinant
viruses carrying the 11-amino-acid subunit derived from NanoLuc luciferase and demonstrated that these viruses are applicable to
and
experiments, suggesting that these recombinant
viruses are powerful tools for increasing our understanding of viral life cycle and pathogenesis and that these recombinant viruses will provide a robust platform to develop antivirals against
viruses. The family Flaviviridae consists of four genera, Flavivirus, Pestivirus, Pegivirus, and Hepacivirus, and comprises important pathogens of human and animals. Although the construction of recombinant viruses carrying reporter genes encoding fluorescent and bioluminescent proteins has been reported, the stable insertion of foreign genes into viral genomes retaining infectivity remains difficult. Here, we applied the 11-amino-acid subunit derived from NanoLuc luciferase to the engineering of the Flaviviridae viruses and then examined the biological characteristics of the viruses. We successfully generated recombinant viruses carrying the split-luciferase gene, including dengue virus, Japanese encephalitis virus, hepatitis C virus (HCV), and bovine viral diarrhea virus. The stability of the viruses was confirmed by five rounds of serial passages in the respective susceptible cell lines. The propagation of the recombinant luciferase viruses in each cell line was comparable to that of the parental viruses. By using a purified counterpart luciferase protein, this split-luciferase assay can be applicable in various cell lines, even when it is difficult to transduce the counterpart gene. The efficacy of antiviral reagents against the recombinant viruses could be monitored by the reduction of luciferase expression, which was correlated with that of viral RNA, and the recombinant HCV was also useful to examine viral dynamics in vivo Taken together, our findings indicate that the recombinant Flaviviridae viruses possessing the split NanoLuc luciferase gene generated here provide powerful tools to understand viral life cycle and pathogenesis and a robust platform to develop novel antivirals against Flaviviridae viruses.IMPORTANCE The construction of reporter viruses possessing a stable transgene capable of expressing specific signals is crucial to investigations of viral life cycle and pathogenesis and the development of antivirals. However, it is difficult to maintain the stability of a large foreign gene, such as those for fluorescence and bioluminescence, after insertion into a viral genome. Here, we successfully generated recombinant Flaviviridae viruses carrying the 11-amino-acid subunit derived from NanoLuc luciferase and demonstrated that these viruses are applicable to in vitro and in vivo experiments, suggesting that these recombinant Flaviviridae viruses are powerful tools for increasing our understanding of viral life cycle and pathogenesis and that these recombinant viruses will provide a robust platform to develop antivirals against Flaviviridae viruses. The family Flaviviridae consists of four genera, Flavivirus , Pestivirus , Pegivirus , and Hepacivirus , and comprises important pathogens of human and animals. Although the construction of recombinant viruses carrying reporter genes encoding fluorescent and bioluminescent proteins has been reported, the stable insertion of foreign genes into viral genomes retaining infectivity remains difficult. Here, we applied the 11-amino-acid subunit derived from NanoLuc luciferase to the engineering of the Flaviviridae viruses and then examined the biological characteristics of the viruses. We successfully generated recombinant viruses carrying the split-luciferase gene, including dengue virus, Japanese encephalitis virus, hepatitis C virus (HCV), and bovine viral diarrhea virus. The stability of the viruses was confirmed by five rounds of serial passages in the respective susceptible cell lines. The propagation of the recombinant luciferase viruses in each cell line was comparable to that of the parental viruses. By using a purified counterpart luciferase protein, this split-luciferase assay can be applicable in various cell lines, even when it is difficult to transduce the counterpart gene. The efficacy of antiviral reagents against the recombinant viruses could be monitored by the reduction of luciferase expression, which was correlated with that of viral RNA, and the recombinant HCV was also useful to examine viral dynamics in vivo . Taken together, our findings indicate that the recombinant Flaviviridae viruses possessing the split NanoLuc luciferase gene generated here provide powerful tools to understand viral life cycle and pathogenesis and a robust platform to develop novel antivirals against Flaviviridae viruses. IMPORTANCE The construction of reporter viruses possessing a stable transgene capable of expressing specific signals is crucial to investigations of viral life cycle and pathogenesis and the development of antivirals. However, it is difficult to maintain the stability of a large foreign gene, such as those for fluorescence and bioluminescence, after insertion into a viral genome. Here, we successfully generated recombinant Flaviviridae viruses carrying the 11-amino-acid subunit derived from NanoLuc luciferase and demonstrated that these viruses are applicable to in vitro and in vivo experiments, suggesting that these recombinant Flaviviridae viruses are powerful tools for increasing our understanding of viral life cycle and pathogenesis and that these recombinant viruses will provide a robust platform to develop antivirals against Flaviviridae viruses. |
Author | Tamura, Tomokazu Sakoda, Yoshihiro Imamura, Michio Sato, Asuka Khromykh, Alexander A Fukuhara, Takasuke Kurosu, Takeshi Ono, Chikako Okamoto, Toru Fauzyah, Yuzy Setoh, Yin Xiang Uchida, Takuro Mori, Hiroyuki Chayama, Kazuaki Matsuura, Yoshiharu Tautz, Norbert |
Author_xml | – sequence: 1 givenname: Tomokazu surname: Tamura fullname: Tamura, Tomokazu organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan – sequence: 2 givenname: Takasuke surname: Fukuhara fullname: Fukuhara, Takasuke email: fukut@biken.osaka-u.ac.jp, matsuura@biken.osaka-u.ac.jp organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan fukut@biken.osaka-u.ac.jp matsuura@biken.osaka-u.ac.jp – sequence: 3 givenname: Takuro surname: Uchida fullname: Uchida, Takuro organization: Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan – sequence: 4 givenname: Chikako surname: Ono fullname: Ono, Chikako organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan – sequence: 5 givenname: Hiroyuki surname: Mori fullname: Mori, Hiroyuki organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan – sequence: 6 givenname: Asuka surname: Sato fullname: Sato, Asuka organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan – sequence: 7 givenname: Yuzy surname: Fauzyah fullname: Fauzyah, Yuzy organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan – sequence: 8 givenname: Toru surname: Okamoto fullname: Okamoto, Toru organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan – sequence: 9 givenname: Takeshi surname: Kurosu fullname: Kurosu, Takeshi organization: Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 10 givenname: Yin Xiang surname: Setoh fullname: Setoh, Yin Xiang organization: Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia – sequence: 11 givenname: Michio surname: Imamura fullname: Imamura, Michio organization: Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan – sequence: 12 givenname: Norbert surname: Tautz fullname: Tautz, Norbert organization: Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany – sequence: 13 givenname: Yoshihiro surname: Sakoda fullname: Sakoda, Yoshihiro organization: Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan – sequence: 14 givenname: Alexander A orcidid: 0000-0001-6206-6935 surname: Khromykh fullname: Khromykh, Alexander A organization: Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia – sequence: 15 givenname: Kazuaki surname: Chayama fullname: Chayama, Kazuaki organization: Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan – sequence: 16 givenname: Yoshiharu surname: Matsuura fullname: Matsuura, Yoshiharu email: fukut@biken.osaka-u.ac.jp, matsuura@biken.osaka-u.ac.jp organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan fukut@biken.osaka-u.ac.jp matsuura@biken.osaka-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29093094$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtPGzEUhS0EKknaHWs0yy4Y8DO2N0gogpYqEoimUXfWjccTjGbsYE8itb8e8yiiq7u43zn3ccZoP8TgEDoi-JQQqs4edv4UE6FoTeQeGhGsVS0E4ftohDGltWDq9yEa5_yAMeF8yj-hQ6qxZljzEVrM7iGBHVzyf2HwMVSxre6cjf3KBwhDddXBzu988g24aunTNrtc3cZcSvZhXUH1s4euK5pNTMWmWsD6Mzpoocvuy1udoF9Xl4vZ93p-8-16djGvLRd4qIVj2jKhGuWsxNpKO20FcbbVwIVtnGw4YK6mAIJKKldMi4bTggtrlSrqCTp_9d1sV71rrAtDgs5sku8h_TERvPm_E_y9WcedEVJQzVgx-PpmkOLj1uXB9D5b13UQXNxmQ7TQjBIteUFPXlGbyvHJte9jCDbPQZgfy2vzEoQhsuDHH1d7h_99nj0B0g2H0A |
CitedBy_id | crossref_primary_10_1016_j_virusres_2020_198291 crossref_primary_10_1016_j_virusres_2021_198296 crossref_primary_10_3389_fmicb_2020_02100 crossref_primary_10_1016_j_antiviral_2020_104968 crossref_primary_10_3390_v12010061 crossref_primary_10_1128_JVI_01191_19 crossref_primary_10_2491_jjsth_34_449 crossref_primary_10_3390_v13071193 crossref_primary_10_3390_ijms21165863 crossref_primary_10_1016_j_celrep_2021_109014 crossref_primary_10_1128_JVI_01208_19 crossref_primary_10_1128_jvi_00492_23 crossref_primary_10_1371_journal_pcbi_1006857 crossref_primary_10_1016_j_ebiom_2020_102838 crossref_primary_10_3390_v12101082 crossref_primary_10_1016_j_antiviral_2018_06_016 crossref_primary_10_1080_22221751_2021_2021808 crossref_primary_10_3390_v12050572 crossref_primary_10_1016_j_virol_2020_07_011 crossref_primary_10_1021_acsnanoscienceau_1c00009 crossref_primary_10_1038_s41598_019_42540_z crossref_primary_10_1128_jvi_01638_23 crossref_primary_10_1016_j_virol_2021_06_010 crossref_primary_10_1371_journal_ppat_1010593 crossref_primary_10_1038_s41598_022_06667_w crossref_primary_10_1371_journal_ppat_1011681 crossref_primary_10_3390_v10020095 crossref_primary_10_1016_j_antiviral_2020_104939 crossref_primary_10_1016_j_coviro_2021_05_001 crossref_primary_10_1128_jcm_00042_24 crossref_primary_10_3390_v12010116 crossref_primary_10_1292_jvms_24_0005 crossref_primary_10_1016_j_antiviral_2020_104999 crossref_primary_10_1128_jvi_01906_21 crossref_primary_10_1074_jbc_RA119_011319 crossref_primary_10_3389_fcimb_2022_1042735 crossref_primary_10_1093_intimm_dxac044 crossref_primary_10_1093_ve_vez045 crossref_primary_10_1128_jvi_00508_23 crossref_primary_10_3390_pathogens9030188 crossref_primary_10_1128_mBio_00467_20 crossref_primary_10_1128_JVI_01776_18 crossref_primary_10_1093_bbb_zbad073 |
Cites_doi | 10.1016/j.jviromet.2005.02.001 10.1038/nm.3248 10.1128/JVI.02460-05 10.1097/01.TP.0000114610.40412.C6 10.1128/JVI.01455-17 10.1099/jgv.0.000672 10.1073/pnas.0404041101 10.1016/S0065-3527(08)60348-6 10.1111/j.1462-5822.2004.00378.x 10.1016/S0016-5085(99)70185-X 10.1371/journal.pone.0142145 10.1128/JVI.01066-12 10.1016/j.antiviral.2011.05.001 10.1128/JVI.01957-13 10.1073/pnas.1015312108 10.1074/jbc.M110.175018 10.1128/JVI.03162-12 10.1038/nm1268 10.1002/hep.23680 10.1073/pnas.0800422105 10.1021/acschembio.5b00753 10.1016/j.virusres.2008.08.015 10.1128/mSphereDirect.00190-17 10.1126/science.8303295 10.1016/S0002-9440(10)63352-4 10.1128/JVI.73.5.4110-4119.1999 10.1002/jcp.1030590302 10.1128/JVI.00690-07 10.1128/JVI.78.3.1352-1366.2004 10.1073/pnas.1011090108 10.1128/JVI.00872-09 10.1073/pnas.0912966107 10.1021/acschembio.7b00549 10.1002/hep.20268 10.1073/pnas.0914994107 10.1292/jvms.15-0186 10.1099/vir.0.029330-0 10.1099/vir.0.80638-0 10.1128/JVI.00471-16 10.1038/nprot.2010.181 10.1128/JVI.00698-17 10.1016/j.virusres.2016.11.029 10.1371/journal.pone.0134529 10.1099/vir.0.000069 10.1038/nrmicro2459 10.1128/jvi.70.12.8606-8613.1996 10.1016/j.jviromet.2009.06.005 10.1128/JVI.75.14.6719-6728.2001 10.1016/j.virol.2010.10.034 10.1073/pnas.0504877103 10.1128/JVI.72.1.20-31.1998 10.1016/j.virol.2005.01.021 10.1128/JVI.72.6.5318-5322.1998 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Society for Microbiology. Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2018 American Society for Microbiology. – notice: Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1128/jvi.01582-17 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Characterization of Reporter Flaviviridae Viruses |
EISSN | 1098-5514 |
Editor | Ou, J.-H. James |
Editor_xml | – sequence: 1 givenname: J.-H. James surname: Ou fullname: Ou, J.-H. James |
ExternalDocumentID | 10_1128_JVI_01582_17 29093094 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 17fk0210106h0002; 16fk0310515h0105; 17fk0108109h0001 – fundername: ; grantid: 16H06432; 16K21723; 16H06429; 15H04736 – fundername: ; grantid: 16J02628 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CGR CS3 CUY CVF DIK E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A NPM O9- OK1 P2P RHF RHI RNS RPM RSF TR2 UCJ UPT W2D W8F WH7 WOQ YQT ~02 ~KM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c450t-5e39c358d8ec709c7c6f51ecf9a45cde7d4a0486aa52727b395d428d85cc885e3 |
IEDL.DBID | RPM |
ISSN | 0022-538X |
IngestDate | Tue Sep 17 21:26:11 EDT 2024 Sun Sep 29 07:21:56 EDT 2024 Fri Dec 06 02:09:53 EST 2024 Sat Sep 28 08:38:28 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | in vivo dynamics reporter virus antiviral screening Flaviviridae |
Language | English |
License | Copyright © 2018 American Society for Microbiology. All Rights Reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-5e39c358d8ec709c7c6f51ecf9a45cde7d4a0486aa52727b395d428d85cc885e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Tamura T, Fukuhara T, Uchida T, Ono C, Mori H, Sato A, Fauzyah Y, Okamoto T, Kurosu T, Setoh YX, Imamura M, Tautz N, Sakoda Y, Khromykh AA, Chayama K, Matsuura Y. 2018. Characterization of recombinant Flaviviridae viruses possessing a small reporter Tag. J Virol 92:e01582-17. https://doi.org/10.1128/JVI.01582-17. |
ORCID | 0000-0001-6206-6935 |
OpenAccessLink | https://jvi.asm.org/content/jvi/92/2/e01582-17.full.pdf |
PMID | 29093094 |
PQID | 1959321974 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5752933 proquest_miscellaneous_1959321974 crossref_primary_10_1128_JVI_01582_17 pubmed_primary_29093094 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-15 |
PublicationDateYYYYMMDD | 2018-01-15 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2018 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 Lindenbach BD MC (e_1_3_2_2_2) 2013 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 Thiel HJ (e_1_3_2_5_2) 1996 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 |
References_xml | – ident: e_1_3_2_53_2 doi: 10.1016/j.jviromet.2005.02.001 – ident: e_1_3_2_28_2 doi: 10.1038/nm.3248 – ident: e_1_3_2_15_2 doi: 10.1128/JVI.02460-05 – ident: e_1_3_2_29_2 doi: 10.1097/01.TP.0000114610.40412.C6 – ident: e_1_3_2_24_2 doi: 10.1128/JVI.01455-17 – ident: e_1_3_2_3_2 doi: 10.1099/jgv.0.000672 – ident: e_1_3_2_44_2 doi: 10.1073/pnas.0404041101 – ident: e_1_3_2_16_2 doi: 10.1016/S0065-3527(08)60348-6 – ident: e_1_3_2_12_2 doi: 10.1111/j.1462-5822.2004.00378.x – ident: e_1_3_2_52_2 doi: 10.1016/S0016-5085(99)70185-X – ident: e_1_3_2_56_2 doi: 10.1371/journal.pone.0142145 – volume-title: Fields virology year: 2013 ident: e_1_3_2_2_2 contributor: fullname: Lindenbach BD MC – ident: e_1_3_2_21_2 doi: 10.1128/JVI.01066-12 – ident: e_1_3_2_43_2 doi: 10.1016/j.antiviral.2011.05.001 – ident: e_1_3_2_51_2 doi: 10.1128/JVI.01957-13 – ident: e_1_3_2_32_2 doi: 10.1073/pnas.1015312108 – ident: e_1_3_2_39_2 doi: 10.1074/jbc.M110.175018 – ident: e_1_3_2_34_2 doi: 10.1128/JVI.03162-12 – ident: e_1_3_2_46_2 doi: 10.1038/nm1268 – ident: e_1_3_2_49_2 doi: 10.1002/hep.23680 – ident: e_1_3_2_47_2 doi: 10.1073/pnas.0800422105 – ident: e_1_3_2_17_2 doi: 10.1021/acschembio.5b00753 – ident: e_1_3_2_42_2 doi: 10.1016/j.virusres.2008.08.015 – ident: e_1_3_2_36_2 doi: 10.1128/mSphereDirect.00190-17 – ident: e_1_3_2_8_2 doi: 10.1126/science.8303295 – ident: e_1_3_2_55_2 doi: 10.1016/S0002-9440(10)63352-4 – ident: e_1_3_2_10_2 doi: 10.1128/JVI.73.5.4110-4119.1999 – ident: e_1_3_2_7_2 doi: 10.1002/jcp.1030590302 – ident: e_1_3_2_19_2 doi: 10.1128/JVI.00690-07 – ident: e_1_3_2_37_2 doi: 10.1128/JVI.78.3.1352-1366.2004 – ident: e_1_3_2_4_2 doi: 10.1073/pnas.1011090108 – ident: e_1_3_2_30_2 doi: 10.1128/JVI.00872-09 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.0912966107 – ident: e_1_3_2_18_2 doi: 10.1021/acschembio.7b00549 – ident: e_1_3_2_6_2 doi: 10.1002/hep.20268 – start-page: 1059 volume-title: Fields virology year: 1996 ident: e_1_3_2_5_2 contributor: fullname: Thiel HJ – ident: e_1_3_2_11_2 doi: 10.1073/pnas.0914994107 – ident: e_1_3_2_50_2 doi: 10.1292/jvms.15-0186 – ident: e_1_3_2_27_2 doi: 10.1099/vir.0.029330-0 – ident: e_1_3_2_23_2 doi: 10.1099/vir.0.80638-0 – ident: e_1_3_2_20_2 doi: 10.1128/JVI.00471-16 – ident: e_1_3_2_33_2 doi: 10.1038/nprot.2010.181 – ident: e_1_3_2_25_2 doi: 10.1128/JVI.00698-17 – ident: e_1_3_2_45_2 doi: 10.1016/j.virusres.2016.11.029 – ident: e_1_3_2_22_2 doi: 10.1371/journal.pone.0134529 – ident: e_1_3_2_35_2 doi: 10.1099/vir.0.000069 – ident: e_1_3_2_26_2 doi: 10.1038/nrmicro2459 – ident: e_1_3_2_48_2 doi: 10.1128/jvi.70.12.8606-8613.1996 – ident: e_1_3_2_54_2 doi: 10.1016/j.jviromet.2009.06.005 – ident: e_1_3_2_38_2 doi: 10.1128/JVI.75.14.6719-6728.2001 – ident: e_1_3_2_40_2 doi: 10.1016/j.virol.2010.10.034 – ident: e_1_3_2_41_2 doi: 10.1073/pnas.0504877103 – ident: e_1_3_2_9_2 doi: 10.1128/JVI.72.1.20-31.1998 – ident: e_1_3_2_14_2 doi: 10.1016/j.virol.2005.01.021 – ident: e_1_3_2_13_2 doi: 10.1128/JVI.72.6.5318-5322.1998 |
SSID | ssj0014464 |
Score | 2.494095 |
Snippet | The family
consists of four genera,
,
,
, and
, and comprises important pathogens of human and animals. Although the construction of recombinant viruses... The family Flaviviridae consists of four genera, Flavivirus , Pestivirus , Pegivirus , and Hepacivirus , and comprises important pathogens of human and... The family Flaviviridae consists of four genera, Flavivirus, Pestivirus, Pegivirus, and Hepacivirus, and comprises important pathogens of human and animals.... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Animals Antiviral Agents - pharmacology Cell Line Dose-Response Relationship, Drug Drug Discovery Drug Evaluation, Preclinical Flaviviridae - drug effects Flaviviridae - genetics Gene Expression Genes, Reporter Genome, Viral Hepacivirus - genetics Humans Mice Mutagenesis, Insertional Recombination, Genetic Virus-Cell Interactions |
Title | Characterization of Recombinant Flaviviridae Viruses Possessing a Small Reporter Tag |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29093094 https://search.proquest.com/docview/1959321974 https://pubmed.ncbi.nlm.nih.gov/PMC5752933 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD64geCLeHdeRgR97NZLYpJHGY5NUQZO2VtJk0wLWzd2Efz3nqbrcPrmc5tSvpz2fIfz5TsA15ybSPvG93io8hFmfuIpZAaeVcJw5TirU_k-33Ze6cOADbaAlWdhnGhfJ2kjG40bWfrhtJXTsW6WOrFm76mFFAOzVNSsQAXTb1mir1oHWN_Q0iIcv-ZBqXYPRfPhrdvA9IecMsiH74USy3lf0s2U9Idn_pZL_sg_7T3YXRFHcle84D5s2ewAtotRkl-H0G-tnZeLg5VkMiR5bTlOnNaFtEfqM_1MZ6lRlryls-Xczklv4nq-mL6IIi9jNRqRgpHbGemr9yN4bd_3Wx1vNTHB05T5C4_ZSOqICSOs5r7UXN8OWWD1UCrKtLHcUJV77CnFQkQuiSQzWH8YwbQWAlcfQzWbZPYUCPJEG3JfBYHUNNFSWRHKIcWtNcgiwqgGNyVo8bQwxohdQRGKGHGOHc5xwGtwVSIaY-Tm7QiV2clyHue2NhH-MDmtwUmB8PpJ5dbUgG9gv74hd8XevILB4tyxV8Fx9u-V57CDrCiX-HkBu4DqYra0l8g8FkkdOXf3se7i7RsSX9mF |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0VEIILYqesRoJj2iw2to-oomrZhERBvUWO7UKkNkVdkPh7Jk5TUbhxThxF40nmPc3zG4ALzk2kfeN7PFT5CDM_8RQiA88qYbhymNWpfB-vWi_0tsu6FWDlWRgn2tdJWsv6g1qWvjtt5cdA10udWP3poYEQA6tUVF-CFRZxGZQkfdY8QIZDS5Nw_J67pd49FPXb13YNCyCiyiAfvxdKJPS-pItF6Q_S_C2Y_FGBmpuwMYOO5Lp4xS2o2GwbVothkl870GnMvZeLo5Vk2CM5uxwkTu1Cmn31mX6mo9QoS17T0XRsx-Rp6Lq-WMCIIs8D1e-TApPbEemot114ad50Gi1vNjPB05T5E4_ZSOqICSOs5r7UXF_1WGB1TyrKtLHcUJW77CnFQoQuSSSZQQZiBNNaCFy9B8vZMLMHQBAp2pD7KgikpomWyopQ9ihurkEcEUZVuCyDFn8U1hixoxShiDHOsYtzHPAqnJcRjTF384aEyuxwOo5zY5sIf5mcVmG_iPD8SeXWVIEvxH5-Q-6LvXgF08X5Y8_S4_DfK89grdV5uI_v2493R7COGCkX_HkBO4blyWhqTxCHTJJTl3XfjDvb4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7x0CIuiOdSnl6JPaZ52dg-okIF7IIqbUG9RY7tLJHatOoDiX_PxGkqCjfOiaNoPMl8n-bzNwAXnJtYBybweKTKEWZB6ilEBp5VwnDlMKtT-T5e3j7R-x7rfRj15UT7Os2bRX_QLPIXp60cDbRf68T8zkMLIQZWqdgfmcxfhXUWY5LVRH3eQECWQ2ujcPyme7XmPRL-_fNdE4sgIsuwHMEXSST1gaTLhekL2vwsmvxQhdrbsDWHj-Sqes0dWLHFLvyoBkq-7UG3tfBfro5XkmFGSoY5SJ3ihbT76jV_zce5UZY85-PZxE5IZ-g6v1jEiCL_BqrfJxUut2PSVf_34al9023devO5CZ6mLJh6zMZSx0wYYTUPpOb6MmOh1ZlUlGljuaGqdNpTikUIX9JYMoMsxAimtRC4-gDWimFhD4EgWrQRD1QYSk1TLZUVkcwobrBBLBHFDfhdBy0ZVfYYiaMVkUgwzomLcxLyBvyqI5pg_pZNCVXY4WySlOY2Mf42OW3AzyrCiyfVW9MAvhT7xQ2lN_byFUwZ55E9T5Gjb688h43OdTv5e_f45xg2ESaVmj8vZCewNh3P7ClCkWl65pLuHcKj3PQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Recombinant+Flaviviridae+Viruses+Possessing+a+Small+Reporter+Tag&rft.jtitle=Journal+of+virology&rft.au=Tamura%2C+Tomokazu&rft.au=Fukuhara%2C+Takasuke&rft.au=Uchida%2C+Takuro&rft.au=Ono%2C+Chikako&rft.date=2018-01-15&rft.eissn=1098-5514&rft.volume=92&rft.issue=2&rft_id=info:doi/10.1128%2FJVI.01582-17&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |