Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia
Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. T...
Saved in:
Published in | Brain (London, England : 1878) Vol. 139; no. 10; pp. 2778 - 2791 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.10.2016
|
Series | Editor's Choice |
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/aww195 |
Cover
Loading…
Abstract | Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures. |
---|---|
AbstractList | Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures. Neurodegeneration is hypothesized to follow large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. Mandelli et al . report that the pattern of atrophy progression in the non-fluent variant of primary progressive aphasia reflects the strength of connectivity in the speech production network of the healthy brain. Neurodegeneration is hypothesized to follow large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. Mandelli et al . report that the pattern of atrophy progression in the non-fluent variant of primary progressive aphasia reflects the strength of connectivity in the speech production network of the healthy brain. Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls ( n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures. Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures.Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures. |
Author | Henry, Maya L. Mandelli, Maria Luisa Santos-Santos, Miguel A. Binney, Richard J. Hubbard, H. Isabel Rabinovici, Gil D. Rosen, Howard J. Seeley, William W. Attygalle, Suneth Miller, Zachary A. Henry, Roland G. Gorno-Tempini, Maria Luisa Miller, Bruce L. Vilaplana, Eduard Brown, Jesse A. Pakvasa, Mikhail |
Author_xml | – sequence: 1 givenname: Maria Luisa surname: Mandelli fullname: Mandelli, Maria Luisa – sequence: 2 givenname: Eduard surname: Vilaplana fullname: Vilaplana, Eduard – sequence: 3 givenname: Jesse A. surname: Brown fullname: Brown, Jesse A. – sequence: 4 givenname: H. Isabel surname: Hubbard fullname: Hubbard, H. Isabel – sequence: 5 givenname: Richard J. surname: Binney fullname: Binney, Richard J. – sequence: 6 givenname: Suneth surname: Attygalle fullname: Attygalle, Suneth – sequence: 7 givenname: Miguel A. surname: Santos-Santos fullname: Santos-Santos, Miguel A. – sequence: 8 givenname: Zachary A. surname: Miller fullname: Miller, Zachary A. – sequence: 9 givenname: Mikhail surname: Pakvasa fullname: Pakvasa, Mikhail – sequence: 10 givenname: Maya L. surname: Henry fullname: Henry, Maya L. – sequence: 11 givenname: Howard J. surname: Rosen fullname: Rosen, Howard J. – sequence: 12 givenname: Roland G. surname: Henry fullname: Henry, Roland G. – sequence: 13 givenname: Gil D. surname: Rabinovici fullname: Rabinovici, Gil D. – sequence: 14 givenname: Bruce L. surname: Miller fullname: Miller, Bruce L. – sequence: 15 givenname: William W. surname: Seeley fullname: Seeley, William W. – sequence: 16 givenname: Maria Luisa surname: Gorno-Tempini fullname: Gorno-Tempini, Maria Luisa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27497488$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUFPGzEQhS2UChLgxrnaYw9sGa_Xu_YFqYoKVIrUC5ytWa-XGG3sYDtB_PsaEhBFnEaa-ea9p5kZmTjvDCFnFH5SkOyiC2jdBT49UckPyJTWDZQV5c2ETAGgKYXkcERmMT4A0JpVzSE5qtpatrUQUzLeGBzT8rl4lSm0d87oZLc2PRfrYHqrUywwBb9evjT8fTAxWu-KDOcg5TBujEvFFoPFXP2QIbvC8AHemgLXS4wWT8i3AcdoTvf1mNxd_b6d35SLv9d_5r8Wpa45pJIbSgdJQTR9zbTkDLteSBC5JXUneNcy5NDpqhNIu76vodG1aLRmFReMt-yYXO5015tuZXqdEwYc1T6Z8mjV_xNnl-rebxUHxgWVWeDHXiD4x42JSa1s1GYc0Rm_iYoKLltKW6gy-v2j17vJ24kzUO0AHXyMwQxK24Qp3zBb21FRUC9_VK8PULs_5qXzT0tvul_i_wD-_qVa |
CitedBy_id | crossref_primary_10_1038_s41467_017_01958_7 crossref_primary_10_1016_j_cortex_2019_07_022 crossref_primary_10_2139_ssrn_4179155 crossref_primary_10_1111_jon_13165 crossref_primary_10_1186_s13195_023_01350_2 crossref_primary_10_1016_S1474_4422_16_30275_7 crossref_primary_10_1007_s11065_025_09659_5 crossref_primary_10_1162_netn_a_00285 crossref_primary_10_1007_s40336_024_00637_0 crossref_primary_10_1016_j_nicl_2024_103639 crossref_primary_10_1162_nol_a_00075 crossref_primary_10_17816_ACEN_1067 crossref_primary_10_1016_j_bandl_2023_105243 crossref_primary_10_23736_S0390_5616_21_05344_3 crossref_primary_10_1093_brain_awad327 crossref_primary_10_1044_2018_JSLHR_L_18_0144 crossref_primary_10_1002_brb3_3490 crossref_primary_10_1016_j_trci_2019_09_005 crossref_primary_10_1016_j_neuroimage_2020_117260 crossref_primary_10_1053_j_sult_2021_07_007 crossref_primary_10_3389_fpsyg_2022_887591 crossref_primary_10_1016_j_nicl_2018_02_036 crossref_primary_10_1186_s10194_023_01711_0 crossref_primary_10_1038_s41380_018_0067_8 crossref_primary_10_1523_JNEUROSCI_1485_19_2019 crossref_primary_10_3389_fnhum_2022_945160 crossref_primary_10_1016_j_nicl_2023_103329 crossref_primary_10_1016_j_neurom_2022_09_004 crossref_primary_10_1080_02687038_2021_1897079 crossref_primary_10_1016_j_bandl_2022_105094 crossref_primary_10_1097_WCO_0000000000000571 crossref_primary_10_1093_brain_awz122 crossref_primary_10_1016_j_neurobiolaging_2022_08_013 crossref_primary_10_3389_fnins_2018_01055 crossref_primary_10_1212_WNL_0000000000201491 crossref_primary_10_3389_fnagi_2023_1120935 crossref_primary_10_1093_brain_awx347 crossref_primary_10_1016_j_cortex_2018_08_002 crossref_primary_10_1038_s41572_023_00447_0 crossref_primary_10_3390_brainsci13030406 crossref_primary_10_1093_braincomms_fcac061 crossref_primary_10_1002_hbm_26388 crossref_primary_10_1080_01616412_2020_1781454 crossref_primary_10_1186_s13195_022_00974_0 crossref_primary_10_3389_fnins_2022_738865 crossref_primary_10_3389_fnhum_2016_00675 crossref_primary_10_1016_j_neurobiolaging_2020_09_007 crossref_primary_10_1080_13554794_2019_1609522 crossref_primary_10_3389_fneur_2020_616764 crossref_primary_10_1002_hbm_25093 crossref_primary_10_1093_brain_awx293 crossref_primary_10_1016_j_nicl_2022_103144 crossref_primary_10_1080_13554794_2022_2039207 crossref_primary_10_1093_brain_awy101 crossref_primary_10_3174_ajnr_A7613 crossref_primary_10_1016_j_cortex_2023_03_003 crossref_primary_10_1093_braincomms_fcab015 crossref_primary_10_1016_j_nicl_2018_02_028 crossref_primary_10_1002_ana_25465 crossref_primary_10_1002_brb3_2094 crossref_primary_10_1007_s11682_021_00560_2 crossref_primary_10_1016_j_cortex_2019_01_006 crossref_primary_10_1007_s00429_022_02498_7 crossref_primary_10_1016_j_biopsych_2017_10_019 crossref_primary_10_3389_fnana_2020_00021 crossref_primary_10_1016_j_nicl_2019_101797 crossref_primary_10_1016_j_nicl_2023_103428 crossref_primary_10_1093_brain_awy180 crossref_primary_10_1016_j_cortex_2023_05_004 crossref_primary_10_1172_jci_insight_92641 crossref_primary_10_1007_s13311_021_01101_x crossref_primary_10_1097_WAD_0000000000000193 crossref_primary_10_1093_brain_awy292 crossref_primary_10_3389_fnhum_2017_00173 crossref_primary_10_1093_brain_awac208 crossref_primary_10_1155_2018_9684129 crossref_primary_10_1016_j_neuropsychologia_2017_08_022 crossref_primary_10_1080_13554794_2020_1862241 crossref_primary_10_3389_fneur_2018_00692 crossref_primary_10_1016_j_cortex_2021_05_006 crossref_primary_10_1038_s41598_020_68118_8 crossref_primary_10_1097_WCO_0000000000000673 crossref_primary_10_1093_brain_awx245 crossref_primary_10_1016_j_cortex_2019_08_010 crossref_primary_10_3389_fneur_2021_641586 crossref_primary_10_1186_s13195_018_0393_8 crossref_primary_10_12688_f1000research_21184_1 |
Cites_doi | 10.1002/hbm.21484 10.1111/j.1749-6632.2010.05444.x 10.1016/j.neuron.2012.03.004 10.1038/ncb1901 10.1016/j.neuroimage.2009.10.016 10.1002/mrm.20386 10.1016/j.neuroimage.2005.11.002 10.1093/brain/awl078 10.1093/brain/awt163 10.1016/j.neuroimage.2008.12.008 10.1093/brain/awr099 10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7 10.1038/384159a0 10.1103/PhysRevE.77.036114 10.1002/mrm.21965 10.1016/j.cortex.2015.10.012 10.1016/j.cortex.2011.10.001 10.1016/j.bandl.2013.06.003 10.1523/JNEUROSCI.17-01-00353.1997 10.1212/WNL.0b013e31821103e6 10.1016/j.neuroimage.2012.08.052 10.1016/j.neuron.2011.12.040 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2007.07.007 10.1212/01.wnl.0000237038.55627.5b 10.1016/j.neurobiolaging.2012.12.002 10.1016/j.bandl.2008.01.012 10.1371/journal.pone.0031302 10.1073/pnas.0601602103 10.1212/WNL.0b013e3181d9edde 10.1073/pnas.0601417103 10.1001/jamaneurol.2016.0412 10.1212/WNL.0b013e31821ccd3c 10.1097/WCO.0b013e3283168e2d 10.1016/j.neuroimage.2007.08.021 10.1523/JNEUROSCI.3464-13.2014 10.1073/pnas.0308627101 10.1038/nrn2786 10.1152/physrev.00006.2011 10.1016/j.neuroimage.2009.12.007 10.1016/j.neuron.2011.09.014 10.1212/WNL.0000000000000031 10.1016/j.neuroimage.2013.05.116 10.1016/j.nicl.2015.01.011 10.1162/jocn.1996.8.2.135 10.1212/WNL.58.2.198 10.1016/S1474-4422(12)70099-6 10.1017/S0317167100004893 10.1007/s12031-011-9597-0 10.1016/j.neuron.2011.11.033 10.1093/brain/awg240 10.1002/mrm.1910360612 10.1016/j.neuroimage.2009.05.097 10.1093/brain/awq129 10.1097/00146965-200312000-00002 10.1016/j.brainres.2005.11.104 10.1038/nrn2277 10.1002/ana.22424 10.1002/cne.902120102 10.1073/pnas.1414491112 10.1002/ana.21388 10.1016/j.bandl.2012.10.005 10.1093/brain/awt118 10.1002/ana.10825 10.3406/bmsap.1865.9495 10.1016/j.neuron.2009.03.024 10.1016/j.cortex.2011.12.001 10.1038/nrn2113 10.1093/geronj/47.3.P154 |
ContentType | Journal Article |
Copyright | The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016 |
Copyright_xml | – notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/brain/aww195 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2791 |
ExternalDocumentID | PMC5035819 27497488 10_1093_brain_aww195 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: K24 DC015544 – fundername: NIA NIH HHS grantid: K23 AG048291 – fundername: NIA NIH HHS grantid: P01 AG019724 – fundername: NIA NIH HHS grantid: U01 AG052943 – fundername: NIA NIH HHS grantid: R01 AG032306 – fundername: NINDS NIH HHS grantid: R01 NS050915 – fundername: NIA NIH HHS grantid: P50 AG023501 |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ AAYXX ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 ABQTQ CGR CUY CVF ECM EIF M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c450t-5e11f91086d43c953abd89089109cb85b73a50bc2b8a1bdd406c486cc32583573 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Thu Aug 21 13:41:28 EDT 2025 Fri Jul 11 11:00:49 EDT 2025 Thu Apr 03 07:01:20 EDT 2025 Tue Jul 01 00:46:08 EDT 2025 Thu Apr 24 22:59:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | tractography longitudinal atrophy functional connectivity connectivity primary progressive aphasia |
Language | English |
License | The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-5e11f91086d43c953abd89089109cb85b73a50bc2b8a1bdd406c486cc32583573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/139/10/2778/17348090/aww195.pdf |
PMID | 27497488 |
PQID | 1859711702 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5035819 proquest_miscellaneous_1859711702 pubmed_primary_27497488 crossref_citationtrail_10_1093_brain_aww195 crossref_primary_10_1093_brain_aww195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationSeriesTitle | Editor's Choice |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016101408525361000_139.10.2778.5 2016101408525361000_139.10.2778.4 2016101408525361000_139.10.2778.3 2016101408525361000_139.10.2778.41 2016101408525361000_139.10.2778.2 2016101408525361000_139.10.2778.40 2016101408525361000_139.10.2778.9 2016101408525361000_139.10.2778.7 2016101408525361000_139.10.2778.36 2016101408525361000_139.10.2778.35 2016101408525361000_139.10.2778.38 2016101408525361000_139.10.2778.37 2016101408525361000_139.10.2778.1 2016101408525361000_139.10.2778.32 2016101408525361000_139.10.2778.31 2016101408525361000_139.10.2778.34 2016101408525361000_139.10.2778.33 2016101408525361000_139.10.2778.39 Ashburner (2016101408525361000_139.10.2778.6) 2012; 6 2016101408525361000_139.10.2778.72 2016101408525361000_139.10.2778.71 2016101408525361000_139.10.2778.30 2016101408525361000_139.10.2778.74 2016101408525361000_139.10.2778.73 Binder (2016101408525361000_139.10.2778.8) 1997; 17 Chung (2016101408525361000_139.10.2778.16) 2005; 26 2016101408525361000_139.10.2778.70 2016101408525361000_139.10.2778.25 2016101408525361000_139.10.2778.69 2016101408525361000_139.10.2778.24 2016101408525361000_139.10.2778.68 2016101408525361000_139.10.2778.27 2016101408525361000_139.10.2778.26 2016101408525361000_139.10.2778.21 2016101408525361000_139.10.2778.65 2016101408525361000_139.10.2778.20 2016101408525361000_139.10.2778.64 2016101408525361000_139.10.2778.23 2016101408525361000_139.10.2778.67 2016101408525361000_139.10.2778.22 2016101408525361000_139.10.2778.66 2016101408525361000_139.10.2778.29 2016101408525361000_139.10.2778.28 Broca (2016101408525361000_139.10.2778.12) 1865; 6 2016101408525361000_139.10.2778.61 2016101408525361000_139.10.2778.60 Broca (2016101408525361000_139.10.2778.11) 1861; 2 2016101408525361000_139.10.2778.63 2016101408525361000_139.10.2778.62 2016101408525361000_139.10.2778.14 2016101408525361000_139.10.2778.58 2016101408525361000_139.10.2778.13 2016101408525361000_139.10.2778.57 2016101408525361000_139.10.2778.15 2016101408525361000_139.10.2778.59 2016101408525361000_139.10.2778.10 2016101408525361000_139.10.2778.54 2016101408525361000_139.10.2778.53 2016101408525361000_139.10.2778.56 2016101408525361000_139.10.2778.55 2016101408525361000_139.10.2778.18 2016101408525361000_139.10.2778.17 2016101408525361000_139.10.2778.19 2016101408525361000_139.10.2778.50 2016101408525361000_139.10.2778.52 2016101408525361000_139.10.2778.51 2016101408525361000_139.10.2778.47 2016101408525361000_139.10.2778.46 2016101408525361000_139.10.2778.49 2016101408525361000_139.10.2778.48 2016101408525361000_139.10.2778.43 2016101408525361000_139.10.2778.42 2016101408525361000_139.10.2778.45 2016101408525361000_139.10.2778.44 7174905 - J Comp Neurol. 1982 Nov 20;212(1):1-22 8987760 - J Neurosci. 1997 Jan 1;17(1):353-62 26106560 - Neuroimage Clin. 2015 Jan 22;8:345-55 25730850 - Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2871-5 22013214 - Physiol Rev. 2011 Oct;91(4):1357-92 22017996 - Neuron. 2011 Oct 20;72(2):397-403 16613895 - Brain. 2006 Jun;129(Pt 6):1385-98 19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13 27111692 - JAMA Neurol. 2016 Jun 1;73(6):733-42 17911030 - Neuroimage. 2008 Jan 1;39(1):215-22 14991811 - Ann Neurol. 2004 Mar;55(3):335-46 26673947 - Cortex. 2016 Jan;74:149-57 22445348 - Neuron. 2012 Mar 22;73(6):1216-27 21833654 - J Mol Neurosci. 2011 Nov;45(3):366-71 22926292 - Neuroimage. 2013 Jan 1;64:240-56 22088488 - Cortex. 2012 Jan;48(1):82-96 14665820 - Cogn Behav Neurol. 2003 Dec;16(4):211-8 19837176 - Neuroimage. 2010 Feb 1;49(3):2375-86 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 11805245 - Neurology. 2002 Jan 22;58(2):198-208 21606451 - Neurology. 2011 May 24;76(21):1804-10 21325651 - Neurology. 2011 Mar 15;76(11):1006-14 19253405 - Magn Reson Med. 2009 May;61(5):1255-60 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402 1573197 - J Gerontol. 1992 May;47(3):P154-8 23386806 - Front Neurosci. 2013 Feb 05;6:197 19376066 - Neuron. 2009 Apr 16;62(1):42-52 16413796 - Neuroimage. 2006 May 1;30(4):1414-32 10441759 - J Comp Neurol. 1999 Sep 20;412(2):319-41 22109837 - Hum Brain Mapp. 2013 Apr;34(4):973-84 23218686 - Brain Lang. 2013 Nov;127(2):106-20 20404309 - Neurology. 2010 Apr 20;74(16):1279-87 16091536 - AJNR Am J Neuroradiol. 2005 Aug;26(7):1819-23 23729473 - Brain. 2013 Jul;136(Pt 7):2253-61 22312444 - PLoS One. 2012;7(2):e31302 20005963 - Neuroimage. 2010 Apr 1;50(2):434-45 23312804 - Neurobiol Aging. 2013 Jun;34(6):1687-99 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 23820597 - Brain. 2013 Aug;136(Pt 8):2619-28 18325581 - Brain Lang. 2008 Apr;105(1):50-8 25031413 - J Neurosci. 2014 Jul 16;34(29):9754-67 22365544 - Neuron. 2012 Feb 23;73(4):685-97 23971420 - J Cogn Neurosci. 1996 Spring;8(2):135-54 22445347 - Neuron. 2012 Mar 22;73(6):1204-15 23747457 - Neuroimage. 2013 Nov 15;82:208-25 22209688 - Cortex. 2012 Feb;48(2):273-91 16723398 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82 16480694 - Brain Res. 2006 Mar 3;1076(1):129-43 15723403 - Magn Reson Med. 2005 Mar;53(3):649-57 18989116 - Curr Opin Neurol. 2008 Dec;21(6):701-7 8946355 - Magn Reson Med. 1996 Dec;36(6):893-906 18517468 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036114 16931509 - Neurology. 2006 Nov 28;67(10):1849-51 16736722 - Can J Neurol Sci. 2006 May;33(2):141-8 8906789 - Nature. 1996 Nov 14;384(6605):159-61 20392276 - Ann N Y Acad Sci. 2010 Mar;1191:62-88 22608668 - Lancet Neurol. 2012 Jun;11(6):545-55 21823158 - Ann Neurol. 2011 Aug;70(2):327-40 18026167 - Nat Rev Neurosci. 2007 Dec;8(12):976-87 19520171 - Neuroimage. 2009 Oct 15;48(1):117-25 12902311 - Brain. 2003 Nov;126(Pt 11):2406-18 18412267 - Ann Neurol. 2008 Jun;63(6):709-19 20029438 - Nat Rev Neurosci. 2010 Mar;11(3):155-9 21666264 - Brain. 2011 Oct;134(Pt 10):3011-29 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113 24353332 - Neurology. 2014 Jan 21;82(3):239-47 20542982 - Brain. 2010 Jul;133(Pt 7):2069-88 19146961 - Neuroimage. 2009 Apr 1;45(2):333-41 23890877 - Brain Lang. 2013 Nov;127(2):157-66 |
References_xml | – volume: 2 start-page: 330 year: 1861 ident: 2016101408525361000_139.10.2778.11 article-title: Remarques sur le siege de la faculte du langage articule, suivies d'une observation d'aphemie publication-title: Bull Soc Anatomique – ident: 2016101408525361000_139.10.2778.62 doi: 10.1002/hbm.21484 – ident: 2016101408525361000_139.10.2778.54 doi: 10.1111/j.1749-6632.2010.05444.x – ident: 2016101408525361000_139.10.2778.74 doi: 10.1016/j.neuron.2012.03.004 – ident: 2016101408525361000_139.10.2778.17 doi: 10.1038/ncb1901 – ident: 2016101408525361000_139.10.2778.40 doi: 10.1016/j.neuroimage.2009.10.016 – ident: 2016101408525361000_139.10.2778.68 doi: 10.1002/mrm.20386 – ident: 2016101408525361000_139.10.2778.67 doi: 10.1016/j.neuroimage.2005.11.002 – ident: 2016101408525361000_139.10.2778.37 doi: 10.1093/brain/awl078 – ident: 2016101408525361000_139.10.2778.15 doi: 10.1093/brain/awt163 – ident: 2016101408525361000_139.10.2778.5 doi: 10.1016/j.neuroimage.2008.12.008 – ident: 2016101408525361000_139.10.2778.26 doi: 10.1093/brain/awr099 – ident: 2016101408525361000_139.10.2778.3 doi: 10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7 – ident: 2016101408525361000_139.10.2778.22 doi: 10.1038/384159a0 – ident: 2016101408525361000_139.10.2778.9 doi: 10.1103/PhysRevE.77.036114 – ident: 2016101408525361000_139.10.2778.69 doi: 10.1002/mrm.21965 – ident: 2016101408525361000_139.10.2778.47 doi: 10.1016/j.cortex.2015.10.012 – ident: 2016101408525361000_139.10.2778.65 doi: 10.1016/j.cortex.2011.10.001 – ident: 2016101408525361000_139.10.2778.1 doi: 10.1016/j.bandl.2013.06.003 – volume: 17 start-page: 353 year: 1997 ident: 2016101408525361000_139.10.2778.8 article-title: Human brain language areas identified by functional magnetic resonance imaging publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-01-00353.1997 – ident: 2016101408525361000_139.10.2778.28 doi: 10.1212/WNL.0b013e31821103e6 – ident: 2016101408525361000_139.10.2778.61 doi: 10.1016/j.neuroimage.2012.08.052 – ident: 2016101408525361000_139.10.2778.55 doi: 10.1016/j.neuron.2011.12.040 – ident: 2016101408525361000_139.10.2778.58 doi: 10.1016/j.neuroimage.2009.10.003 – ident: 2016101408525361000_139.10.2778.4 doi: 10.1016/j.neuroimage.2007.07.007 – ident: 2016101408525361000_139.10.2778.29 doi: 10.1212/01.wnl.0000237038.55627.5b – ident: 2016101408525361000_139.10.2778.45 doi: 10.1016/j.neurobiolaging.2012.12.002 – ident: 2016101408525361000_139.10.2778.20 doi: 10.1016/j.bandl.2008.01.012 – ident: 2016101408525361000_139.10.2778.43 doi: 10.1371/journal.pone.0031302 – ident: 2016101408525361000_139.10.2778.51 doi: 10.1073/pnas.0601602103 – ident: 2016101408525361000_139.10.2778.70 doi: 10.1212/WNL.0b013e3181d9edde – ident: 2016101408525361000_139.10.2778.19 doi: 10.1073/pnas.0601417103 – ident: 2016101408525361000_139.10.2778.60 doi: 10.1001/jamaneurol.2016.0412 – ident: 2016101408525361000_139.10.2778.56 doi: 10.1212/WNL.0b013e31821ccd3c – ident: 2016101408525361000_139.10.2778.63 doi: 10.1097/WCO.0b013e3283168e2d – volume: 6 start-page: 197 year: 2012 ident: 2016101408525361000_139.10.2778.6 article-title: Symmetric diffeomorphic modeling of longitudinal structural MRI publication-title: Front Neurosci – ident: 2016101408525361000_139.10.2778.7 doi: 10.1016/j.neuroimage.2007.08.021 – ident: 2016101408525361000_139.10.2778.46 doi: 10.1523/JNEUROSCI.3464-13.2014 – ident: 2016101408525361000_139.10.2778.30 doi: 10.1073/pnas.0308627101 – ident: 2016101408525361000_139.10.2778.25 doi: 10.1038/nrn2786 – ident: 2016101408525361000_139.10.2778.24 doi: 10.1152/physrev.00006.2011 – ident: 2016101408525361000_139.10.2778.73 doi: 10.1016/j.neuroimage.2009.12.007 – ident: 2016101408525361000_139.10.2778.71 doi: 10.1016/j.neuron.2011.09.014 – ident: 2016101408525361000_139.10.2778.13 doi: 10.1212/WNL.0000000000000031 – ident: 2016101408525361000_139.10.2778.35 doi: 10.1016/j.neuroimage.2013.05.116 – ident: 2016101408525361000_139.10.2778.38 – ident: 2016101408525361000_139.10.2778.10 doi: 10.1016/j.nicl.2015.01.011 – ident: 2016101408525361000_139.10.2778.33 doi: 10.1162/jocn.1996.8.2.135 – ident: 2016101408525361000_139.10.2778.57 doi: 10.1212/WNL.58.2.198 – volume: 26 start-page: 1819 year: 2005 ident: 2016101408525361000_139.10.2778.16 article-title: Functional heterogeneity of the supplementary motor area publication-title: Am J Neuroradiol – ident: 2016101408525361000_139.10.2778.32 doi: 10.1016/S1474-4422(12)70099-6 – ident: 2016101408525361000_139.10.2778.39 doi: 10.1017/S0317167100004893 – ident: 2016101408525361000_139.10.2778.31 doi: 10.1007/s12031-011-9597-0 – ident: 2016101408525361000_139.10.2778.21 doi: 10.1016/j.neuron.2011.11.033 – ident: 2016101408525361000_139.10.2778.50 doi: 10.1093/brain/awg240 – ident: 2016101408525361000_139.10.2778.53 doi: 10.1002/mrm.1910360612 – ident: 2016101408525361000_139.10.2778.66 doi: 10.1016/j.neuroimage.2009.05.097 – ident: 2016101408525361000_139.10.2778.72 doi: 10.1093/brain/awq129 – ident: 2016101408525361000_139.10.2778.41 doi: 10.1097/00146965-200312000-00002 – ident: 2016101408525361000_139.10.2778.2 doi: 10.1016/j.brainres.2005.11.104 – ident: 2016101408525361000_139.10.2778.52 doi: 10.1038/nrn2277 – ident: 2016101408525361000_139.10.2778.42 doi: 10.1002/ana.22424 – ident: 2016101408525361000_139.10.2778.49 doi: 10.1002/cne.902120102 – ident: 2016101408525361000_139.10.2778.23 doi: 10.1073/pnas.1414491112 – ident: 2016101408525361000_139.10.2778.48 doi: 10.1002/ana.21388 – ident: 2016101408525361000_139.10.2778.34 doi: 10.1016/j.bandl.2012.10.005 – ident: 2016101408525361000_139.10.2778.59 doi: 10.1093/brain/awt118 – ident: 2016101408525361000_139.10.2778.27 doi: 10.1002/ana.10825 – volume: 6 start-page: 337 year: 1865 ident: 2016101408525361000_139.10.2778.12 article-title: Sur la faculte du langage articule publication-title: Bull Soc Anthrop Paris doi: 10.3406/bmsap.1865.9495 – ident: 2016101408525361000_139.10.2778.64 doi: 10.1016/j.neuron.2009.03.024 – ident: 2016101408525361000_139.10.2778.14 doi: 10.1016/j.cortex.2011.12.001 – ident: 2016101408525361000_139.10.2778.36 doi: 10.1038/nrn2113 – ident: 2016101408525361000_139.10.2778.44 doi: 10.1093/geronj/47.3.P154 – ident: 2016101408525361000_139.10.2778.18 – reference: 22445347 - Neuron. 2012 Mar 22;73(6):1204-15 – reference: 22365544 - Neuron. 2012 Feb 23;73(4):685-97 – reference: 23729473 - Brain. 2013 Jul;136(Pt 7):2253-61 – reference: 25031413 - J Neurosci. 2014 Jul 16;34(29):9754-67 – reference: 19146961 - Neuroimage. 2009 Apr 1;45(2):333-41 – reference: 21606451 - Neurology. 2011 May 24;76(21):1804-10 – reference: 16480694 - Brain Res. 2006 Mar 3;1076(1):129-43 – reference: 22445348 - Neuron. 2012 Mar 22;73(6):1216-27 – reference: 20392276 - Ann N Y Acad Sci. 2010 Mar;1191:62-88 – reference: 18989116 - Curr Opin Neurol. 2008 Dec;21(6):701-7 – reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 – reference: 23312804 - Neurobiol Aging. 2013 Jun;34(6):1687-99 – reference: 22088488 - Cortex. 2012 Jan;48(1):82-96 – reference: 19520171 - Neuroimage. 2009 Oct 15;48(1):117-25 – reference: 21325651 - Neurology. 2011 Mar 15;76(11):1006-14 – reference: 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113 – reference: 14665820 - Cogn Behav Neurol. 2003 Dec;16(4):211-8 – reference: 11805245 - Neurology. 2002 Jan 22;58(2):198-208 – reference: 22209688 - Cortex. 2012 Feb;48(2):273-91 – reference: 15723403 - Magn Reson Med. 2005 Mar;53(3):649-57 – reference: 24353332 - Neurology. 2014 Jan 21;82(3):239-47 – reference: 22926292 - Neuroimage. 2013 Jan 1;64:240-56 – reference: 19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13 – reference: 19253405 - Magn Reson Med. 2009 May;61(5):1255-60 – reference: 19376066 - Neuron. 2009 Apr 16;62(1):42-52 – reference: 23747457 - Neuroimage. 2013 Nov 15;82:208-25 – reference: 10441759 - J Comp Neurol. 1999 Sep 20;412(2):319-41 – reference: 22109837 - Hum Brain Mapp. 2013 Apr;34(4):973-84 – reference: 26106560 - Neuroimage Clin. 2015 Jan 22;8:345-55 – reference: 23820597 - Brain. 2013 Aug;136(Pt 8):2619-28 – reference: 12902311 - Brain. 2003 Nov;126(Pt 11):2406-18 – reference: 22608668 - Lancet Neurol. 2012 Jun;11(6):545-55 – reference: 18412267 - Ann Neurol. 2008 Jun;63(6):709-19 – reference: 17911030 - Neuroimage. 2008 Jan 1;39(1):215-22 – reference: 23386806 - Front Neurosci. 2013 Feb 05;6:197 – reference: 20005963 - Neuroimage. 2010 Apr 1;50(2):434-45 – reference: 22312444 - PLoS One. 2012;7(2):e31302 – reference: 23218686 - Brain Lang. 2013 Nov;127(2):106-20 – reference: 7174905 - J Comp Neurol. 1982 Nov 20;212(1):1-22 – reference: 19837176 - Neuroimage. 2010 Feb 1;49(3):2375-86 – reference: 16091536 - AJNR Am J Neuroradiol. 2005 Aug;26(7):1819-23 – reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 – reference: 17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402 – reference: 23971420 - J Cogn Neurosci. 1996 Spring;8(2):135-54 – reference: 18517468 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036114 – reference: 26673947 - Cortex. 2016 Jan;74:149-57 – reference: 20029438 - Nat Rev Neurosci. 2010 Mar;11(3):155-9 – reference: 8946355 - Magn Reson Med. 1996 Dec;36(6):893-906 – reference: 18026167 - Nat Rev Neurosci. 2007 Dec;8(12):976-87 – reference: 21666264 - Brain. 2011 Oct;134(Pt 10):3011-29 – reference: 21823158 - Ann Neurol. 2011 Aug;70(2):327-40 – reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 – reference: 20542982 - Brain. 2010 Jul;133(Pt 7):2069-88 – reference: 1573197 - J Gerontol. 1992 May;47(3):P154-8 – reference: 16413796 - Neuroimage. 2006 May 1;30(4):1414-32 – reference: 14991811 - Ann Neurol. 2004 Mar;55(3):335-46 – reference: 16723398 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82 – reference: 18325581 - Brain Lang. 2008 Apr;105(1):50-8 – reference: 25730850 - Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2871-5 – reference: 27111692 - JAMA Neurol. 2016 Jun 1;73(6):733-42 – reference: 8906789 - Nature. 1996 Nov 14;384(6605):159-61 – reference: 20404309 - Neurology. 2010 Apr 20;74(16):1279-87 – reference: 8987760 - J Neurosci. 1997 Jan 1;17(1):353-62 – reference: 22017996 - Neuron. 2011 Oct 20;72(2):397-403 – reference: 16613895 - Brain. 2006 Jun;129(Pt 6):1385-98 – reference: 16931509 - Neurology. 2006 Nov 28;67(10):1849-51 – reference: 23890877 - Brain Lang. 2013 Nov;127(2):157-66 – reference: 21833654 - J Mol Neurosci. 2011 Nov;45(3):366-71 – reference: 16736722 - Can J Neurol Sci. 2006 May;33(2):141-8 – reference: 22013214 - Physiol Rev. 2011 Oct;91(4):1357-92 |
SSID | ssj0014326 |
Score | 2.5206356 |
Snippet | Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a... Neurodegeneration is hypothesized to follow large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2778 |
SubjectTerms | Aged Aphasia, Primary Progressive - diagnostic imaging Aphasia, Primary Progressive - pathology Aphasia, Primary Progressive - physiopathology Atrophy - etiology Atrophy - pathology Brain - diagnostic imaging Brain - pathology Cohort Studies Disease Progression Female Humans Image Processing, Computer-Assisted Language Magnetic Resonance Imaging Male Middle Aged Models, Neurological Neural Pathways - diagnostic imaging Neural Pathways - physiology Neuropsychological Tests Original Speech Production Measurement Statistics as Topic |
Title | Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27497488 https://www.proquest.com/docview/1859711702 https://pubmed.ncbi.nlm.nih.gov/PMC5035819 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAvaHyXDWQkeIrCktj5epzQUJko4mFDfYtsx9EqlS5ak03wZ_AXc2c7abIPCXiJ2sTJpb5fz3fn-yDkXVRFVcBK7SdVlfs8C3JfhnHpJ6WUeVVFaWiy-Odfk9kpP17Ei8nk9yBqqW3kB_Xr1ryS_-EqnAO-YpbsP3C2fyicgM_AXzgCh-H4Vzy2OUQ_PYl9HjCAfG3EFyrW9QXuwDQbD33dMJU2EMsW4UAfB1j9vmlP0niXYC4LGxFQu9oT_eBL7Yn6DDMtR7u_ht5tzUCshyFLs4GHYY5-6pVNw54jLe9Lu9z0y8H35UrUcK_RYo_K1qX5j3wEx1jhfOt2nbVSChuTP_M-b4R0cf_OexEmfRwcLD5W4vIk8EHvSEYi2RY4ctj71ngu9NUJ2dR2_bkh_W1lLDPnuMRdXYW2gecACvUPgwWwxcGQsg0Fr9Xb7i7dI_eBUGTagSz6sCFQL6PEJVAAuQND7MCSwsLS7uaxlnPDdLkegTtQaU52ySNni9BDC6zHZKLXT8iDuYu2eEpWDl_UkKdDfNEOX9Thiw7wRWHwFl_U4YueV9Thiw7wRR2-npHTT0cnH2e-687hKx4HjR_rMKxybNRVcqbymAlZZriLDPOiZBbLlIk4kCqSmQhlWYLmqHiWKMWiGNT-lD0nO_Au-iWhXLFc8DDjFQu5LoUUWqdcyTTI4VvEpsTrZrNQrnQ9dlBZFTaEghVmHgrLhil53492P-uOcW87xhQgU3GjTKz1ebspQIfNU2zJFE3JC8uo_kkdh6ckHbGwH4D12sdX1sszU7c9DrDYYP7qzmfukYfb_8g-2WkuWv0adN5GvjEg_AOYZLXC |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Healthy+brain+connectivity+predicts+atrophy+progression+in+non-fluent+variant+of+primary+progressive+aphasia&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Mandelli%2C+Maria+Luisa&rft.au=Vilaplana%2C+Eduard&rft.au=Brown%2C+Jesse+A&rft.au=Hubbard%2C+H+Isabel&rft.date=2016-10-01&rft.eissn=1460-2156&rft.volume=139&rft.issue=Pt+10&rft.spage=2778&rft_id=info:doi/10.1093%2Fbrain%2Faww195&rft_id=info%3Apmid%2F27497488&rft.externalDocID=27497488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |