Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia

Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. T...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 139; no. 10; pp. 2778 - 2791
Main Authors Mandelli, Maria Luisa, Vilaplana, Eduard, Brown, Jesse A., Hubbard, H. Isabel, Binney, Richard J., Attygalle, Suneth, Santos-Santos, Miguel A., Miller, Zachary A., Pakvasa, Mikhail, Henry, Maya L., Rosen, Howard J., Henry, Roland G., Rabinovici, Gil D., Miller, Bruce L., Seeley, William W., Gorno-Tempini, Maria Luisa
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.10.2016
SeriesEditor's Choice
Subjects
Online AccessGet full text
ISSN0006-8950
1460-2156
1460-2156
DOI10.1093/brain/aww195

Cover

Loading…
Abstract Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures.
AbstractList Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures.
Neurodegeneration is hypothesized to follow large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. Mandelli et al . report that the pattern of atrophy progression in the non-fluent variant of primary progressive aphasia reflects the strength of connectivity in the speech production network of the healthy brain. Neurodegeneration is hypothesized to follow large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. Mandelli et al . report that the pattern of atrophy progression in the non-fluent variant of primary progressive aphasia reflects the strength of connectivity in the speech production network of the healthy brain. Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls ( n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures.
Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures.Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures.
Author Henry, Maya L.
Mandelli, Maria Luisa
Santos-Santos, Miguel A.
Binney, Richard J.
Hubbard, H. Isabel
Rabinovici, Gil D.
Rosen, Howard J.
Seeley, William W.
Attygalle, Suneth
Miller, Zachary A.
Henry, Roland G.
Gorno-Tempini, Maria Luisa
Miller, Bruce L.
Vilaplana, Eduard
Brown, Jesse A.
Pakvasa, Mikhail
Author_xml – sequence: 1
  givenname: Maria Luisa
  surname: Mandelli
  fullname: Mandelli, Maria Luisa
– sequence: 2
  givenname: Eduard
  surname: Vilaplana
  fullname: Vilaplana, Eduard
– sequence: 3
  givenname: Jesse A.
  surname: Brown
  fullname: Brown, Jesse A.
– sequence: 4
  givenname: H. Isabel
  surname: Hubbard
  fullname: Hubbard, H. Isabel
– sequence: 5
  givenname: Richard J.
  surname: Binney
  fullname: Binney, Richard J.
– sequence: 6
  givenname: Suneth
  surname: Attygalle
  fullname: Attygalle, Suneth
– sequence: 7
  givenname: Miguel A.
  surname: Santos-Santos
  fullname: Santos-Santos, Miguel A.
– sequence: 8
  givenname: Zachary A.
  surname: Miller
  fullname: Miller, Zachary A.
– sequence: 9
  givenname: Mikhail
  surname: Pakvasa
  fullname: Pakvasa, Mikhail
– sequence: 10
  givenname: Maya L.
  surname: Henry
  fullname: Henry, Maya L.
– sequence: 11
  givenname: Howard J.
  surname: Rosen
  fullname: Rosen, Howard J.
– sequence: 12
  givenname: Roland G.
  surname: Henry
  fullname: Henry, Roland G.
– sequence: 13
  givenname: Gil D.
  surname: Rabinovici
  fullname: Rabinovici, Gil D.
– sequence: 14
  givenname: Bruce L.
  surname: Miller
  fullname: Miller, Bruce L.
– sequence: 15
  givenname: William W.
  surname: Seeley
  fullname: Seeley, William W.
– sequence: 16
  givenname: Maria Luisa
  surname: Gorno-Tempini
  fullname: Gorno-Tempini, Maria Luisa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27497488$$D View this record in MEDLINE/PubMed
BookMark eNptkUFPGzEQhS2UChLgxrnaYw9sGa_Xu_YFqYoKVIrUC5ytWa-XGG3sYDtB_PsaEhBFnEaa-ea9p5kZmTjvDCFnFH5SkOyiC2jdBT49UckPyJTWDZQV5c2ETAGgKYXkcERmMT4A0JpVzSE5qtpatrUQUzLeGBzT8rl4lSm0d87oZLc2PRfrYHqrUywwBb9evjT8fTAxWu-KDOcg5TBujEvFFoPFXP2QIbvC8AHemgLXS4wWT8i3AcdoTvf1mNxd_b6d35SLv9d_5r8Wpa45pJIbSgdJQTR9zbTkDLteSBC5JXUneNcy5NDpqhNIu76vodG1aLRmFReMt-yYXO5015tuZXqdEwYc1T6Z8mjV_xNnl-rebxUHxgWVWeDHXiD4x42JSa1s1GYc0Rm_iYoKLltKW6gy-v2j17vJ24kzUO0AHXyMwQxK24Qp3zBb21FRUC9_VK8PULs_5qXzT0tvul_i_wD-_qVa
CitedBy_id crossref_primary_10_1038_s41467_017_01958_7
crossref_primary_10_1016_j_cortex_2019_07_022
crossref_primary_10_2139_ssrn_4179155
crossref_primary_10_1111_jon_13165
crossref_primary_10_1186_s13195_023_01350_2
crossref_primary_10_1016_S1474_4422_16_30275_7
crossref_primary_10_1007_s11065_025_09659_5
crossref_primary_10_1162_netn_a_00285
crossref_primary_10_1007_s40336_024_00637_0
crossref_primary_10_1016_j_nicl_2024_103639
crossref_primary_10_1162_nol_a_00075
crossref_primary_10_17816_ACEN_1067
crossref_primary_10_1016_j_bandl_2023_105243
crossref_primary_10_23736_S0390_5616_21_05344_3
crossref_primary_10_1093_brain_awad327
crossref_primary_10_1044_2018_JSLHR_L_18_0144
crossref_primary_10_1002_brb3_3490
crossref_primary_10_1016_j_trci_2019_09_005
crossref_primary_10_1016_j_neuroimage_2020_117260
crossref_primary_10_1053_j_sult_2021_07_007
crossref_primary_10_3389_fpsyg_2022_887591
crossref_primary_10_1016_j_nicl_2018_02_036
crossref_primary_10_1186_s10194_023_01711_0
crossref_primary_10_1038_s41380_018_0067_8
crossref_primary_10_1523_JNEUROSCI_1485_19_2019
crossref_primary_10_3389_fnhum_2022_945160
crossref_primary_10_1016_j_nicl_2023_103329
crossref_primary_10_1016_j_neurom_2022_09_004
crossref_primary_10_1080_02687038_2021_1897079
crossref_primary_10_1016_j_bandl_2022_105094
crossref_primary_10_1097_WCO_0000000000000571
crossref_primary_10_1093_brain_awz122
crossref_primary_10_1016_j_neurobiolaging_2022_08_013
crossref_primary_10_3389_fnins_2018_01055
crossref_primary_10_1212_WNL_0000000000201491
crossref_primary_10_3389_fnagi_2023_1120935
crossref_primary_10_1093_brain_awx347
crossref_primary_10_1016_j_cortex_2018_08_002
crossref_primary_10_1038_s41572_023_00447_0
crossref_primary_10_3390_brainsci13030406
crossref_primary_10_1093_braincomms_fcac061
crossref_primary_10_1002_hbm_26388
crossref_primary_10_1080_01616412_2020_1781454
crossref_primary_10_1186_s13195_022_00974_0
crossref_primary_10_3389_fnins_2022_738865
crossref_primary_10_3389_fnhum_2016_00675
crossref_primary_10_1016_j_neurobiolaging_2020_09_007
crossref_primary_10_1080_13554794_2019_1609522
crossref_primary_10_3389_fneur_2020_616764
crossref_primary_10_1002_hbm_25093
crossref_primary_10_1093_brain_awx293
crossref_primary_10_1016_j_nicl_2022_103144
crossref_primary_10_1080_13554794_2022_2039207
crossref_primary_10_1093_brain_awy101
crossref_primary_10_3174_ajnr_A7613
crossref_primary_10_1016_j_cortex_2023_03_003
crossref_primary_10_1093_braincomms_fcab015
crossref_primary_10_1016_j_nicl_2018_02_028
crossref_primary_10_1002_ana_25465
crossref_primary_10_1002_brb3_2094
crossref_primary_10_1007_s11682_021_00560_2
crossref_primary_10_1016_j_cortex_2019_01_006
crossref_primary_10_1007_s00429_022_02498_7
crossref_primary_10_1016_j_biopsych_2017_10_019
crossref_primary_10_3389_fnana_2020_00021
crossref_primary_10_1016_j_nicl_2019_101797
crossref_primary_10_1016_j_nicl_2023_103428
crossref_primary_10_1093_brain_awy180
crossref_primary_10_1016_j_cortex_2023_05_004
crossref_primary_10_1172_jci_insight_92641
crossref_primary_10_1007_s13311_021_01101_x
crossref_primary_10_1097_WAD_0000000000000193
crossref_primary_10_1093_brain_awy292
crossref_primary_10_3389_fnhum_2017_00173
crossref_primary_10_1093_brain_awac208
crossref_primary_10_1155_2018_9684129
crossref_primary_10_1016_j_neuropsychologia_2017_08_022
crossref_primary_10_1080_13554794_2020_1862241
crossref_primary_10_3389_fneur_2018_00692
crossref_primary_10_1016_j_cortex_2021_05_006
crossref_primary_10_1038_s41598_020_68118_8
crossref_primary_10_1097_WCO_0000000000000673
crossref_primary_10_1093_brain_awx245
crossref_primary_10_1016_j_cortex_2019_08_010
crossref_primary_10_3389_fneur_2021_641586
crossref_primary_10_1186_s13195_018_0393_8
crossref_primary_10_12688_f1000research_21184_1
Cites_doi 10.1002/hbm.21484
10.1111/j.1749-6632.2010.05444.x
10.1016/j.neuron.2012.03.004
10.1038/ncb1901
10.1016/j.neuroimage.2009.10.016
10.1002/mrm.20386
10.1016/j.neuroimage.2005.11.002
10.1093/brain/awl078
10.1093/brain/awt163
10.1016/j.neuroimage.2008.12.008
10.1093/brain/awr099
10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7
10.1038/384159a0
10.1103/PhysRevE.77.036114
10.1002/mrm.21965
10.1016/j.cortex.2015.10.012
10.1016/j.cortex.2011.10.001
10.1016/j.bandl.2013.06.003
10.1523/JNEUROSCI.17-01-00353.1997
10.1212/WNL.0b013e31821103e6
10.1016/j.neuroimage.2012.08.052
10.1016/j.neuron.2011.12.040
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2007.07.007
10.1212/01.wnl.0000237038.55627.5b
10.1016/j.neurobiolaging.2012.12.002
10.1016/j.bandl.2008.01.012
10.1371/journal.pone.0031302
10.1073/pnas.0601602103
10.1212/WNL.0b013e3181d9edde
10.1073/pnas.0601417103
10.1001/jamaneurol.2016.0412
10.1212/WNL.0b013e31821ccd3c
10.1097/WCO.0b013e3283168e2d
10.1016/j.neuroimage.2007.08.021
10.1523/JNEUROSCI.3464-13.2014
10.1073/pnas.0308627101
10.1038/nrn2786
10.1152/physrev.00006.2011
10.1016/j.neuroimage.2009.12.007
10.1016/j.neuron.2011.09.014
10.1212/WNL.0000000000000031
10.1016/j.neuroimage.2013.05.116
10.1016/j.nicl.2015.01.011
10.1162/jocn.1996.8.2.135
10.1212/WNL.58.2.198
10.1016/S1474-4422(12)70099-6
10.1017/S0317167100004893
10.1007/s12031-011-9597-0
10.1016/j.neuron.2011.11.033
10.1093/brain/awg240
10.1002/mrm.1910360612
10.1016/j.neuroimage.2009.05.097
10.1093/brain/awq129
10.1097/00146965-200312000-00002
10.1016/j.brainres.2005.11.104
10.1038/nrn2277
10.1002/ana.22424
10.1002/cne.902120102
10.1073/pnas.1414491112
10.1002/ana.21388
10.1016/j.bandl.2012.10.005
10.1093/brain/awt118
10.1002/ana.10825
10.3406/bmsap.1865.9495
10.1016/j.neuron.2009.03.024
10.1016/j.cortex.2011.12.001
10.1038/nrn2113
10.1093/geronj/47.3.P154
ContentType Journal Article
Copyright The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016
Copyright_xml – notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/brain/aww195
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 2791
ExternalDocumentID PMC5035819
27497488
10_1093_brain_aww195
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: K24 DC015544
– fundername: NIA NIH HHS
  grantid: K23 AG048291
– fundername: NIA NIH HHS
  grantid: P01 AG019724
– fundername: NIA NIH HHS
  grantid: U01 AG052943
– fundername: NIA NIH HHS
  grantid: R01 AG032306
– fundername: NINDS NIH HHS
  grantid: R01 NS050915
– fundername: NIA NIH HHS
  grantid: P50 AG023501
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
AAYXX
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c450t-5e11f91086d43c953abd89089109cb85b73a50bc2b8a1bdd406c486cc32583573
ISSN 0006-8950
1460-2156
IngestDate Thu Aug 21 13:41:28 EDT 2025
Fri Jul 11 11:00:49 EDT 2025
Thu Apr 03 07:01:20 EDT 2025
Tue Jul 01 00:46:08 EDT 2025
Thu Apr 24 22:59:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords tractography
longitudinal atrophy
functional connectivity
connectivity
primary progressive aphasia
Language English
License The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-5e11f91086d43c953abd89089109cb85b73a50bc2b8a1bdd406c486cc32583573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/brain/article-pdf/139/10/2778/17348090/aww195.pdf
PMID 27497488
PQID 1859711702
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5035819
proquest_miscellaneous_1859711702
pubmed_primary_27497488
crossref_citationtrail_10_1093_brain_aww195
crossref_primary_10_1093_brain_aww195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationSeriesTitle Editor's Choice
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016101408525361000_139.10.2778.5
2016101408525361000_139.10.2778.4
2016101408525361000_139.10.2778.3
2016101408525361000_139.10.2778.41
2016101408525361000_139.10.2778.2
2016101408525361000_139.10.2778.40
2016101408525361000_139.10.2778.9
2016101408525361000_139.10.2778.7
2016101408525361000_139.10.2778.36
2016101408525361000_139.10.2778.35
2016101408525361000_139.10.2778.38
2016101408525361000_139.10.2778.37
2016101408525361000_139.10.2778.1
2016101408525361000_139.10.2778.32
2016101408525361000_139.10.2778.31
2016101408525361000_139.10.2778.34
2016101408525361000_139.10.2778.33
2016101408525361000_139.10.2778.39
Ashburner (2016101408525361000_139.10.2778.6) 2012; 6
2016101408525361000_139.10.2778.72
2016101408525361000_139.10.2778.71
2016101408525361000_139.10.2778.30
2016101408525361000_139.10.2778.74
2016101408525361000_139.10.2778.73
Binder (2016101408525361000_139.10.2778.8) 1997; 17
Chung (2016101408525361000_139.10.2778.16) 2005; 26
2016101408525361000_139.10.2778.70
2016101408525361000_139.10.2778.25
2016101408525361000_139.10.2778.69
2016101408525361000_139.10.2778.24
2016101408525361000_139.10.2778.68
2016101408525361000_139.10.2778.27
2016101408525361000_139.10.2778.26
2016101408525361000_139.10.2778.21
2016101408525361000_139.10.2778.65
2016101408525361000_139.10.2778.20
2016101408525361000_139.10.2778.64
2016101408525361000_139.10.2778.23
2016101408525361000_139.10.2778.67
2016101408525361000_139.10.2778.22
2016101408525361000_139.10.2778.66
2016101408525361000_139.10.2778.29
2016101408525361000_139.10.2778.28
Broca (2016101408525361000_139.10.2778.12) 1865; 6
2016101408525361000_139.10.2778.61
2016101408525361000_139.10.2778.60
Broca (2016101408525361000_139.10.2778.11) 1861; 2
2016101408525361000_139.10.2778.63
2016101408525361000_139.10.2778.62
2016101408525361000_139.10.2778.14
2016101408525361000_139.10.2778.58
2016101408525361000_139.10.2778.13
2016101408525361000_139.10.2778.57
2016101408525361000_139.10.2778.15
2016101408525361000_139.10.2778.59
2016101408525361000_139.10.2778.10
2016101408525361000_139.10.2778.54
2016101408525361000_139.10.2778.53
2016101408525361000_139.10.2778.56
2016101408525361000_139.10.2778.55
2016101408525361000_139.10.2778.18
2016101408525361000_139.10.2778.17
2016101408525361000_139.10.2778.19
2016101408525361000_139.10.2778.50
2016101408525361000_139.10.2778.52
2016101408525361000_139.10.2778.51
2016101408525361000_139.10.2778.47
2016101408525361000_139.10.2778.46
2016101408525361000_139.10.2778.49
2016101408525361000_139.10.2778.48
2016101408525361000_139.10.2778.43
2016101408525361000_139.10.2778.42
2016101408525361000_139.10.2778.45
2016101408525361000_139.10.2778.44
7174905 - J Comp Neurol. 1982 Nov 20;212(1):1-22
8987760 - J Neurosci. 1997 Jan 1;17(1):353-62
26106560 - Neuroimage Clin. 2015 Jan 22;8:345-55
25730850 - Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2871-5
22013214 - Physiol Rev. 2011 Oct;91(4):1357-92
22017996 - Neuron. 2011 Oct 20;72(2):397-403
16613895 - Brain. 2006 Jun;129(Pt 6):1385-98
19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13
27111692 - JAMA Neurol. 2016 Jun 1;73(6):733-42
17911030 - Neuroimage. 2008 Jan 1;39(1):215-22
14991811 - Ann Neurol. 2004 Mar;55(3):335-46
26673947 - Cortex. 2016 Jan;74:149-57
22445348 - Neuron. 2012 Mar 22;73(6):1216-27
21833654 - J Mol Neurosci. 2011 Nov;45(3):366-71
22926292 - Neuroimage. 2013 Jan 1;64:240-56
22088488 - Cortex. 2012 Jan;48(1):82-96
14665820 - Cogn Behav Neurol. 2003 Dec;16(4):211-8
19837176 - Neuroimage. 2010 Feb 1;49(3):2375-86
16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
11805245 - Neurology. 2002 Jan 22;58(2):198-208
21606451 - Neurology. 2011 May 24;76(21):1804-10
21325651 - Neurology. 2011 Mar 15;76(11):1006-14
19253405 - Magn Reson Med. 2009 May;61(5):1255-60
15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42
17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402
1573197 - J Gerontol. 1992 May;47(3):P154-8
23386806 - Front Neurosci. 2013 Feb 05;6:197
19376066 - Neuron. 2009 Apr 16;62(1):42-52
16413796 - Neuroimage. 2006 May 1;30(4):1414-32
10441759 - J Comp Neurol. 1999 Sep 20;412(2):319-41
22109837 - Hum Brain Mapp. 2013 Apr;34(4):973-84
23218686 - Brain Lang. 2013 Nov;127(2):106-20
20404309 - Neurology. 2010 Apr 20;74(16):1279-87
16091536 - AJNR Am J Neuroradiol. 2005 Aug;26(7):1819-23
23729473 - Brain. 2013 Jul;136(Pt 7):2253-61
22312444 - PLoS One. 2012;7(2):e31302
20005963 - Neuroimage. 2010 Apr 1;50(2):434-45
23312804 - Neurobiol Aging. 2013 Jun;34(6):1687-99
19819337 - Neuroimage. 2010 Sep;52(3):1059-69
23820597 - Brain. 2013 Aug;136(Pt 8):2619-28
18325581 - Brain Lang. 2008 Apr;105(1):50-8
25031413 - J Neurosci. 2014 Jul 16;34(29):9754-67
22365544 - Neuron. 2012 Feb 23;73(4):685-97
23971420 - J Cogn Neurosci. 1996 Spring;8(2):135-54
22445347 - Neuron. 2012 Mar 22;73(6):1204-15
23747457 - Neuroimage. 2013 Nov 15;82:208-25
22209688 - Cortex. 2012 Feb;48(2):273-91
16723398 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82
16480694 - Brain Res. 2006 Mar 3;1076(1):129-43
15723403 - Magn Reson Med. 2005 Mar;53(3):649-57
18989116 - Curr Opin Neurol. 2008 Dec;21(6):701-7
8946355 - Magn Reson Med. 1996 Dec;36(6):893-906
18517468 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036114
16931509 - Neurology. 2006 Nov 28;67(10):1849-51
16736722 - Can J Neurol Sci. 2006 May;33(2):141-8
8906789 - Nature. 1996 Nov 14;384(6605):159-61
20392276 - Ann N Y Acad Sci. 2010 Mar;1191:62-88
22608668 - Lancet Neurol. 2012 Jun;11(6):545-55
21823158 - Ann Neurol. 2011 Aug;70(2):327-40
18026167 - Nat Rev Neurosci. 2007 Dec;8(12):976-87
19520171 - Neuroimage. 2009 Oct 15;48(1):117-25
12902311 - Brain. 2003 Nov;126(Pt 11):2406-18
18412267 - Ann Neurol. 2008 Jun;63(6):709-19
20029438 - Nat Rev Neurosci. 2010 Mar;11(3):155-9
21666264 - Brain. 2011 Oct;134(Pt 10):3011-29
17761438 - Neuroimage. 2007 Oct 15;38(1):95-113
24353332 - Neurology. 2014 Jan 21;82(3):239-47
20542982 - Brain. 2010 Jul;133(Pt 7):2069-88
19146961 - Neuroimage. 2009 Apr 1;45(2):333-41
23890877 - Brain Lang. 2013 Nov;127(2):157-66
References_xml – volume: 2
  start-page: 330
  year: 1861
  ident: 2016101408525361000_139.10.2778.11
  article-title: Remarques sur le siege de la faculte du langage articule, suivies d'une observation d'aphemie
  publication-title: Bull Soc Anatomique
– ident: 2016101408525361000_139.10.2778.62
  doi: 10.1002/hbm.21484
– ident: 2016101408525361000_139.10.2778.54
  doi: 10.1111/j.1749-6632.2010.05444.x
– ident: 2016101408525361000_139.10.2778.74
  doi: 10.1016/j.neuron.2012.03.004
– ident: 2016101408525361000_139.10.2778.17
  doi: 10.1038/ncb1901
– ident: 2016101408525361000_139.10.2778.40
  doi: 10.1016/j.neuroimage.2009.10.016
– ident: 2016101408525361000_139.10.2778.68
  doi: 10.1002/mrm.20386
– ident: 2016101408525361000_139.10.2778.67
  doi: 10.1016/j.neuroimage.2005.11.002
– ident: 2016101408525361000_139.10.2778.37
  doi: 10.1093/brain/awl078
– ident: 2016101408525361000_139.10.2778.15
  doi: 10.1093/brain/awt163
– ident: 2016101408525361000_139.10.2778.5
  doi: 10.1016/j.neuroimage.2008.12.008
– ident: 2016101408525361000_139.10.2778.26
  doi: 10.1093/brain/awr099
– ident: 2016101408525361000_139.10.2778.3
  doi: 10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7
– ident: 2016101408525361000_139.10.2778.22
  doi: 10.1038/384159a0
– ident: 2016101408525361000_139.10.2778.9
  doi: 10.1103/PhysRevE.77.036114
– ident: 2016101408525361000_139.10.2778.69
  doi: 10.1002/mrm.21965
– ident: 2016101408525361000_139.10.2778.47
  doi: 10.1016/j.cortex.2015.10.012
– ident: 2016101408525361000_139.10.2778.65
  doi: 10.1016/j.cortex.2011.10.001
– ident: 2016101408525361000_139.10.2778.1
  doi: 10.1016/j.bandl.2013.06.003
– volume: 17
  start-page: 353
  year: 1997
  ident: 2016101408525361000_139.10.2778.8
  article-title: Human brain language areas identified by functional magnetic resonance imaging
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-01-00353.1997
– ident: 2016101408525361000_139.10.2778.28
  doi: 10.1212/WNL.0b013e31821103e6
– ident: 2016101408525361000_139.10.2778.61
  doi: 10.1016/j.neuroimage.2012.08.052
– ident: 2016101408525361000_139.10.2778.55
  doi: 10.1016/j.neuron.2011.12.040
– ident: 2016101408525361000_139.10.2778.58
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: 2016101408525361000_139.10.2778.4
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: 2016101408525361000_139.10.2778.29
  doi: 10.1212/01.wnl.0000237038.55627.5b
– ident: 2016101408525361000_139.10.2778.45
  doi: 10.1016/j.neurobiolaging.2012.12.002
– ident: 2016101408525361000_139.10.2778.20
  doi: 10.1016/j.bandl.2008.01.012
– ident: 2016101408525361000_139.10.2778.43
  doi: 10.1371/journal.pone.0031302
– ident: 2016101408525361000_139.10.2778.51
  doi: 10.1073/pnas.0601602103
– ident: 2016101408525361000_139.10.2778.70
  doi: 10.1212/WNL.0b013e3181d9edde
– ident: 2016101408525361000_139.10.2778.19
  doi: 10.1073/pnas.0601417103
– ident: 2016101408525361000_139.10.2778.60
  doi: 10.1001/jamaneurol.2016.0412
– ident: 2016101408525361000_139.10.2778.56
  doi: 10.1212/WNL.0b013e31821ccd3c
– ident: 2016101408525361000_139.10.2778.63
  doi: 10.1097/WCO.0b013e3283168e2d
– volume: 6
  start-page: 197
  year: 2012
  ident: 2016101408525361000_139.10.2778.6
  article-title: Symmetric diffeomorphic modeling of longitudinal structural MRI
  publication-title: Front Neurosci
– ident: 2016101408525361000_139.10.2778.7
  doi: 10.1016/j.neuroimage.2007.08.021
– ident: 2016101408525361000_139.10.2778.46
  doi: 10.1523/JNEUROSCI.3464-13.2014
– ident: 2016101408525361000_139.10.2778.30
  doi: 10.1073/pnas.0308627101
– ident: 2016101408525361000_139.10.2778.25
  doi: 10.1038/nrn2786
– ident: 2016101408525361000_139.10.2778.24
  doi: 10.1152/physrev.00006.2011
– ident: 2016101408525361000_139.10.2778.73
  doi: 10.1016/j.neuroimage.2009.12.007
– ident: 2016101408525361000_139.10.2778.71
  doi: 10.1016/j.neuron.2011.09.014
– ident: 2016101408525361000_139.10.2778.13
  doi: 10.1212/WNL.0000000000000031
– ident: 2016101408525361000_139.10.2778.35
  doi: 10.1016/j.neuroimage.2013.05.116
– ident: 2016101408525361000_139.10.2778.38
– ident: 2016101408525361000_139.10.2778.10
  doi: 10.1016/j.nicl.2015.01.011
– ident: 2016101408525361000_139.10.2778.33
  doi: 10.1162/jocn.1996.8.2.135
– ident: 2016101408525361000_139.10.2778.57
  doi: 10.1212/WNL.58.2.198
– volume: 26
  start-page: 1819
  year: 2005
  ident: 2016101408525361000_139.10.2778.16
  article-title: Functional heterogeneity of the supplementary motor area
  publication-title: Am J Neuroradiol
– ident: 2016101408525361000_139.10.2778.32
  doi: 10.1016/S1474-4422(12)70099-6
– ident: 2016101408525361000_139.10.2778.39
  doi: 10.1017/S0317167100004893
– ident: 2016101408525361000_139.10.2778.31
  doi: 10.1007/s12031-011-9597-0
– ident: 2016101408525361000_139.10.2778.21
  doi: 10.1016/j.neuron.2011.11.033
– ident: 2016101408525361000_139.10.2778.50
  doi: 10.1093/brain/awg240
– ident: 2016101408525361000_139.10.2778.53
  doi: 10.1002/mrm.1910360612
– ident: 2016101408525361000_139.10.2778.66
  doi: 10.1016/j.neuroimage.2009.05.097
– ident: 2016101408525361000_139.10.2778.72
  doi: 10.1093/brain/awq129
– ident: 2016101408525361000_139.10.2778.41
  doi: 10.1097/00146965-200312000-00002
– ident: 2016101408525361000_139.10.2778.2
  doi: 10.1016/j.brainres.2005.11.104
– ident: 2016101408525361000_139.10.2778.52
  doi: 10.1038/nrn2277
– ident: 2016101408525361000_139.10.2778.42
  doi: 10.1002/ana.22424
– ident: 2016101408525361000_139.10.2778.49
  doi: 10.1002/cne.902120102
– ident: 2016101408525361000_139.10.2778.23
  doi: 10.1073/pnas.1414491112
– ident: 2016101408525361000_139.10.2778.48
  doi: 10.1002/ana.21388
– ident: 2016101408525361000_139.10.2778.34
  doi: 10.1016/j.bandl.2012.10.005
– ident: 2016101408525361000_139.10.2778.59
  doi: 10.1093/brain/awt118
– ident: 2016101408525361000_139.10.2778.27
  doi: 10.1002/ana.10825
– volume: 6
  start-page: 337
  year: 1865
  ident: 2016101408525361000_139.10.2778.12
  article-title: Sur la faculte du langage articule
  publication-title: Bull Soc Anthrop Paris
  doi: 10.3406/bmsap.1865.9495
– ident: 2016101408525361000_139.10.2778.64
  doi: 10.1016/j.neuron.2009.03.024
– ident: 2016101408525361000_139.10.2778.14
  doi: 10.1016/j.cortex.2011.12.001
– ident: 2016101408525361000_139.10.2778.36
  doi: 10.1038/nrn2113
– ident: 2016101408525361000_139.10.2778.44
  doi: 10.1093/geronj/47.3.P154
– ident: 2016101408525361000_139.10.2778.18
– reference: 22445347 - Neuron. 2012 Mar 22;73(6):1204-15
– reference: 22365544 - Neuron. 2012 Feb 23;73(4):685-97
– reference: 23729473 - Brain. 2013 Jul;136(Pt 7):2253-61
– reference: 25031413 - J Neurosci. 2014 Jul 16;34(29):9754-67
– reference: 19146961 - Neuroimage. 2009 Apr 1;45(2):333-41
– reference: 21606451 - Neurology. 2011 May 24;76(21):1804-10
– reference: 16480694 - Brain Res. 2006 Mar 3;1076(1):129-43
– reference: 22445348 - Neuron. 2012 Mar 22;73(6):1216-27
– reference: 20392276 - Ann N Y Acad Sci. 2010 Mar;1191:62-88
– reference: 18989116 - Curr Opin Neurol. 2008 Dec;21(6):701-7
– reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
– reference: 23312804 - Neurobiol Aging. 2013 Jun;34(6):1687-99
– reference: 22088488 - Cortex. 2012 Jan;48(1):82-96
– reference: 19520171 - Neuroimage. 2009 Oct 15;48(1):117-25
– reference: 21325651 - Neurology. 2011 Mar 15;76(11):1006-14
– reference: 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113
– reference: 14665820 - Cogn Behav Neurol. 2003 Dec;16(4):211-8
– reference: 11805245 - Neurology. 2002 Jan 22;58(2):198-208
– reference: 22209688 - Cortex. 2012 Feb;48(2):273-91
– reference: 15723403 - Magn Reson Med. 2005 Mar;53(3):649-57
– reference: 24353332 - Neurology. 2014 Jan 21;82(3):239-47
– reference: 22926292 - Neuroimage. 2013 Jan 1;64:240-56
– reference: 19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13
– reference: 19253405 - Magn Reson Med. 2009 May;61(5):1255-60
– reference: 19376066 - Neuron. 2009 Apr 16;62(1):42-52
– reference: 23747457 - Neuroimage. 2013 Nov 15;82:208-25
– reference: 10441759 - J Comp Neurol. 1999 Sep 20;412(2):319-41
– reference: 22109837 - Hum Brain Mapp. 2013 Apr;34(4):973-84
– reference: 26106560 - Neuroimage Clin. 2015 Jan 22;8:345-55
– reference: 23820597 - Brain. 2013 Aug;136(Pt 8):2619-28
– reference: 12902311 - Brain. 2003 Nov;126(Pt 11):2406-18
– reference: 22608668 - Lancet Neurol. 2012 Jun;11(6):545-55
– reference: 18412267 - Ann Neurol. 2008 Jun;63(6):709-19
– reference: 17911030 - Neuroimage. 2008 Jan 1;39(1):215-22
– reference: 23386806 - Front Neurosci. 2013 Feb 05;6:197
– reference: 20005963 - Neuroimage. 2010 Apr 1;50(2):434-45
– reference: 22312444 - PLoS One. 2012;7(2):e31302
– reference: 23218686 - Brain Lang. 2013 Nov;127(2):106-20
– reference: 7174905 - J Comp Neurol. 1982 Nov 20;212(1):1-22
– reference: 19837176 - Neuroimage. 2010 Feb 1;49(3):2375-86
– reference: 16091536 - AJNR Am J Neuroradiol. 2005 Aug;26(7):1819-23
– reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69
– reference: 17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402
– reference: 23971420 - J Cogn Neurosci. 1996 Spring;8(2):135-54
– reference: 18517468 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036114
– reference: 26673947 - Cortex. 2016 Jan;74:149-57
– reference: 20029438 - Nat Rev Neurosci. 2010 Mar;11(3):155-9
– reference: 8946355 - Magn Reson Med. 1996 Dec;36(6):893-906
– reference: 18026167 - Nat Rev Neurosci. 2007 Dec;8(12):976-87
– reference: 21666264 - Brain. 2011 Oct;134(Pt 10):3011-29
– reference: 21823158 - Ann Neurol. 2011 Aug;70(2):327-40
– reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42
– reference: 20542982 - Brain. 2010 Jul;133(Pt 7):2069-88
– reference: 1573197 - J Gerontol. 1992 May;47(3):P154-8
– reference: 16413796 - Neuroimage. 2006 May 1;30(4):1414-32
– reference: 14991811 - Ann Neurol. 2004 Mar;55(3):335-46
– reference: 16723398 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82
– reference: 18325581 - Brain Lang. 2008 Apr;105(1):50-8
– reference: 25730850 - Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2871-5
– reference: 27111692 - JAMA Neurol. 2016 Jun 1;73(6):733-42
– reference: 8906789 - Nature. 1996 Nov 14;384(6605):159-61
– reference: 20404309 - Neurology. 2010 Apr 20;74(16):1279-87
– reference: 8987760 - J Neurosci. 1997 Jan 1;17(1):353-62
– reference: 22017996 - Neuron. 2011 Oct 20;72(2):397-403
– reference: 16613895 - Brain. 2006 Jun;129(Pt 6):1385-98
– reference: 16931509 - Neurology. 2006 Nov 28;67(10):1849-51
– reference: 23890877 - Brain Lang. 2013 Nov;127(2):157-66
– reference: 21833654 - J Mol Neurosci. 2011 Nov;45(3):366-71
– reference: 16736722 - Can J Neurol Sci. 2006 May;33(2):141-8
– reference: 22013214 - Physiol Rev. 2011 Oct;91(4):1357-92
SSID ssj0014326
Score 2.5206356
Snippet Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a...
Neurodegeneration is hypothesized to follow large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2778
SubjectTerms Aged
Aphasia, Primary Progressive - diagnostic imaging
Aphasia, Primary Progressive - pathology
Aphasia, Primary Progressive - physiopathology
Atrophy - etiology
Atrophy - pathology
Brain - diagnostic imaging
Brain - pathology
Cohort Studies
Disease Progression
Female
Humans
Image Processing, Computer-Assisted
Language
Magnetic Resonance Imaging
Male
Middle Aged
Models, Neurological
Neural Pathways - diagnostic imaging
Neural Pathways - physiology
Neuropsychological Tests
Original
Speech Production Measurement
Statistics as Topic
Title Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia
URI https://www.ncbi.nlm.nih.gov/pubmed/27497488
https://www.proquest.com/docview/1859711702
https://pubmed.ncbi.nlm.nih.gov/PMC5035819
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAvaHyXDWQkeIrCktj5epzQUJko4mFDfYtsx9EqlS5ak03wZ_AXc2c7abIPCXiJ2sTJpb5fz3fn-yDkXVRFVcBK7SdVlfs8C3JfhnHpJ6WUeVVFaWiy-Odfk9kpP17Ei8nk9yBqqW3kB_Xr1ryS_-EqnAO-YpbsP3C2fyicgM_AXzgCh-H4Vzy2OUQ_PYl9HjCAfG3EFyrW9QXuwDQbD33dMJU2EMsW4UAfB1j9vmlP0niXYC4LGxFQu9oT_eBL7Yn6DDMtR7u_ht5tzUCshyFLs4GHYY5-6pVNw54jLe9Lu9z0y8H35UrUcK_RYo_K1qX5j3wEx1jhfOt2nbVSChuTP_M-b4R0cf_OexEmfRwcLD5W4vIk8EHvSEYi2RY4ctj71ngu9NUJ2dR2_bkh_W1lLDPnuMRdXYW2gecACvUPgwWwxcGQsg0Fr9Xb7i7dI_eBUGTagSz6sCFQL6PEJVAAuQND7MCSwsLS7uaxlnPDdLkegTtQaU52ySNni9BDC6zHZKLXT8iDuYu2eEpWDl_UkKdDfNEOX9Thiw7wRWHwFl_U4YueV9Thiw7wRR2-npHTT0cnH2e-687hKx4HjR_rMKxybNRVcqbymAlZZriLDPOiZBbLlIk4kCqSmQhlWYLmqHiWKMWiGNT-lD0nO_Au-iWhXLFc8DDjFQu5LoUUWqdcyTTI4VvEpsTrZrNQrnQ9dlBZFTaEghVmHgrLhil53492P-uOcW87xhQgU3GjTKz1ebspQIfNU2zJFE3JC8uo_kkdh6ckHbGwH4D12sdX1sszU7c9DrDYYP7qzmfukYfb_8g-2WkuWv0adN5GvjEg_AOYZLXC
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Healthy+brain+connectivity+predicts+atrophy+progression+in+non-fluent+variant+of+primary+progressive+aphasia&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Mandelli%2C+Maria+Luisa&rft.au=Vilaplana%2C+Eduard&rft.au=Brown%2C+Jesse+A&rft.au=Hubbard%2C+H+Isabel&rft.date=2016-10-01&rft.eissn=1460-2156&rft.volume=139&rft.issue=Pt+10&rft.spage=2778&rft_id=info:doi/10.1093%2Fbrain%2Faww195&rft_id=info%3Apmid%2F27497488&rft.externalDocID=27497488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon