Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior

► The fatigue life of additive manufactured AlSi10Mg is high compared to EN 1706. ► Fatigue limit and static tensile strength significantly correlate with each other. ► Peak-hardening has the most considerable impact on the fatigue resistance. ► Breakthrough cracks start from the surface or subsurfa...

Full description

Saved in:
Bibliographic Details
Published inMaterials in engineering Vol. 34; pp. 159 - 169
Main Authors Brandl, Erhard, Heckenberger, Ulrike, Holzinger, Vitus, Buchbinder, Damien
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2012
Subjects
Online AccessGet full text
ISSN0261-3069
DOI10.1016/j.matdes.2011.07.067

Cover

Loading…
Abstract ► The fatigue life of additive manufactured AlSi10Mg is high compared to EN 1706. ► Fatigue limit and static tensile strength significantly correlate with each other. ► Peak-hardening has the most considerable impact on the fatigue resistance. ► Breakthrough cracks start from the surface or subsurface (pores, non-melted spots). In order to produce serial parts via additive layer manufacturing, the fatigue performance can be a critical attribute. In this paper, the microstructure, high cycle fatigue (HCF), and fracture behavior of additive manufactured AlSi10Mg samples are investigated. The samples were manufactured by a particular powder-bed process called Selective Laser Melting (SLM) and machined afterwards. 91 samples were manufactured without (30 °C) and with heating (300 °C) of the building platform and in different directions (0°, 45°, 90°). Samples were tested in the peak-hardened (T6) and as-built condition. The Wöhler curves were interpolated by a Weibull distribution. The results were analysed statistically by design of experiments, correlation analysis, and marginal means plots. The investigations show that the post heat treatment has the most considerable effect and the building direction has the least considerable effect on the fatigue resistance. The fatigue resistance of the samples, however, is high in comparison to the standard DIN EN 1706. The combination of 300 °C platform heating and peak-hardening is a valuable approach to increase the fatigue resistance and neutralize the differences in fatigue life for the 0°, 45°, and 90° directions.
AbstractList ► The fatigue life of additive manufactured AlSi10Mg is high compared to EN 1706. ► Fatigue limit and static tensile strength significantly correlate with each other. ► Peak-hardening has the most considerable impact on the fatigue resistance. ► Breakthrough cracks start from the surface or subsurface (pores, non-melted spots). In order to produce serial parts via additive layer manufacturing, the fatigue performance can be a critical attribute. In this paper, the microstructure, high cycle fatigue (HCF), and fracture behavior of additive manufactured AlSi10Mg samples are investigated. The samples were manufactured by a particular powder-bed process called Selective Laser Melting (SLM) and machined afterwards. 91 samples were manufactured without (30 °C) and with heating (300 °C) of the building platform and in different directions (0°, 45°, 90°). Samples were tested in the peak-hardened (T6) and as-built condition. The Wöhler curves were interpolated by a Weibull distribution. The results were analysed statistically by design of experiments, correlation analysis, and marginal means plots. The investigations show that the post heat treatment has the most considerable effect and the building direction has the least considerable effect on the fatigue resistance. The fatigue resistance of the samples, however, is high in comparison to the standard DIN EN 1706. The combination of 300 °C platform heating and peak-hardening is a valuable approach to increase the fatigue resistance and neutralize the differences in fatigue life for the 0°, 45°, and 90° directions.
In order to produce serial parts via additive layer manufacturing, the fatigue performance can be a critical attribute. In this paper, the microstructure, high cycle fatigue (HCF), and fracture behavior of additive manufactured AlSi10Mg samples are investigated. The samples were manufactured by a particular powder-bed process called Selective Laser Melting (SLM) and machined afterwards. 91 samples were manufactured without (30 degree C) and with heating (300 degree C) of the building platform and in different directions (0 degree , 45 degree , 90 degree ). Samples were tested in the peak-hardened (T6) and as-built condition. The Wohler curves were interpolated by a Weibull distribution. The results were analysed statistically by design of experiments, correlation analysis, and marginal means plots. The investigations show that the post heat treatment has the most considerable effect and the building direction has the least considerable effect on the fatigue resistance. The fatigue resistance of the samples, however, is high in comparison to the standard DIN EN 1706. The combination of 300 degree C platform heating and peak-hardening is a valuable approach to increase the fatigue resistance and neutralize the differences in fatigue life for the 0 degree , 45 degree , and 90 degree directions.
Author Brandl, Erhard
Heckenberger, Ulrike
Holzinger, Vitus
Buchbinder, Damien
Author_xml – sequence: 1
  givenname: Erhard
  surname: Brandl
  fullname: Brandl, Erhard
  email: erhard.brandl@eads.net
  organization: EADS Innovation Works, Metallic Technologies & Surface Engineering, D-81663 Munich, Germany
– sequence: 2
  givenname: Ulrike
  surname: Heckenberger
  fullname: Heckenberger, Ulrike
  email: ulrike.heckenberger@eads.net
  organization: EADS Innovation Works, Metallic Technologies & Surface Engineering, D-81663 Munich, Germany
– sequence: 3
  givenname: Vitus
  surname: Holzinger
  fullname: Holzinger, Vitus
  email: vitus.holzinger@eads.net
  organization: EADS Innovation Works, Metallic Technologies & Surface Engineering, D-81663 Munich, Germany
– sequence: 4
  givenname: Damien
  surname: Buchbinder
  fullname: Buchbinder, Damien
  email: damien.buchbinder@ilt.fraunhofer.de
  organization: Fraunhofer Institute for Lasertechnology (ILT), Steinbachstr. 15, D-52074 Aachen, Germany
BookMark eNqFkM1OwzAQhH0Aid834OAbINGwdhKn5YBUIf6kVhwKZ8uxN60rJym2U4kH4L1JCScOcFppNDOr-Y7IXtM2SMgZg4QBE9frpFbRYEg4MJZAkYAo9sghcMFGKYjJATkKYQ3ACsb4IfmcGmOj3SKtVdNVSsfOo6FTt7AM5ksaVL1xGGgXbLOkC3Sov90zFdDTObq40y8Ws_nlDZ1b7dsQfffdckVXdrmi-kM7pJWKdtn1mmoMrfzwh5a4Ulvb-hOyXykX8PTnHpO3h_vXu6fR7OXx-W46G-kshzjKlSnRFFoJleW6FEXKyyJjecpTbsZlmk0YL5jKKywBeSlEBizN2TjTUI35pEyPyfnQu_Hte4chytoGjc6pBtsuyIlIx3kOAL3zZnDuFgWPldQ29hvaJnplnWQgd7jlWg645Q63hEL2uPtw9iu88bZW_uO_2O0Qwx7B1qKXQVtsNBrre-zStPbvgi_mbaEV
CitedBy_id crossref_primary_10_1016_j_ijimpeng_2022_104202
crossref_primary_10_1016_j_matchar_2022_112195
crossref_primary_10_1002_adem_202201855
crossref_primary_10_1089_3dp_2022_0224
crossref_primary_10_1016_j_jmapro_2025_02_075
crossref_primary_10_1051_epjconf_201921501005
crossref_primary_10_1016_j_msea_2017_02_023
crossref_primary_10_1080_21663831_2022_2088252
crossref_primary_10_1016_j_triboint_2016_08_037
crossref_primary_10_1016_j_engfracmech_2017_11_002
crossref_primary_10_2320_matertrans_MT_L2022005
crossref_primary_10_1016_j_matdes_2022_111292
crossref_primary_10_1108_RPJ_03_2013_0028
crossref_primary_10_1016_j_msea_2019_138713
crossref_primary_10_1016_j_msea_2017_11_078
crossref_primary_10_1016_j_matdes_2021_109946
crossref_primary_10_3390_ma13071488
crossref_primary_10_1080_09506608_2019_1709354
crossref_primary_10_3390_ma13030720
crossref_primary_10_1007_s00170_023_11534_7
crossref_primary_10_1016_j_sna_2022_113706
crossref_primary_10_1016_j_ijfatigue_2024_108357
crossref_primary_10_1016_j_msea_2021_141612
crossref_primary_10_1002_adem_202300352
crossref_primary_10_1007_s00170_020_05396_6
crossref_primary_10_1016_j_matchar_2024_113825
crossref_primary_10_1016_j_jmrt_2022_01_028
crossref_primary_10_1007_s12540_022_01171_2
crossref_primary_10_1088_1757_899X_709_3_033113
crossref_primary_10_1111_ffe_13355
crossref_primary_10_1016_j_jmrt_2022_01_022
crossref_primary_10_3390_cryst11050524
crossref_primary_10_1016_j_surfcoat_2020_125956
crossref_primary_10_3390_app10010070
crossref_primary_10_1007_s40964_023_00457_0
crossref_primary_10_1016_j_ijfatigue_2020_106089
crossref_primary_10_2320_matertrans_MT_LA2022051
crossref_primary_10_3390_ma11101918
crossref_primary_10_1016_j_ijfatigue_2024_108146
crossref_primary_10_1016_j_addlet_2022_100085
crossref_primary_10_1088_2053_1591_ab624c
crossref_primary_10_1016_j_wear_2020_203581
crossref_primary_10_1007_s11661_018_4804_z
crossref_primary_10_1177_10567895241275373
crossref_primary_10_1016_j_prostr_2017_11_074
crossref_primary_10_1016_j_prostr_2017_11_071
crossref_primary_10_1111_ffe_13123
crossref_primary_10_1016_j_precisioneng_2018_04_013
crossref_primary_10_1016_j_msea_2023_145509
crossref_primary_10_1108_RPJ_06_2015_0076
crossref_primary_10_3390_app10010081
crossref_primary_10_2351_1_4870877
crossref_primary_10_1016_j_engfailanal_2017_03_015
crossref_primary_10_1016_j_jmrt_2022_07_121
crossref_primary_10_1016_j_jmapro_2018_09_007
crossref_primary_10_1016_j_amf_2024_200145
crossref_primary_10_1016_j_jallcom_2017_04_264
crossref_primary_10_1016_j_matdes_2022_111066
crossref_primary_10_1016_j_matdes_2013_07_010
crossref_primary_10_1007_s10853_021_06761_w
crossref_primary_10_1016_j_mechmat_2020_103448
crossref_primary_10_1016_j_addma_2019_02_020
crossref_primary_10_1016_j_ijfatigue_2022_106825
crossref_primary_10_1016_j_prostr_2020_02_035
crossref_primary_10_1016_j_addma_2018_07_009
crossref_primary_10_1007_s00161_018_0654_6
crossref_primary_10_3390_app9224787
crossref_primary_10_1179_1743284714Y_0000000702
crossref_primary_10_1007_s11665_021_05577_8
crossref_primary_10_1016_j_jallcom_2017_11_020
crossref_primary_10_1080_2374068X_2024_2307252
crossref_primary_10_1016_j_msea_2022_144133
crossref_primary_10_1016_j_ijfatigue_2023_108041
crossref_primary_10_1115_1_4038454
crossref_primary_10_1088_2051_672X_3_4_044006
crossref_primary_10_1002_adem_201700658
crossref_primary_10_1007_s40964_019_00086_6
crossref_primary_10_1016_j_matdes_2016_07_009
crossref_primary_10_1016_j_msea_2017_12_076
crossref_primary_10_1016_j_ijleo_2017_02_060
crossref_primary_10_1016_j_pmatsci_2021_100786
crossref_primary_10_1016_j_jallcom_2020_157287
crossref_primary_10_3390_ma15165544
crossref_primary_10_1051_matecconf_201816502001
crossref_primary_10_1108_RPJ_07_2019_0200
crossref_primary_10_1016_j_addma_2018_08_024
crossref_primary_10_1007_s40195_019_00903_5
crossref_primary_10_1016_j_ijfatigue_2018_01_018
crossref_primary_10_3390_met11091432
crossref_primary_10_1016_j_matdes_2014_03_013
crossref_primary_10_1016_j_ijmecsci_2019_02_032
crossref_primary_10_3390_coatings13111935
crossref_primary_10_1016_j_ijfatigue_2021_106165
crossref_primary_10_21062_ujep_x_2017_a_1213_2489_MT_17_6_847
crossref_primary_10_1016_j_pmatsci_2021_100795
crossref_primary_10_1007_s12540_022_01380_9
crossref_primary_10_1016_j_matpr_2020_02_096
crossref_primary_10_1016_j_msea_2022_144157
crossref_primary_10_1016_j_msea_2020_140693
crossref_primary_10_3390_ma10020144
crossref_primary_10_1016_j_jmapro_2021_09_045
crossref_primary_10_1016_j_bprint_2025_e00395
crossref_primary_10_1007_s11665_021_06006_6
crossref_primary_10_1016_j_commatsci_2022_111629
crossref_primary_10_1016_j_matdes_2013_08_085
crossref_primary_10_1007_s40964_024_00724_8
crossref_primary_10_3103_S1068798X24700023
crossref_primary_10_1007_s11661_020_06009_3
crossref_primary_10_1002_adma_202306570
crossref_primary_10_1016_j_mtcomm_2024_108042
crossref_primary_10_1016_j_jallcom_2018_12_380
crossref_primary_10_1016_j_optlastec_2023_110500
crossref_primary_10_4236_jmmce_2018_61005
crossref_primary_10_1007_s40964_021_00227_w
crossref_primary_10_1016_j_addma_2019_100805
crossref_primary_10_1016_j_ijfatigue_2017_05_019
crossref_primary_10_1038_s41524_022_00866_9
crossref_primary_10_4028_www_scientific_net_MSF_1016_1205
crossref_primary_10_1016_j_msea_2020_139649
crossref_primary_10_3390_ma12010047
crossref_primary_10_2139_ssrn_4160344
crossref_primary_10_1016_j_jobe_2021_103033
crossref_primary_10_1016_j_matdes_2021_110084
crossref_primary_10_1016_j_wear_2019_04_001
crossref_primary_10_1007_s11663_021_02365_6
crossref_primary_10_1115_1_4030376
crossref_primary_10_1016_j_jallcom_2023_171384
crossref_primary_10_1016_j_corsci_2019_05_026
crossref_primary_10_1016_j_optlastec_2020_106653
crossref_primary_10_1016_j_ijfatigue_2012_11_011
crossref_primary_10_1108_RPJ_03_2014_0031
crossref_primary_10_1007_s10999_017_9384_3
crossref_primary_10_3390_app11041419
crossref_primary_10_1016_j_jallcom_2012_06_097
crossref_primary_10_1080_00325899_2020_1792675
crossref_primary_10_1146_annurev_matsci_070115_031728
crossref_primary_10_1088_1742_6596_2635_1_012036
crossref_primary_10_3390_jcs3030066
crossref_primary_10_1016_j_msea_2020_140620
crossref_primary_10_1016_j_addma_2017_01_004
crossref_primary_10_1016_j_msea_2015_01_063
crossref_primary_10_1016_j_mechmat_2020_103499
crossref_primary_10_1016_j_jallcom_2019_06_274
crossref_primary_10_1016_j_msea_2022_144345
crossref_primary_10_3139_105_110366
crossref_primary_10_1016_j_surfcoat_2021_127339
crossref_primary_10_1016_j_msea_2019_03_007
crossref_primary_10_1016_j_jmapro_2020_02_045
crossref_primary_10_3390_met8110954
crossref_primary_10_1016_j_ceramint_2018_06_225
crossref_primary_10_1016_j_msea_2017_04_058
crossref_primary_10_3390_ma15207067
crossref_primary_10_1007_s44245_024_00052_9
crossref_primary_10_1016_j_prostr_2017_07_187
crossref_primary_10_1016_j_matdes_2024_113170
crossref_primary_10_1007_s42452_019_0270_5
crossref_primary_10_3390_met13040716
crossref_primary_10_1016_j_tafmec_2020_102483
crossref_primary_10_1115_1_4040159
crossref_primary_10_20965_ijat_2020_p1025
crossref_primary_10_1016_j_matpr_2022_12_222
crossref_primary_10_1016_j_mtla_2019_100387
crossref_primary_10_1016_j_matdes_2017_04_072
crossref_primary_10_1115_1_4040390
crossref_primary_10_3390_ma18010011
crossref_primary_10_1016_j_matchar_2020_110617
crossref_primary_10_1016_j_msea_2020_140640
crossref_primary_10_1016_j_msea_2023_144649
crossref_primary_10_1016_j_prostr_2017_11_063
crossref_primary_10_1016_j_prostr_2017_11_061
crossref_primary_10_1016_j_matchar_2023_113123
crossref_primary_10_1016_j_prostr_2017_11_060
crossref_primary_10_1016_j_scriptamat_2023_115566
crossref_primary_10_1016_j_matchar_2018_08_025
crossref_primary_10_1016_j_prostr_2017_11_066
crossref_primary_10_1111_ffe_14024
crossref_primary_10_4028_www_scientific_net_AMM_752_753_485
crossref_primary_10_1111_ffe_14263
crossref_primary_10_1108_RPJ_07_2018_0184
crossref_primary_10_1016_j_msea_2015_12_101
crossref_primary_10_2320_matertrans_MT_ME2022003
crossref_primary_10_1007_s12540_022_01199_4
crossref_primary_10_1108_RPJ_11_2019_0300
crossref_primary_10_1016_j_ijfatigue_2024_108163
crossref_primary_10_1142_S1758825121500770
crossref_primary_10_1016_j_matdes_2022_111410
crossref_primary_10_1088_1757_899X_269_1_012081
crossref_primary_10_1002_adem_201801357
crossref_primary_10_3390_met8070505
crossref_primary_10_1016_j_ijfatigue_2023_107808
crossref_primary_10_3390_ma16082972
crossref_primary_10_1002_eng2_13020
crossref_primary_10_3390_ma12081204
crossref_primary_10_2207_jjws_86_138
crossref_primary_10_1051_metal_2015039
crossref_primary_10_1179_1753555715Y_0000000078
crossref_primary_10_1016_j_ijfatigue_2024_108154
crossref_primary_10_3390_ma16217040
crossref_primary_10_3390_ma12010073
crossref_primary_10_1007_s43452_024_00925_6
crossref_primary_10_1016_j_ndteint_2022_102729
crossref_primary_10_1080_17452759_2016_1211849
crossref_primary_10_1016_j_msea_2020_140613
crossref_primary_10_1016_j_matdes_2017_02_022
crossref_primary_10_3390_ma15010383
crossref_primary_10_1016_j_jmrt_2023_11_115
crossref_primary_10_3390_met7020068
crossref_primary_10_1016_j_msea_2023_145702
crossref_primary_10_1115_1_4043622
crossref_primary_10_2320_matertrans_L_M2017809
crossref_primary_10_1016_j_engfracmech_2024_110255
crossref_primary_10_1016_j_proeng_2018_02_009
crossref_primary_10_1016_j_actamat_2017_07_045
crossref_primary_10_1007_s11661_012_1470_4
crossref_primary_10_1016_j_msea_2020_139616
crossref_primary_10_1016_j_ijfatigue_2021_106577
crossref_primary_10_3390_met13091591
crossref_primary_10_1007_s11182_024_03296_w
crossref_primary_10_1134_S1029959921010057
crossref_primary_10_1177_09544089221126779
crossref_primary_10_1016_j_addma_2019_03_013
crossref_primary_10_3390_met12010077
crossref_primary_10_1080_10910344_2020_1855649
crossref_primary_10_1016_j_addma_2021_102324
crossref_primary_10_1016_j_pmatsci_2020_100724
crossref_primary_10_1016_j_jallcom_2018_03_062
crossref_primary_10_1016_j_ijfatigue_2022_107157
crossref_primary_10_12677_MS_2019_96072
crossref_primary_10_1016_j_proeng_2016_08_874
crossref_primary_10_1088_2053_1591_ab5bea
crossref_primary_10_1016_j_addma_2019_100899
crossref_primary_10_1016_j_ceramint_2022_09_110
crossref_primary_10_3389_fmats_2020_00244
crossref_primary_10_1007_s10704_022_00641_3
crossref_primary_10_1016_j_jmapro_2024_03_047
crossref_primary_10_1016_j_ijplas_2020_102867
crossref_primary_10_1016_j_msea_2017_07_071
crossref_primary_10_2497_jjspm_66_29
crossref_primary_10_3390_met13010126
crossref_primary_10_1088_2631_7990_ad4e1d
crossref_primary_10_1016_j_jallcom_2020_157765
crossref_primary_10_1016_j_msea_2019_138394
crossref_primary_10_1016_j_matpr_2020_01_502
crossref_primary_10_3390_app8101948
crossref_primary_10_1016_j_matdes_2024_113462
crossref_primary_10_1016_j_matdes_2022_110427
crossref_primary_10_3390_ma11112129
crossref_primary_10_1016_j_matlet_2017_11_121
crossref_primary_10_3390_app9152954
crossref_primary_10_1007_s11340_021_00696_8
crossref_primary_10_1007_s12289_020_01560_1
crossref_primary_10_1088_2053_1591_ab0c6e
crossref_primary_10_3390_ma17030657
crossref_primary_10_1016_j_jmst_2014_09_020
crossref_primary_10_1016_j_ijfatigue_2023_107894
crossref_primary_10_1051_epjconf_202125001031
crossref_primary_10_1080_01457632_2020_1766246
crossref_primary_10_1007_s00170_023_12154_x
crossref_primary_10_1088_2631_7990_ad16bb
crossref_primary_10_1111_ffe_13914
crossref_primary_10_1016_j_addma_2021_102551
crossref_primary_10_3390_ma12071143
crossref_primary_10_3390_ma15238640
crossref_primary_10_1016_j_jmrt_2021_11_062
crossref_primary_10_1016_j_msea_2018_02_094
crossref_primary_10_17341_gazimmfd_460530
crossref_primary_10_1002_adem_201600667
crossref_primary_10_1016_j_ijfatigue_2022_107129
crossref_primary_10_1016_j_cirpj_2022_01_008
crossref_primary_10_1007_s40964_024_00658_1
crossref_primary_10_1155_2019_4210762
crossref_primary_10_1088_2053_1591_ad3f79
crossref_primary_10_1016_j_optlastec_2021_107652
crossref_primary_10_1016_j_engfracmech_2025_110926
crossref_primary_10_3390_technologies4040038
crossref_primary_10_1016_j_optlastec_2019_105613
crossref_primary_10_1016_j_engfracmech_2019_03_040
crossref_primary_10_2472_jsms_68_351
crossref_primary_10_1063_1_4961410
crossref_primary_10_1016_j_msea_2024_146390
crossref_primary_10_1016_j_msea_2019_138186
crossref_primary_10_1016_j_msea_2021_141486
crossref_primary_10_1016_j_addma_2020_101389
crossref_primary_10_1016_j_jmrt_2025_01_237
crossref_primary_10_1007_s00170_021_08083_2
crossref_primary_10_1016_j_msea_2015_02_051
crossref_primary_10_1016_j_matdes_2014_07_006
crossref_primary_10_1016_j_optlastec_2013_09_017
crossref_primary_10_1007_s00339_020_03826_6
crossref_primary_10_1016_j_matdes_2019_107668
crossref_primary_10_1016_j_msea_2017_06_089
crossref_primary_10_1016_j_matdes_2017_05_083
crossref_primary_10_1149_2_0461702jes
crossref_primary_10_3390_met8100825
crossref_primary_10_1007_s11665_022_07225_1
crossref_primary_10_1088_0022_3727_48_3_035303
crossref_primary_10_1364_OE_24_017384
crossref_primary_10_1016_j_jmatprotec_2017_12_043
crossref_primary_10_1051_mfreview_2016010
crossref_primary_10_1007_s11661_015_2980_7
crossref_primary_10_1016_j_addma_2017_02_003
crossref_primary_10_1016_j_jmrt_2022_12_112
crossref_primary_10_1007_s11837_016_1897_y
crossref_primary_10_1016_j_jmrt_2018_09_008
crossref_primary_10_1016_j_tws_2019_02_022
crossref_primary_10_1016_j_msea_2024_147464
crossref_primary_10_1002_adem_201900617
crossref_primary_10_1016_j_matdes_2020_109264
crossref_primary_10_1016_j_matdes_2016_02_127
crossref_primary_10_1016_j_msea_2022_142652
crossref_primary_10_3390_met10070877
crossref_primary_10_1016_j_actamat_2020_10_010
crossref_primary_10_1016_j_phpro_2014_08_153
crossref_primary_10_1016_j_addma_2021_102514
crossref_primary_10_1016_j_jmapro_2021_04_022
crossref_primary_10_3390_ma14185255
crossref_primary_10_1016_j_tafmec_2018_04_009
crossref_primary_10_1108_RPJ_05_2023_0164
crossref_primary_10_1557_mrs_2017_63
crossref_primary_10_1007_s11665_024_09320_x
crossref_primary_10_1016_j_ijmecsci_2023_108402
crossref_primary_10_1016_j_engfracmech_2014_03_008
crossref_primary_10_1089_3dp_2021_0297
crossref_primary_10_1016_j_msea_2021_141034
crossref_primary_10_1007_s00170_020_05825_6
crossref_primary_10_1016_j_pmatsci_2017_10_001
crossref_primary_10_1016_j_mtla_2022_101341
crossref_primary_10_1016_j_mfglet_2018_12_002
crossref_primary_10_1021_acsomega_4c00291
crossref_primary_10_5006_3490
crossref_primary_10_1016_j_matdes_2016_10_075
crossref_primary_10_1016_j_jallcom_2019_01_327
crossref_primary_10_1111_ffe_13778
crossref_primary_10_1007_s11837_018_2987_9
crossref_primary_10_1016_j_conbuildmat_2023_133971
crossref_primary_10_1108_RPJ_11_2014_0156
crossref_primary_10_1016_j_wear_2016_11_031
crossref_primary_10_1080_00207543_2019_1697836
crossref_primary_10_2497_jjspm_24_00055
crossref_primary_10_3390_ma15124333
crossref_primary_10_1016_j_prostr_2024_11_054
crossref_primary_10_2322_astj_JSASS_D_17_00002
crossref_primary_10_1016_j_optlastec_2018_05_020
crossref_primary_10_1007_s10704_024_00787_2
crossref_primary_10_1177_09544089251321236
crossref_primary_10_1115_1_4050897
crossref_primary_10_3390_ma11122354
crossref_primary_10_1016_j_actamat_2012_11_052
crossref_primary_10_1007_s00339_017_1143_7
crossref_primary_10_1007_s40964_024_00856_x
crossref_primary_10_1007_s11465_022_0727_x
crossref_primary_10_3390_jmmp6050112
crossref_primary_10_1557_mrs_2016_217
crossref_primary_10_1016_j_engfailanal_2023_107667
crossref_primary_10_1557_mrs_2016_214
crossref_primary_10_1007_s40964_024_00712_y
crossref_primary_10_3390_mi13081334
crossref_primary_10_1080_09500839_2024_2372497
crossref_primary_10_1051_matecconf_201818803015
crossref_primary_10_1016_j_ijfatigue_2019_105215
crossref_primary_10_1016_j_ijfatigue_2023_108100
crossref_primary_10_1088_2053_1591_ad95e5
crossref_primary_10_3390_ma17112553
crossref_primary_10_1007_s11837_024_07030_2
crossref_primary_10_1016_j_msea_2022_142610
crossref_primary_10_1007_s00170_020_05584_4
crossref_primary_10_1016_j_matlet_2018_11_033
crossref_primary_10_1016_j_msea_2016_11_070
crossref_primary_10_3390_ma9020106
crossref_primary_10_4028_www_scientific_net_MSF_1016_309
crossref_primary_10_1016_j_smse_2023_100015
crossref_primary_10_29026_oea_2022_210058
crossref_primary_10_1016_j_actamat_2018_03_017
crossref_primary_10_1016_j_msea_2020_139296
crossref_primary_10_1016_j_msea_2024_146549
crossref_primary_10_1557_s43579_021_00079_z
crossref_primary_10_1080_17452759_2015_1110868
crossref_primary_10_1557_jmr_2018_82
crossref_primary_10_1115_1_4048551
crossref_primary_10_1007_s11665_021_06414_8
crossref_primary_10_1007_s00170_015_7695_9
crossref_primary_10_1080_00325899_2015_1123800
crossref_primary_10_1016_j_matpr_2022_09_100
crossref_primary_10_1016_j_optlastec_2018_08_050
crossref_primary_10_3390_ma16247586
crossref_primary_10_1007_s00170_014_6346_x
crossref_primary_10_1080_00084433_2022_2111968
crossref_primary_10_1007_s11837_020_04523_8
crossref_primary_10_1016_j_optlastec_2012_12_002
crossref_primary_10_1016_j_addma_2023_103594
crossref_primary_10_17341_gazimmfd_416479
crossref_primary_10_1016_j_msea_2021_141892
crossref_primary_10_1007_s11837_021_05025_x
crossref_primary_10_1007_s40195_023_01628_2
crossref_primary_10_1051_matecconf_20167801078
crossref_primary_10_1149_2_1301809jes
crossref_primary_10_1007_s11661_015_2864_x
crossref_primary_10_1016_j_pmatsci_2019_100578
crossref_primary_10_1007_s40962_021_00668_7
crossref_primary_10_1080_10408436_2024_2414012
crossref_primary_10_1016_j_ijmachtools_2015_11_007
crossref_primary_10_3390_technologies5020015
crossref_primary_10_3390_technologies5020024
crossref_primary_10_1108_RPJ_11_2021_0325
crossref_primary_10_1016_j_jmbbm_2013_08_011
crossref_primary_10_2464_jilm_67_559
crossref_primary_10_1080_00084433_2024_2355428
crossref_primary_10_1016_j_msea_2018_07_103
crossref_primary_10_1016_j_prostr_2021_12_020
crossref_primary_10_1117_1_OE_59_1_013103
crossref_primary_10_1016_j_matdes_2019_108137
crossref_primary_10_1007_s10704_022_00647_x
crossref_primary_10_1016_j_scriptamat_2019_05_044
crossref_primary_10_1111_ffe_13967
crossref_primary_10_1007_s00170_018_2920_y
crossref_primary_10_1038_s41467_019_12047_2
crossref_primary_10_1631_jzus_A1700328
crossref_primary_10_1557_jmr_2017_314
crossref_primary_10_1016_j_ijfatigue_2019_105424
crossref_primary_10_1115_1_4028925
crossref_primary_10_1016_j_jmbbm_2018_08_048
crossref_primary_10_1016_j_addma_2020_101630
crossref_primary_10_3390_ma14195602
crossref_primary_10_1016_S1003_6326_20_65403_6
crossref_primary_10_1016_j_prostr_2022_12_125
crossref_primary_10_1002_sia_5981
crossref_primary_10_1007_s11665_021_05861_7
crossref_primary_10_1108_RPJ_04_2018_0105
crossref_primary_10_1016_j_ijfatigue_2021_106229
crossref_primary_10_1088_1757_899X_430_1_012028
crossref_primary_10_1007_s11665_021_06225_x
crossref_primary_10_3390_ma6104737
crossref_primary_10_1016_j_ijfatigue_2018_09_029
crossref_primary_10_1051_epjconf_201818304009
crossref_primary_10_3139_146_111761
crossref_primary_10_1557_jmr_2014_157
crossref_primary_10_3390_met14030292
crossref_primary_10_1016_j_msea_2016_01_058
crossref_primary_10_1016_j_msea_2020_140594
crossref_primary_10_1179_1743133614Y_0000000119
crossref_primary_10_1016_j_cossms_2021_100974
crossref_primary_10_1016_j_cirp_2017_05_009
crossref_primary_10_3390_met15010096
crossref_primary_10_1007_s40964_021_00235_w
crossref_primary_10_3390_jmmp2020025
crossref_primary_10_3390_app11031332
crossref_primary_10_1007_s13632_014_0168_y
crossref_primary_10_1016_j_ijfatigue_2024_108479
crossref_primary_10_2320_jinstmet_JA202403
crossref_primary_10_1016_j_ijfatigue_2016_05_018
crossref_primary_10_1016_j_ijfatigue_2024_108471
crossref_primary_10_3390_ma13214804
crossref_primary_10_1016_j_prostr_2021_12_061
crossref_primary_10_1108_RPJ_11_2020_0274
crossref_primary_10_1007_s00170_021_06938_2
crossref_primary_10_2139_ssrn_4191382
crossref_primary_10_1007_s12541_015_0316_6
crossref_primary_10_1016_j_addma_2022_103160
crossref_primary_10_1111_ffe_14326
crossref_primary_10_1016_j_ijimpeng_2019_103476
crossref_primary_10_1038_s41563_023_01651_9
crossref_primary_10_1111_ffe_14325
crossref_primary_10_1016_j_jmapro_2021_10_052
crossref_primary_10_20965_ijat_2020_p0439
crossref_primary_10_1016_j_tafmec_2020_102537
crossref_primary_10_1007_s11661_019_05309_7
crossref_primary_10_1007_s11666_016_0495_4
crossref_primary_10_1016_j_msea_2023_145866
crossref_primary_10_1088_2053_1591_ad9240
crossref_primary_10_1016_j_matdes_2019_107923
crossref_primary_10_1016_j_cirp_2023_03_011
crossref_primary_10_1016_j_matdes_2013_01_038
crossref_primary_10_1016_j_ijfatigue_2019_04_015
crossref_primary_10_1007_s11661_019_05505_5
crossref_primary_10_1007_s41230_017_7124_9
crossref_primary_10_1016_j_compstruct_2023_117220
crossref_primary_10_1016_j_msea_2018_05_040
crossref_primary_10_1016_j_surfcoat_2015_04_029
crossref_primary_10_1016_j_scriptamat_2017_10_021
crossref_primary_10_1051_matecconf_202032607003
crossref_primary_10_3390_met13030609
crossref_primary_10_3390_alloys1020010
crossref_primary_10_1016_j_ijfatigue_2016_06_020
crossref_primary_10_1016_j_precisioneng_2016_06_001
crossref_primary_10_1002_adem_201800307
crossref_primary_10_2497_jjspm_65_383
crossref_primary_10_1016_j_ijleo_2016_06_115
crossref_primary_10_1016_j_matdes_2023_111893
crossref_primary_10_3390_ma16134717
crossref_primary_10_1016_j_jmatprotec_2015_12_033
crossref_primary_10_1021_acs_langmuir_8b04068
crossref_primary_10_1016_j_ijfatigue_2016_06_003
crossref_primary_10_1007_s11665_021_05870_6
crossref_primary_10_1016_j_ijfatigue_2016_06_002
crossref_primary_10_1016_j_ijfatigue_2019_02_006
crossref_primary_10_1557_jmr_2018_405
crossref_primary_10_3390_ma15030701
crossref_primary_10_3390_cryst12070918
crossref_primary_10_5006_3318
crossref_primary_10_1016_j_matdes_2014_09_044
crossref_primary_10_1021_acsbiomaterials_2c00793
crossref_primary_10_3390_met8070491
crossref_primary_10_1016_j_phpro_2016_08_088
crossref_primary_10_1007_s00170_021_07847_0
crossref_primary_10_1016_j_matdes_2013_03_056
crossref_primary_10_1016_j_msea_2017_08_027
crossref_primary_10_3390_ma11122521
crossref_primary_10_1016_j_ijfatigue_2022_106920
crossref_primary_10_1016_j_jmapro_2020_07_025
crossref_primary_10_4028_www_scientific_net_MSF_1016_476
crossref_primary_10_3390_met10081073
crossref_primary_10_1016_j_matdes_2015_06_063
crossref_primary_10_1016_j_msea_2017_09_041
crossref_primary_10_1016_j_matchar_2018_01_028
crossref_primary_10_1016_j_optlastec_2014_07_021
crossref_primary_10_1016_j_ijfatigue_2022_106917
crossref_primary_10_1142_S0217984918501051
crossref_primary_10_1016_j_ndteint_2019_02_008
crossref_primary_10_1016_j_addma_2022_103112
crossref_primary_10_1016_j_addma_2022_103114
crossref_primary_10_1016_j_matdes_2018_02_055
crossref_primary_10_1016_j_matdes_2018_02_054
crossref_primary_10_1016_j_ijfatigue_2019_03_022
crossref_primary_10_1108_RPJ_02_2020_0030
crossref_primary_10_1016_j_addma_2018_03_027
crossref_primary_10_1016_j_jmapro_2018_11_012
crossref_primary_10_1007_s43452_019_0005_9
crossref_primary_10_1111_ffe_13092
crossref_primary_10_1016_j_surfcoat_2021_127679
crossref_primary_10_1088_1757_899X_317_1_012074
crossref_primary_10_1089_3dp_2019_0064
crossref_primary_10_1080_10408436_2021_1886044
crossref_primary_10_1016_j_addma_2017_08_007
crossref_primary_10_1007_s11837_023_06187_6
crossref_primary_10_1016_j_ijfatigue_2019_02_040
crossref_primary_10_1177_14644207221084068
crossref_primary_10_1016_j_jmrt_2022_10_121
crossref_primary_10_1016_j_jclepro_2018_10_109
crossref_primary_10_1016_j_ijfatigue_2018_07_016
crossref_primary_10_1016_j_procir_2024_08_074
crossref_primary_10_1007_s00170_022_10228_w
crossref_primary_10_1557_jmr_2015_110
crossref_primary_10_3390_ma11091763
crossref_primary_10_1016_j_aiepr_2022_02_001
crossref_primary_10_1016_j_matdes_2024_113077
crossref_primary_10_1016_j_jmst_2020_03_070
crossref_primary_10_1016_j_jmrt_2021_03_101
crossref_primary_10_1007_s11837_014_1272_9
crossref_primary_10_1007_s00170_021_08521_1
crossref_primary_10_1016_j_engfailanal_2019_01_034
crossref_primary_10_1179_1743280411Y_0000000014
crossref_primary_10_1016_j_jmrt_2023_12_002
crossref_primary_10_1002_pat_4832
crossref_primary_10_1016_j_ijfatigue_2023_107965
crossref_primary_10_1108_RPJ_10_2021_0283
crossref_primary_10_1038_s41563_023_01666_2
crossref_primary_10_1016_j_ceramint_2022_05_289
crossref_primary_10_1016_j_wear_2022_204244
crossref_primary_10_3390_met9101063
crossref_primary_10_1016_j_engfracmech_2020_107305
crossref_primary_10_1016_j_matdes_2014_09_082
crossref_primary_10_1016_j_ijfatigue_2019_02_020
crossref_primary_10_1007_s40430_019_1769_9
crossref_primary_10_1016_j_matdes_2018_04_022
crossref_primary_10_1016_j_engfailanal_2024_108595
crossref_primary_10_1016_j_mtla_2020_100590
crossref_primary_10_1016_j_ijfatigue_2023_107931
crossref_primary_10_1016_j_msea_2016_03_088
crossref_primary_10_1007_s10853_022_07080_4
crossref_primary_10_1016_j_corsci_2018_11_038
crossref_primary_10_1016_j_jallcom_2018_12_274
crossref_primary_10_1016_j_engfailanal_2024_109210
crossref_primary_10_1016_j_addma_2019_100958
crossref_primary_10_1016_j_actamat_2021_116698
crossref_primary_10_1007_s12598_016_0846_9
crossref_primary_10_1016_j_matpr_2021_03_016
crossref_primary_10_1016_j_addma_2018_03_030
crossref_primary_10_1016_j_jmrt_2022_07_085
crossref_primary_10_1016_j_msea_2019_03_113
crossref_primary_10_1108_RPJ_07_2023_0219
crossref_primary_10_1016_j_intermet_2019_106554
crossref_primary_10_3390_met8080634
crossref_primary_10_1016_j_mtcomm_2020_101294
crossref_primary_10_1016_j_jmrt_2022_05_021
crossref_primary_10_1149_2_0101814jes
crossref_primary_10_1016_j_ijfatigue_2018_08_023
crossref_primary_10_3390_cryst12091222
crossref_primary_10_1016_j_msea_2016_02_069
crossref_primary_10_3390_nano11082131
crossref_primary_10_1016_j_jmapro_2021_02_024
crossref_primary_10_1007_s11661_022_06716_z
crossref_primary_10_1088_1742_6596_2045_1_012019
crossref_primary_10_1016_j_prostr_2016_02_018
crossref_primary_10_2464_jilm_66_167
crossref_primary_10_1149_2_1121714jes
crossref_primary_10_1016_j_matchar_2017_06_029
crossref_primary_10_1016_j_jallcom_2020_157553
crossref_primary_10_1117_1_OE_56_11_111714
crossref_primary_10_1016_j_matchar_2020_110769
crossref_primary_10_1016_j_matdes_2022_110440
crossref_primary_10_3390_met11050835
crossref_primary_10_1016_j_matdes_2022_110677
crossref_primary_10_1016_j_msea_2023_145843
crossref_primary_10_3390_jmmp3010016
crossref_primary_10_3390_met12081311
crossref_primary_10_1007_s00170_018_03272_y
crossref_primary_10_1016_j_tca_2019_178479
crossref_primary_10_1016_j_procir_2020_02_093
crossref_primary_10_1080_10408436_2018_1490250
crossref_primary_10_1016_j_ijfatigue_2020_106135
crossref_primary_10_1016_j_ijfatigue_2021_106674
crossref_primary_10_1134_S2070205120040218
crossref_primary_10_1007_s00170_021_07414_7
crossref_primary_10_1016_j_addma_2021_102383
crossref_primary_10_1007_s11668_020_00998_4
crossref_primary_10_1016_j_prosdent_2018_11_010
crossref_primary_10_3390_ma9120975
crossref_primary_10_2139_ssrn_3989415
crossref_primary_10_1016_j_tafmec_2016_08_011
crossref_primary_10_1016_j_msea_2023_144744
crossref_primary_10_1016_j_addma_2021_102103
crossref_primary_10_1016_j_addma_2021_102346
crossref_primary_10_1016_j_jmrt_2025_02_194
crossref_primary_10_1016_j_prostr_2019_08_146
crossref_primary_10_1016_j_cirpj_2022_07_007
crossref_primary_10_1007_s40195_019_00983_3
crossref_primary_10_1016_j_optlastec_2024_110722
crossref_primary_10_1007_s11340_019_00481_8
crossref_primary_10_1007_s11661_016_3384_z
crossref_primary_10_1007_s12666_019_01732_x
crossref_primary_10_2464_jilm_70_128
crossref_primary_10_3390_met11091391
crossref_primary_10_1016_j_matdes_2013_10_006
crossref_primary_10_1016_j_ijplas_2021_103147
crossref_primary_10_1016_j_matdes_2013_05_070
crossref_primary_10_1016_j_jmrt_2020_09_108
crossref_primary_10_1016_j_msea_2019_138210
crossref_primary_10_1002_adem_201700952
crossref_primary_10_1016_j_jmst_2019_08_047
crossref_primary_10_1007_s12633_021_01340_9
crossref_primary_10_1016_j_actamat_2021_117346
crossref_primary_10_1016_j_msea_2013_10_023
crossref_primary_10_1007_s12540_023_01394_x
crossref_primary_10_3390_ma10010076
crossref_primary_10_1016_j_addma_2018_01_001
crossref_primary_10_3390_ma11010066
crossref_primary_10_1038_s41598_025_91608_6
crossref_primary_10_1016_j_engfracmech_2020_107395
crossref_primary_10_29109_gujsc_1130098
crossref_primary_10_1002_mawe_201700039
crossref_primary_10_3390_ma13194301
crossref_primary_10_1016_j_msea_2016_05_073
crossref_primary_10_1016_j_actamat_2021_117612
crossref_primary_10_1016_j_msea_2017_05_118
crossref_primary_10_1016_j_pmatsci_2019_04_006
crossref_primary_10_1016_j_jmst_2018_09_002
crossref_primary_10_1016_j_matdes_2011_09_051
crossref_primary_10_1007_s11665_020_05323_6
crossref_primary_10_1016_j_jmst_2018_09_004
crossref_primary_10_1016_j_jallcom_2021_159088
crossref_primary_10_1016_j_addma_2018_05_040
crossref_primary_10_3390_ma13204564
crossref_primary_10_3390_jmmp3040089
crossref_primary_10_1002_adem_202201066
crossref_primary_10_3390_cryst14070610
crossref_primary_10_1016_j_msea_2014_01_041
crossref_primary_10_1016_j_addma_2018_05_047
crossref_primary_10_1016_j_matchar_2018_05_022
crossref_primary_10_1111_ffe_12737
crossref_primary_10_1016_j_jallcom_2016_06_011
crossref_primary_10_1016_j_actamat_2020_02_008
crossref_primary_10_1515_mt_2022_0334
crossref_primary_10_1016_j_ijfatigue_2016_08_009
crossref_primary_10_1016_j_enganabound_2022_05_019
crossref_primary_10_1016_j_engfailanal_2021_106015
crossref_primary_10_1080_09506608_2021_1983351
crossref_primary_10_1007_s11661_020_05880_4
crossref_primary_10_1016_j_ijfatigue_2020_105796
crossref_primary_10_1108_MMMS_02_2021_0033
crossref_primary_10_2514_1_A33544
crossref_primary_10_1016_j_jmatprotec_2015_07_013
crossref_primary_10_1149_2_1351914jes
crossref_primary_10_1016_j_addma_2015_06_003
crossref_primary_10_3390_ma14206157
crossref_primary_10_1007_s00170_022_10523_6
crossref_primary_10_1016_j_jmatprotec_2013_03_009
crossref_primary_10_1007_s12540_018_00211_0
crossref_primary_10_3390_met7010001
crossref_primary_10_1016_j_jmrt_2022_04_056
crossref_primary_10_3390_ma6030856
crossref_primary_10_2351_1_4906389
crossref_primary_10_1016_j_optlastec_2021_107703
crossref_primary_10_1016_j_jmatprotec_2024_118425
crossref_primary_10_1016_j_addma_2016_01_003
crossref_primary_10_1016_j_addma_2018_05_026
crossref_primary_10_1016_j_msea_2018_10_083
crossref_primary_10_1016_j_promfg_2020_05_118
crossref_primary_10_1108_IJOPM_04_2016_0200
crossref_primary_10_3390_ma12071007
crossref_primary_10_3390_met9121284
crossref_primary_10_1007_s11665_022_07083_x
crossref_primary_10_3390_met9121285
crossref_primary_10_1016_j_vacuum_2018_05_030
crossref_primary_10_1016_j_jmapro_2017_02_009
crossref_primary_10_1016_j_pmatsci_2015_03_002
crossref_primary_10_1007_s12567_022_00476_7
crossref_primary_10_1007_s00170_020_04929_3
crossref_primary_10_1016_j_ijfatigue_2022_107478
crossref_primary_10_61653_joast_v75i3_2023_891
crossref_primary_10_3390_ma16227228
crossref_primary_10_3390_met11050679
crossref_primary_10_1016_j_msea_2021_141141
crossref_primary_10_3390_ma13173877
crossref_primary_10_1016_j_addma_2022_102914
crossref_primary_10_1016_j_actamat_2016_07_019
crossref_primary_10_1016_j_jmbbm_2017_03_024
crossref_primary_10_1016_j_pmatsci_2022_101051
crossref_primary_10_1016_j_actamat_2016_07_012
crossref_primary_10_2464_jilm_72_321
crossref_primary_10_1016_j_addma_2018_04_012
crossref_primary_10_1016_j_jmapro_2019_01_040
crossref_primary_10_1016_j_addma_2020_101272
crossref_primary_10_1016_j_addma_2017_12_011
crossref_primary_10_1016_j_addma_2017_12_012
crossref_primary_10_1016_j_addma_2020_101276
crossref_primary_10_1038_s41598_021_86370_4
crossref_primary_10_1016_j_msea_2021_142484
crossref_primary_10_1016_j_actamat_2016_06_009
crossref_primary_10_1016_j_msea_2016_04_092
crossref_primary_10_3390_met13020263
crossref_primary_10_1080_00207543_2016_1223378
crossref_primary_10_1016_j_matpr_2018_06_119
crossref_primary_10_1016_j_corsci_2021_109453
crossref_primary_10_1016_j_cirp_2019_04_116
crossref_primary_10_1016_j_ijfatigue_2019_105394
crossref_primary_10_1007_s11665_021_06021_7
crossref_primary_10_1016_j_addma_2020_101489
crossref_primary_10_1016_j_ijfatigue_2019_105392
crossref_primary_10_1016_j_matpr_2018_12_009
crossref_primary_10_21062_ujep_x_2017_a_1213_2489_MT_17_4_446
crossref_primary_10_1016_j_jallcom_2019_04_017
crossref_primary_10_1007_s40964_023_00473_0
crossref_primary_10_1080_00325899_2017_1288841
crossref_primary_10_1016_j_matlet_2018_11_115
crossref_primary_10_1088_1742_6596_1605_1_012131
crossref_primary_10_1016_j_ijheatmasstransfer_2014_09_014
crossref_primary_10_3390_ma16072757
crossref_primary_10_1007_s11837_017_2661_7
crossref_primary_10_1016_j_ijfatigue_2023_107500
crossref_primary_10_1142_S0218625X25500118
crossref_primary_10_1016_j_addma_2020_101251
crossref_primary_10_1002_amp2_10021
crossref_primary_10_1016_j_matdes_2021_109651
crossref_primary_10_3390_ma15165562
crossref_primary_10_1016_j_addma_2015_08_002
crossref_primary_10_1016_j_addma_2015_08_001
crossref_primary_10_1016_j_engfracmech_2019_106564
crossref_primary_10_1007_s40964_024_00759_x
crossref_primary_10_1016_j_matdes_2017_11_045
crossref_primary_10_1016_j_promfg_2020_04_115
crossref_primary_10_1007_s40033_024_00854_x
crossref_primary_10_1016_j_msea_2023_145268
crossref_primary_10_1088_1757_899X_461_1_012071
crossref_primary_10_1016_j_msea_2017_03_100
crossref_primary_10_3390_ma15030974
crossref_primary_10_1016_j_amf_2025_200194
crossref_primary_10_1108_RPJ_08_2014_0096
crossref_primary_10_1016_j_jmatprotec_2016_11_029
crossref_primary_10_3390_met9111216
crossref_primary_10_1016_j_matdes_2016_05_066
crossref_primary_10_2320_matertrans_MT_M2022018
crossref_primary_10_1016_j_matlet_2018_04_077
crossref_primary_10_1007_s40964_015_0001_4
crossref_primary_10_1016_j_promfg_2020_04_121
crossref_primary_10_1007_s40964_025_01011_w
crossref_primary_10_1177_0954406219853857
crossref_primary_10_1016_j_triboint_2019_105997
crossref_primary_10_1016_j_msea_2024_146845
crossref_primary_10_1002_adem_201700003
crossref_primary_10_1007_s10704_021_00593_0
crossref_primary_10_1002_eng2_12984
crossref_primary_10_1016_j_jallcom_2017_07_177
crossref_primary_10_1016_j_msea_2019_01_078
crossref_primary_10_1007_s00170_018_2207_3
crossref_primary_10_1016_j_tafmec_2024_104553
crossref_primary_10_3390_ma17174246
crossref_primary_10_1115_1_4037304
crossref_primary_10_1016_j_matdes_2021_109640
crossref_primary_10_1016_j_scriptamat_2019_12_020
crossref_primary_10_1177_14644207231196266
crossref_primary_10_1155_2012_427386
crossref_primary_10_1155_2020_8404052
crossref_primary_10_1111_ffe_13406
crossref_primary_10_1016_j_addma_2019_101011
crossref_primary_10_1038_s41529_022_00226_4
crossref_primary_10_1016_j_scriptamat_2014_10_011
crossref_primary_10_1016_j_msea_2023_145232
crossref_primary_10_1016_j_prostr_2024_03_010
crossref_primary_10_1520_MPC20170011
crossref_primary_10_1007_s11837_018_3114_7
crossref_primary_10_1109_JPROC_2016_2625098
crossref_primary_10_1016_j_matchar_2018_02_004
crossref_primary_10_1007_s11665_023_08423_1
crossref_primary_10_1016_j_ijfatigue_2020_105737
crossref_primary_10_1149_1945_7111_ac6450
crossref_primary_10_1088_2053_1591_ab1828
crossref_primary_10_3139_147_110599
crossref_primary_10_1111_ffe_13611
crossref_primary_10_1016_j_addma_2017_10_015
crossref_primary_10_3390_ma14237483
crossref_primary_10_1016_j_carbon_2020_02_087
crossref_primary_10_2351_1_4745081
crossref_primary_10_1016_j_matchar_2018_02_008
crossref_primary_10_1016_j_msea_2014_01_012
crossref_primary_10_1080_17452759_2022_2068294
crossref_primary_10_1016_j_rser_2018_03_109
crossref_primary_10_1088_1757_899X_461_1_012026
crossref_primary_10_1016_j_addma_2020_101424
crossref_primary_10_1149_1945_7111_ad45c5
crossref_primary_10_1016_j_addma_2020_101429
crossref_primary_10_1016_j_matchar_2018_04_022
crossref_primary_10_1016_j_matchar_2021_111350
crossref_primary_10_1016_j_prostr_2024_02_045
crossref_primary_10_1016_j_msea_2021_141534
crossref_primary_10_1016_j_tafmec_2021_102925
crossref_primary_10_1016_j_matchar_2018_03_033
crossref_primary_10_1007_s11661_016_3478_7
crossref_primary_10_1016_j_prostr_2024_01_003
crossref_primary_10_1016_j_engfracmech_2019_106746
crossref_primary_10_1016_j_msea_2024_147738
crossref_primary_10_1016_j_mattod_2022_08_014
crossref_primary_10_1016_j_addma_2018_06_016
crossref_primary_10_1016_j_matdes_2019_108005
crossref_primary_10_1142_S0217984916502559
crossref_primary_10_1002_pen_25555
crossref_primary_10_1016_j_compositesb_2024_111736
crossref_primary_10_1007_s11661_016_3883_y
crossref_primary_10_1016_j_addma_2018_06_012
crossref_primary_10_1111_ffe_12982
crossref_primary_10_1016_j_surfcoat_2023_129512
crossref_primary_10_1007_s11665_022_06874_6
crossref_primary_10_1016_j_tafmec_2020_102611
crossref_primary_10_1016_j_corsci_2025_112711
crossref_primary_10_1140_epjp_s13360_021_01816_y
crossref_primary_10_3390_met12122152
crossref_primary_10_1016_j_matdes_2015_10_065
crossref_primary_10_1016_j_msea_2020_139180
crossref_primary_10_1051_epjconf_20159402006
crossref_primary_10_1016_j_wear_2024_205677
crossref_primary_10_1134_S1029959920030108
crossref_primary_10_2139_ssrn_4201040
crossref_primary_10_1016_j_matdes_2019_108018
crossref_primary_10_1016_j_msea_2018_08_037
crossref_primary_10_3390_ma16062325
crossref_primary_10_1016_j_matdes_2016_05_041
crossref_primary_10_1016_j_msea_2015_10_068
crossref_primary_10_1016_j_tafmec_2020_102849
crossref_primary_10_1016_j_ijfatigue_2022_107049
crossref_primary_10_1016_j_matpr_2018_04_133
crossref_primary_10_1002_srin_201900511
crossref_primary_10_3390_ma16030991
crossref_primary_10_1016_j_ijfatigue_2019_105301
crossref_primary_10_1016_j_jmrt_2024_02_224
crossref_primary_10_1016_j_apsusc_2017_02_215
crossref_primary_10_1016_j_msea_2016_05_047
Cites_doi 10.1016/j.engfailanal.2010.06.002
10.1016/j.ijmachtools.2005.09.005
10.1016/j.actamat.2009.11.032
10.1016/S0921-5093(04)00871-8
10.1016/0142-1123(93)90001-7
10.1201/9780849332166.ch26
10.1016/j.jmatprotec.2011.01.018
10.1016/j.msea.2007.03.112
10.1016/S1471-5317(00)00009-2
10.1111/j.1460-2695.1990.tb00594.x
10.1016/j.phpro.2011.03.035
10.1016/S1471-5317(00)00008-0
10.1016/j.actamat.2010.02.004
10.1016/j.matdes.2009.11.032
10.1016/j.ijfatigue.2007.08.012
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7SR
8BQ
8FD
H8D
JG9
L7M
DOI 10.1016/j.matdes.2011.07.067
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 169
ExternalDocumentID 10_1016_j_matdes_2011_07_067
S0261306911005590
GroupedDBID -~X
4G.
5VS
7-5
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAKOC
AALRI
AAOAW
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACNNM
ACRLP
ADMUD
ADTZH
AEBSH
AECPX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BKOJK
BLXMC
EFJIC
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FYGXN
G-2
IHE
J1W
M24
M41
OAUVE
Q38
R2-
ROL
SDF
SMS
SPC
SSM
SST
SSZ
T5K
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
7SR
8BQ
8FD
AFXIZ
H8D
JG9
L7M
ID FETCH-LOGICAL-c450t-5adbed7ca6a45cb6732b74153232d8b3491271a5feb0e2b6640135184c0f829b3
IEDL.DBID AIKHN
ISSN 0261-3069
IngestDate Fri Jul 11 01:07:28 EDT 2025
Tue Jul 01 04:23:04 EDT 2025
Thu Apr 24 22:58:08 EDT 2025
Fri Feb 23 02:21:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords G. Scanning electron microscopy
A. Non-ferrous metals and alloys
E. Fatigue
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-5adbed7ca6a45cb6732b74153232d8b3491271a5feb0e2b6640135184c0f829b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://publica.fraunhofer.de/documents/N-189341.html
PQID 963855000
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_963855000
crossref_citationtrail_10_1016_j_matdes_2011_07_067
crossref_primary_10_1016_j_matdes_2011_07_067
elsevier_sciencedirect_doi_10_1016_j_matdes_2011_07_067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Materials in engineering
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References TIB Hannover: D. Buchbinder. Generative Fertigung von Aluminiumbauteilen für die Serienproduktion, Förderkennzeichen: 01RI0639A-D. Aachen: Fraunhofer Institute for Laser Technology ILT; 2010.
Deutsche Norm. Test pieces for tensile testing of metallic materials. DIN 50125: Deutsches Institut für Normung; 2004.
Ammar, Samuel, Samuel (b0145) 2008; 30
Zhang, Sung, Poirier, Chen (b0120) 2000; 108
Radzikowska (b0205) 2004
Wohlers (b0015) 2010
Buchbinder D, Meiners W, Wissenbach K, Müller-Lohmeier K, Brandl E, Skrynecki N. Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM). In: 4 international conference on rapid manufacturing. Loughborough: University; 2009.
Vojtech, Serak, Ekrt (b0060) 2004; 38
Standard. Aerospace series – metallic materials – test methods – constant amplitude fatigue testing. DIN EN 6072: 2010; 2010.
Baufeld, Brandl, van der Biest (b0105) 2011; 211
Deutsche Norm. Aluminium und Aluminiumlegierungen – Gussstücke – Chemische Zusammensetzung und mechanische Eigenschaften. DIN EN 1706: Deutsches Institut für Normung; 2010.
Ammar, Samuel, Samuel (b0140) 2008; 473
Pedersen JAØK. Fatigue properties of an A356 (AlSi7Mg) aluminium alloy for automotive applications. Fatigue life prediction. International congress and exposition; 1994.
Kelbassa I. Qualifizieren des Laserstrahl-Auftragschweißens von BLISKs aus Nickel- und Titanbasislegierungen [Dissertation]: RWTH Aachen; 2006.
Santos, Shiomi, Osakada, Laoui (b0020) 2006; 46
Bos, Amsterdam, Kool (b0170) 2009
Major (b0135) 1997; 105
Stucker B, Janaki Ram G. Layer-based additive manufacturing technologies. Materials Processing Handbook: CRC Press; 2007. p. 1–32.
Wang, Apelian, Lados (b0190) 2001; 1
ASTM International. Standard practice for conducting constant amplitude axial fatigue tests of metallic materials. ASTM E 466-07: ASTM International; 2007.
Wang, Apelian, Lados (b0200) 2001; 1
Couper, Neeson, Griffiths (b0185) 1990; 13
Kobryn PA, Semiatin SL. Mechanical properties of laser-deposited Ti-6Al-4V. JOM; 2006.
Lados, Apelian (b0195) 2004; 385
SAE Aerospace. Titanium alloy direct deposited products 6Al–4V annealed. AMS 4999A: aerospace material specification; 2008.
Qian, Hong, Zhou (b0210) 2011; 17
Kovacheva (b0095) 1993; 30
Buchbinder, Schleifenbaum, Heidrich, Meiners, Bültmann (b0055) 2011; 12
Thijs, Verhaeghe, Craeghs, Humbeeck, Kruth (b0160) 2010; 58
Murr, Gaytan, Ceylan, Martinez, Martinez, Hernandez (b0165) 2009; 58
Kammer (b0065) 2009
Standard. Metallic materials – tensile testing. Part 1: Method of test at room temperature. DIN EN ISO 6892-1: 2009; 2009.
Meiners (b0030) 1999
Sonsino, Ziese (b0125) 1993; 15
Zhang (b0040) 2004
Grosch (b0115) 2004
Buchbinder, Meiners, Wissenbach, Müller-Lohmeier, Brandl (b0050) 2007
Baufeld, van der Biest, Gault (b0010) 2010; 31
Over (b0035) 2003
Luftfahrttechnisches Handbuch. Handbuch Struktur Berechnung (HSB): IASB; 2003.
Brandl (b0005) 2010
Buchbinder D, Meiners W, Wissenbach K, Müller-Lohmeier K, Brandl E. Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM). Aluminium Alloys. Aachen; 2008. p. 2394–400.
10.1016/j.matdes.2011.07.067_b0155
10.1016/j.matdes.2011.07.067_b0110
10.1016/j.matdes.2011.07.067_b0175
Kovacheva (10.1016/j.matdes.2011.07.067_b0095) 1993; 30
Baufeld (10.1016/j.matdes.2011.07.067_b0105) 2011; 211
Grosch (10.1016/j.matdes.2011.07.067_b0115) 2004
Zhang (10.1016/j.matdes.2011.07.067_b0040) 2004
Zhang (10.1016/j.matdes.2011.07.067_b0120) 2000; 108
Radzikowska (10.1016/j.matdes.2011.07.067_b0205) 2004
Baufeld (10.1016/j.matdes.2011.07.067_b0010) 2010; 31
Santos (10.1016/j.matdes.2011.07.067_b0020) 2006; 46
10.1016/j.matdes.2011.07.067_b0180
10.1016/j.matdes.2011.07.067_b0080
10.1016/j.matdes.2011.07.067_b0085
Qian (10.1016/j.matdes.2011.07.067_b0210) 2011; 17
10.1016/j.matdes.2011.07.067_b0045
10.1016/j.matdes.2011.07.067_b0100
Thijs (10.1016/j.matdes.2011.07.067_b0160) 2010; 58
Buchbinder (10.1016/j.matdes.2011.07.067_b0055) 2011; 12
Wang (10.1016/j.matdes.2011.07.067_b0200) 2001; 1
10.1016/j.matdes.2011.07.067_b0025
Buchbinder (10.1016/j.matdes.2011.07.067_b0050) 2007
Kammer (10.1016/j.matdes.2011.07.067_b0065) 2009
Ammar (10.1016/j.matdes.2011.07.067_b0145) 2008; 30
Over (10.1016/j.matdes.2011.07.067_b0035) 2003
Sonsino (10.1016/j.matdes.2011.07.067_b0125) 1993; 15
Brandl (10.1016/j.matdes.2011.07.067_b0005) 2010
Bos (10.1016/j.matdes.2011.07.067_b0170) 2009
Wohlers (10.1016/j.matdes.2011.07.067_b0015) 2010
Wang (10.1016/j.matdes.2011.07.067_b0190) 2001; 1
Meiners (10.1016/j.matdes.2011.07.067_b0030) 1999
Vojtech (10.1016/j.matdes.2011.07.067_b0060) 2004; 38
Murr (10.1016/j.matdes.2011.07.067_b0165) 2009; 58
10.1016/j.matdes.2011.07.067_b0070
Major (10.1016/j.matdes.2011.07.067_b0135) 1997; 105
10.1016/j.matdes.2011.07.067_b0090
Couper (10.1016/j.matdes.2011.07.067_b0185) 1990; 13
Lados (10.1016/j.matdes.2011.07.067_b0195) 2004; 385
10.1016/j.matdes.2011.07.067_b0075
10.1016/j.matdes.2011.07.067_b0130
Ammar (10.1016/j.matdes.2011.07.067_b0140) 2008; 473
10.1016/j.matdes.2011.07.067_b0150
References_xml – volume: 46
  start-page: 1459
  year: 2006
  end-page: 1468
  ident: b0020
  article-title: Rapid manufacturing of metal components by laser forming
  publication-title: Int J Mach Tools Manuf
– reference: Buchbinder D, Meiners W, Wissenbach K, Müller-Lohmeier K, Brandl E, Skrynecki N. Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM). In: 4 international conference on rapid manufacturing. Loughborough: University; 2009.
– volume: 38
  start-page: 99
  year: 2004
  end-page: 102
  ident: b0060
  article-title: Improving the casting properties of high-strength aluminium alloys
  publication-title: Mater Tehnologije
– year: 2009
  ident: b0170
  article-title: High cycle fatigue of laser beam deposited Ti–6Al–4V and inconel 718. ICAF 2009, bridging the gap between theory and operational practice
– reference: ASTM International. Standard practice for conducting constant amplitude axial fatigue tests of metallic materials. ASTM E 466-07: ASTM International; 2007.
– year: 2004
  ident: b0115
  article-title: Schadenskunde im maschinenbau
– year: 2010
  ident: b0005
  article-title: Microstructural and mechanical properties of additive manufactured titanium (Ti–6Al–4V) using wire: evaluation with respect to additive processes using powder and aerospace material specifications
– reference: Standard. Aerospace series – metallic materials – test methods – constant amplitude fatigue testing. DIN EN 6072: 2010; 2010.
– reference: Deutsche Norm. Test pieces for tensile testing of metallic materials. DIN 50125: Deutsches Institut für Normung; 2004.
– year: 2010
  ident: b0015
  article-title: Wohlers report 2010
– reference: Deutsche Norm. Aluminium und Aluminiumlegierungen – Gussstücke – Chemische Zusammensetzung und mechanische Eigenschaften. DIN EN 1706: Deutsches Institut für Normung; 2010.
– reference: SAE Aerospace. Titanium alloy direct deposited products 6Al–4V annealed. AMS 4999A: aerospace material specification; 2008.
– volume: 1
  start-page: 73
  year: 2001
  end-page: 84
  ident: b0190
  article-title: Fatigue behavior of A356–T6 aluminum cast alloys. Part I: Effect of casting defects
  publication-title: J Light Met
– volume: 211
  start-page: 1146
  year: 2011
  end-page: 1158
  ident: b0105
  article-title: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition
  publication-title: J Mat Proc Technol
– volume: 385
  start-page: 200
  year: 2004
  end-page: 211
  ident: b0195
  article-title: Fatigue crack growth characteristics in cast Al–Si–Mg alloys. Part I: Effect of processing conditions and microstructure
  publication-title: Mat Sci Eng A
– volume: 31
  start-page: 106
  year: 2010
  end-page: 111
  ident: b0010
  article-title: Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties
  publication-title: Mat Des
– reference: Stucker B, Janaki Ram G. Layer-based additive manufacturing technologies. Materials Processing Handbook: CRC Press; 2007. p. 1–32.
– reference: Kobryn PA, Semiatin SL. Mechanical properties of laser-deposited Ti-6Al-4V. JOM; 2006.
– reference: Standard. Metallic materials – tensile testing. Part 1: Method of test at room temperature. DIN EN ISO 6892-1: 2009; 2009.
– volume: 58
  start-page: 3303
  year: 2010
  end-page: 3312
  ident: b0160
  article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V
  publication-title: Acta Mater
– reference: TIB Hannover: D. Buchbinder. Generative Fertigung von Aluminiumbauteilen für die Serienproduktion, Förderkennzeichen: 01RI0639A-D. Aachen: Fraunhofer Institute for Laser Technology ILT; 2010.
– volume: 105
  start-page: 901
  year: 1997
  end-page: 906
  ident: b0135
  article-title: Porosity control and fatigue behavior in A356–T61 aluminum alloy
  publication-title: AFS Trans
– year: 2009
  ident: b0065
  article-title: Aluminium taschenbuch band 1
– volume: 473
  start-page: 65
  year: 2008
  end-page: 75
  ident: b0140
  article-title: Effect of casting imperfections on the fatigue life of 319-F and A356–T6 Al–Si casting alloys
  publication-title: Mater Sci Eng A
– year: 1999
  ident: b0030
  article-title: Direktes selektives laser sintern einkomponentiger metallischer werkstoffe
– year: 2007
  ident: b0050
  article-title: Rapid manufacturing von aluminiumbauteilen für die serienproduktion durch selective laser melting (SLM)
– year: 2003
  ident: b0035
  article-title: Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5–1 und Titan TiAl6V4 mit “Selective Laser Melting”
– reference: Buchbinder D, Meiners W, Wissenbach K, Müller-Lohmeier K, Brandl E. Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM). Aluminium Alloys. Aachen; 2008. p. 2394–400.
– year: 2004
  ident: b0040
  article-title: Entwicklung des selective laser melting für aluminiumwerkstoffe
– volume: 1
  start-page: 85
  year: 2001
  end-page: 97
  ident: b0200
  article-title: Fatigue behavior of A356–T6 aluminum cast alloys. Part II: Effect of microstructural constituents
  publication-title: J Light Met
– volume: 30
  start-page: 1024
  year: 2008
  end-page: 1035
  ident: b0145
  article-title: Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum–silicon casting alloys
  publication-title: Int J Fatigue
– year: 2004
  ident: b0205
  article-title: Metallography and microstructures of cast Iron. Metallography and microstructures
– volume: 108
  start-page: 383
  year: 2000
  end-page: 389
  ident: b0120
  article-title: Effects of strontium modification and hydrogen content on the fatigue behavior of A356.2 cast aluminum alloy
  publication-title: AFS Trans
– volume: 30
  start-page: 68
  year: 1993
  end-page: 81
  ident: b0095
  article-title: Metallographic investigation of Al–Si–Mg and Al–Si–Cu alloys
  publication-title: Praktische Metallographie
– volume: 17
  start-page: 1517
  year: 2011
  end-page: 1525
  ident: b0210
  article-title: Investigation of high cycle and very-high-cycle fatigue behaviors for a structural steel with smooth and notched specimens
  publication-title: Eng Fail Anal
– reference: Pedersen JAØK. Fatigue properties of an A356 (AlSi7Mg) aluminium alloy for automotive applications. Fatigue life prediction. International congress and exposition; 1994.
– volume: 13
  start-page: 213
  year: 1990
  end-page: 227
  ident: b0185
  article-title: Casting defects and the fatigue behaviour of an aluminium casting alloy
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 15
  start-page: 75
  year: 1993
  end-page: 84
  ident: b0125
  article-title: Fatigue strength and applications of cast aluminium alloys with different degrees of porosity
  publication-title: Int J Fatigue
– reference: Kelbassa I. Qualifizieren des Laserstrahl-Auftragschweißens von BLISKs aus Nickel- und Titanbasislegierungen [Dissertation]: RWTH Aachen; 2006.
– volume: 12
  start-page: 271
  year: 2011
  end-page: 278
  ident: b0055
  article-title: High power selective laser melting (HP SLM) of aluminium parts
  publication-title: Phys Procedia
– reference: Luftfahrttechnisches Handbuch. Handbuch Struktur Berechnung (HSB): IASB; 2003.
– volume: 58
  start-page: 1887
  year: 2009
  end-page: 1894
  ident: b0165
  article-title: Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting
  publication-title: Acta Mater
– ident: 10.1016/j.matdes.2011.07.067_b0130
– volume: 108
  start-page: 383
  year: 2000
  ident: 10.1016/j.matdes.2011.07.067_b0120
  article-title: Effects of strontium modification and hydrogen content on the fatigue behavior of A356.2 cast aluminum alloy
  publication-title: AFS Trans
– ident: 10.1016/j.matdes.2011.07.067_b0180
– ident: 10.1016/j.matdes.2011.07.067_b0025
– year: 2010
  ident: 10.1016/j.matdes.2011.07.067_b0015
– volume: 17
  start-page: 1517
  year: 2011
  ident: 10.1016/j.matdes.2011.07.067_b0210
  article-title: Investigation of high cycle and very-high-cycle fatigue behaviors for a structural steel with smooth and notched specimens
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2010.06.002
– volume: 46
  start-page: 1459
  year: 2006
  ident: 10.1016/j.matdes.2011.07.067_b0020
  article-title: Rapid manufacturing of metal components by laser forming
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2005.09.005
– year: 2007
  ident: 10.1016/j.matdes.2011.07.067_b0050
– ident: 10.1016/j.matdes.2011.07.067_b0080
– year: 2009
  ident: 10.1016/j.matdes.2011.07.067_b0170
– ident: 10.1016/j.matdes.2011.07.067_b0075
– year: 2009
  ident: 10.1016/j.matdes.2011.07.067_b0065
– ident: 10.1016/j.matdes.2011.07.067_b0090
– volume: 58
  start-page: 1887
  year: 2009
  ident: 10.1016/j.matdes.2011.07.067_b0165
  article-title: Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2009.11.032
– volume: 385
  start-page: 200
  year: 2004
  ident: 10.1016/j.matdes.2011.07.067_b0195
  article-title: Fatigue crack growth characteristics in cast Al–Si–Mg alloys. Part I: Effect of processing conditions and microstructure
  publication-title: Mat Sci Eng A
  doi: 10.1016/S0921-5093(04)00871-8
– ident: 10.1016/j.matdes.2011.07.067_b0045
– ident: 10.1016/j.matdes.2011.07.067_b0070
– volume: 30
  start-page: 68
  year: 1993
  ident: 10.1016/j.matdes.2011.07.067_b0095
  article-title: Metallographic investigation of Al–Si–Mg and Al–Si–Cu alloys
  publication-title: Praktische Metallographie
– volume: 105
  start-page: 901
  year: 1997
  ident: 10.1016/j.matdes.2011.07.067_b0135
  article-title: Porosity control and fatigue behavior in A356–T61 aluminum alloy
  publication-title: AFS Trans
– volume: 15
  start-page: 75
  year: 1993
  ident: 10.1016/j.matdes.2011.07.067_b0125
  article-title: Fatigue strength and applications of cast aluminium alloys with different degrees of porosity
  publication-title: Int J Fatigue
  doi: 10.1016/0142-1123(93)90001-7
– ident: 10.1016/j.matdes.2011.07.067_b0175
– ident: 10.1016/j.matdes.2011.07.067_b0155
  doi: 10.1201/9780849332166.ch26
– volume: 211
  start-page: 1146
  year: 2011
  ident: 10.1016/j.matdes.2011.07.067_b0105
  article-title: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition
  publication-title: J Mat Proc Technol
  doi: 10.1016/j.jmatprotec.2011.01.018
– year: 1999
  ident: 10.1016/j.matdes.2011.07.067_b0030
– volume: 473
  start-page: 65
  year: 2008
  ident: 10.1016/j.matdes.2011.07.067_b0140
  article-title: Effect of casting imperfections on the fatigue life of 319-F and A356–T6 Al–Si casting alloys
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2007.03.112
– volume: 1
  start-page: 85
  year: 2001
  ident: 10.1016/j.matdes.2011.07.067_b0200
  article-title: Fatigue behavior of A356–T6 aluminum cast alloys. Part II: Effect of microstructural constituents
  publication-title: J Light Met
  doi: 10.1016/S1471-5317(00)00009-2
– year: 2004
  ident: 10.1016/j.matdes.2011.07.067_b0040
– ident: 10.1016/j.matdes.2011.07.067_b0085
– ident: 10.1016/j.matdes.2011.07.067_b0100
– year: 2010
  ident: 10.1016/j.matdes.2011.07.067_b0005
– volume: 13
  start-page: 213
  year: 1990
  ident: 10.1016/j.matdes.2011.07.067_b0185
  article-title: Casting defects and the fatigue behaviour of an aluminium casting alloy
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/j.1460-2695.1990.tb00594.x
– year: 2004
  ident: 10.1016/j.matdes.2011.07.067_b0205
– volume: 12
  start-page: 271
  year: 2011
  ident: 10.1016/j.matdes.2011.07.067_b0055
  article-title: High power selective laser melting (HP SLM) of aluminium parts
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2011.03.035
– volume: 1
  start-page: 73
  year: 2001
  ident: 10.1016/j.matdes.2011.07.067_b0190
  article-title: Fatigue behavior of A356–T6 aluminum cast alloys. Part I: Effect of casting defects
  publication-title: J Light Met
  doi: 10.1016/S1471-5317(00)00008-0
– year: 2004
  ident: 10.1016/j.matdes.2011.07.067_b0115
– ident: 10.1016/j.matdes.2011.07.067_b0150
– year: 2003
  ident: 10.1016/j.matdes.2011.07.067_b0035
– volume: 58
  start-page: 3303
  year: 2010
  ident: 10.1016/j.matdes.2011.07.067_b0160
  article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.02.004
– volume: 38
  start-page: 99
  year: 2004
  ident: 10.1016/j.matdes.2011.07.067_b0060
  article-title: Improving the casting properties of high-strength aluminium alloys
  publication-title: Mater Tehnologije
– volume: 31
  start-page: 106
  year: 2010
  ident: 10.1016/j.matdes.2011.07.067_b0010
  article-title: Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties
  publication-title: Mat Des
  doi: 10.1016/j.matdes.2009.11.032
– ident: 10.1016/j.matdes.2011.07.067_b0110
– volume: 30
  start-page: 1024
  year: 2008
  ident: 10.1016/j.matdes.2011.07.067_b0145
  article-title: Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum–silicon casting alloys
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2007.08.012
SSID ssj0017112
Score 2.569692
Snippet ► The fatigue life of additive manufactured AlSi10Mg is high compared to EN 1706. ► Fatigue limit and static tensile strength significantly correlate with each...
In order to produce serial parts via additive layer manufacturing, the fatigue performance can be a critical attribute. In this paper, the microstructure, high...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 159
SubjectTerms A. Non-ferrous metals and alloys
Additives
E. Fatigue
Fatigue strength
G. Scanning electron microscopy
Heat treatment
High cycle fatigue
Lasers
Samples
Statistical analysis
Statistical methods
Title Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior
URI https://dx.doi.org/10.1016/j.matdes.2011.07.067
https://www.proquest.com/docview/963855000
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQXJYD4ine8oEDSIQmdmw33CoEKruUS0HiZvmVqqtuQC098AP438wkDloQEhLHWH5EHmfmm3jmG0KOPEB-zoNJpO_mSV64bmKkwhoaTIaMO8PKmu3zVvbv898P4mGBXLS5MBhWGXV_o9NrbR1bOnE3O0_jcWeI3gMA3gJJzwAXg9--xHgh4Wgv9a7_9G_fLxNUVl96xl8tsmgz6OowL8CFPswil6c6S-uC819aqE-6ujZAV6tkJSJH2mtebo0shGqdLP_HJ7hBXnve17FA9J-p5pizMJ8GT3uT4ThLByM6M8gFPKMY7D6iw7oEDva-AVM2pYMwwRhoejy8GZyc0wGG6jX0sjDLKUViY-peYG1agjhHc2gzlafltFmHthn_m-T-6vLuop_EOguJy0X6nAjjbfDKGWly4axUnFkEGhzQlu9anhcZU5kRZbBpYFZK9MkEuIYuLbussHyLLFaPVdgmVFgH3rYHkONFbnMF4KvMytRyllkJaGOH8HZvtYsk5FgLY6LbaLO_upGIRonoVGmQyA5J3kc9NSQc3_RXrdj0h8OkwU58M5K2UtbwneHlianC43ymUVEJrB6x--PJ98gveGJNzPc-WQQJhgOANM_2MB7ZN02b9KA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZQe1g4oH2AYGF3feAAEqFJHNvN3ioEKkvTS0HiZvmVqqgbUEsP-wP2fzOTONUuQkLi6vgReZyZb-KZbwg5cgD5GfM6Eq6fRVlu-5EWEmtopMInzOq0rNk-x2J4m_2643cb5LzNhcGwyqD7G51ea-vQ0gu72XuczXoT9B4A8OZIega4GPz2LrJT8Q7pDq6uh-P1ZYJM6kvP8KtF5G0GXR3mBbjQ-WXg8pRncV1w_lUL9UJX1wbo8iPZDsiRDpqX-0Q2fPWZbP3DJ_iF_B04V8cC0d-6WmHOwmrhHR3MJ7MkLqZ0qZELeEkx2H1KJ3UJHOw9AlO2oIWfYww0PZ6MipOftMBQvYZeFmY5pUhsTO0fWJuWIM7pCtp05Wi5aNahbcb_Drm9vLg5H0ahzkJkMx4_RVw74520WuiMWyMkSw0CDQZoy_UNy_IklYnmpTexT40Q6JNxcA1tXPbT3LBd0qkeKr9HKDcWvG0HIMfxzGQSwFeZlLFhaWIEoI19wtq9VTaQkGMtjLlqo83uVSMRhRJRsVQgkX0SrUc9NiQcb_SXrdjUf4dJgZ14YyRtpazgO8PLE135h9VSoaLiWD3i67sn_0E-DG-KkRpdja8PyCY8SZv470PSAWn6bwBvnsz3cHyfAdrf94Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+manufactured+AlSi10Mg+samples+using+Selective+Laser+Melting+%28SLM%29%3A+Microstructure%2C+high+cycle+fatigue%2C+and+fracture+behavior&rft.jtitle=Materials+in+engineering&rft.au=Brandl%2C+Erhard&rft.au=Heckenberger%2C+Ulrike&rft.au=Holzinger%2C+Vitus&rft.au=Buchbinder%2C+Damien&rft.date=2012-02-01&rft.issn=0261-3069&rft.volume=34&rft.spage=159&rft.epage=169&rft_id=info:doi/10.1016%2Fj.matdes.2011.07.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2011_07_067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon