A new algorithm for learning in piecewise-linear neural networks

Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in PWL networks consisting of a single hidden layer. The approach adopted is based upon constructing a continuous PWL error function and developin...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 13; no. 4; pp. 485 - 505
Main Authors Gad, E.F., Atiya, A.F., Shaheen, S., El-Dessouki, A.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2000
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in PWL networks consisting of a single hidden layer. The approach adopted is based upon constructing a continuous PWL error function and developing an efficient algorithm to minimize it. The algorithm consists of two basic stages in searching the weight space. The first stage of the optimization algorithm is used to locate a point in the weight space representing the intersection of N linearly independent hyperplanes, with N being the number of weights in the network. The second stage is then called to use this point as a starting point in order to continue searching by moving along the single-dimension boundaries between the different linear regions of the error function, hopping from one point (representing the intersection of N hyperplanes) to another. The proposed algorithm exhibits significantly accelerated convergence, as compared to standard algorithms such as back-propagation and improved versions of it, such as the conjugate gradient algorithm. In addition, it has the distinct advantage that there are no parameters to adjust, and therefore there is no time-consuming parameters tuning step. The new algorithm is expected to find applications in function approximation, time series prediction and binary classification problems.
AbstractList Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in PWL networks consisting of a single hidden layer. The approach adopted is based upon constructing a continuous PWL error function and developing an efficient algorithm to minimize it. The algorithm consists of two basic stages in searching the weight space. The first stage of the optimization algorithm is used to locate a point in the weight space representing the intersection of N linearly independent hyperplanes, with N being the number of weights in the network. The second stage is then called to use this point as a starting point in order to continue searching by moving along the single-dimension boundaries between the different linear regions of the error function, hopping from one point (representing the intersection of N hyperplanes) to another. The proposed algorithm exhibits significantly accelerated convergence, as compared to standard algorithms such as back-propagation and improved versions of it, such as the conjugate gradient algorithm. In addition, it has the distinct advantage that there are no parameters to adjust, and therefore there is no time-consuming parameters tuning step. The new algorithm is expected to find applications in function approximation, time series prediction and binary classification problems.
Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in PWL networks consisting of a single hidden layer. The approach adopted is based upon constructing a continuous PWL error function and developing an efficient algorithm to minimize it. The algorithm consists of two basic stages in searching the weight space. The first stage of the optimization algorithm is used to locate a point in the weight space representing the intersection of N linearly independent hyperplanes, with N being the number of weights in the network. The second stage is then called to use this point as a starting point in order to continue searching by moving along the single-dimension boundaries between the different linear regions of the error function, hopping from one point (representing the intersection of N hyperplanes) to another. The proposed algorithm exhibits significantly accelerated convergence, as compared to standard algorithms such as back-propagation and improved versions of it, such as the conjugate gradient algorithm. In addition, it has the distinct advantage that there are no parameters to adjust, and therefore there is no time-consuming parameters tuning step. The new algorithm is expected to find applications in function approximation, time series prediction and binary classification problems.
Author Gad, E.F.
Shaheen, S.
Atiya, A.F.
El-Dessouki, A.
Author_xml – sequence: 1
  givenname: E.F.
  surname: Gad
  fullname: Gad, E.F.
  email: egad@doe.carleton.ca
  organization: Department of Electrical Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K15 5B6
– sequence: 2
  givenname: A.F.
  surname: Atiya
  fullname: Atiya, A.F.
  email: amir@work.caltech.edu
  organization: Department of Electrical Engineering, Caltech 136-93 Pasadena, CA 91125, USA
– sequence: 3
  givenname: S.
  surname: Shaheen
  fullname: Shaheen, S.
  email: sshaheen@frcu.eun.eg
  organization: Department of Computer Engineering, Cairo University, Giza, Egypt
– sequence: 4
  givenname: A.
  surname: El-Dessouki
  fullname: El-Dessouki, A.
  organization: Informatics Research Institute, MCSRTA, Alexandria, Egypt
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1439792$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/10946395$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLAzEQgIMoWqs_QdmDiB5WJ5tskj1pKb5A8KCeQ8zOanSbrcnW4r83tUW9CQMDwzevb5us-84jIXsUTihQcXoPqmK5AAVHAMcAUPCcrpEBVbLKC6mKdTL4QbbIdoyvCRKKs02yRaHiglXlgJyPMo_zzLTPXXD9yyRrupC1aIJ3_jlzPps6tDh3EfPW-VRP-CyYNqV-3oW3uEM2GtNG3F3lIXm8vHgYX-e3d1c349FtbnkJfV4qIWQFQjLGaisYsygM1hy4RSUoK0HRshHpeKkkIHJVGqkai4jKSibZkBwu505D9z7D2OuJixbb1njsZlFLKqVKv_4LFlKUjNPFxHIJ2tDFGLDR0-AmJnxqCnrhWH871guBGhaRHGua-vZXC2ZPE6z_dC2lJuBgBZhoTdsE462LvxxnlayKhJ0tMUzaPhwGHa1Db7F2AW2v6879c8kX1UuYRw
CitedBy_id crossref_primary_10_3166_ejc_13_242_260
crossref_primary_10_1016_j_automatica_2003_08_006
crossref_primary_10_1162_neco_2006_18_11_2813
crossref_primary_10_1109_34_946993
crossref_primary_10_1063_1_2149527
crossref_primary_10_3182_20110828_6_IT_1002_00611
crossref_primary_10_1016_j_neucom_2007_03_001
Cites_doi 10.1016/0031-3203(84)90059-1
10.1109/72.728357
10.1162/neco.1989.1.1.151
10.1016/0898-1221(91)90162-W
10.1109/72.97915
10.1109/72.750569
10.1162/neco.1992.4.2.141
10.1137/0914044
10.1109/31.52728
10.1016/0031-3203(91)90005-P
10.1109/81.207720
10.1142/S0129065795000056
10.1162/neco.1989.1.3.312
10.1109/72.363451
10.1007/BF00332914
10.1109/72.80289
10.1016/0925-2312(94)90054-X
10.1109/IJCNN.1990.137710
ContentType Journal Article
Copyright 2000 Elsevier Science Ltd
2000 INIST-CNRS
Copyright_xml – notice: 2000 Elsevier Science Ltd
– notice: 2000 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1016/S0893-6080(00)00024-1
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Computer and Information Systems Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1879-2782
EndPage 505
ExternalDocumentID 10_1016_S0893_6080_00_00024_1
10946395
1439792
S0893608000000241
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
08R
AALMO
ABFLS
ABPIF
ABPTK
ABQIS
ADALY
IPNFZ
IQODW
AAXKI
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c450t-586679067333dc633ce6aed404ce861350815f68797870ee485a78fceee8c7373
IEDL.DBID .~1
ISSN 0893-6080
IngestDate Thu Oct 24 22:39:29 EDT 2024
Fri Oct 25 00:28:08 EDT 2024
Thu Sep 26 15:22:25 EDT 2024
Sat Sep 28 07:39:59 EDT 2024
Fri Nov 25 01:09:55 EST 2022
Fri Feb 23 02:29:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Function approximation
Neural networks
Convergence
Learning
Conjugate gradient method
Backpropagation algorithm
Classification
Error function
Neural network
Learning algorithm
Artificial intelligence
Hyperplane
Implementation
Optimization
Piecewise linearization
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-586679067333dc633ce6aed404ce861350815f68797870ee485a78fceee8c7373
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 10946395
PQID 27653417
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_71778608
proquest_miscellaneous_27653417
crossref_primary_10_1016_S0893_6080_00_00024_1
pubmed_primary_10946395
pascalfrancis_primary_1439792
elsevier_sciencedirect_doi_10_1016_S0893_6080_00_00024_1
PublicationCentury 2000
PublicationDate 2000-05-01
PublicationDateYYYYMMDD 2000-05-01
PublicationDate_xml – month: 05
  year: 2000
  text: 2000-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2000
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References (pp. 163–168).
Battiti (BIB5) 1992; 4
Haykin (BIB15) 1994
Michel, Si, Yen (BIB20) 1991; 2
Battiti, Tecchiolli (BIB6) 1994; 6
Bishop (BIB9) 1995
Baltimore, MD.
Neural Network Simulator, http://www.ncrg.aston.ac.uk/netlab/index.html.
Vogl, Mangis, Rigler, Zink, Alkon (BIB26) 1988; 59
Batruni (BIB4) 1991; 2
Lin, Unbehauen (BIB19) 1995; 6
Lin, Unbehauen (BIB18) 1990; 37
Hammerstrom, D. (1992). Electronic neural network implementation, Tutorial.
Abu-Mostafa (BIB1) 1989; 1
Barmann, Biegler-Konig (BIB3) 1992; 2
Benchekroun, Falk (BIB8) 1991; 21
Bobrowski (BIB11) 1991; 24
Moody, J. (1992). The Effective number of parameters: an analysis of generalization and regularization in nonlinear learning system. In J. Moody, S. Hansen & R. Lippmann (Eds.)
Baum, Haussler (BIB7) 1989; 1
Pao (BIB23) 1989
Hush, Horne (BIB16) 1998; 9
.
Bishop, C., Nabney, I. (1998).
Bobrowski, Niemiro (BIB12) 1984; 17
Golden (BIB13) 1996
(pp. 847–854), 1992
Atiya, El-Shoura, Shaheen, El-Sherif (BIB2) 1999; 10
Odom, M., & Sharda, R. (1990). A neural network model for bankruptcy prediction. In
Kevenaar, Leenaerts (BIB17) 1992; 39
Saarinen, Bramely, Cybenko (BIB24) 1993; 14
Staley (BIB25) 1995; 6
Hush (10.1016/S0893-6080(00)00024-1_BIB16) 1998; 9
Staley (10.1016/S0893-6080(00)00024-1_BIB25) 1995; 6
Saarinen (10.1016/S0893-6080(00)00024-1_BIB24) 1993; 14
10.1016/S0893-6080(00)00024-1_BIB10
Bobrowski (10.1016/S0893-6080(00)00024-1_BIB12) 1984; 17
10.1016/S0893-6080(00)00024-1_BIB14
Pao (10.1016/S0893-6080(00)00024-1_BIB23) 1989
Golden (10.1016/S0893-6080(00)00024-1_BIB13) 1996
Michel (10.1016/S0893-6080(00)00024-1_BIB20) 1991; 2
Haykin (10.1016/S0893-6080(00)00024-1_BIB15) 1994
Lin (10.1016/S0893-6080(00)00024-1_BIB18) 1990; 37
Vogl (10.1016/S0893-6080(00)00024-1_BIB26) 1988; 59
Battiti (10.1016/S0893-6080(00)00024-1_BIB6) 1994; 6
Benchekroun (10.1016/S0893-6080(00)00024-1_BIB8) 1991; 21
Lin (10.1016/S0893-6080(00)00024-1_BIB19) 1995; 6
Kevenaar (10.1016/S0893-6080(00)00024-1_BIB17) 1992; 39
10.1016/S0893-6080(00)00024-1_BIB22
10.1016/S0893-6080(00)00024-1_BIB21
Barmann (10.1016/S0893-6080(00)00024-1_BIB3) 1992; 2
Bobrowski (10.1016/S0893-6080(00)00024-1_BIB11) 1991; 24
Bishop (10.1016/S0893-6080(00)00024-1_BIB9) 1995
Batruni (10.1016/S0893-6080(00)00024-1_BIB4) 1991; 2
Baum (10.1016/S0893-6080(00)00024-1_BIB7) 1989; 1
Atiya (10.1016/S0893-6080(00)00024-1_BIB2) 1999; 10
Battiti (10.1016/S0893-6080(00)00024-1_BIB5) 1992; 4
Abu-Mostafa (10.1016/S0893-6080(00)00024-1_BIB1) 1989; 1
References_xml – volume: 1
  start-page: 312
  year: 1989
  end-page: 317
  ident: BIB1
  article-title: The Vapnik-Chernovenkis dimension: information versus complexity in learning
  publication-title: Neural Computation
  contributor:
    fullname: Abu-Mostafa
– year: 1994
  ident: BIB15
  publication-title: Neural networks: a comprehensive foundation
  contributor:
    fullname: Haykin
– volume: 14
  start-page: 693
  year: 1993
  end-page: 714
  ident: BIB24
  article-title: Ill-conditioning in neural network training problems
  publication-title: SIAM Journal of Scientific Computing
  contributor:
    fullname: Cybenko
– volume: 21
  start-page: 77
  year: 1991
  end-page: 85
  ident: BIB8
  article-title: A nonconvex piecewise-linear optimization problem
  publication-title: Computers in Mathematical Applications
  contributor:
    fullname: Falk
– volume: 17
  start-page: 205
  year: 1984
  end-page: 210
  ident: BIB12
  article-title: A method of synthesis of linear discriminant functions in the case of nonseparability
  publication-title: Pattern Recognition
  contributor:
    fullname: Niemiro
– volume: 10
  start-page: 402
  year: 1999
  end-page: 409
  ident: BIB2
  article-title: A comparison between neural network forecasting techniques: case study: river flow forecasting
  publication-title: IEEE Transactions on Neural Networks
  contributor:
    fullname: El-Sherif
– volume: 2
  start-page: 395
  year: 1991
  end-page: 403
  ident: BIB4
  article-title: A multilayer neural network with piecewise-linear structure and backpropagation learning
  publication-title: IEEE Transactions on Neural Networks
  contributor:
    fullname: Batruni
– year: 1996
  ident: BIB13
  publication-title: Mathematical methods for neural network analysis and design
  contributor:
    fullname: Golden
– year: 1995
  ident: BIB9
  publication-title: Neural network for pattern recognition
  contributor:
    fullname: Bishop
– volume: 6
  start-page: 43
  year: 1995
  end-page: 50
  ident: BIB19
  article-title: Canonical piecewise-linear neural networks
  publication-title: IEEE Transactions on Neural Networks
  contributor:
    fullname: Unbehauen
– volume: 24
  start-page: 863
  year: 1991
  end-page: 870
  ident: BIB11
  article-title: Design of piecewise linear classifiers from formal neurons by a basis exchange technique
  publication-title: Pattern Recognition
  contributor:
    fullname: Bobrowski
– year: 1989
  ident: BIB23
  publication-title: Adaptive pattern recognition and neural networks
  contributor:
    fullname: Pao
– volume: 9
  start-page: 1129
  year: 1998
  end-page: 1141
  ident: BIB16
  article-title: Efficient algorithms for function approximation with piecewise linear sigmoidal networks
  publication-title: IEEE Transactions on Neural Networks
  contributor:
    fullname: Horne
– volume: 2
  start-page: 32
  year: 1991
  end-page: 46
  ident: BIB20
  article-title: Analysis and synthesis of a class of discrete-time neural networks described in hypercubes
  publication-title: IEEE Transactions on Neural Networks
  contributor:
    fullname: Yen
– volume: 6
  start-page: 43
  year: 1995
  end-page: 59
  ident: BIB25
  article-title: Learning with piecewise-linear neural networks
  publication-title: International Journal of Neural Systems
  contributor:
    fullname: Staley
– volume: 1
  start-page: 151
  year: 1989
  end-page: 160
  ident: BIB7
  article-title: What net size gives valid generalization?
  publication-title: Neural Computation
  contributor:
    fullname: Haussler
– volume: 2
  start-page: 75
  year: 1992
  end-page: 90
  ident: BIB3
  article-title: On a class of efficient learning algorithms for neural networks
  publication-title: Neural Networks
  contributor:
    fullname: Biegler-Konig
– volume: 39
  start-page: 996
  year: 1992
  end-page: 1004
  ident: BIB17
  article-title: A comparison of piecewise-linear model descriptions
  publication-title: IEEE Transactions on Circuits and Systems
  contributor:
    fullname: Leenaerts
– volume: 59
  start-page: 257
  year: 1988
  end-page: 263
  ident: BIB26
  article-title: Accelerating the convergence of the back-propagation method
  publication-title: Biological Cybernetics
  contributor:
    fullname: Alkon
– volume: 6
  start-page: 181
  year: 1994
  end-page: 206
  ident: BIB6
  article-title: Learning with first second and no derivatives: a case study in high energy physics
  publication-title: Neurocomputing
  contributor:
    fullname: Tecchiolli
– volume: 37
  start-page: 347
  year: 1990
  end-page: 353
  ident: BIB18
  article-title: Adaptive nonlinear digital filter with canonical piecewise-linear structure
  publication-title: IEEE Transactions on on Circuit Systems
  contributor:
    fullname: Unbehauen
– volume: 4
  start-page: 141
  year: 1992
  end-page: 166
  ident: BIB5
  article-title: 1st order and 2nd order methods for learning between steepest descent and Newton method
  publication-title: Neural Computation
  contributor:
    fullname: Battiti
– year: 1995
  ident: 10.1016/S0893-6080(00)00024-1_BIB9
  contributor:
    fullname: Bishop
– volume: 17
  start-page: 205
  year: 1984
  ident: 10.1016/S0893-6080(00)00024-1_BIB12
  article-title: A method of synthesis of linear discriminant functions in the case of nonseparability
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(84)90059-1
  contributor:
    fullname: Bobrowski
– year: 1994
  ident: 10.1016/S0893-6080(00)00024-1_BIB15
  contributor:
    fullname: Haykin
– year: 1996
  ident: 10.1016/S0893-6080(00)00024-1_BIB13
  contributor:
    fullname: Golden
– volume: 9
  start-page: 1129
  issue: 6
  year: 1998
  ident: 10.1016/S0893-6080(00)00024-1_BIB16
  article-title: Efficient algorithms for function approximation with piecewise linear sigmoidal networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.728357
  contributor:
    fullname: Hush
– volume: 1
  start-page: 151
  year: 1989
  ident: 10.1016/S0893-6080(00)00024-1_BIB7
  article-title: What net size gives valid generalization?
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.1.151
  contributor:
    fullname: Baum
– volume: 21
  start-page: 77
  year: 1991
  ident: 10.1016/S0893-6080(00)00024-1_BIB8
  article-title: A nonconvex piecewise-linear optimization problem
  publication-title: Computers in Mathematical Applications
  doi: 10.1016/0898-1221(91)90162-W
  contributor:
    fullname: Benchekroun
– volume: 2
  start-page: 395
  year: 1991
  ident: 10.1016/S0893-6080(00)00024-1_BIB4
  article-title: A multilayer neural network with piecewise-linear structure and backpropagation learning
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.97915
  contributor:
    fullname: Batruni
– volume: 10
  start-page: 402
  issue: 2
  year: 1999
  ident: 10.1016/S0893-6080(00)00024-1_BIB2
  article-title: A comparison between neural network forecasting techniques: case study: river flow forecasting
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.750569
  contributor:
    fullname: Atiya
– volume: 4
  start-page: 141
  year: 1992
  ident: 10.1016/S0893-6080(00)00024-1_BIB5
  article-title: 1st order and 2nd order methods for learning between steepest descent and Newton method
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.2.141
  contributor:
    fullname: Battiti
– volume: 14
  start-page: 693
  issue: 3
  year: 1993
  ident: 10.1016/S0893-6080(00)00024-1_BIB24
  article-title: Ill-conditioning in neural network training problems
  publication-title: SIAM Journal of Scientific Computing
  doi: 10.1137/0914044
  contributor:
    fullname: Saarinen
– volume: 37
  start-page: 347
  year: 1990
  ident: 10.1016/S0893-6080(00)00024-1_BIB18
  article-title: Adaptive nonlinear digital filter with canonical piecewise-linear structure
  publication-title: IEEE Transactions on on Circuit Systems
  doi: 10.1109/31.52728
  contributor:
    fullname: Lin
– volume: 24
  start-page: 863
  year: 1991
  ident: 10.1016/S0893-6080(00)00024-1_BIB11
  article-title: Design of piecewise linear classifiers from formal neurons by a basis exchange technique
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(91)90005-P
  contributor:
    fullname: Bobrowski
– volume: 39
  start-page: 996
  year: 1992
  ident: 10.1016/S0893-6080(00)00024-1_BIB17
  article-title: A comparison of piecewise-linear model descriptions
  publication-title: IEEE Transactions on Circuits and Systems
  doi: 10.1109/81.207720
  contributor:
    fullname: Kevenaar
– year: 1989
  ident: 10.1016/S0893-6080(00)00024-1_BIB23
  contributor:
    fullname: Pao
– volume: 2
  start-page: 75
  year: 1992
  ident: 10.1016/S0893-6080(00)00024-1_BIB3
  article-title: On a class of efficient learning algorithms for neural networks
  publication-title: Neural Networks
  contributor:
    fullname: Barmann
– volume: 6
  start-page: 43
  year: 1995
  ident: 10.1016/S0893-6080(00)00024-1_BIB25
  article-title: Learning with piecewise-linear neural networks
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065795000056
  contributor:
    fullname: Staley
– ident: 10.1016/S0893-6080(00)00024-1_BIB21
– ident: 10.1016/S0893-6080(00)00024-1_BIB10
– volume: 1
  start-page: 312
  year: 1989
  ident: 10.1016/S0893-6080(00)00024-1_BIB1
  article-title: The Vapnik-Chernovenkis dimension: information versus complexity in learning
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.3.312
  contributor:
    fullname: Abu-Mostafa
– volume: 6
  start-page: 43
  year: 1995
  ident: 10.1016/S0893-6080(00)00024-1_BIB19
  article-title: Canonical piecewise-linear neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.363451
  contributor:
    fullname: Lin
– volume: 59
  start-page: 257
  year: 1988
  ident: 10.1016/S0893-6080(00)00024-1_BIB26
  article-title: Accelerating the convergence of the back-propagation method
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00332914
  contributor:
    fullname: Vogl
– volume: 2
  start-page: 32
  issue: 1
  year: 1991
  ident: 10.1016/S0893-6080(00)00024-1_BIB20
  article-title: Analysis and synthesis of a class of discrete-time neural networks described in hypercubes
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.80289
  contributor:
    fullname: Michel
– volume: 6
  start-page: 181
  year: 1994
  ident: 10.1016/S0893-6080(00)00024-1_BIB6
  article-title: Learning with first second and no derivatives: a case study in high energy physics
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(94)90054-X
  contributor:
    fullname: Battiti
– ident: 10.1016/S0893-6080(00)00024-1_BIB22
  doi: 10.1109/IJCNN.1990.137710
– ident: 10.1016/S0893-6080(00)00024-1_BIB14
SSID ssj0006843
Score 1.7197272
Snippet Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in...
SourceID proquest
crossref
pubmed
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 485
SubjectTerms Algorithms
Applied sciences
Computer Simulation
Convergence
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Function approximation
Linear Models
Neural networks
Neural Networks (Computer)
Title A new algorithm for learning in piecewise-linear neural networks
URI https://dx.doi.org/10.1016/S0893-6080(00)00024-1
https://www.ncbi.nlm.nih.gov/pubmed/10946395
https://search.proquest.com/docview/27653417
https://search.proquest.com/docview/71778608
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5C7DJpYj_YWNlgPnCAg6kTxz9yW1Wt6obgsiFxs1zHgUhbWrVF3PjbebYTdRyqScvRcmzne7a_L_J7fgAnEilDsUpQ7bM8HjNSK3lN67JWmSuZzaNvzuWVnF4XP27EzQ6M-1iY4FbZ7f1pT4-7dVcy7NAcLppm-JMh1cogeMKTx-D1AukP5_T548bNQ-rkOYeVaai9ieJJLcTCU8bOYiM028ZPrxZ2hajVKd3Fdj0aeWnyBvY6QUlGacxvYce37-B1n6yBdGt3H76OCCpoYn_fzpfN-u4PQbVKupwRt6RpyaLxzj80K0-D8rRLEq66xJbb5Ci-eg_Xk2-_xlPapU-gDnFYU6GlVGVIRMN55STnzkvrq4IVzmtkcZRmmailVmVYtN4XWlila2RNr53iin-A3Xbe-o9A6soLySvmxMwVJStsVuUeMbSc13bG1ADOe9DMIt2SYTbuY4iykekeUhNRNtkAdA-teWZugzv5v149emaKTYdBW5X5AL70pjG4VML5h239_H5lciUFkrbaXgP_bZXG_gZwkGz619eUBYo5cfj_A_8EL1Mcf_CW_Ay76-W9P0JFs54dxyl7DC9G3y-mV0_uYe3m
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOLQSgr4oWwr40EN7MOvEz9xACLRQ4FKQuFlex9lGarOr3UW99bd3HCfaclhVao6WYzsz9swX-ZsZgE8KXYZmpaQmZHl7zUid4hWtikpnvmAub7k5t3dq9CCuH-XjBpz3sTCRVtnZ_mTTW2vdtQw7aQ5ndT38xtDVqgh44pPH4PUtEfExbuqT3yuehzKJOoe9aey-CuNJQ7SNnxn70o5Cs3UOanvmFii2KtW7WA9IW8d0-Qp2OkRJztKiX8NGaN7Abl-tgXSH9y2cnhGE0MT9mEzn9fL7T4JwlXRFIyakbsisDj78qheBRujp5iTmusSRm8QUX7yDh8uL-_MR7eonUC8kW1JplNJFrETDeekV5z4oF0rBhA8G3This0xWyugintoQhJFOmwrdZjBec833YLOZNmEfSFUGqXjJvBx7UTDhsjIPKEPHeeXGTA_gpBeanaU0GXbFH0MpW5USkdpWyjYbgOlFa5_p26Ip_9erh89UsZowgqsiH8BxrxqLZyVegLgmTJ8WNtdKotfW63vgz602ON8A3ied_vU1hUA0Jz_8_8KP4cXo_vbG3lzdfT2AlymoP1InP8Lmcv4UDhHeLMdH7fb9A4hw738
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+algorithm+for+learning+in+piecewise-linear+neural+networks&rft.jtitle=Neural+networks&rft.au=Gad%2C+E.F.&rft.au=Atiya%2C+A.F.&rft.au=Shaheen%2C+S.&rft.au=El-Dessouki%2C+A.&rft.date=2000-05-01&rft.issn=0893-6080&rft.volume=13&rft.issue=4-5&rft.spage=485&rft.epage=505&rft_id=info:doi/10.1016%2FS0893-6080%2800%2900024-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0893_6080_00_00024_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon