A new algorithm for learning in piecewise-linear neural networks
Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in PWL networks consisting of a single hidden layer. The approach adopted is based upon constructing a continuous PWL error function and developin...
Saved in:
Published in | Neural networks Vol. 13; no. 4; pp. 485 - 505 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.05.2000
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in PWL networks consisting of a single hidden layer. The approach adopted is based upon constructing a continuous PWL error function and developing an efficient algorithm to minimize it. The algorithm consists of two basic stages in searching the weight space. The first stage of the optimization algorithm is used to locate a point in the weight space representing the intersection of
N linearly independent hyperplanes, with
N being the number of weights in the network. The second stage is then called to use this point as a starting point in order to continue searching by moving along the single-dimension boundaries between the different linear regions of the error function, hopping from one point (representing the intersection of
N hyperplanes) to another. The proposed algorithm exhibits significantly accelerated convergence, as compared to standard algorithms such as back-propagation and improved versions of it, such as the conjugate gradient algorithm. In addition, it has the distinct advantage that there are no parameters to adjust, and therefore there is no time-consuming parameters tuning step. The new algorithm is expected to find applications in function approximation, time series prediction and binary classification problems. |
---|---|
AbstractList | Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in PWL networks consisting of a single hidden layer. The approach adopted is based upon constructing a continuous PWL error function and developing an efficient algorithm to minimize it. The algorithm consists of two basic stages in searching the weight space. The first stage of the optimization algorithm is used to locate a point in the weight space representing the intersection of N linearly independent hyperplanes, with N being the number of weights in the network. The second stage is then called to use this point as a starting point in order to continue searching by moving along the single-dimension boundaries between the different linear regions of the error function, hopping from one point (representing the intersection of N hyperplanes) to another. The proposed algorithm exhibits significantly accelerated convergence, as compared to standard algorithms such as back-propagation and improved versions of it, such as the conjugate gradient algorithm. In addition, it has the distinct advantage that there are no parameters to adjust, and therefore there is no time-consuming parameters tuning step. The new algorithm is expected to find applications in function approximation, time series prediction and binary classification problems. Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in PWL networks consisting of a single hidden layer. The approach adopted is based upon constructing a continuous PWL error function and developing an efficient algorithm to minimize it. The algorithm consists of two basic stages in searching the weight space. The first stage of the optimization algorithm is used to locate a point in the weight space representing the intersection of N linearly independent hyperplanes, with N being the number of weights in the network. The second stage is then called to use this point as a starting point in order to continue searching by moving along the single-dimension boundaries between the different linear regions of the error function, hopping from one point (representing the intersection of N hyperplanes) to another. The proposed algorithm exhibits significantly accelerated convergence, as compared to standard algorithms such as back-propagation and improved versions of it, such as the conjugate gradient algorithm. In addition, it has the distinct advantage that there are no parameters to adjust, and therefore there is no time-consuming parameters tuning step. The new algorithm is expected to find applications in function approximation, time series prediction and binary classification problems. |
Author | Gad, E.F. Shaheen, S. Atiya, A.F. El-Dessouki, A. |
Author_xml | – sequence: 1 givenname: E.F. surname: Gad fullname: Gad, E.F. email: egad@doe.carleton.ca organization: Department of Electrical Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K15 5B6 – sequence: 2 givenname: A.F. surname: Atiya fullname: Atiya, A.F. email: amir@work.caltech.edu organization: Department of Electrical Engineering, Caltech 136-93 Pasadena, CA 91125, USA – sequence: 3 givenname: S. surname: Shaheen fullname: Shaheen, S. email: sshaheen@frcu.eun.eg organization: Department of Computer Engineering, Cairo University, Giza, Egypt – sequence: 4 givenname: A. surname: El-Dessouki fullname: El-Dessouki, A. organization: Informatics Research Institute, MCSRTA, Alexandria, Egypt |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1439792$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/10946395$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLAzEQgIMoWqs_QdmDiB5WJ5tskj1pKb5A8KCeQ8zOanSbrcnW4r83tUW9CQMDwzevb5us-84jIXsUTihQcXoPqmK5AAVHAMcAUPCcrpEBVbLKC6mKdTL4QbbIdoyvCRKKs02yRaHiglXlgJyPMo_zzLTPXXD9yyRrupC1aIJ3_jlzPps6tDh3EfPW-VRP-CyYNqV-3oW3uEM2GtNG3F3lIXm8vHgYX-e3d1c349FtbnkJfV4qIWQFQjLGaisYsygM1hy4RSUoK0HRshHpeKkkIHJVGqkai4jKSibZkBwu505D9z7D2OuJixbb1njsZlFLKqVKv_4LFlKUjNPFxHIJ2tDFGLDR0-AmJnxqCnrhWH871guBGhaRHGua-vZXC2ZPE6z_dC2lJuBgBZhoTdsE462LvxxnlayKhJ0tMUzaPhwGHa1Db7F2AW2v6879c8kX1UuYRw |
CitedBy_id | crossref_primary_10_3166_ejc_13_242_260 crossref_primary_10_1016_j_automatica_2003_08_006 crossref_primary_10_1162_neco_2006_18_11_2813 crossref_primary_10_1109_34_946993 crossref_primary_10_1063_1_2149527 crossref_primary_10_3182_20110828_6_IT_1002_00611 crossref_primary_10_1016_j_neucom_2007_03_001 |
Cites_doi | 10.1016/0031-3203(84)90059-1 10.1109/72.728357 10.1162/neco.1989.1.1.151 10.1016/0898-1221(91)90162-W 10.1109/72.97915 10.1109/72.750569 10.1162/neco.1992.4.2.141 10.1137/0914044 10.1109/31.52728 10.1016/0031-3203(91)90005-P 10.1109/81.207720 10.1142/S0129065795000056 10.1162/neco.1989.1.3.312 10.1109/72.363451 10.1007/BF00332914 10.1109/72.80289 10.1016/0925-2312(94)90054-X 10.1109/IJCNN.1990.137710 |
ContentType | Journal Article |
Copyright | 2000 Elsevier Science Ltd 2000 INIST-CNRS |
Copyright_xml | – notice: 2000 Elsevier Science Ltd – notice: 2000 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1016/S0893-6080(00)00024-1 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Computer and Information Systems Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1879-2782 |
EndPage | 505 |
ExternalDocumentID | 10_1016_S0893_6080_00_00024_1 10946395 1439792 S0893608000000241 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 08R AALMO ABFLS ABPIF ABPTK ABQIS ADALY IPNFZ IQODW AAXKI AFJKZ AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c450t-586679067333dc633ce6aed404ce861350815f68797870ee485a78fceee8c7373 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 |
IngestDate | Thu Oct 24 22:39:29 EDT 2024 Fri Oct 25 00:28:08 EDT 2024 Thu Sep 26 15:22:25 EDT 2024 Sat Sep 28 07:39:59 EDT 2024 Fri Nov 25 01:09:55 EST 2022 Fri Feb 23 02:29:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Function approximation Neural networks Convergence Learning Conjugate gradient method Backpropagation algorithm Classification Error function Neural network Learning algorithm Artificial intelligence Hyperplane Implementation Optimization Piecewise linearization |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-586679067333dc633ce6aed404ce861350815f68797870ee485a78fceee8c7373 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 10946395 |
PQID | 27653417 |
PQPubID | 23500 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_71778608 proquest_miscellaneous_27653417 crossref_primary_10_1016_S0893_6080_00_00024_1 pubmed_primary_10946395 pascalfrancis_primary_1439792 elsevier_sciencedirect_doi_10_1016_S0893_6080_00_00024_1 |
PublicationCentury | 2000 |
PublicationDate | 2000-05-01 |
PublicationDateYYYYMMDD | 2000-05-01 |
PublicationDate_xml | – month: 05 year: 2000 text: 2000-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2000 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | (pp. 163–168). Battiti (BIB5) 1992; 4 Haykin (BIB15) 1994 Michel, Si, Yen (BIB20) 1991; 2 Battiti, Tecchiolli (BIB6) 1994; 6 Bishop (BIB9) 1995 Baltimore, MD. Neural Network Simulator, http://www.ncrg.aston.ac.uk/netlab/index.html. Vogl, Mangis, Rigler, Zink, Alkon (BIB26) 1988; 59 Batruni (BIB4) 1991; 2 Lin, Unbehauen (BIB19) 1995; 6 Lin, Unbehauen (BIB18) 1990; 37 Hammerstrom, D. (1992). Electronic neural network implementation, Tutorial. Abu-Mostafa (BIB1) 1989; 1 Barmann, Biegler-Konig (BIB3) 1992; 2 Benchekroun, Falk (BIB8) 1991; 21 Bobrowski (BIB11) 1991; 24 Moody, J. (1992). The Effective number of parameters: an analysis of generalization and regularization in nonlinear learning system. In J. Moody, S. Hansen & R. Lippmann (Eds.) Baum, Haussler (BIB7) 1989; 1 Pao (BIB23) 1989 Hush, Horne (BIB16) 1998; 9 . Bishop, C., Nabney, I. (1998). Bobrowski, Niemiro (BIB12) 1984; 17 Golden (BIB13) 1996 (pp. 847–854), 1992 Atiya, El-Shoura, Shaheen, El-Sherif (BIB2) 1999; 10 Odom, M., & Sharda, R. (1990). A neural network model for bankruptcy prediction. In Kevenaar, Leenaerts (BIB17) 1992; 39 Saarinen, Bramely, Cybenko (BIB24) 1993; 14 Staley (BIB25) 1995; 6 Hush (10.1016/S0893-6080(00)00024-1_BIB16) 1998; 9 Staley (10.1016/S0893-6080(00)00024-1_BIB25) 1995; 6 Saarinen (10.1016/S0893-6080(00)00024-1_BIB24) 1993; 14 10.1016/S0893-6080(00)00024-1_BIB10 Bobrowski (10.1016/S0893-6080(00)00024-1_BIB12) 1984; 17 10.1016/S0893-6080(00)00024-1_BIB14 Pao (10.1016/S0893-6080(00)00024-1_BIB23) 1989 Golden (10.1016/S0893-6080(00)00024-1_BIB13) 1996 Michel (10.1016/S0893-6080(00)00024-1_BIB20) 1991; 2 Haykin (10.1016/S0893-6080(00)00024-1_BIB15) 1994 Lin (10.1016/S0893-6080(00)00024-1_BIB18) 1990; 37 Vogl (10.1016/S0893-6080(00)00024-1_BIB26) 1988; 59 Battiti (10.1016/S0893-6080(00)00024-1_BIB6) 1994; 6 Benchekroun (10.1016/S0893-6080(00)00024-1_BIB8) 1991; 21 Lin (10.1016/S0893-6080(00)00024-1_BIB19) 1995; 6 Kevenaar (10.1016/S0893-6080(00)00024-1_BIB17) 1992; 39 10.1016/S0893-6080(00)00024-1_BIB22 10.1016/S0893-6080(00)00024-1_BIB21 Barmann (10.1016/S0893-6080(00)00024-1_BIB3) 1992; 2 Bobrowski (10.1016/S0893-6080(00)00024-1_BIB11) 1991; 24 Bishop (10.1016/S0893-6080(00)00024-1_BIB9) 1995 Batruni (10.1016/S0893-6080(00)00024-1_BIB4) 1991; 2 Baum (10.1016/S0893-6080(00)00024-1_BIB7) 1989; 1 Atiya (10.1016/S0893-6080(00)00024-1_BIB2) 1999; 10 Battiti (10.1016/S0893-6080(00)00024-1_BIB5) 1992; 4 Abu-Mostafa (10.1016/S0893-6080(00)00024-1_BIB1) 1989; 1 |
References_xml | – volume: 1 start-page: 312 year: 1989 end-page: 317 ident: BIB1 article-title: The Vapnik-Chernovenkis dimension: information versus complexity in learning publication-title: Neural Computation contributor: fullname: Abu-Mostafa – year: 1994 ident: BIB15 publication-title: Neural networks: a comprehensive foundation contributor: fullname: Haykin – volume: 14 start-page: 693 year: 1993 end-page: 714 ident: BIB24 article-title: Ill-conditioning in neural network training problems publication-title: SIAM Journal of Scientific Computing contributor: fullname: Cybenko – volume: 21 start-page: 77 year: 1991 end-page: 85 ident: BIB8 article-title: A nonconvex piecewise-linear optimization problem publication-title: Computers in Mathematical Applications contributor: fullname: Falk – volume: 17 start-page: 205 year: 1984 end-page: 210 ident: BIB12 article-title: A method of synthesis of linear discriminant functions in the case of nonseparability publication-title: Pattern Recognition contributor: fullname: Niemiro – volume: 10 start-page: 402 year: 1999 end-page: 409 ident: BIB2 article-title: A comparison between neural network forecasting techniques: case study: river flow forecasting publication-title: IEEE Transactions on Neural Networks contributor: fullname: El-Sherif – volume: 2 start-page: 395 year: 1991 end-page: 403 ident: BIB4 article-title: A multilayer neural network with piecewise-linear structure and backpropagation learning publication-title: IEEE Transactions on Neural Networks contributor: fullname: Batruni – year: 1996 ident: BIB13 publication-title: Mathematical methods for neural network analysis and design contributor: fullname: Golden – year: 1995 ident: BIB9 publication-title: Neural network for pattern recognition contributor: fullname: Bishop – volume: 6 start-page: 43 year: 1995 end-page: 50 ident: BIB19 article-title: Canonical piecewise-linear neural networks publication-title: IEEE Transactions on Neural Networks contributor: fullname: Unbehauen – volume: 24 start-page: 863 year: 1991 end-page: 870 ident: BIB11 article-title: Design of piecewise linear classifiers from formal neurons by a basis exchange technique publication-title: Pattern Recognition contributor: fullname: Bobrowski – year: 1989 ident: BIB23 publication-title: Adaptive pattern recognition and neural networks contributor: fullname: Pao – volume: 9 start-page: 1129 year: 1998 end-page: 1141 ident: BIB16 article-title: Efficient algorithms for function approximation with piecewise linear sigmoidal networks publication-title: IEEE Transactions on Neural Networks contributor: fullname: Horne – volume: 2 start-page: 32 year: 1991 end-page: 46 ident: BIB20 article-title: Analysis and synthesis of a class of discrete-time neural networks described in hypercubes publication-title: IEEE Transactions on Neural Networks contributor: fullname: Yen – volume: 6 start-page: 43 year: 1995 end-page: 59 ident: BIB25 article-title: Learning with piecewise-linear neural networks publication-title: International Journal of Neural Systems contributor: fullname: Staley – volume: 1 start-page: 151 year: 1989 end-page: 160 ident: BIB7 article-title: What net size gives valid generalization? publication-title: Neural Computation contributor: fullname: Haussler – volume: 2 start-page: 75 year: 1992 end-page: 90 ident: BIB3 article-title: On a class of efficient learning algorithms for neural networks publication-title: Neural Networks contributor: fullname: Biegler-Konig – volume: 39 start-page: 996 year: 1992 end-page: 1004 ident: BIB17 article-title: A comparison of piecewise-linear model descriptions publication-title: IEEE Transactions on Circuits and Systems contributor: fullname: Leenaerts – volume: 59 start-page: 257 year: 1988 end-page: 263 ident: BIB26 article-title: Accelerating the convergence of the back-propagation method publication-title: Biological Cybernetics contributor: fullname: Alkon – volume: 6 start-page: 181 year: 1994 end-page: 206 ident: BIB6 article-title: Learning with first second and no derivatives: a case study in high energy physics publication-title: Neurocomputing contributor: fullname: Tecchiolli – volume: 37 start-page: 347 year: 1990 end-page: 353 ident: BIB18 article-title: Adaptive nonlinear digital filter with canonical piecewise-linear structure publication-title: IEEE Transactions on on Circuit Systems contributor: fullname: Unbehauen – volume: 4 start-page: 141 year: 1992 end-page: 166 ident: BIB5 article-title: 1st order and 2nd order methods for learning between steepest descent and Newton method publication-title: Neural Computation contributor: fullname: Battiti – year: 1995 ident: 10.1016/S0893-6080(00)00024-1_BIB9 contributor: fullname: Bishop – volume: 17 start-page: 205 year: 1984 ident: 10.1016/S0893-6080(00)00024-1_BIB12 article-title: A method of synthesis of linear discriminant functions in the case of nonseparability publication-title: Pattern Recognition doi: 10.1016/0031-3203(84)90059-1 contributor: fullname: Bobrowski – year: 1994 ident: 10.1016/S0893-6080(00)00024-1_BIB15 contributor: fullname: Haykin – year: 1996 ident: 10.1016/S0893-6080(00)00024-1_BIB13 contributor: fullname: Golden – volume: 9 start-page: 1129 issue: 6 year: 1998 ident: 10.1016/S0893-6080(00)00024-1_BIB16 article-title: Efficient algorithms for function approximation with piecewise linear sigmoidal networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.728357 contributor: fullname: Hush – volume: 1 start-page: 151 year: 1989 ident: 10.1016/S0893-6080(00)00024-1_BIB7 article-title: What net size gives valid generalization? publication-title: Neural Computation doi: 10.1162/neco.1989.1.1.151 contributor: fullname: Baum – volume: 21 start-page: 77 year: 1991 ident: 10.1016/S0893-6080(00)00024-1_BIB8 article-title: A nonconvex piecewise-linear optimization problem publication-title: Computers in Mathematical Applications doi: 10.1016/0898-1221(91)90162-W contributor: fullname: Benchekroun – volume: 2 start-page: 395 year: 1991 ident: 10.1016/S0893-6080(00)00024-1_BIB4 article-title: A multilayer neural network with piecewise-linear structure and backpropagation learning publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.97915 contributor: fullname: Batruni – volume: 10 start-page: 402 issue: 2 year: 1999 ident: 10.1016/S0893-6080(00)00024-1_BIB2 article-title: A comparison between neural network forecasting techniques: case study: river flow forecasting publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.750569 contributor: fullname: Atiya – volume: 4 start-page: 141 year: 1992 ident: 10.1016/S0893-6080(00)00024-1_BIB5 article-title: 1st order and 2nd order methods for learning between steepest descent and Newton method publication-title: Neural Computation doi: 10.1162/neco.1992.4.2.141 contributor: fullname: Battiti – volume: 14 start-page: 693 issue: 3 year: 1993 ident: 10.1016/S0893-6080(00)00024-1_BIB24 article-title: Ill-conditioning in neural network training problems publication-title: SIAM Journal of Scientific Computing doi: 10.1137/0914044 contributor: fullname: Saarinen – volume: 37 start-page: 347 year: 1990 ident: 10.1016/S0893-6080(00)00024-1_BIB18 article-title: Adaptive nonlinear digital filter with canonical piecewise-linear structure publication-title: IEEE Transactions on on Circuit Systems doi: 10.1109/31.52728 contributor: fullname: Lin – volume: 24 start-page: 863 year: 1991 ident: 10.1016/S0893-6080(00)00024-1_BIB11 article-title: Design of piecewise linear classifiers from formal neurons by a basis exchange technique publication-title: Pattern Recognition doi: 10.1016/0031-3203(91)90005-P contributor: fullname: Bobrowski – volume: 39 start-page: 996 year: 1992 ident: 10.1016/S0893-6080(00)00024-1_BIB17 article-title: A comparison of piecewise-linear model descriptions publication-title: IEEE Transactions on Circuits and Systems doi: 10.1109/81.207720 contributor: fullname: Kevenaar – year: 1989 ident: 10.1016/S0893-6080(00)00024-1_BIB23 contributor: fullname: Pao – volume: 2 start-page: 75 year: 1992 ident: 10.1016/S0893-6080(00)00024-1_BIB3 article-title: On a class of efficient learning algorithms for neural networks publication-title: Neural Networks contributor: fullname: Barmann – volume: 6 start-page: 43 year: 1995 ident: 10.1016/S0893-6080(00)00024-1_BIB25 article-title: Learning with piecewise-linear neural networks publication-title: International Journal of Neural Systems doi: 10.1142/S0129065795000056 contributor: fullname: Staley – ident: 10.1016/S0893-6080(00)00024-1_BIB21 – ident: 10.1016/S0893-6080(00)00024-1_BIB10 – volume: 1 start-page: 312 year: 1989 ident: 10.1016/S0893-6080(00)00024-1_BIB1 article-title: The Vapnik-Chernovenkis dimension: information versus complexity in learning publication-title: Neural Computation doi: 10.1162/neco.1989.1.3.312 contributor: fullname: Abu-Mostafa – volume: 6 start-page: 43 year: 1995 ident: 10.1016/S0893-6080(00)00024-1_BIB19 article-title: Canonical piecewise-linear neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.363451 contributor: fullname: Lin – volume: 59 start-page: 257 year: 1988 ident: 10.1016/S0893-6080(00)00024-1_BIB26 article-title: Accelerating the convergence of the back-propagation method publication-title: Biological Cybernetics doi: 10.1007/BF00332914 contributor: fullname: Vogl – volume: 2 start-page: 32 issue: 1 year: 1991 ident: 10.1016/S0893-6080(00)00024-1_BIB20 article-title: Analysis and synthesis of a class of discrete-time neural networks described in hypercubes publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.80289 contributor: fullname: Michel – volume: 6 start-page: 181 year: 1994 ident: 10.1016/S0893-6080(00)00024-1_BIB6 article-title: Learning with first second and no derivatives: a case study in high energy physics publication-title: Neurocomputing doi: 10.1016/0925-2312(94)90054-X contributor: fullname: Battiti – ident: 10.1016/S0893-6080(00)00024-1_BIB22 doi: 10.1109/IJCNN.1990.137710 – ident: 10.1016/S0893-6080(00)00024-1_BIB14 |
SSID | ssj0006843 |
Score | 1.7197272 |
Snippet | Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in... |
SourceID | proquest crossref pubmed pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 485 |
SubjectTerms | Algorithms Applied sciences Computer Simulation Convergence Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Function approximation Linear Models Neural networks Neural Networks (Computer) |
Title | A new algorithm for learning in piecewise-linear neural networks |
URI | https://dx.doi.org/10.1016/S0893-6080(00)00024-1 https://www.ncbi.nlm.nih.gov/pubmed/10946395 https://search.proquest.com/docview/27653417 https://search.proquest.com/docview/71778608 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5C7DJpYj_YWNlgPnCAg6kTxz9yW1Wt6obgsiFxs1zHgUhbWrVF3PjbebYTdRyqScvRcmzne7a_L_J7fgAnEilDsUpQ7bM8HjNSK3lN67JWmSuZzaNvzuWVnF4XP27EzQ6M-1iY4FbZ7f1pT4-7dVcy7NAcLppm-JMh1cogeMKTx-D1AukP5_T548bNQ-rkOYeVaai9ieJJLcTCU8bOYiM028ZPrxZ2hajVKd3Fdj0aeWnyBvY6QUlGacxvYce37-B1n6yBdGt3H76OCCpoYn_fzpfN-u4PQbVKupwRt6RpyaLxzj80K0-D8rRLEq66xJbb5Ci-eg_Xk2-_xlPapU-gDnFYU6GlVGVIRMN55STnzkvrq4IVzmtkcZRmmailVmVYtN4XWlila2RNr53iin-A3Xbe-o9A6soLySvmxMwVJStsVuUeMbSc13bG1ADOe9DMIt2SYTbuY4iykekeUhNRNtkAdA-teWZugzv5v149emaKTYdBW5X5AL70pjG4VML5h239_H5lciUFkrbaXgP_bZXG_gZwkGz619eUBYo5cfj_A_8EL1Mcf_CW_Ay76-W9P0JFs54dxyl7DC9G3y-mV0_uYe3m |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOLQSgr4oWwr40EN7MOvEz9xACLRQ4FKQuFlex9lGarOr3UW99bd3HCfaclhVao6WYzsz9swX-ZsZgE8KXYZmpaQmZHl7zUid4hWtikpnvmAub7k5t3dq9CCuH-XjBpz3sTCRVtnZ_mTTW2vdtQw7aQ5ndT38xtDVqgh44pPH4PUtEfExbuqT3yuehzKJOoe9aey-CuNJQ7SNnxn70o5Cs3UOanvmFii2KtW7WA9IW8d0-Qp2OkRJztKiX8NGaN7Abl-tgXSH9y2cnhGE0MT9mEzn9fL7T4JwlXRFIyakbsisDj78qheBRujp5iTmusSRm8QUX7yDh8uL-_MR7eonUC8kW1JplNJFrETDeekV5z4oF0rBhA8G3This0xWyugintoQhJFOmwrdZjBec833YLOZNmEfSFUGqXjJvBx7UTDhsjIPKEPHeeXGTA_gpBeanaU0GXbFH0MpW5USkdpWyjYbgOlFa5_p26Ip_9erh89UsZowgqsiH8BxrxqLZyVegLgmTJ8WNtdKotfW63vgz602ON8A3ied_vU1hUA0Jz_8_8KP4cXo_vbG3lzdfT2AlymoP1InP8Lmcv4UDhHeLMdH7fb9A4hw738 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+algorithm+for+learning+in+piecewise-linear+neural+networks&rft.jtitle=Neural+networks&rft.au=Gad%2C+E.F.&rft.au=Atiya%2C+A.F.&rft.au=Shaheen%2C+S.&rft.au=El-Dessouki%2C+A.&rft.date=2000-05-01&rft.issn=0893-6080&rft.volume=13&rft.issue=4-5&rft.spage=485&rft.epage=505&rft_id=info:doi/10.1016%2FS0893-6080%2800%2900024-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0893_6080_00_00024_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |