Comparison of different methods to measure contact angles of soil colloids

We compared five different methods, static sessile drop, dynamic sessile drop, Wilhelmy plate, thin-layer wicking, and column wicking, to determine the contact angle of colloids typical for soils and sediments. The colloids (smectite, kaolinite, illite, goethite, hematite) were chosen to represent 1...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 328; no. 2; pp. 299 - 307
Main Authors Shang, Jianying, Flury, Markus, Harsh, James B., Zollars, Richard L.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.12.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We compared five different methods, static sessile drop, dynamic sessile drop, Wilhelmy plate, thin-layer wicking, and column wicking, to determine the contact angle of colloids typical for soils and sediments. The colloids (smectite, kaolinite, illite, goethite, hematite) were chosen to represent 1:1 and 2:1 layered aluminosilicate clays and sesquioxides, and were either obtained in pure form or synthesized in our laboratory. Colloids were deposited as thin films on glass slides, and then used for contact angle measurements using three different test liquids (water, formamide, diiodomethane). The colloidal films could be categorized into three types: (1) films without pores and with polar–liquid interactions (smectite), (2) films with pores and with polar–liquid interactions (kaolinite, illite, goethite), and (3) films without pores and no polar–liquid interactions (hematite). The static and dynamic sessile drop methods yielded the most consistent contact angles. For porous films, the contact angles decreased with time, and we consider the initial contact angle to be the most accurate. The differences in contact angles among the different methods were large and varied considerably: the most consistent contact angles were obtained for kaolinite with water, and illite with diiodomethane (contact angles were within 3°); but mostly the differences ranged from 10° to 40° among the different methods. The thin-layer and column wicking methods were the least consistent methods.
AbstractList We compared five different methods, static sessile drop, dynamic sessile drop, Wilhelmy plate, thin-layer wicking, and column wicking, to determine the contact angle of colloids typical for soils and sediments. The colloids (smectite, kaolinite, illite, goethite, hematite) were chosen to represent 1:1 and 2:1 layered aluminosilicate clays and sesquioxides, and were either obtained in pure form or synthesized in our laboratory. Colloids were deposited as thin films on glass slides, and then used for contact angle measurements using three different test liquids (water, formamide, diiodomethane). The colloidal films could be categorized into three types: (1) films without pores and with polar-liquid interactions (smectite), (2) films with pores and with polar-liquid interactions (kaolinite, illite, goethite), and (3) films without pores and no polar-liquid interactions (hematite). The static and dynamic sessile drop methods yielded the most consistent contact angles. For porous films, the contact angles decreased with time, and we consider the initial contact angle to be the most accurate. The differences in contact angles among the different methods were large and varied considerably: the most consistent contact angles were obtained for kaolinite with water, and illite with diiodomethane (contact angles were within 3 degrees); but mostly the differences ranged from 10 degrees to 40 degrees among the different methods. The thin-layer and column wicking methods were the least consistent methods.
We compared five different methods, static sessile drop, dynamic sessile drop, Wilhelmy plate, thin-layer wicking, and column wicking, to determine the contact angle of colloids typical for soils and sediments. The colloids (smectite, kaolinite, illite, goethite, hematite) were chosen to represent 1:1 and 2:1 layered aluminosilicate clays and sesquioxides, and were either obtained in pure form or synthesized in our laboratory. Colloids were deposited as thin films on glass slides, and then used for contact angle measurements using three different test liquids (water, formamide, diiodomethane). The colloidal films could be categorized into three types: (1) films without pores and with polar-liquid interactions (smectite), (2) films with pores and with polar-liquid interactions (kaolinite, illite, goethite), and (3) films without pores and no polar-liquid interactions (hematite). The static and dynamic sessile drop methods yielded the most consistent contact angles. For porous films, the contact angles decreased with time, and we consider the initial contact angle to be the most accurate. The differences in contact angles among the different methods were large and varied considerably: the most consistent contact angles were obtained for kaolinite with water, and illite with diiodomethane (contact angles were within 3 degrees); but mostly the differences ranged from 10 degrees to 40 degrees among the different methods. The thin-layer and column wicking methods were the least consistent methods.We compared five different methods, static sessile drop, dynamic sessile drop, Wilhelmy plate, thin-layer wicking, and column wicking, to determine the contact angle of colloids typical for soils and sediments. The colloids (smectite, kaolinite, illite, goethite, hematite) were chosen to represent 1:1 and 2:1 layered aluminosilicate clays and sesquioxides, and were either obtained in pure form or synthesized in our laboratory. Colloids were deposited as thin films on glass slides, and then used for contact angle measurements using three different test liquids (water, formamide, diiodomethane). The colloidal films could be categorized into three types: (1) films without pores and with polar-liquid interactions (smectite), (2) films with pores and with polar-liquid interactions (kaolinite, illite, goethite), and (3) films without pores and no polar-liquid interactions (hematite). The static and dynamic sessile drop methods yielded the most consistent contact angles. For porous films, the contact angles decreased with time, and we consider the initial contact angle to be the most accurate. The differences in contact angles among the different methods were large and varied considerably: the most consistent contact angles were obtained for kaolinite with water, and illite with diiodomethane (contact angles were within 3 degrees); but mostly the differences ranged from 10 degrees to 40 degrees among the different methods. The thin-layer and column wicking methods were the least consistent methods.
We compared five different methods, static sessile drop, dynamic sessile drop, Wilhelmy plate, thin-layer wicking, and column wicking, to determine the contact angle of colloids typical for soils and sediments. The colloids (smectite, kaolinite, illite, goethite, hematite) were chosen to represent 1:1 and 2:1 layered aluminosilicate clays and sesquioxides, and were either obtained in pure form or synthesized in our laboratory. Colloids were deposited as thin films on glass slides, and then used for contact angle measurements using three different test liquids (water, formamide, diiodomethane). The colloidal films could be categorized into three types: (1) films without pores and with polar–liquid interactions (smectite), (2) films with pores and with polar–liquid interactions (kaolinite, illite, goethite), and (3) films without pores and no polar–liquid interactions (hematite). The static and dynamic sessile drop methods yielded the most consistent contact angles. For porous films, the contact angles decreased with time, and we consider the initial contact angle to be the most accurate. The differences in contact angles among the different methods were large and varied considerably: the most consistent contact angles were obtained for kaolinite with water, and illite with diiodomethane (contact angles were within 3°); but mostly the differences ranged from 10° to 40° among the different methods. The thin-layer and column wicking methods were the least consistent methods.
Author Flury, Markus
Harsh, James B.
Shang, Jianying
Zollars, Richard L.
Author_xml – sequence: 1
  givenname: Jianying
  surname: Shang
  fullname: Shang, Jianying
  organization: Department of Crop and Soil Sciences, Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164, USA
– sequence: 2
  givenname: Markus
  surname: Flury
  fullname: Flury, Markus
  email: flury@mail.wsu.edu
  organization: Department of Crop and Soil Sciences, Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164, USA
– sequence: 3
  givenname: James B.
  surname: Harsh
  fullname: Harsh, James B.
  organization: Department of Crop and Soil Sciences, Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164, USA
– sequence: 4
  givenname: Richard L.
  surname: Zollars
  fullname: Zollars, Richard L.
  organization: Department of Chemical Engineering, Washington State University, Pullman, WA 99164, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20919337$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18930239$$D View this record in MEDLINE/PubMed
BookMark eNp9kU-LFDEQxYPs4s6ufgEP0he9dW-l0-nugBcZ_LcseNFzSCcVzZBOxiQj-O0344wKHvZURfF7D-q9a3IRYkBCXlDoKNDxdtfttMtdDzB3IDpg4gnZUBC8nSiwC7IB6GkrJjFdkeucdwCUci6ekis6CwY9Extyt43rXiWXY2iibYyzFhOG0qxYvkeTmxLrqvIhYaNjKEqXRoVvHvMRz9H5evY-OpOfkUurfMbn53lDvr5_92X7sb3__OHT9u19qwcOpR2Qj9MyWoZq1pz206CtMtyMeqGoNWdGCTNM3CoqQNuZLROAomYQdjH1OXZDXp989yn-OGAucnVZo_cqYDxkOYp5HsQEFXx5Bg_Likbuk1tV-iX_fF-BV2dAZa28TSrUQP9yPQgqGJsq1584nWLOCe0_K5DHKuROHquQxyokCAm_zef_RNoVVVwNMSnnH5e-OUmxxvjTYZJZOwwajUuoizTRPSZ_AOcHpMA
CODEN JCISA5
CitedBy_id crossref_primary_10_1016_j_powtec_2012_08_032
crossref_primary_10_3390_membranes7010011
crossref_primary_10_1016_j_colsurfa_2015_12_010
crossref_primary_10_1016_j_mineng_2017_08_002
crossref_primary_10_1080_01932691_2017_1406369
crossref_primary_10_3390_nano7080226
crossref_primary_10_1016_j_advwatres_2018_03_017
crossref_primary_10_1007_s11440_017_0570_0
crossref_primary_10_1021_es102041b
crossref_primary_10_1016_j_conbuildmat_2025_140265
crossref_primary_10_1097_OPX_0b013e3181da863e
crossref_primary_10_1016_j_ngib_2022_04_002
crossref_primary_10_1021_es304383d
crossref_primary_10_1051_e3sconf_20160909003
crossref_primary_10_1016_j_cej_2024_151261
crossref_primary_10_1016_j_powtec_2015_10_002
crossref_primary_10_1039_C5RA02517F
crossref_primary_10_1016_j_compositesa_2015_03_010
crossref_primary_10_1371_journal_pone_0206299
crossref_primary_10_1016_j_geoderma_2021_114973
crossref_primary_10_1007_s11356_017_8926_4
crossref_primary_10_1016_j_conbuildmat_2022_126627
crossref_primary_10_1080_01694243_2019_1613947
crossref_primary_10_1016_j_tca_2022_179407
crossref_primary_10_1016_j_apsusc_2021_150725
crossref_primary_10_1016_j_powtec_2018_02_001
crossref_primary_10_1061_IJGNAI_GMENG_9406
crossref_primary_10_1021_ef502709r
crossref_primary_10_1016_j_chemosphere_2012_12_005
crossref_primary_10_1016_j_jpcs_2024_112167
crossref_primary_10_1134_S106422931506006X
crossref_primary_10_2478_johh_2018_0002
crossref_primary_10_1016_j_mineng_2012_03_030
crossref_primary_10_1016_j_radphyschem_2022_109997
crossref_primary_10_1061__ASCE_GT_1943_5606_0001887
crossref_primary_10_1007_s11629_019_5929_2
crossref_primary_10_1021_la201840q
crossref_primary_10_1088_1742_6596_1333_4_042001
crossref_primary_10_1021_acs_est_7b02032
crossref_primary_10_1016_j_advwatres_2020_103754
crossref_primary_10_1016_j_ijmachtools_2017_09_001
crossref_primary_10_1016_j_molliq_2025_126980
crossref_primary_10_1016_j_cis_2022_102775
crossref_primary_10_1016_j_powtec_2013_09_001
crossref_primary_10_1021_acs_energyfuels_1c01943
crossref_primary_10_1016_j_actbio_2010_07_031
crossref_primary_10_1016_j_compgeo_2016_01_012
crossref_primary_10_1021_acsomega_0c03258
crossref_primary_10_14479_jkoos_2019_24_3_231
crossref_primary_10_35784_bud_arch_1644
crossref_primary_10_1021_acs_est_9b00583
crossref_primary_10_1007_BF03402328
crossref_primary_10_1007_s12649_019_00713_x
crossref_primary_10_1016_j_geoderma_2015_03_022
crossref_primary_10_1021_acsomega_3c01352
crossref_primary_10_1016_j_ceramint_2015_11_177
crossref_primary_10_1016_j_colsurfb_2011_07_008
crossref_primary_10_1016_j_colsurfa_2019_01_068
crossref_primary_10_1051_e3sconf_202019503039
crossref_primary_10_1016_j_clay_2022_106553
crossref_primary_10_19047_0136_1694_2020_101_76_123
crossref_primary_10_1016_j_bsecv_2016_05_001
crossref_primary_10_1016_j_powtec_2015_02_026
crossref_primary_10_1016_j_clay_2021_106073
crossref_primary_10_32962_0235_2524_2022_3_21_24
crossref_primary_10_1088_0957_0233_24_12_125902
crossref_primary_10_19047_0136_1694_2019_97_91_112
crossref_primary_10_1021_acsami_6b14786
crossref_primary_10_1021_ie504311p
crossref_primary_10_1134_S1064229322030139
crossref_primary_10_1080_08827508_2013_763802
crossref_primary_10_1039_C5SM01901J
crossref_primary_10_1016_j_apsusc_2013_07_034
crossref_primary_10_1016_j_powtec_2024_119369
crossref_primary_10_1016_j_powtec_2014_11_002
crossref_primary_10_1016_j_jcis_2011_10_013
crossref_primary_10_1016_j_apsusc_2017_08_186
crossref_primary_10_1016_j_mineng_2019_106168
crossref_primary_10_1016_j_colsurfa_2020_125639
crossref_primary_10_1016_j_molliq_2024_126258
crossref_primary_10_1371_journal_pone_0179079
crossref_primary_10_1029_2008WR007384
crossref_primary_10_1080_08827508_2024_2418635
crossref_primary_10_1080_10643389_2019_1699381
crossref_primary_10_1039_D4EN00140K
crossref_primary_10_4236_jbise_2018_1111025
crossref_primary_10_1088_1742_6596_842_1_012073
crossref_primary_10_1007_s11368_016_1639_3
crossref_primary_10_1016_j_apsusc_2016_11_015
crossref_primary_10_1016_j_colsurfa_2009_10_013
crossref_primary_10_1016_j_jcis_2013_01_033
crossref_primary_10_1002_pc_22257
crossref_primary_10_1007_s10666_021_09782_6
crossref_primary_10_1016_j_compgeo_2020_103863
crossref_primary_10_1021_acs_molpharmaceut_7b00658
crossref_primary_10_1016_j_ijadhadh_2017_06_018
crossref_primary_10_3390_ma15165485
crossref_primary_10_2136_sssaj2016_04_0131
crossref_primary_10_1016_j_cis_2012_06_004
crossref_primary_10_1016_j_mtcomm_2021_102675
crossref_primary_10_1016_j_ijadhadh_2018_04_007
crossref_primary_10_1016_j_compgeo_2017_02_003
crossref_primary_10_1016_j_rser_2023_113956
crossref_primary_10_1016_j_powtec_2017_11_019
crossref_primary_10_1016_j_mineng_2020_106444
crossref_primary_10_1016_j_jcis_2010_04_011
crossref_primary_10_19047_0136_1694_2021_106_49_76
crossref_primary_10_1016_j_cis_2016_06_007
crossref_primary_10_1016_j_partic_2015_04_005
crossref_primary_10_1007_s42773_022_00142_5
crossref_primary_10_1002_star_201100103
crossref_primary_10_1016_j_clay_2017_01_017
crossref_primary_10_1016_j_colsurfa_2010_12_051
crossref_primary_10_1016_j_ijadhadh_2016_06_010
crossref_primary_10_1021_acs_est_2c09822
crossref_primary_10_1002_aic_14319
crossref_primary_10_1016_j_conbuildmat_2019_117140
crossref_primary_10_1016_j_fuel_2018_02_140
crossref_primary_10_1111_ejss_12555
crossref_primary_10_1016_j_cis_2019_102049
crossref_primary_10_1016_j_fuel_2018_02_142
crossref_primary_10_1016_j_seppur_2016_10_015
crossref_primary_10_1016_j_ijadhadh_2024_103721
crossref_primary_10_1021_acs_iecr_0c04838
crossref_primary_10_1007_s12665_017_6600_2
crossref_primary_10_1016_j_foodhyd_2016_04_006
crossref_primary_10_1016_j_powtec_2015_05_011
crossref_primary_10_1016_j_powtec_2017_09_032
crossref_primary_10_1002_pssa_202400715
crossref_primary_10_1016_j_apt_2018_07_025
crossref_primary_10_3390_coatings11080995
crossref_primary_10_1080_01694243_2012_761057
crossref_primary_10_1088_1755_1315_368_1_012010
crossref_primary_10_1016_j_snb_2016_03_148
crossref_primary_10_1134_S1064229324603652
crossref_primary_10_7901_2169_3358_2017_1_1911
crossref_primary_10_1029_2019WR026889
crossref_primary_10_1016_j_apsusc_2021_152159
crossref_primary_10_3923_jas_2014_3359_3363
crossref_primary_10_1002_pi_4458
crossref_primary_10_3390_pharmaceutics13030366
crossref_primary_10_1016_j_addma_2017_12_008
crossref_primary_10_1016_j_minpro_2016_11_012
crossref_primary_10_1080_01490451_2013_824523
crossref_primary_10_2355_isijinternational_ISIJINT_2017_424
crossref_primary_10_1002_2015WR017786
crossref_primary_10_12680_balneo_2024_764
crossref_primary_10_1016_j_still_2021_104992
crossref_primary_10_1097_ICL_0b013e3181c5b385
crossref_primary_10_1016_j_apsusc_2020_147423
crossref_primary_10_1016_j_carbpol_2021_118351
crossref_primary_10_1002_app_46162
crossref_primary_10_1016_j_jngse_2021_103922
crossref_primary_10_1134_S1064229323700217
crossref_primary_10_1016_j_physa_2017_05_030
crossref_primary_10_1080_01932691_2022_2055564
crossref_primary_10_1134_S1064229316120115
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123853
crossref_primary_10_1002_app_52142
crossref_primary_10_1016_j_mtcomm_2021_102401
crossref_primary_10_1080_08827508_2024_2423349
crossref_primary_10_1016_j_cageo_2020_104425
crossref_primary_10_1115_1_4048510
crossref_primary_10_1134_S1064229315110058
crossref_primary_10_1016_j_compositesa_2015_05_031
crossref_primary_10_3390_ma12142234
crossref_primary_10_1016_j_cej_2022_140642
crossref_primary_10_1016_j_colsurfa_2017_02_003
crossref_primary_10_1139_er_2017_0002
crossref_primary_10_1016_j_rhisph_2017_10_004
crossref_primary_10_1002_ente_201600239
crossref_primary_10_1108_SSMT_11_2012_0026
crossref_primary_10_3390_w15183273
crossref_primary_10_1016_j_ijadhadh_2018_01_006
crossref_primary_10_1108_SSMT_02_2014_0001
crossref_primary_10_1039_c3ta12292a
crossref_primary_10_1111_j_1365_2389_2012_01460_x
Cites_doi 10.1111/j.1365-2672.2004.02366.x
10.1346/CCMN.2001.0490511
10.2136/sssaj2000.642564x
10.1021/la971349b
10.1021/la00005a064
10.1016/S0927-7757(97)00158-1
10.1021/la00025a062
10.1021/la990624m
10.1016/S0927-7765(98)00065-4
10.1103/PhysRev.17.273
10.1016/S0301-7516(98)00044-1
10.1029/93WR03017
10.1006/jcis.1996.0330
10.1006/jcis.1998.5833
10.1016/S0927-7757(98)00354-9
10.1163/156856190X00298
10.1021/la00013a049
10.1021/la00038a066
10.1016/S0001-8686(01)00097-5
10.1346/CCMN.2006.0540102
10.1111/j.1365-2389.2004.00664.x
10.1021/la0347509
10.1016/S0032-5910(97)03216-6
10.1029/2003WR002143
10.1007/BF00203840
10.1016/j.jcis.2005.07.017
10.1346/CCMN.1988.0360305
10.1016/S0927-7757(01)00589-1
10.1016/0927-7757(94)03001-G
10.2136/sssaj2004.0383
10.1081/DIS-200027305
10.1021/la9605551
10.1016/j.colsurfb.2006.05.009
10.1016/j.jcis.2004.11.018
10.1016/S0001-8686(01)00080-X
10.1016/S0032-5910(96)03158-0
10.1111/j.1365-2389.1995.tb01362.x
10.1006/jcis.1996.4640
10.1016/S0927-7765(01)00146-1
10.1128/AEM.60.2.509-516.1994
10.1346/CCMN.1992.0400313
10.1163/156856192X00755
10.1016/S0022-1694(00)00184-0
10.1016/0927-7757(96)03590-X
ContentType Journal Article
Copyright 2008 Elsevier Inc.
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Inc.
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jcis.2008.09.039
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 307
ExternalDocumentID 18930239
20919337
10_1016_j_jcis_2008_09_039
S0021979708011612
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Evaluation Studies
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c450t-4e567b6f3ea8c51274cfad5d6cb1ecc53da9d475fa190cf83b700a1d49fbd0953
IEDL.DBID AIKHN
ISSN 0021-9797
1095-7103
IngestDate Thu Jul 10 21:48:45 EDT 2025
Mon Jul 21 05:54:41 EDT 2025
Mon Jul 21 09:14:15 EDT 2025
Thu Apr 24 23:06:50 EDT 2025
Tue Jul 01 01:17:47 EDT 2025
Fri Feb 23 02:22:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Clay
Thin-layer wicking
Colloids
Sessile drop
Contact angle
Silicates
Wilhelmy plate
Water
Iron oxide
Film
Illite
Glass
Aluminosilicates
Laboratory
Porous material
Dynamic method
Thin film
Polar liquid
Dynamics
Sessile
Kaolinite
Goethite
Hematite
Transition element compounds
Sediments
Colloid
Drop
Soils
Pore
Smectite
Sessile drop method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-4e567b6f3ea8c51274cfad5d6cb1ecc53da9d475fa190cf83b700a1d49fbd0953
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 18930239
PQID 69884970
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_69884970
pubmed_primary_18930239
pascalfrancis_primary_20919337
crossref_primary_10_1016_j_jcis_2008_09_039
crossref_citationtrail_10_1016_j_jcis_2008_09_039
elsevier_sciencedirect_doi_10_1016_j_jcis_2008_09_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-15
PublicationDateYYYYMMDD 2008-12-15
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2008
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Costanzo, Giese, van Oss (bib040) 1990; 4
Wu, Giese, van Oss (bib023) 1996; 89
Costanzo, Wu, Giese, van Oss (bib012) 1995; 11
Chibowski, González-Caballero (bib027) 1993; 9
Hadjiiski, Dimova, Denkov, Ivanov, Borwankar (bib005) 1996; 12
Siebold, Walliser, Nordin, Oppliger, Schultz (bib036) 1997; 186
Norris, Giese, van Oss, Costanzo (bib041) 1992; 40
Schwertmann, Cornell (bib032) 1991
Preuss, Butt (bib030) 1998; 14
Wu (bib009) 2001; 49
Lam, Wu, Li, Hair, Neumann (bib044) 2002; 96
van Oss, Gillman (bib006) 1972; 12
Chorom, Rengasamy (bib033) 1995; 46
Abe, Takiguchi, Tamada (bib020) 2000; 16
Buckton, Darcy, McCarthy (bib047) 1995; 95
Giese, van Oss (bib010) 2002
Preuss, Butt (bib031) 1999; 56
Preuss, Butt (bib003) 1998; 208
Teixeira, Azeredo, Oliveira, Chibowski (bib025) 1998; 12
Mohammadi, Amirfazli (bib004) 2004; 25
Washburn (bib035) 1921; 17
Bachmann, Woche, Goebel (bib019) 2003; 39
Chibowski, Holysz (bib026) 1992; 8
Breiner, Anderson, Tom, Graham (bib042) 2006; 54
Goebel, Bachmann, Woche, Fischer, Horton (bib048) 2004; 68
Giese, Costanzo, van Oss (bib022) 1991; 17
Tejas, Dongqing, Warren, Jonathan (bib050) 2001; 22
van Oss, Gillman (bib007) 1972; 12
Kwok, Lam, Li, Leung, Wu, Mok, Neumann (bib046) 1998; 142
Zhang, Ren, Hartland (bib002) 1996; 180
Kwok, Lin, Mui, Neumann (bib045) 1996; 116
Abu-Lail, Camesano (bib014) 2006; 51
van Oss (bib038) 1994
McBride (bib037) 1989
Jerez, Flury, Shang, Deng (bib034) 2006; 294
Chibowski, Perea-Carpio (bib001) 2002; 98
Akdemir (bib049) 1997; 94
van Oss (bib008) 2006
van Oss, Giese, Li, Murphy, Norris, Chaudhury, Good (bib016) 1992; 6
Woche, Goebel, Kirkham, Horton, Van der Ploeg, Bachmann (bib021) 2005; 56
Li, Giese, van Oss (bib024) 1994; 10
Bachmann, Horton, Van der Ploeg, Woche (bib017) 2000; 64
Wan, Wilson, Kieft (bib013) 1994; 60
Lam, Kim, Hui, Kwok, Hair, Neumann (bib043) 2001; 189
Kukavica-Ibrulj, Darveau, Jean, Fliss (bib015) 2004; 97
Paunov (bib029) 2003; 19
Wan, Wilson (bib011) 1994; 30
Bachmann, Ellies, Hartge (bib018) 2000; 231
Janczuk, Bialopiotrowicz (bib039) 1988; 36
Karagúzel, Can, Sónmez, Celik (bib028) 2005; 285
Tróger, Lunkwitz, Grundke, Burger (bib051) 1998; 134
Chibowski (10.1016/j.jcis.2008.09.039_bib027) 1993; 9
Paunov (10.1016/j.jcis.2008.09.039_bib029) 2003; 19
Costanzo (10.1016/j.jcis.2008.09.039_bib012) 1995; 11
Washburn (10.1016/j.jcis.2008.09.039_bib035) 1921; 17
Kwok (10.1016/j.jcis.2008.09.039_bib045) 1996; 116
van Oss (10.1016/j.jcis.2008.09.039_bib007) 1972; 12
Bachmann (10.1016/j.jcis.2008.09.039_bib019) 2003; 39
McBride (10.1016/j.jcis.2008.09.039_bib037) 1989
Siebold (10.1016/j.jcis.2008.09.039_bib036) 1997; 186
Teixeira (10.1016/j.jcis.2008.09.039_bib025) 1998; 12
Karagúzel (10.1016/j.jcis.2008.09.039_bib028) 2005; 285
Zhang (10.1016/j.jcis.2008.09.039_bib002) 1996; 180
Norris (10.1016/j.jcis.2008.09.039_bib041) 1992; 40
Kwok (10.1016/j.jcis.2008.09.039_bib046) 1998; 142
Lam (10.1016/j.jcis.2008.09.039_bib044) 2002; 96
Tejas (10.1016/j.jcis.2008.09.039_bib050) 2001; 22
Abe (10.1016/j.jcis.2008.09.039_bib020) 2000; 16
Chibowski (10.1016/j.jcis.2008.09.039_bib026) 1992; 8
Preuss (10.1016/j.jcis.2008.09.039_bib030) 1998; 14
Hadjiiski (10.1016/j.jcis.2008.09.039_bib005) 1996; 12
Wu (10.1016/j.jcis.2008.09.039_bib023) 1996; 89
Giese (10.1016/j.jcis.2008.09.039_bib010) 2002
Jerez (10.1016/j.jcis.2008.09.039_bib034) 2006; 294
Preuss (10.1016/j.jcis.2008.09.039_bib003) 1998; 208
Li (10.1016/j.jcis.2008.09.039_bib024) 1994; 10
Chibowski (10.1016/j.jcis.2008.09.039_bib001) 2002; 98
Chorom (10.1016/j.jcis.2008.09.039_bib033) 1995; 46
Schwertmann (10.1016/j.jcis.2008.09.039_bib032) 1991
Woche (10.1016/j.jcis.2008.09.039_bib021) 2005; 56
Wu (10.1016/j.jcis.2008.09.039_bib009) 2001; 49
Goebel (10.1016/j.jcis.2008.09.039_bib048) 2004; 68
Abu-Lail (10.1016/j.jcis.2008.09.039_bib014) 2006; 51
Kukavica-Ibrulj (10.1016/j.jcis.2008.09.039_bib015) 2004; 97
Mohammadi (10.1016/j.jcis.2008.09.039_bib004) 2004; 25
Wan (10.1016/j.jcis.2008.09.039_bib013) 1994; 60
Bachmann (10.1016/j.jcis.2008.09.039_bib018) 2000; 231
van Oss (10.1016/j.jcis.2008.09.039_bib008) 2006
Costanzo (10.1016/j.jcis.2008.09.039_bib040) 1990; 4
van Oss (10.1016/j.jcis.2008.09.039_bib038) 1994
Breiner (10.1016/j.jcis.2008.09.039_bib042) 2006; 54
Akdemir (10.1016/j.jcis.2008.09.039_bib049) 1997; 94
Lam (10.1016/j.jcis.2008.09.039_bib043) 2001; 189
Preuss (10.1016/j.jcis.2008.09.039_bib031) 1999; 56
Buckton (10.1016/j.jcis.2008.09.039_bib047) 1995; 95
Giese (10.1016/j.jcis.2008.09.039_bib022) 1991; 17
Bachmann (10.1016/j.jcis.2008.09.039_bib017) 2000; 64
Janczuk (10.1016/j.jcis.2008.09.039_bib039) 1988; 36
van Oss (10.1016/j.jcis.2008.09.039_bib006) 1972; 12
Tróger (10.1016/j.jcis.2008.09.039_bib051) 1998; 134
Wan (10.1016/j.jcis.2008.09.039_bib011) 1994; 30
van Oss (10.1016/j.jcis.2008.09.039_bib016) 1992; 6
References_xml – volume: 49
  start-page: 446
  year: 2001
  ident: bib009
  publication-title: Clays Clay Miner.
– volume: 22
  start-page: 107
  year: 2001
  ident: bib050
  publication-title: Colloids Surf. Biointerfaces
– volume: 189
  start-page: 265
  year: 2001
  ident: bib043
  publication-title: Colloids Surf. Physicochem. Eng. Aspects
– volume: 208
  start-page: 468
  year: 1998
  ident: bib003
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 283
  year: 1972
  ident: bib006
  publication-title: J. Reticuloendothel. Soc.
– volume: 8
  start-page: 710
  year: 1992
  ident: bib026
  publication-title: Langmuir
– volume: 285
  start-page: 192
  year: 2005
  ident: bib028
  publication-title: J. Colloid Interface Sci.
– start-page: 35
  year: 1989
  end-page: 88
  ident: bib037
  publication-title: Minerals in the Soil Environment
– volume: 12
  start-page: 69
  year: 1998
  ident: bib025
  publication-title: Colloids Surf. B
– volume: 186
  start-page: 60
  year: 1997
  ident: bib036
  publication-title: J. Colloid Interface Sci.
– volume: 95
  start-page: 27
  year: 1995
  ident: bib047
  publication-title: Colloids Surf. Physicochem. Eng. Aspects
– year: 2002
  ident: bib010
  article-title: Colloid and Surface Properties of Clays and Related Minerals
– volume: 4
  start-page: 267
  year: 1990
  ident: bib040
  publication-title: J. Adhesion Sci. Technol.
– volume: 89
  start-page: 129
  year: 1996
  ident: bib023
  publication-title: Powder Technol.
– volume: 46
  start-page: 657
  year: 1995
  ident: bib033
  publication-title: Eur. J. Soil Sci.
– volume: 17
  start-page: 611
  year: 1991
  ident: bib022
  publication-title: Phys. Chem. Miner.
– volume: 54
  start-page: 12
  year: 2006
  ident: bib042
  publication-title: Clays Clay Miner.
– volume: 17
  start-page: 273
  year: 1921
  ident: bib035
  publication-title: Phys. Rev.
– volume: 14
  start-page: 3164
  year: 1998
  ident: bib030
  publication-title: Langmuir
– volume: 12
  start-page: 497
  year: 1972
  ident: bib007
  publication-title: J. Reticuloendothel. Soc.
– volume: 12
  start-page: 6665
  year: 1996
  ident: bib005
  publication-title: Langmuir
– volume: 16
  start-page: 2394
  year: 2000
  ident: bib020
  publication-title: Langmuir
– volume: 294
  start-page: 155
  year: 2006
  ident: bib034
  publication-title: J. Colloid Interface Sci.
– volume: 60
  start-page: 509
  year: 1994
  ident: bib013
  publication-title: Appl. Environ. Microbiol.
– volume: 94
  start-page: 1
  year: 1997
  ident: bib049
  publication-title: Powder Technol.
– volume: 36
  start-page: 243
  year: 1988
  ident: bib039
  publication-title: Clays Clay Miner.
– volume: 231
  start-page: 66
  year: 2000
  ident: bib018
  publication-title: J. Hydrol. (Amsterdam)
– volume: 97
  start-page: 923
  year: 2004
  ident: bib015
  publication-title: J. Appl. Microbiol.
– volume: 39
  start-page: 1353
  year: 2003
  ident: bib019
  publication-title: Water Resour. Res.
– volume: 10
  start-page: 330
  year: 1994
  ident: bib024
  publication-title: Langmuir
– volume: 51
  start-page: 62
  year: 2006
  ident: bib014
  publication-title: Colloids Surf. B
– volume: 9
  start-page: 330
  year: 1993
  ident: bib027
  publication-title: Langmuir
– volume: 19
  start-page: 7970
  year: 2003
  ident: bib029
  publication-title: Langmuir
– year: 1994
  ident: bib038
  article-title: Interfacial Forces in Aqueous Media
– volume: 68
  start-page: 383
  year: 2004
  ident: bib048
  publication-title: Soil Sci. Soc. Am. J.
– volume: 40
  start-page: 327
  year: 1992
  ident: bib041
  publication-title: Clays Clay Miner.
– volume: 142
  start-page: 219
  year: 1998
  ident: bib046
  publication-title: Colloids Surf. Physicochem. Eng. Aspects
– volume: 56
  start-page: 239
  year: 2005
  ident: bib021
  publication-title: Eur. J. Soil Sci.
– volume: 116
  start-page: 63
  year: 1996
  ident: bib045
  publication-title: Colloids Surf. Physicochem. Eng. Aspects
– volume: 30
  start-page: 857
  year: 1994
  ident: bib011
  publication-title: Water Resour. Res.
– volume: 6
  start-page: 413
  year: 1992
  ident: bib016
  publication-title: J. Adhesion Sci. Technol.
– volume: 134
  start-page: 299
  year: 1998
  ident: bib051
  publication-title: Colloids Surf. Physicochem. Eng. Aspects
– volume: 25
  start-page: 567
  year: 2004
  ident: bib004
  publication-title: J. Dispersion Sci. Technol.
– volume: 64
  start-page: 564
  year: 2000
  ident: bib017
  publication-title: Soil Sci. Soc. Am. J.
– volume: 98
  start-page: 245
  year: 2002
  ident: bib001
  publication-title: Adv. Colloid Interface Sci.
– volume: 96
  start-page: 169
  year: 2002
  ident: bib044
  publication-title: Adv. Colloid Interface Sci.
– year: 1991
  ident: bib032
  article-title: Iron Oxides in the Laboratory: Preparation and Characterization
– volume: 11
  start-page: 1827
  year: 1995
  ident: bib012
  publication-title: Langmuir
– year: 2006
  ident: bib008
  article-title: Interfacial Forces in Aqueous Media
– volume: 56
  start-page: 99
  year: 1999
  ident: bib031
  publication-title: Int. J. Miner. Process.
– volume: 180
  start-page: 493
  year: 1996
  ident: bib002
  publication-title: J. Colloid Interface Sci.
– volume: 97
  start-page: 923
  year: 2004
  ident: 10.1016/j.jcis.2008.09.039_bib015
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2004.02366.x
– volume: 49
  start-page: 446
  year: 2001
  ident: 10.1016/j.jcis.2008.09.039_bib009
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.2001.0490511
– volume: 64
  start-page: 564
  year: 2000
  ident: 10.1016/j.jcis.2008.09.039_bib017
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.642564x
– year: 1994
  ident: 10.1016/j.jcis.2008.09.039_bib038
– year: 2006
  ident: 10.1016/j.jcis.2008.09.039_bib008
– volume: 14
  start-page: 3164
  year: 1998
  ident: 10.1016/j.jcis.2008.09.039_bib030
  publication-title: Langmuir
  doi: 10.1021/la971349b
– volume: 11
  start-page: 1827
  year: 1995
  ident: 10.1016/j.jcis.2008.09.039_bib012
  publication-title: Langmuir
  doi: 10.1021/la00005a064
– volume: 134
  start-page: 299
  year: 1998
  ident: 10.1016/j.jcis.2008.09.039_bib051
  publication-title: Colloids Surf. Physicochem. Eng. Aspects
  doi: 10.1016/S0927-7757(97)00158-1
– volume: 9
  start-page: 330
  year: 1993
  ident: 10.1016/j.jcis.2008.09.039_bib027
  publication-title: Langmuir
  doi: 10.1021/la00025a062
– volume: 16
  start-page: 2394
  year: 2000
  ident: 10.1016/j.jcis.2008.09.039_bib020
  publication-title: Langmuir
  doi: 10.1021/la990624m
– volume: 12
  start-page: 69
  year: 1998
  ident: 10.1016/j.jcis.2008.09.039_bib025
  publication-title: Colloids Surf. B
  doi: 10.1016/S0927-7765(98)00065-4
– volume: 17
  start-page: 273
  year: 1921
  ident: 10.1016/j.jcis.2008.09.039_bib035
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.17.273
– volume: 56
  start-page: 99
  year: 1999
  ident: 10.1016/j.jcis.2008.09.039_bib031
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(98)00044-1
– volume: 30
  start-page: 857
  year: 1994
  ident: 10.1016/j.jcis.2008.09.039_bib011
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR03017
– volume: 180
  start-page: 493
  year: 1996
  ident: 10.1016/j.jcis.2008.09.039_bib002
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0330
– volume: 208
  start-page: 468
  year: 1998
  ident: 10.1016/j.jcis.2008.09.039_bib003
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1998.5833
– volume: 142
  start-page: 219
  year: 1998
  ident: 10.1016/j.jcis.2008.09.039_bib046
  publication-title: Colloids Surf. Physicochem. Eng. Aspects
  doi: 10.1016/S0927-7757(98)00354-9
– volume: 4
  start-page: 267
  year: 1990
  ident: 10.1016/j.jcis.2008.09.039_bib040
  publication-title: J. Adhesion Sci. Technol.
  doi: 10.1163/156856190X00298
– volume: 10
  start-page: 330
  year: 1994
  ident: 10.1016/j.jcis.2008.09.039_bib024
  publication-title: Langmuir
  doi: 10.1021/la00013a049
– volume: 8
  start-page: 710
  year: 1992
  ident: 10.1016/j.jcis.2008.09.039_bib026
  publication-title: Langmuir
  doi: 10.1021/la00038a066
– volume: 98
  start-page: 245
  year: 2002
  ident: 10.1016/j.jcis.2008.09.039_bib001
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(01)00097-5
– volume: 54
  start-page: 12
  year: 2006
  ident: 10.1016/j.jcis.2008.09.039_bib042
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.2006.0540102
– volume: 56
  start-page: 239
  year: 2005
  ident: 10.1016/j.jcis.2008.09.039_bib021
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2004.00664.x
– year: 2002
  ident: 10.1016/j.jcis.2008.09.039_bib010
– volume: 19
  start-page: 7970
  year: 2003
  ident: 10.1016/j.jcis.2008.09.039_bib029
  publication-title: Langmuir
  doi: 10.1021/la0347509
– volume: 94
  start-page: 1
  year: 1997
  ident: 10.1016/j.jcis.2008.09.039_bib049
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(97)03216-6
– volume: 39
  start-page: 1353
  year: 2003
  ident: 10.1016/j.jcis.2008.09.039_bib019
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002143
– volume: 17
  start-page: 611
  year: 1991
  ident: 10.1016/j.jcis.2008.09.039_bib022
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/BF00203840
– volume: 12
  start-page: 497
  year: 1972
  ident: 10.1016/j.jcis.2008.09.039_bib007
  publication-title: J. Reticuloendothel. Soc.
– volume: 294
  start-page: 155
  year: 2006
  ident: 10.1016/j.jcis.2008.09.039_bib034
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.07.017
– volume: 36
  start-page: 243
  year: 1988
  ident: 10.1016/j.jcis.2008.09.039_bib039
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1988.0360305
– volume: 189
  start-page: 265
  year: 2001
  ident: 10.1016/j.jcis.2008.09.039_bib043
  publication-title: Colloids Surf. Physicochem. Eng. Aspects
  doi: 10.1016/S0927-7757(01)00589-1
– volume: 95
  start-page: 27
  year: 1995
  ident: 10.1016/j.jcis.2008.09.039_bib047
  publication-title: Colloids Surf. Physicochem. Eng. Aspects
  doi: 10.1016/0927-7757(94)03001-G
– volume: 68
  start-page: 383
  year: 2004
  ident: 10.1016/j.jcis.2008.09.039_bib048
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2004.0383
– volume: 12
  start-page: 283
  year: 1972
  ident: 10.1016/j.jcis.2008.09.039_bib006
  publication-title: J. Reticuloendothel. Soc.
– volume: 25
  start-page: 567
  year: 2004
  ident: 10.1016/j.jcis.2008.09.039_bib004
  publication-title: J. Dispersion Sci. Technol.
  doi: 10.1081/DIS-200027305
– volume: 12
  start-page: 6665
  year: 1996
  ident: 10.1016/j.jcis.2008.09.039_bib005
  publication-title: Langmuir
  doi: 10.1021/la9605551
– volume: 51
  start-page: 62
  year: 2006
  ident: 10.1016/j.jcis.2008.09.039_bib014
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2006.05.009
– volume: 285
  start-page: 192
  year: 2005
  ident: 10.1016/j.jcis.2008.09.039_bib028
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.11.018
– volume: 96
  start-page: 169
  year: 2002
  ident: 10.1016/j.jcis.2008.09.039_bib044
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(01)00080-X
– volume: 89
  start-page: 129
  year: 1996
  ident: 10.1016/j.jcis.2008.09.039_bib023
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(96)03158-0
– year: 1991
  ident: 10.1016/j.jcis.2008.09.039_bib032
– volume: 46
  start-page: 657
  year: 1995
  ident: 10.1016/j.jcis.2008.09.039_bib033
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1995.tb01362.x
– start-page: 35
  year: 1989
  ident: 10.1016/j.jcis.2008.09.039_bib037
– volume: 186
  start-page: 60
  year: 1997
  ident: 10.1016/j.jcis.2008.09.039_bib036
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.4640
– volume: 22
  start-page: 107
  year: 2001
  ident: 10.1016/j.jcis.2008.09.039_bib050
  publication-title: Colloids Surf. Biointerfaces
  doi: 10.1016/S0927-7765(01)00146-1
– volume: 60
  start-page: 509
  year: 1994
  ident: 10.1016/j.jcis.2008.09.039_bib013
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.60.2.509-516.1994
– volume: 40
  start-page: 327
  year: 1992
  ident: 10.1016/j.jcis.2008.09.039_bib041
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1992.0400313
– volume: 6
  start-page: 413
  year: 1992
  ident: 10.1016/j.jcis.2008.09.039_bib016
  publication-title: J. Adhesion Sci. Technol.
  doi: 10.1163/156856192X00755
– volume: 231
  start-page: 66
  year: 2000
  ident: 10.1016/j.jcis.2008.09.039_bib018
  publication-title: J. Hydrol. (Amsterdam)
  doi: 10.1016/S0022-1694(00)00184-0
– volume: 116
  start-page: 63
  year: 1996
  ident: 10.1016/j.jcis.2008.09.039_bib045
  publication-title: Colloids Surf. Physicochem. Eng. Aspects
  doi: 10.1016/0927-7757(96)03590-X
SSID ssj0011559
Score 2.381323
Snippet We compared five different methods, static sessile drop, dynamic sessile drop, Wilhelmy plate, thin-layer wicking, and column wicking, to determine the contact...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 299
SubjectTerms Chemistry
Chemistry, Physical - methods
Clay
Colloidal state and disperse state
Colloids
Colloids - chemistry
Contact angle
Exact sciences and technology
General and physical chemistry
Porosity
Porous materials
Sessile drop
Silicates
Soil
Surface physical chemistry
Surface Properties
Thin-layer wicking
Wilhelmy plate
Title Comparison of different methods to measure contact angles of soil colloids
URI https://dx.doi.org/10.1016/j.jcis.2008.09.039
https://www.ncbi.nlm.nih.gov/pubmed/18930239
https://www.proquest.com/docview/69884970
Volume 328
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4AKISgUtpTFB27INI5f8bFatVqK6IlKvUV-olSrZEXSa387442z0EN76C2KPLI1M5n5FM_Mh9CXGLQwhfWk5C4QrpgmOqpACsNsZSphnUzNyT8v5fKKX1yL6x20mHphUllljv1jTN9E6_zmJGvzZN00qccXvjalFWAeCrgF4vBeybQE1947_f5jebm9TEg3b2OlByVJIPfOjGVeN67pc0llGneqH8pPL9emB63Fke7iYTy6yUvnr9GrDCjx6XjmN2gntAfo-WLicTtA-_-NHHyLLhZb4kHcRTzxowx4pJLu8dDB4-a_IU5l7MYN2LS_V6FPy_uuWeHkOl3j-3fo6vzs12JJMp8CcVwUA-FBSGVlZMFUDhK94i4aL7x0loIlBfNGe65ENIASXKyYVUVhqOc6Wp_m0h2i3bZrwweEK2bABUUpbOG5k0azqKN0FXVaeththuikxdrlYeOJ82JVT1VlN3XSfGbB1DVofoa-bmXW46iNR1eLyTj1PYepIRc8Kje_Z8ntViUgJ82YmqHPk2lrsFS6PzFt6G77Wuqq4uBvM_R-tPi_YwLqS13CR0881Ef0YlOHQktCxTHaHf7chk8AdgY7R8--3dF5dum_aOz_Pw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQPdAKVS39YEsLPvRWucRrO46P1Qq0pcAJJG6WP6ugVbJqwpXfzjhxtuUAh96iyJatmfH4KXkzD6GvMShhCuvJnLtAuGSKqCgDKQyzlamEdWUqTr64LJfX_OxG3GyhxVQLk2iVOfePOX3I1vnNcbbm8bquU40vnDapJGAeCrgF8vALDsc3nc7v9xueB03_3UaeByVpeK6cGUlet67uMqEyNTtVT91Ou2vTgc3iKHbxNBodbqXTN-h1hpP4x7jjt2grNHtoZzGpuO2hV_80HHyHzhYb2UHcRjypo_R4FJLucN_C4_DVECcSu3E9Ns3vVejS8K6tVzgFTlv77j26Pj25WixJVlMgjouiJzyIUtoysmAqB9e85C4aL3zpLAU_CuaN8lyKaAAjuFgxK4vCUM9VtD51pfuAtpu2CfsIV8xAAIq5sIXnrjSKRRVLV1GnSg-rzRCdrKhdbjWeFC9WeuKU3epk-ayBqTRYfoa-beasx0Ybz44Wk3P0o3DRcBM8O-_wkSc3S80BNynG5AwdTa7V4Kn098Q0ob3rdKmqikO0zdDH0eN_twmYL9UIf_rPTR2hneXVxbk-_3n56wC9HBgpdE6o-Iy2-z934QvAnt4eDmH9AH83ABI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+different+methods+to+measure+contact+angles+of+soil+colloids&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Shang%2C+Jianying&rft.au=Flury%2C+Markus&rft.au=Harsh%2C+James+B&rft.au=Zollars%2C+Richard+L&rft.date=2008-12-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=328&rft.issue=2&rft.spage=299&rft_id=info:doi/10.1016%2Fj.jcis.2008.09.039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon