Exactly matched pore size for the intercalation of electrolyte ions determined using the tunable swelling of graphite oxide in supercapacitor electrodes
The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be us...
Saved in:
Published in | Nanoscale Vol. 1; no. 45; pp. 21386 - 21395 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using
in situ
synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF
4
) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF
4
ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF
4
ions (about 9-10 Å). The intercalation of TEA-BF
4
ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å.
Brodie graphite oxide structure is intercalated by TEA-BF
4
in acetonitrile solution at low temperature and high electrolyte concentration adopting inter-layer distance of ∼15-16.6 Å thus providing estimate for smallest size of slit pores required for penetration of the ions. |
---|---|
AbstractList | The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of approximate to 8.9 angstrom and the two-layer solvate (approximate to 12.5 angstrom) at low temperature, thus providing slit pores of approximately 2.5 and 6 angstrom. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF4) ions do not penetrate into both the 2.5 and 6 angstrom slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of approximate to 15-16.6 angstrom, which corresponds to the insertion of partly desolvated TEA-BF4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF4 ions (about 9-10 angstrom). The intercalation of TEA-BF4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of approximate to 10 angstrom. The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF4) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15–16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF4 ions (about 9–10 Å). The intercalation of TEA-BF4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å. The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF 4 ) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF 4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF 4 ions (about 9-10 Å). The intercalation of TEA-BF 4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å. Brodie graphite oxide structure is intercalated by TEA-BF 4 in acetonitrile solution at low temperature and high electrolyte concentration adopting inter-layer distance of ∼15-16.6 Å thus providing estimate for smallest size of slit pores required for penetration of the ions. The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF4) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF4 ions (about 9-10 Å). The intercalation of TEA-BF4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å.The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF4) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF4 ions (about 9-10 Å). The intercalation of TEA-BF4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å. The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF ) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF ions (about 9-10 Å). The intercalation of TEA-BF ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å. The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF 4 ) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15–16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF 4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF 4 ions (about 9–10 Å). The intercalation of TEA-BF 4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å. |
Author | Talyzin, Alexandr V Iakunkov, Artem Rebrikova, Anastasiia T Sun, Jinhua |
AuthorAffiliation | Department of Chemistry Umeå University Moscow State University Department of Physics |
AuthorAffiliation_xml | – sequence: 0 name: Moscow State University – sequence: 0 name: Department of Chemistry – sequence: 0 name: Department of Physics – sequence: 0 name: Umeå University |
Author_xml | – sequence: 1 givenname: Jinhua surname: Sun fullname: Sun, Jinhua – sequence: 2 givenname: Artem surname: Iakunkov fullname: Iakunkov, Artem – sequence: 3 givenname: Anastasiia T surname: Rebrikova fullname: Rebrikova, Anastasiia T – sequence: 4 givenname: Alexandr V surname: Talyzin fullname: Talyzin, Alexandr V |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30427042$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-154332$$DView record from Swedish Publication Index |
BookMark | eNptkl1rFDEUhoNUbLt6470S8EaE0XzNzM5lWesHFgVRb0Mmk-ymZpJpPrDrL_HnmtndrlC8CAknz_vmnJxzDk6cdwqApxi9xoh2b-TSBdSypvv5AJwRxFBFaUtOjueGnYLzGK8Rajra0EfglCJG2rLOwJ_LWyGT3cJRJLlRA5x8UDCa3wpqH2DaKGhcUkEKK5LxDnoNlVUyBW-3qVx6F-GgCjEaV-Q5GrfeyVJ2orfF65eydg4W5TqIaWOKzN-aYXaGMU-z-SSkSeW9g_Wg4mPwUAsb1ZPDvgDf311-W32orr68_7i6uKokq1GqGKFNqzTpWkbwUGJEtYzqfolpVwutseoE0T3SBMte17rRlEohOiEFxkgQugDV3rfkOeWeT8GMImy5F4a_NT8uuA9rnsfMcc0onfmXe34K_iarmPhooiwlCqd8jpxgShmtWcliAV7cQ699Dq5UM1NN3TaEdYV6fqByP6rhmMBdjwqA9oAMPsagNC9_tWtGCsJYjhGfx4Cvlp-_7sbgU5G8uie5c_0v_GwPhyiP3L-Zon8BbF2_uA |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2024_177582 crossref_primary_10_1002_adma_202306689 crossref_primary_10_1002_admi_202300554 crossref_primary_10_1002_adsu_201900133 crossref_primary_10_1016_j_isci_2024_109429 crossref_primary_10_1016_j_jcat_2021_10_014 crossref_primary_10_3390_molecules26175343 crossref_primary_10_1002_smtd_202400029 crossref_primary_10_1016_j_seppur_2025_132017 crossref_primary_10_1021_acsami_3c08042 crossref_primary_10_1039_D2SU00054G crossref_primary_10_3390_app13052958 crossref_primary_10_1039_D2CC06772B crossref_primary_10_1039_D0NR04931J crossref_primary_10_1126_sciadv_abf0812 crossref_primary_10_1002_smll_202304227 crossref_primary_10_3390_nano11010091 crossref_primary_10_1038_s41699_024_00462_z crossref_primary_10_1088_2632_959X_ad2998 crossref_primary_10_1149_1945_7111_accb6a crossref_primary_10_1007_s43939_023_00065_3 crossref_primary_10_1002_cssc_202300027 crossref_primary_10_1016_j_rser_2020_109871 crossref_primary_10_1021_acs_energyfuels_1c03625 crossref_primary_10_1039_C9CP03327K crossref_primary_10_1021_acs_jpcc_1c00327 crossref_primary_10_1039_D2NR03075F |
Cites_doi | 10.1002/anie.201710502 10.1016/j.carbon.2014.09.043 10.1016/j.carbon.2013.06.049 10.1002/anie.200802860 10.1039/c1cp20748b 10.1021/acsnano.5b05819 10.1021/jz1016476 10.1016/j.jpowsour.2005.09.008 10.1126/science.1241488 10.1038/nature24044 10.1002/adfm.201102573 10.1021/nn3031244 10.1016/j.carbon.2016.12.097 10.1039/C5CC05474E 10.1039/b813846j 10.1039/C5EE00488H 10.1039/C5NR02564H 10.1016/j.carbon.2018.08.033 10.1039/C6CS00041J 10.1039/C7NR01792H 10.1016/j.carbon.2017.05.007 10.1021/acsami.6b02164 10.1016/j.carbon.2016.02.070 10.1016/j.nanoen.2012.11.006 10.1126/science.1132195 10.1039/B917103G 10.1038/nmat3567 10.1021/ja7106178 10.1524/zkri.1994.209.6.509 10.1016/j.jpowsour.2014.04.024 10.1016/j.carbon.2012.09.018 10.1021/acs.jpcc.5b06402 10.1021/jacs.6b02115 10.1039/c2ee03092f 10.1021/ja907492s 10.1126/science.1200770 10.1038/nmat2297 10.1039/C3EE43525C 10.1021/nl802558y 10.1021/jz300162u 10.1021/nl5013689 10.1039/C5NR04096E 10.1021/nn3051105 10.1016/j.elecom.2011.08.039 10.1038/nenergy.2016.215 10.1016/j.carbon.2006.05.022 10.1002/jlac.19345100102 10.1038/natrevmats.2016.33 10.1016/j.ensm.2015.10.002 10.1039/b618139m 10.1021/acsnano.6b07668 10.1016/j.carbon.2011.01.013 10.1016/j.carbon.2016.01.062 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 ADHXS ADTPV AOWAS D8T D93 ZZAVC |
DOI | 10.1039/c8nr07469k |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic SWEPUB Umeå universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Umeå universitet SwePub Articles full text |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 21395 |
ExternalDocumentID | oai_DiVA_org_umu_154332 30427042 10_1039_C8NR07469K c8nr07469k |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF ALUYA CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 ABIQK ACRPL ADHXS ADNMO ADTPV AGQPQ AHGXI ALSGL ANBJS ANLMG AOWAS ASPBG AVWKF CAG COF D8T D93 FEDTE HVGLF J3G J3H L-8 R56 ZZAVC |
ID | FETCH-LOGICAL-c450t-42367ef297421dc452e743fb81395aff1e9a2fb0f21cbf5f6f33caa9aca110a23 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Aug 21 06:42:49 EDT 2025 Fri Jul 11 02:06:12 EDT 2025 Mon Jun 30 03:58:18 EDT 2025 Wed Feb 19 02:42:34 EST 2025 Tue Jul 01 01:13:31 EDT 2025 Thu Apr 24 22:52:38 EDT 2025 Tue Dec 17 21:00:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-42367ef297421dc452e743fb81395aff1e9a2fb0f21cbf5f6f33caa9aca110a23 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c8nr07469k ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3320-8487 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-154332 |
PMID | 30427042 |
PQID | 2136576249 |
PQPubID | 2047485 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2133435474 pubmed_primary_30427042 proquest_journals_2136576249 swepub_primary_oai_DiVA_org_umu_154332 rsc_primary_c8nr07469k crossref_citationtrail_10_1039_C8NR07469K crossref_primary_10_1039_C8NR07469K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-07 |
PublicationDateYYYYMMDD | 2018-12-07 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hofmann (C8NR07469K-(cit30)/*[position()=1]) 1934; 510 You (C8NR07469K-(cit36)/*[position()=1]) 2012; 3 Tsai (C8NR07469K-(cit45)/*[position()=1]) 2013; 2 El-Kady (C8NR07469K-(cit10)/*[position()=1]) 2016; 1 Largeot (C8NR07469K-(cit14)/*[position()=1]) 2008; 130 Sun (C8NR07469K-(cit2)/*[position()=1]) 2017; 120 Luo (C8NR07469K-(cit12)/*[position()=1]) 2017; 11 Forse (C8NR07469K-(cit13)/*[position()=1]) 2016; 138 Brodie (C8NR07469K-(cit29)/*[position()=1]) 1860; 59 Chen (C8NR07469K-(cit28)/*[position()=1]) 2017; 550 Ouyang (C8NR07469K-(cit7)/*[position()=1]) 2013; 62 Decaux (C8NR07469K-(cit47)/*[position()=1]) 2014; 263 Ding (C8NR07469K-(cit8)/*[position()=1]) 2016; 8 Sevilla (C8NR07469K-(cit5)/*[position()=1]) 2014; 7 Talyzin (C8NR07469K-(cit51)/*[position()=1]) 2017; 115 You (C8NR07469K-(cit35)/*[position()=1]) 2013; 7 Klechikov (C8NR07469K-(cit3)/*[position()=1]) 2015; 51 Zhang (C8NR07469K-(cit11)/*[position()=1]) 2009; 38 Talyzin (C8NR07469K-(cit27)/*[position()=1]) 2009; 131 Zhu (C8NR07469K-(cit33)/*[position()=1]) 2012; 6 Simon (C8NR07469K-(cit18)/*[position()=1]) 2008; 7 Talyzin (C8NR07469K-(cit22)/*[position()=1]) 2011; 49 Giuseppetti (C8NR07469K-(cit53)/*[position()=1]) 1994; 209 Raymundo-Pinero (C8NR07469K-(cit15)/*[position()=1]) 2006; 44 Prehal (C8NR07469K-(cit42)/*[position()=1]) 2017; 2 Korobov (C8NR07469K-(cit52)/*[position()=1]) 2016; 102 Centeno (C8NR07469K-(cit20)/*[position()=1]) 2011; 13 Talyzin (C8NR07469K-(cit24)/*[position()=1]) 2015; 7 Cabrillo (C8NR07469K-(cit48)/*[position()=1]) 2016; 100 Zhu (C8NR07469K-(cit4)/*[position()=1]) 2011; 332 Talyzin (C8NR07469K-(cit31)/*[position()=1]) 2008; 47 Lukatskaya (C8NR07469K-(cit46)/*[position()=1]) 2013; 341 Chmiola (C8NR07469K-(cit19)/*[position()=1]) 2006; 313 Kondrat (C8NR07469K-(cit40)/*[position()=1]) 2012; 5 Deschamps (C8NR07469K-(cit37)/*[position()=1]) 2013; 12 Hantel (C8NR07469K-(cit38)/*[position()=1]) 2011; 13 Korenblit (C8NR07469K-(cit44)/*[position()=1]) 2012; 22 Galhena (C8NR07469K-(cit21)/*[position()=1]) 2016; 10 Chmiola (C8NR07469K-(cit16)/*[position()=1]) 2006; 158 Talyzin (C8NR07469K-(cit23)/*[position()=1]) 2011; 2 Sun (C8NR07469K-(cit1)/*[position()=1]) 2018; 57 Stoller (C8NR07469K-(cit6)/*[position()=1]) 2008; 8 Rezania (C8NR07469K-(cit26)/*[position()=1]) 2014; 14 Mercier (C8NR07469K-(cit34)/*[position()=1]) 2015; 119 You (C8NR07469K-(cit32)/*[position()=1]) 2013; 52 Lv (C8NR07469K-(cit9)/*[position()=1]) 2016; 2 Frackowiak (C8NR07469K-(cit17)/*[position()=1]) 2007; 9 Klechikov (C8NR07469K-(cit50)/*[position()=1]) 2015; 7 Klechikov (C8NR07469K-(cit54)/*[position()=1]) 2018; 140 Liu (C8NR07469K-(cit43)/*[position()=1]) 2016; 45 Kleszyk (C8NR07469K-(cit39)/*[position()=1]) 2015; 81 Klechikov (C8NR07469K-(cit25)/*[position()=1]) 2017; 9 Prehal (C8NR07469K-(cit41)/*[position()=1]) 2015; 8 Dreyer (C8NR07469K-(cit49)/*[position()=1]) 2010; 39 |
References_xml | – volume: 57 start-page: 1034 year: 2018 ident: C8NR07469K-(cit1)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710502 – volume: 81 start-page: 148 year: 2015 ident: C8NR07469K-(cit39)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2014.09.043 – volume: 62 start-page: 501 year: 2013 ident: C8NR07469K-(cit7)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2013.06.049 – volume: 47 start-page: 8268 year: 2008 ident: C8NR07469K-(cit31)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802860 – volume: 13 start-page: 12403 year: 2011 ident: C8NR07469K-(cit20)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20748b – volume: 10 start-page: 747 year: 2016 ident: C8NR07469K-(cit21)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b05819 – volume: 2 start-page: 309 year: 2011 ident: C8NR07469K-(cit23)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1016476 – volume: 158 start-page: 765 year: 2006 ident: C8NR07469K-(cit16)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.09.008 – volume: 341 start-page: 1502 year: 2013 ident: C8NR07469K-(cit46)/*[position()=1] publication-title: Science doi: 10.1126/science.1241488 – volume: 550 start-page: 380 year: 2017 ident: C8NR07469K-(cit28)/*[position()=1] publication-title: Nature doi: 10.1038/nature24044 – volume: 22 start-page: 1655 year: 2012 ident: C8NR07469K-(cit44)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102573 – volume: 6 start-page: 8357 year: 2012 ident: C8NR07469K-(cit33)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn3031244 – volume: 115 start-page: 430 year: 2017 ident: C8NR07469K-(cit51)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.12.097 – volume: 51 start-page: 15280 year: 2015 ident: C8NR07469K-(cit3)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC05474E – volume: 38 start-page: 2520 year: 2009 ident: C8NR07469K-(cit11)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b813846j – volume: 8 start-page: 1725 year: 2015 ident: C8NR07469K-(cit41)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00488H – volume: 7 start-page: 12625 year: 2015 ident: C8NR07469K-(cit24)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR02564H – volume: 140 start-page: 157 year: 2018 ident: C8NR07469K-(cit54)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2018.08.033 – volume: 45 start-page: 4340 year: 2016 ident: C8NR07469K-(cit43)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00041J – volume: 9 start-page: 6929 year: 2017 ident: C8NR07469K-(cit25)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR01792H – volume: 120 start-page: 145 year: 2017 ident: C8NR07469K-(cit2)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2017.05.007 – volume: 8 start-page: 12165 year: 2016 ident: C8NR07469K-(cit8)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02164 – volume: 102 start-page: 297 year: 2016 ident: C8NR07469K-(cit52)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.02.070 – volume: 2 start-page: 403 year: 2013 ident: C8NR07469K-(cit45)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.11.006 – volume: 59 start-page: 466 year: 1860 ident: C8NR07469K-(cit29)/*[position()=1] publication-title: Ann. Chim. Phys. – volume: 313 start-page: 1760 year: 2006 ident: C8NR07469K-(cit19)/*[position()=1] publication-title: Science doi: 10.1126/science.1132195 – volume: 39 start-page: 228 year: 2010 ident: C8NR07469K-(cit49)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/B917103G – volume: 12 start-page: 351 year: 2013 ident: C8NR07469K-(cit37)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3567 – volume: 130 start-page: 2730 year: 2008 ident: C8NR07469K-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja7106178 – volume: 209 start-page: 509 year: 1994 ident: C8NR07469K-(cit53)/*[position()=1] publication-title: Z. Kristallogr. doi: 10.1524/zkri.1994.209.6.509 – volume: 263 start-page: 130 year: 2014 ident: C8NR07469K-(cit47)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.04.024 – volume: 52 start-page: 171 year: 2013 ident: C8NR07469K-(cit32)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2012.09.018 – volume: 119 start-page: 27179 year: 2015 ident: C8NR07469K-(cit34)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b06402 – volume: 138 start-page: 5731 year: 2016 ident: C8NR07469K-(cit13)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02115 – volume: 5 start-page: 6474 year: 2012 ident: C8NR07469K-(cit40)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03092f – volume: 131 start-page: 18445 year: 2009 ident: C8NR07469K-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907492s – volume: 332 start-page: 1537 year: 2011 ident: C8NR07469K-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1200770 – volume: 7 start-page: 845 year: 2008 ident: C8NR07469K-(cit18)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 7 start-page: 1250 year: 2014 ident: C8NR07469K-(cit5)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43525C – volume: 8 start-page: 3498 year: 2008 ident: C8NR07469K-(cit6)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl802558y – volume: 3 start-page: 812 year: 2012 ident: C8NR07469K-(cit36)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300162u – volume: 14 start-page: 3993 year: 2014 ident: C8NR07469K-(cit26)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5013689 – volume: 7 start-page: 15374 year: 2015 ident: C8NR07469K-(cit50)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR04096E – volume: 7 start-page: 1395 year: 2013 ident: C8NR07469K-(cit35)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn3051105 – volume: 13 start-page: 1221 year: 2011 ident: C8NR07469K-(cit38)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.08.039 – volume: 2 start-page: 16215 year: 2017 ident: C8NR07469K-(cit42)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.215 – volume: 44 start-page: 2498 year: 2006 ident: C8NR07469K-(cit15)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2006.05.022 – volume: 510 start-page: 1 year: 1934 ident: C8NR07469K-(cit30)/*[position()=1] publication-title: Justus Liebigs Ann. Chem. doi: 10.1002/jlac.19345100102 – volume: 1 start-page: 16033 year: 2016 ident: C8NR07469K-(cit10)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.33 – volume: 2 start-page: 107 year: 2016 ident: C8NR07469K-(cit9)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.10.002 – volume: 9 start-page: 1774 year: 2007 ident: C8NR07469K-(cit17)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b618139m – volume: 11 start-page: 2459 year: 2017 ident: C8NR07469K-(cit12)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b07668 – volume: 49 start-page: 1894 year: 2011 ident: C8NR07469K-(cit22)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2011.01.013 – volume: 100 start-page: 546 year: 2016 ident: C8NR07469K-(cit48)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.01.062 |
SSID | ssj0069363 |
Score | 2.4099655 |
Snippet | The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage... |
SourceID | swepub proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21386 |
SubjectTerms | Acetonitrile BGO (crystal) Electrolytes Energy storage Graphite Intercalation Interlayers Pore size Porosity Porous materials Supercapacitors Swelling Synchrotron radiation Temperature dependence X-ray diffraction |
Title | Exactly matched pore size for the intercalation of electrolyte ions determined using the tunable swelling of graphite oxide in supercapacitor electrodes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30427042 https://www.proquest.com/docview/2136576249 https://www.proquest.com/docview/2133435474 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-154332 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfG9gIPiH-DwkBGICQ0ZSS22zSPY2wMNoYEHfQtchwHopVkyh-09ZPwgfhgnB3badmEgIdGrR07Ue7X853zuzuEnoooCYMkkB6YwiOPgQfhRanve0KKQMIKwbhQgcLvjkb7x-ztdDhdWfm5wFpqm2RLzC-NK_kfqUIbyFVFyf6DZN2k0ADfQb5wBAnD8a9kvHvGRTM73wSrE559ugm2tNys87l05EGVDaICMTjD0JS9mZ030KloMqnhw8DwtraxU03bhVTVamvP8KJ1autcsQrO8lSnGqnbUzU5eN2gFio7dWpYicbiBfVd1nAHDkAf2y4cJC--tm5NeMNP2uKk_K5VVWX3k9WLIPDZc-jotn8LDsZsnee853ZP-Ox8bhIhdME6lSHumr2MYKx5IaFDX7djYumqmo5iit71WpEoCiSlXerzLbnYFi6rdX8Bvmy4pKSpTb9tf3eFPi8sJz5V2VjFuKhUWZbopF80LVHg6H28d3x4GE92p5MraI2As0JW0dr2wcvXn61FMIqorujnbt2myaXRi37uZcPogrcDtk9Vi98S2mojaHIDXTfeC97uoHgTrcjiFrq2kNPyNvphQIkNKLECJVagxABKDOjCS6DEZYYXQIkVKHEPSqxBqYcZUGILSjXSghJrUMLMeBmUuAflHXS8tzvZ2fdM-Q9PsKHfeEwlF5QZAY-XBCm0EQnmbpaMlbh4lgUy4iRL_IwEIsmG2SijVHAeccHBpuWErqPVoizkPYQFlUFKiaSwsrOhZAlnfpgGLCTch0miAXpun30sTG58VaJlFmuOBo3infHRBy2ngwF64s497TLCXHrWhhVhbDRGHRPFKQXrg8EFH7tuQLh6SccLWbb6HAouDAvZAN3tRO8uo7YeQ_gM0DpgwTX3GBqgZx08XJ_KHv8q_7Qdl9WXuP3WxuAyUUru__n2HqCr_d9zA602VSsfgvHdJI8Mtn8BeevlYw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exactly+matched+pore+size+for+the+intercalation+of+electrolyte+ions+determined+using+the+tunable+swelling+of+graphite+oxide+in+supercapacitor+electrodes&rft.jtitle=Nanoscale&rft.au=Sun%2C+Jinhua&rft.au=Iakunkov%2C+Artem&rft.au=Rebrikova%2C+Anastasiia+T&rft.au=Talyzin%2C+Alexandr+V&rft.date=2018-12-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=10&rft.issue=45&rft.spage=21386&rft.epage=21395&rft_id=info:doi/10.1039%2Fc8nr07469k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |