Exactly matched pore size for the intercalation of electrolyte ions determined using the tunable swelling of graphite oxide in supercapacitor electrodes

The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be us...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 1; no. 45; pp. 21386 - 21395
Main Authors Sun, Jinhua, Iakunkov, Artem, Rebrikova, Anastasiia T, Talyzin, Alexandr V
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF 4 ) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF 4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF 4 ions (about 9-10 Å). The intercalation of TEA-BF 4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å. Brodie graphite oxide structure is intercalated by TEA-BF 4 in acetonitrile solution at low temperature and high electrolyte concentration adopting inter-layer distance of ∼15-16.6 Å thus providing estimate for smallest size of slit pores required for penetration of the ions.
AbstractList The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of approximate to 8.9 angstrom and the two-layer solvate (approximate to 12.5 angstrom) at low temperature, thus providing slit pores of approximately 2.5 and 6 angstrom. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF4) ions do not penetrate into both the 2.5 and 6 angstrom slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of approximate to 15-16.6 angstrom, which corresponds to the insertion of partly desolvated TEA-BF4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF4 ions (about 9-10 angstrom). The intercalation of TEA-BF4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of approximate to 10 angstrom.
The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF4) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15–16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF4 ions (about 9–10 Å). The intercalation of TEA-BF4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å.
The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF 4 ) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF 4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF 4 ions (about 9-10 Å). The intercalation of TEA-BF 4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å. Brodie graphite oxide structure is intercalated by TEA-BF 4 in acetonitrile solution at low temperature and high electrolyte concentration adopting inter-layer distance of ∼15-16.6 Å thus providing estimate for smallest size of slit pores required for penetration of the ions.
The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF4) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF4 ions (about 9-10 Å). The intercalation of TEA-BF4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å.The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF4) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF4 ions (about 9-10 Å). The intercalation of TEA-BF4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å.
The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF ) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF ions (about 9-10 Å). The intercalation of TEA-BF ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å.
The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF 4 ) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15–16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF 4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF 4 ions (about 9–10 Å). The intercalation of TEA-BF 4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å.
Author Talyzin, Alexandr V
Iakunkov, Artem
Rebrikova, Anastasiia T
Sun, Jinhua
AuthorAffiliation Department of Chemistry
Umeå University
Moscow State University
Department of Physics
AuthorAffiliation_xml – sequence: 0
  name: Moscow State University
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Department of Physics
– sequence: 0
  name: Umeå University
Author_xml – sequence: 1
  givenname: Jinhua
  surname: Sun
  fullname: Sun, Jinhua
– sequence: 2
  givenname: Artem
  surname: Iakunkov
  fullname: Iakunkov, Artem
– sequence: 3
  givenname: Anastasiia T
  surname: Rebrikova
  fullname: Rebrikova, Anastasiia T
– sequence: 4
  givenname: Alexandr V
  surname: Talyzin
  fullname: Talyzin, Alexandr V
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30427042$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-154332$$DView record from Swedish Publication Index
BookMark eNptkl1rFDEUhoNUbLt6470S8EaE0XzNzM5lWesHFgVRb0Mmk-ymZpJpPrDrL_HnmtndrlC8CAknz_vmnJxzDk6cdwqApxi9xoh2b-TSBdSypvv5AJwRxFBFaUtOjueGnYLzGK8Rajra0EfglCJG2rLOwJ_LWyGT3cJRJLlRA5x8UDCa3wpqH2DaKGhcUkEKK5LxDnoNlVUyBW-3qVx6F-GgCjEaV-Q5GrfeyVJ2orfF65eydg4W5TqIaWOKzN-aYXaGMU-z-SSkSeW9g_Wg4mPwUAsb1ZPDvgDf311-W32orr68_7i6uKokq1GqGKFNqzTpWkbwUGJEtYzqfolpVwutseoE0T3SBMte17rRlEohOiEFxkgQugDV3rfkOeWeT8GMImy5F4a_NT8uuA9rnsfMcc0onfmXe34K_iarmPhooiwlCqd8jpxgShmtWcliAV7cQ699Dq5UM1NN3TaEdYV6fqByP6rhmMBdjwqA9oAMPsagNC9_tWtGCsJYjhGfx4Cvlp-_7sbgU5G8uie5c_0v_GwPhyiP3L-Zon8BbF2_uA
CitedBy_id crossref_primary_10_1016_j_jallcom_2024_177582
crossref_primary_10_1002_adma_202306689
crossref_primary_10_1002_admi_202300554
crossref_primary_10_1002_adsu_201900133
crossref_primary_10_1016_j_isci_2024_109429
crossref_primary_10_1016_j_jcat_2021_10_014
crossref_primary_10_3390_molecules26175343
crossref_primary_10_1002_smtd_202400029
crossref_primary_10_1016_j_seppur_2025_132017
crossref_primary_10_1021_acsami_3c08042
crossref_primary_10_1039_D2SU00054G
crossref_primary_10_3390_app13052958
crossref_primary_10_1039_D2CC06772B
crossref_primary_10_1039_D0NR04931J
crossref_primary_10_1126_sciadv_abf0812
crossref_primary_10_1002_smll_202304227
crossref_primary_10_3390_nano11010091
crossref_primary_10_1038_s41699_024_00462_z
crossref_primary_10_1088_2632_959X_ad2998
crossref_primary_10_1149_1945_7111_accb6a
crossref_primary_10_1007_s43939_023_00065_3
crossref_primary_10_1002_cssc_202300027
crossref_primary_10_1016_j_rser_2020_109871
crossref_primary_10_1021_acs_energyfuels_1c03625
crossref_primary_10_1039_C9CP03327K
crossref_primary_10_1021_acs_jpcc_1c00327
crossref_primary_10_1039_D2NR03075F
Cites_doi 10.1002/anie.201710502
10.1016/j.carbon.2014.09.043
10.1016/j.carbon.2013.06.049
10.1002/anie.200802860
10.1039/c1cp20748b
10.1021/acsnano.5b05819
10.1021/jz1016476
10.1016/j.jpowsour.2005.09.008
10.1126/science.1241488
10.1038/nature24044
10.1002/adfm.201102573
10.1021/nn3031244
10.1016/j.carbon.2016.12.097
10.1039/C5CC05474E
10.1039/b813846j
10.1039/C5EE00488H
10.1039/C5NR02564H
10.1016/j.carbon.2018.08.033
10.1039/C6CS00041J
10.1039/C7NR01792H
10.1016/j.carbon.2017.05.007
10.1021/acsami.6b02164
10.1016/j.carbon.2016.02.070
10.1016/j.nanoen.2012.11.006
10.1126/science.1132195
10.1039/B917103G
10.1038/nmat3567
10.1021/ja7106178
10.1524/zkri.1994.209.6.509
10.1016/j.jpowsour.2014.04.024
10.1016/j.carbon.2012.09.018
10.1021/acs.jpcc.5b06402
10.1021/jacs.6b02115
10.1039/c2ee03092f
10.1021/ja907492s
10.1126/science.1200770
10.1038/nmat2297
10.1039/C3EE43525C
10.1021/nl802558y
10.1021/jz300162u
10.1021/nl5013689
10.1039/C5NR04096E
10.1021/nn3051105
10.1016/j.elecom.2011.08.039
10.1038/nenergy.2016.215
10.1016/j.carbon.2006.05.022
10.1002/jlac.19345100102
10.1038/natrevmats.2016.33
10.1016/j.ensm.2015.10.002
10.1039/b618139m
10.1021/acsnano.6b07668
10.1016/j.carbon.2011.01.013
10.1016/j.carbon.2016.01.062
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOI 10.1039/c8nr07469k
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 21395
ExternalDocumentID oai_DiVA_org_umu_154332
30427042
10_1039_C8NR07469K
c8nr07469k
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ABIQK
ACRPL
ADHXS
ADNMO
ADTPV
AGQPQ
AHGXI
ALSGL
ANBJS
ANLMG
AOWAS
ASPBG
AVWKF
CAG
COF
D8T
D93
FEDTE
HVGLF
J3G
J3H
L-8
R56
ZZAVC
ID FETCH-LOGICAL-c450t-42367ef297421dc452e743fb81395aff1e9a2fb0f21cbf5f6f33caa9aca110a23
ISSN 2040-3364
2040-3372
IngestDate Thu Aug 21 06:42:49 EDT 2025
Fri Jul 11 02:06:12 EDT 2025
Mon Jun 30 03:58:18 EDT 2025
Wed Feb 19 02:42:34 EST 2025
Tue Jul 01 01:13:31 EDT 2025
Thu Apr 24 22:52:38 EDT 2025
Tue Dec 17 21:00:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-42367ef297421dc452e743fb81395aff1e9a2fb0f21cbf5f6f33caa9aca110a23
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c8nr07469k
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3320-8487
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-154332
PMID 30427042
PQID 2136576249
PQPubID 2047485
PageCount 1
ParticipantIDs proquest_miscellaneous_2133435474
pubmed_primary_30427042
proquest_journals_2136576249
swepub_primary_oai_DiVA_org_umu_154332
rsc_primary_c8nr07469k
crossref_citationtrail_10_1039_C8NR07469K
crossref_primary_10_1039_C8NR07469K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-07
PublicationDateYYYYMMDD 2018-12-07
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hofmann (C8NR07469K-(cit30)/*[position()=1]) 1934; 510
You (C8NR07469K-(cit36)/*[position()=1]) 2012; 3
Tsai (C8NR07469K-(cit45)/*[position()=1]) 2013; 2
El-Kady (C8NR07469K-(cit10)/*[position()=1]) 2016; 1
Largeot (C8NR07469K-(cit14)/*[position()=1]) 2008; 130
Sun (C8NR07469K-(cit2)/*[position()=1]) 2017; 120
Luo (C8NR07469K-(cit12)/*[position()=1]) 2017; 11
Forse (C8NR07469K-(cit13)/*[position()=1]) 2016; 138
Brodie (C8NR07469K-(cit29)/*[position()=1]) 1860; 59
Chen (C8NR07469K-(cit28)/*[position()=1]) 2017; 550
Ouyang (C8NR07469K-(cit7)/*[position()=1]) 2013; 62
Decaux (C8NR07469K-(cit47)/*[position()=1]) 2014; 263
Ding (C8NR07469K-(cit8)/*[position()=1]) 2016; 8
Sevilla (C8NR07469K-(cit5)/*[position()=1]) 2014; 7
Talyzin (C8NR07469K-(cit51)/*[position()=1]) 2017; 115
You (C8NR07469K-(cit35)/*[position()=1]) 2013; 7
Klechikov (C8NR07469K-(cit3)/*[position()=1]) 2015; 51
Zhang (C8NR07469K-(cit11)/*[position()=1]) 2009; 38
Talyzin (C8NR07469K-(cit27)/*[position()=1]) 2009; 131
Zhu (C8NR07469K-(cit33)/*[position()=1]) 2012; 6
Simon (C8NR07469K-(cit18)/*[position()=1]) 2008; 7
Talyzin (C8NR07469K-(cit22)/*[position()=1]) 2011; 49
Giuseppetti (C8NR07469K-(cit53)/*[position()=1]) 1994; 209
Raymundo-Pinero (C8NR07469K-(cit15)/*[position()=1]) 2006; 44
Prehal (C8NR07469K-(cit42)/*[position()=1]) 2017; 2
Korobov (C8NR07469K-(cit52)/*[position()=1]) 2016; 102
Centeno (C8NR07469K-(cit20)/*[position()=1]) 2011; 13
Talyzin (C8NR07469K-(cit24)/*[position()=1]) 2015; 7
Cabrillo (C8NR07469K-(cit48)/*[position()=1]) 2016; 100
Zhu (C8NR07469K-(cit4)/*[position()=1]) 2011; 332
Talyzin (C8NR07469K-(cit31)/*[position()=1]) 2008; 47
Lukatskaya (C8NR07469K-(cit46)/*[position()=1]) 2013; 341
Chmiola (C8NR07469K-(cit19)/*[position()=1]) 2006; 313
Kondrat (C8NR07469K-(cit40)/*[position()=1]) 2012; 5
Deschamps (C8NR07469K-(cit37)/*[position()=1]) 2013; 12
Hantel (C8NR07469K-(cit38)/*[position()=1]) 2011; 13
Korenblit (C8NR07469K-(cit44)/*[position()=1]) 2012; 22
Galhena (C8NR07469K-(cit21)/*[position()=1]) 2016; 10
Chmiola (C8NR07469K-(cit16)/*[position()=1]) 2006; 158
Talyzin (C8NR07469K-(cit23)/*[position()=1]) 2011; 2
Sun (C8NR07469K-(cit1)/*[position()=1]) 2018; 57
Stoller (C8NR07469K-(cit6)/*[position()=1]) 2008; 8
Rezania (C8NR07469K-(cit26)/*[position()=1]) 2014; 14
Mercier (C8NR07469K-(cit34)/*[position()=1]) 2015; 119
You (C8NR07469K-(cit32)/*[position()=1]) 2013; 52
Lv (C8NR07469K-(cit9)/*[position()=1]) 2016; 2
Frackowiak (C8NR07469K-(cit17)/*[position()=1]) 2007; 9
Klechikov (C8NR07469K-(cit50)/*[position()=1]) 2015; 7
Klechikov (C8NR07469K-(cit54)/*[position()=1]) 2018; 140
Liu (C8NR07469K-(cit43)/*[position()=1]) 2016; 45
Kleszyk (C8NR07469K-(cit39)/*[position()=1]) 2015; 81
Klechikov (C8NR07469K-(cit25)/*[position()=1]) 2017; 9
Prehal (C8NR07469K-(cit41)/*[position()=1]) 2015; 8
Dreyer (C8NR07469K-(cit49)/*[position()=1]) 2010; 39
References_xml – volume: 57
  start-page: 1034
  year: 2018
  ident: C8NR07469K-(cit1)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710502
– volume: 81
  start-page: 148
  year: 2015
  ident: C8NR07469K-(cit39)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.09.043
– volume: 62
  start-page: 501
  year: 2013
  ident: C8NR07469K-(cit7)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.06.049
– volume: 47
  start-page: 8268
  year: 2008
  ident: C8NR07469K-(cit31)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802860
– volume: 13
  start-page: 12403
  year: 2011
  ident: C8NR07469K-(cit20)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20748b
– volume: 10
  start-page: 747
  year: 2016
  ident: C8NR07469K-(cit21)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05819
– volume: 2
  start-page: 309
  year: 2011
  ident: C8NR07469K-(cit23)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1016476
– volume: 158
  start-page: 765
  year: 2006
  ident: C8NR07469K-(cit16)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.09.008
– volume: 341
  start-page: 1502
  year: 2013
  ident: C8NR07469K-(cit46)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1241488
– volume: 550
  start-page: 380
  year: 2017
  ident: C8NR07469K-(cit28)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature24044
– volume: 22
  start-page: 1655
  year: 2012
  ident: C8NR07469K-(cit44)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102573
– volume: 6
  start-page: 8357
  year: 2012
  ident: C8NR07469K-(cit33)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn3031244
– volume: 115
  start-page: 430
  year: 2017
  ident: C8NR07469K-(cit51)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.097
– volume: 51
  start-page: 15280
  year: 2015
  ident: C8NR07469K-(cit3)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05474E
– volume: 38
  start-page: 2520
  year: 2009
  ident: C8NR07469K-(cit11)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b813846j
– volume: 8
  start-page: 1725
  year: 2015
  ident: C8NR07469K-(cit41)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00488H
– volume: 7
  start-page: 12625
  year: 2015
  ident: C8NR07469K-(cit24)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR02564H
– volume: 140
  start-page: 157
  year: 2018
  ident: C8NR07469K-(cit54)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.08.033
– volume: 45
  start-page: 4340
  year: 2016
  ident: C8NR07469K-(cit43)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00041J
– volume: 9
  start-page: 6929
  year: 2017
  ident: C8NR07469K-(cit25)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR01792H
– volume: 120
  start-page: 145
  year: 2017
  ident: C8NR07469K-(cit2)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.05.007
– volume: 8
  start-page: 12165
  year: 2016
  ident: C8NR07469K-(cit8)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02164
– volume: 102
  start-page: 297
  year: 2016
  ident: C8NR07469K-(cit52)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.02.070
– volume: 2
  start-page: 403
  year: 2013
  ident: C8NR07469K-(cit45)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.11.006
– volume: 59
  start-page: 466
  year: 1860
  ident: C8NR07469K-(cit29)/*[position()=1]
  publication-title: Ann. Chim. Phys.
– volume: 313
  start-page: 1760
  year: 2006
  ident: C8NR07469K-(cit19)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1132195
– volume: 39
  start-page: 228
  year: 2010
  ident: C8NR07469K-(cit49)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B917103G
– volume: 12
  start-page: 351
  year: 2013
  ident: C8NR07469K-(cit37)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3567
– volume: 130
  start-page: 2730
  year: 2008
  ident: C8NR07469K-(cit14)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja7106178
– volume: 209
  start-page: 509
  year: 1994
  ident: C8NR07469K-(cit53)/*[position()=1]
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.1994.209.6.509
– volume: 263
  start-page: 130
  year: 2014
  ident: C8NR07469K-(cit47)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.04.024
– volume: 52
  start-page: 171
  year: 2013
  ident: C8NR07469K-(cit32)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.09.018
– volume: 119
  start-page: 27179
  year: 2015
  ident: C8NR07469K-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b06402
– volume: 138
  start-page: 5731
  year: 2016
  ident: C8NR07469K-(cit13)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02115
– volume: 5
  start-page: 6474
  year: 2012
  ident: C8NR07469K-(cit40)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03092f
– volume: 131
  start-page: 18445
  year: 2009
  ident: C8NR07469K-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907492s
– volume: 332
  start-page: 1537
  year: 2011
  ident: C8NR07469K-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1200770
– volume: 7
  start-page: 845
  year: 2008
  ident: C8NR07469K-(cit18)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 7
  start-page: 1250
  year: 2014
  ident: C8NR07469K-(cit5)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43525C
– volume: 8
  start-page: 3498
  year: 2008
  ident: C8NR07469K-(cit6)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl802558y
– volume: 3
  start-page: 812
  year: 2012
  ident: C8NR07469K-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300162u
– volume: 14
  start-page: 3993
  year: 2014
  ident: C8NR07469K-(cit26)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5013689
– volume: 7
  start-page: 15374
  year: 2015
  ident: C8NR07469K-(cit50)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR04096E
– volume: 7
  start-page: 1395
  year: 2013
  ident: C8NR07469K-(cit35)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn3051105
– volume: 13
  start-page: 1221
  year: 2011
  ident: C8NR07469K-(cit38)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.08.039
– volume: 2
  start-page: 16215
  year: 2017
  ident: C8NR07469K-(cit42)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.215
– volume: 44
  start-page: 2498
  year: 2006
  ident: C8NR07469K-(cit15)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.05.022
– volume: 510
  start-page: 1
  year: 1934
  ident: C8NR07469K-(cit30)/*[position()=1]
  publication-title: Justus Liebigs Ann. Chem.
  doi: 10.1002/jlac.19345100102
– volume: 1
  start-page: 16033
  year: 2016
  ident: C8NR07469K-(cit10)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.33
– volume: 2
  start-page: 107
  year: 2016
  ident: C8NR07469K-(cit9)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.10.002
– volume: 9
  start-page: 1774
  year: 2007
  ident: C8NR07469K-(cit17)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b618139m
– volume: 11
  start-page: 2459
  year: 2017
  ident: C8NR07469K-(cit12)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07668
– volume: 49
  start-page: 1894
  year: 2011
  ident: C8NR07469K-(cit22)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.01.013
– volume: 100
  start-page: 546
  year: 2016
  ident: C8NR07469K-(cit48)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.01.062
SSID ssj0069363
Score 2.4099655
Snippet The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage...
SourceID swepub
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21386
SubjectTerms Acetonitrile
BGO (crystal)
Electrolytes
Energy storage
Graphite
Intercalation
Interlayers
Pore size
Porosity
Porous materials
Supercapacitors
Swelling
Synchrotron radiation
Temperature dependence
X-ray diffraction
Title Exactly matched pore size for the intercalation of electrolyte ions determined using the tunable swelling of graphite oxide in supercapacitor electrodes
URI https://www.ncbi.nlm.nih.gov/pubmed/30427042
https://www.proquest.com/docview/2136576249
https://www.proquest.com/docview/2133435474
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-154332
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfG9gIPiH-DwkBGICQ0ZSS22zSPY2wMNoYEHfQtchwHopVkyh-09ZPwgfhgnB3badmEgIdGrR07Ue7X853zuzuEnoooCYMkkB6YwiOPgQfhRanve0KKQMIKwbhQgcLvjkb7x-ztdDhdWfm5wFpqm2RLzC-NK_kfqUIbyFVFyf6DZN2k0ADfQb5wBAnD8a9kvHvGRTM73wSrE559ugm2tNys87l05EGVDaICMTjD0JS9mZ030KloMqnhw8DwtraxU03bhVTVamvP8KJ1autcsQrO8lSnGqnbUzU5eN2gFio7dWpYicbiBfVd1nAHDkAf2y4cJC--tm5NeMNP2uKk_K5VVWX3k9WLIPDZc-jotn8LDsZsnee853ZP-Ox8bhIhdME6lSHumr2MYKx5IaFDX7djYumqmo5iit71WpEoCiSlXerzLbnYFi6rdX8Bvmy4pKSpTb9tf3eFPi8sJz5V2VjFuKhUWZbopF80LVHg6H28d3x4GE92p5MraI2As0JW0dr2wcvXn61FMIqorujnbt2myaXRi37uZcPogrcDtk9Vi98S2mojaHIDXTfeC97uoHgTrcjiFrq2kNPyNvphQIkNKLECJVagxABKDOjCS6DEZYYXQIkVKHEPSqxBqYcZUGILSjXSghJrUMLMeBmUuAflHXS8tzvZ2fdM-Q9PsKHfeEwlF5QZAY-XBCm0EQnmbpaMlbh4lgUy4iRL_IwEIsmG2SijVHAeccHBpuWErqPVoizkPYQFlUFKiaSwsrOhZAlnfpgGLCTch0miAXpun30sTG58VaJlFmuOBo3infHRBy2ngwF64s497TLCXHrWhhVhbDRGHRPFKQXrg8EFH7tuQLh6SccLWbb6HAouDAvZAN3tRO8uo7YeQ_gM0DpgwTX3GBqgZx08XJ_KHv8q_7Qdl9WXuP3WxuAyUUru__n2HqCr_d9zA602VSsfgvHdJI8Mtn8BeevlYw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exactly+matched+pore+size+for+the+intercalation+of+electrolyte+ions+determined+using+the+tunable+swelling+of+graphite+oxide+in+supercapacitor+electrodes&rft.jtitle=Nanoscale&rft.au=Sun%2C+Jinhua&rft.au=Iakunkov%2C+Artem&rft.au=Rebrikova%2C+Anastasiia+T&rft.au=Talyzin%2C+Alexandr+V&rft.date=2018-12-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=10&rft.issue=45&rft.spage=21386&rft.epage=21395&rft_id=info:doi/10.1039%2Fc8nr07469k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon