Model-Based Deep Learning PET Image Reconstruction Using Forward-Backward Splitting Expectation-Maximization

We propose a forward-backward splitting algorithm to integrate deep learning into maximum- a-posteriori (MAP) positron emission tomography (PET) image reconstruction. The MAP reconstruction is split into regularization, expectation-maximization (EM), and a weighted fusion. For regularization, the us...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on radiation and plasma medical sciences Vol. 5; no. 1; pp. 54 - 64
Main Authors Mehranian, Abolfazl, Reader, Andrew J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a forward-backward splitting algorithm to integrate deep learning into maximum- a-posteriori (MAP) positron emission tomography (PET) image reconstruction. The MAP reconstruction is split into regularization, expectation-maximization (EM), and a weighted fusion. For regularization, the use of either a Bowsher prior (using Markov-random fields) or a residual learning unit (using convolutional-neural networks) were considered. For the latter, our proposed forward-backward splitting EM (FBSEM), accelerated with ordered subsets (OS), was unrolled into a recurrent-neural network in which network parameters (including regularization strength) are shared across all states and learned during PET reconstruction. Our network was trained and evaluated using PET-only (FBSEM-p) and PET-MR (FBSEM-pm) datasets for low-dose simulations and short-duration in-vivo brain imaging. It was compared to OSEM, Bowsher MAPEM, and a post-reconstruction U-Net denoising trained on the same PET-only (Unet-p) or PET-MR (Unet-pm) datasets. For simulations, FBSEM-p(m) and Unet-p(m) nets achieved a comparable performance, on average, 14.4% and 13.4% normalized root-mean square error (NRMSE), respectively; and both outperformed OSEM and MAPEM methods (with 20.7% and 17.7% NRMSE, respectively). For in-vivo datasets, FBSEM-p(m), Unet-p(m), MAPEM, and OSEM methods achieved average root-sum-of-squared errors of 3.9%, 5.7%, 5.9%, and 7.8% in different brain regions, respectively. In conclusion, the studied U-Net denoising method achieved a comparable performance to a representative implementation of the FBSEM net.
AbstractList We propose a forward-backward splitting algorithm to integrate deep learning into maximum- a-posteriori (MAP) positron emission tomography (PET) image reconstruction. The MAP reconstruction is split into regularization, expectation-maximization (EM), and a weighted fusion. For regularization, the use of either a Bowsher prior (using Markov-random fields) or a residual learning unit (using convolutional-neural networks) were considered. For the latter, our proposed forward-backward splitting EM (FBSEM), accelerated with ordered subsets (OS), was unrolled into a recurrent-neural network in which network parameters (including regularization strength) are shared across all states and learned during PET reconstruction. Our network was trained and evaluated using PET-only (FBSEM-p) and PET-MR (FBSEM-pm) datasets for low-dose simulations and short-duration in-vivo brain imaging. It was compared to OSEM, Bowsher MAPEM, and a post-reconstruction U-Net denoising trained on the same PET-only (Unet-p) or PET-MR (Unet-pm) datasets. For simulations, FBSEM-p(m) and Unet-p(m) nets achieved a comparable performance, on average, 14.4% and 13.4% normalized root-mean square error (NRMSE), respectively; and both outperformed OSEM and MAPEM methods (with 20.7% and 17.7% NRMSE, respectively). For in-vivo datasets, FBSEM-p(m), Unet-p(m), MAPEM, and OSEM methods achieved average root-sum-of-squared errors of 3.9%, 5.7%, 5.9%, and 7.8% in different brain regions, respectively. In conclusion, the studied U-Net denoising method achieved a comparable performance to a representative implementation of the FBSEM net.
We propose a forward-backward splitting algorithm to integrate deep learning into maximum- (MAP) positron emission tomography (PET) image reconstruction. The MAP reconstruction is split into regularization, expectation-maximization (EM), and a weighted fusion. For regularization, the use of either a Bowsher prior (using Markov-random fields) or a residual learning unit (using convolutional-neural networks) were considered. For the latter, our proposed forward-backward splitting EM (FBSEM), accelerated with ordered subsets (OS), was unrolled into a recurrent-neural network in which network parameters (including regularization strength) are shared across all states and learned during PET reconstruction. Our network was trained and evaluated using PET-only (FBSEM-p) and PET-MR (FBSEM-pm) datasets for low-dose simulations and short-duration brain imaging. It was compared to OSEM, Bowsher MAPEM, and a post-reconstruction U-Net denoising trained on the same PET-only (Unet-p) or PET-MR (Unet-pm) datasets. For simulations, FBSEM-p(m) and Unet-p(m) nets achieved a comparable performance, on average, 14.4% and 13.4% normalized root-mean square error (NRMSE), respectively; and both outperformed OSEM and MAPEM methods (with 20.7% and 17.7% NRMSE, respectively). For datasets, FBSEM-p(m), Unet-p(m), MAPEM, and OSEM methods achieved average root-sum-of-squared errors of 3.9%, 5.7%, 5.9%, and 7.8% in different brain regions, respectively. In conclusion, the studied U-Net denoising method achieved a comparable performance to a representative implementation of the FBSEM net.
We propose a forward-backward splitting algorithm to integrate deep learning into maximum- a-posteriori (MAP) positron emission tomography (PET) image reconstruction. The MAP reconstruction is split into regularization, expectation-maximization (EM), and a weighted fusion. For regularization, the use of either a Bowsher prior (using Markov-random fields) or a residual learning unit (using convolutional-neural networks) were considered. For the latter, our proposed forward-backward splitting EM (FBSEM), accelerated with ordered subsets (OS), was unrolled into a recurrent-neural network in which network parameters (including regularization strength) are shared across all states and learned during PET reconstruction. Our network was trained and evaluated using PET-only (FBSEM-p) and PET-MR (FBSEM-pm) datasets for low-dose simulations and short-duration in-vivo brain imaging. It was compared to OSEM, Bowsher MAPEM, and a post-reconstruction U-Net denoising trained on the same PET-only (Unet-p) or PET-MR (Unet-pm) datasets. For simulations, FBSEM-p(m) and Unet-p(m) nets achieved a comparable performance, on average, 14.4% and 13.4% normalized root-mean square error (NRMSE), respectively; and both outperformed OSEM and MAPEM methods (with 20.7% and 17.7% NRMSE, respectively). For in-vivo datasets, FBSEM-p(m), Unet-p(m), MAPEM, and OSEM methods achieved average root-sum-of-squared errors of 3.9%, 5.7%, 5.9%, and 7.8% in different brain regions, respectively. In conclusion, the studied U-Net denoising method achieved a comparable performance to a representative implementation of the FBSEM net.
We propose a forward-backward splitting algorithm to integrate deep learning into maximum-a-posteriori (MAP) positron emission tomography (PET) image reconstruction. The MAP reconstruction is split into regularization, expectation-maximization (EM), and a weighted fusion. For regularization, the use of either a Bowsher prior (using Markov-random fields) or a residual learning unit (using convolutional-neural networks) were considered. For the latter, our proposed forward-backward splitting EM (FBSEM), accelerated with ordered subsets (OS), was unrolled into a recurrent-neural network in which network parameters (including regularization strength) are shared across all states and learned during PET reconstruction. Our network was trained and evaluated using PET-only (FBSEM-p) and PET-MR (FBSEM-pm) datasets for low-dose simulations and short-duration in-vivo brain imaging. It was compared to OSEM, Bowsher MAPEM, and a post-reconstruction U-Net denoising trained on the same PET-only (Unet-p) or PET-MR (Unet-pm) datasets. For simulations, FBSEM-p(m) and Unet-p(m) nets achieved a comparable performance, on average, 14.4% and 13.4% normalized root-mean square error (NRMSE), respectively; and both outperformed OSEM and MAPEM methods (with 20.7% and 17.7% NRMSE, respectively). For in-vivo datasets, FBSEM-p(m), Unet-p(m), MAPEM, and OSEM methods achieved average root-sum-of-squared errors of 3.9%, 5.7%, 5.9%, and 7.8% in different brain regions, respectively. In conclusion, the studied U-Net denoising method achieved a comparable performance to a representative implementation of the FBSEM net.We propose a forward-backward splitting algorithm to integrate deep learning into maximum-a-posteriori (MAP) positron emission tomography (PET) image reconstruction. The MAP reconstruction is split into regularization, expectation-maximization (EM), and a weighted fusion. For regularization, the use of either a Bowsher prior (using Markov-random fields) or a residual learning unit (using convolutional-neural networks) were considered. For the latter, our proposed forward-backward splitting EM (FBSEM), accelerated with ordered subsets (OS), was unrolled into a recurrent-neural network in which network parameters (including regularization strength) are shared across all states and learned during PET reconstruction. Our network was trained and evaluated using PET-only (FBSEM-p) and PET-MR (FBSEM-pm) datasets for low-dose simulations and short-duration in-vivo brain imaging. It was compared to OSEM, Bowsher MAPEM, and a post-reconstruction U-Net denoising trained on the same PET-only (Unet-p) or PET-MR (Unet-pm) datasets. For simulations, FBSEM-p(m) and Unet-p(m) nets achieved a comparable performance, on average, 14.4% and 13.4% normalized root-mean square error (NRMSE), respectively; and both outperformed OSEM and MAPEM methods (with 20.7% and 17.7% NRMSE, respectively). For in-vivo datasets, FBSEM-p(m), Unet-p(m), MAPEM, and OSEM methods achieved average root-sum-of-squared errors of 3.9%, 5.7%, 5.9%, and 7.8% in different brain regions, respectively. In conclusion, the studied U-Net denoising method achieved a comparable performance to a representative implementation of the FBSEM net.
Author Reader, Andrew J.
Mehranian, Abolfazl
Author_xml – sequence: 1
  givenname: Abolfazl
  orcidid: 0000-0003-4584-4453
  surname: Mehranian
  fullname: Mehranian, Abolfazl
  email: abolfazl.mehranian@kcl.ac.uk
  organization: Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, U.K
– sequence: 2
  givenname: Andrew J.
  orcidid: 0000-0002-2726-3383
  surname: Reader
  fullname: Reader, Andrew J.
  organization: Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34056150$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUtVARLaU_ABKKxIZNBr-TbJBKmUKlGVG107Xl2HcGl8QOdgKFryfpTEfQBStf6zzusc9zdOCDB4ReEjwjBFfvVleXy-sZxRTPGMac4_IJOqJcVnnBMDvYz4QcopOUbjHGpChpxcUzdMg4FpIIfISaZbDQ5B90Apt9BOiyBejond9kl_NVdtHqDWRXYIJPfRxM74LPbtIEn4f4U0c7Ss23aciuu8b1_QTN7zowvZ7I-VLfudb9vr-8QE_XuklwsjuP0c35fHX2OV98-XRxdrrIDRe4z5nVZWmYFIUgltE1WKh1SSlIXWBuLdNgNYCgUEtSCyMpMYRrI6FeF2A0O0bvt77dULdgDfg-6kZ10bU6_lJBO_Uv4t1XtQk_VCEJLkU1GrzdGcTwfYDUq9YlA02jPYQhKSqYmFrgE_XNI-ptGKIfn6coL3gpZInxyHr9d6J9lIciRkK5JZgYUoqwVsZtf3AM6BpFsJoWqvva1VS72tU-Sukj6YP7f0WvtiIHAHtBRSjjTLA_Faq66Q
CODEN ITRPFI
CitedBy_id crossref_primary_10_1109_TMI_2022_3176002
crossref_primary_10_1088_1361_6560_ace49c
crossref_primary_10_1109_TRPMS_2020_3014786
crossref_primary_10_1177_14727978251319398
crossref_primary_10_1053_j_semnuclmed_2021_10_005
crossref_primary_10_1002_jmri_29294
crossref_primary_10_1007_s40766_024_00050_3
crossref_primary_10_1109_TRPMS_2022_3204643
crossref_primary_10_1088_1361_6560_ad40f6
crossref_primary_10_1016_j_cpet_2021_06_004
crossref_primary_10_1186_s12880_024_01417_y
crossref_primary_10_1109_TRPMS_2023_3243735
crossref_primary_10_1109_TCI_2021_3118944
crossref_primary_10_1186_s13550_021_00788_5
crossref_primary_10_1007_s00259_021_05478_x
crossref_primary_10_1007_s11042_023_15916_7
crossref_primary_10_1088_1361_6560_ac5bfb
crossref_primary_10_1007_s00259_022_05891_w
crossref_primary_10_1007_s12149_021_01697_2
crossref_primary_10_1109_TRPMS_2021_3101947
crossref_primary_10_3390_s23135783
crossref_primary_10_1109_TMI_2023_3273029
crossref_primary_10_1109_TRPMS_2023_3283786
crossref_primary_10_1016_j_sigpro_2023_109165
crossref_primary_10_1146_annurev_bioeng_082420_020343
crossref_primary_10_6009_jjrt_2024_2365
crossref_primary_10_1055_a_2198_0358
crossref_primary_10_3389_fradi_2024_1466498
crossref_primary_10_1002_mp_17191
crossref_primary_10_1109_TII_2020_3025182
crossref_primary_10_3389_fnume_2023_1324562
crossref_primary_10_1109_TIP_2024_3418347
crossref_primary_10_1109_TRPMS_2022_3161569
crossref_primary_10_1007_s12194_022_00652_8
crossref_primary_10_1002_mp_15520
crossref_primary_10_1088_1361_6560_ad2882
crossref_primary_10_1109_TMI_2024_3356189
crossref_primary_10_1109_TMI_2021_3120913
crossref_primary_10_1109_TMI_2023_3239596
crossref_primary_10_1007_s12194_024_00780_3
crossref_primary_10_1007_s10278_023_00815_y
crossref_primary_10_1109_TRPMS_2023_3349194
crossref_primary_10_1109_TMI_2022_3217543
crossref_primary_10_1007_s00259_025_07119_z
crossref_primary_10_1109_OJSP_2023_3311354
crossref_primary_10_1007_s40336_022_00508_6
crossref_primary_10_1007_s00259_022_05746_4
crossref_primary_10_1088_1361_6560_acde3e
crossref_primary_10_1088_1361_6560_abfa36
crossref_primary_10_1088_1361_6560_abfb17
crossref_primary_10_3389_fnume_2022_936091
crossref_primary_10_1186_s40658_024_00660_0
crossref_primary_10_6009_jjrt_2024_2386
crossref_primary_10_2967_jnumed_121_262303
crossref_primary_10_1088_2057_1976_acf66c
crossref_primary_10_1259_bjr_20230292
Cites_doi 10.1109/42.232263
10.1109/TMI.2012.2211378
10.1088/1361-6560/ab3242
10.1109/TMI.2018.2869871
10.1109/JPROC.2019.2936809
10.1109/TMI.2018.2888491
10.1109/TMI.2018.2865356
10.1109/CVPR.2016.90
10.1053/j.semnuclmed.2012.08.006
10.1007/s00259-019-04468-4
10.1088/1361-6560/aa7670
10.1038/nature25988
10.1109/TRPMS.2017.2771490
10.1109/TRPMS.2018.2877644
10.1214/aos/1021379863
10.1117/12.2513096
10.1109/NSSMIC.2004.1462760
10.1109/TMI.2018.2833635
10.1111/j.2517-6161.1990.tb01798.x
10.1007/978-1-4419-9569-8_10
10.1088/0031-9155/51/15/R01
10.1109/NSS/MIC42101.2019.9059998
10.1007/978-3-319-24574-4_28
10.1088/1361-6560/ab0dc0
10.1109/42.538946
10.1109/TRPMS.2018.2844559
10.1109/TMI.1987.4307826
10.1109/NSSMIC.2018.8824563
10.1016/j.media.2019.03.013
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1109/TRPMS.2020.3004408
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2469-7303
EndPage 64
ExternalDocumentID PMC7610859
34056150
10_1109_TRPMS_2020_3004408
9123435
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Department of Health through the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust
  funderid: 10.13039/100010872
– fundername: Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/M020142/1
  funderid: 10.13039/501100000266
– fundername: Wellcome EPSRC Centre for Medical Engineering at King’s College London
  grantid: WT 203148/Z/16/Z
  funderid: 10.13039/501100000266
– fundername: Wellcome Trust
  grantid: 203148
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
NPM
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c450t-3da88c365751d32fedeba822e6a704dd3aedaee52eb61b5c621c14ac6ebf7eca3
IEDL.DBID RIE
ISSN 2469-7311
IngestDate Thu Aug 21 18:17:30 EDT 2025
Fri Jul 11 09:03:59 EDT 2025
Mon Jun 30 17:52:33 EDT 2025
Mon Jul 21 06:00:17 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 03:04:15 EDT 2025
Wed Aug 27 02:32:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords image reconstruction
Deep learning (DL)
MRI
positron emission tomography (PET)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-3da88c365751d32fedeba822e6a704dd3aedaee52eb61b5c621c14ac6ebf7eca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4584-4453
0000-0002-2726-3383
OpenAccessLink https://kclpure.kcl.ac.uk/ws/files/130912953/Author_Accepted_Final.pdf
PMID 34056150
PQID 2474856800
PQPubID 4437208
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7610859
ieee_primary_9123435
pubmed_primary_34056150
proquest_journals_2474856800
proquest_miscellaneous_2535110949
crossref_citationtrail_10_1109_TRPMS_2020_3004408
crossref_primary_10_1109_TRPMS_2020_3004408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on radiation and plasma medical sciences
PublicationTitleAbbrev TRPMS
PublicationTitleAlternate IEEE Trans Radiat Plasma Med Sci
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ronneberger (ref14) 2015
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
cheng (ref12) 2017
References_xml – ident: ref20
  doi: 10.1109/42.232263
– ident: ref18
  doi: 10.1109/TMI.2012.2211378
– ident: ref30
  doi: 10.1088/1361-6560/ab3242
– ident: ref13
  doi: 10.1109/TMI.2018.2869871
– ident: ref7
  doi: 10.1109/JPROC.2019.2936809
– ident: ref15
  doi: 10.1109/TMI.2018.2888491
– start-page: 715
  year: 2017
  ident: ref12
  article-title: Accelerated iterative image reconstruction using a deep learning based leapfrogging strategy
  publication-title: Proc Int Meet Fully Three-Dimensional Image Reconstruction Radiology Nucl Medicine
– ident: ref22
  doi: 10.1109/TMI.2018.2865356
– ident: ref23
  doi: 10.1109/CVPR.2016.90
– ident: ref2
  doi: 10.1053/j.semnuclmed.2012.08.006
– ident: ref16
  doi: 10.1007/s00259-019-04468-4
– ident: ref3
  doi: 10.1088/1361-6560/aa7670
– ident: ref8
  doi: 10.1038/nature25988
– ident: ref5
  doi: 10.1109/TRPMS.2017.2771490
– ident: ref10
  doi: 10.1109/TRPMS.2018.2877644
– ident: ref28
  doi: 10.1214/aos/1021379863
– ident: ref29
  doi: 10.1117/12.2513096
– ident: ref24
  doi: 10.1109/NSSMIC.2004.1462760
– ident: ref6
  doi: 10.1109/TMI.2018.2833635
– ident: ref26
  doi: 10.1111/j.2517-6161.1990.tb01798.x
– ident: ref19
  doi: 10.1007/978-1-4419-9569-8_10
– ident: ref1
  doi: 10.1088/0031-9155/51/15/R01
– ident: ref25
  doi: 10.1109/NSS/MIC42101.2019.9059998
– start-page: 234
  year: 2015
  ident: ref14
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention MICCAI 2015
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref11
  doi: 10.1088/1361-6560/ab0dc0
– ident: ref27
  doi: 10.1109/42.538946
– ident: ref4
  doi: 10.1109/TRPMS.2018.2844559
– ident: ref21
  doi: 10.1109/TMI.1987.4307826
– ident: ref17
  doi: 10.1109/NSSMIC.2018.8824563
– ident: ref9
  doi: 10.1016/j.media.2019.03.013
SSID ssj0001782945
Score 2.4871073
Snippet We propose a forward-backward splitting algorithm to integrate deep learning into maximum- a-posteriori (MAP) positron emission tomography (PET) image...
We propose a forward-backward splitting algorithm to integrate deep learning into maximum- (MAP) positron emission tomography (PET) image reconstruction. The...
We propose a forward–backward splitting algorithm to integrate deep learning into maximum- a-posteriori (MAP) positron emission tomography (PET) image...
We propose a forward-backward splitting algorithm to integrate deep learning into maximum-a-posteriori (MAP) positron emission tomography (PET) image...
We propose a forward-backward splitting algorithm to integrate deep learning into maximum- a-posteriori (MAP) positron emission tomography (PET) image...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 54
SubjectTerms Algorithms
Brain
Brain modeling
Computer simulation
Datasets
Deep learning
Deep learning (DL)
Fields (mathematics)
Image processing
Image reconstruction
Machine learning
Maximization
Medical imaging
MRI
Neural networks
Neuroimaging
Noise reduction
Optimization
Positron emission
Positron emission tomography
positron emission tomography (PET)
Regularization
Splitting
Tomography
Training
Title Model-Based Deep Learning PET Image Reconstruction Using Forward-Backward Splitting Expectation-Maximization
URI https://ieeexplore.ieee.org/document/9123435
https://www.ncbi.nlm.nih.gov/pubmed/34056150
https://www.proquest.com/docview/2474856800
https://www.proquest.com/docview/2535110949
https://pubmed.ncbi.nlm.nih.gov/PMC7610859
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB9UKPSlrbUf26qk4JvNuR9J9vJYq4cKiuAJvi35mG2l557UOyj-9U6ye2tPpPQtkGTJMklmfpnfzADsiKysVW0sd5m0XKBWXPvacVLVyusQk2Yj2-JMHV2Kkyt5tQJf-1gYRIzkMxyEZvTl-6mbh6eyPU3XLKn3VVgl4NbGaj2-p5Cq07EmcU6Ij5dFli1iZFK9NyYQf0FoMCeQ2lZZXtJDsbDKczbmU6rkX7pn9BpOF6tuKSe_BvOZHbj7Jwkd__e33sCrzghl39pdsw4r2LyFF5EM6u42YBIKpE34Pik4zw4Qb1mXhfUHOz8cs-MbuoNYwK2P2WdZpB6w0fR3ZOHuh1dBarALsnEjs5qFnMqu9fvzU_Pn-qYLAH0Hl6PD8fcj3lVl4E7IdMYLb4ZDV0SHjS_yGj1aQ2YGKlOmwvvCoDeIMkerMiudyjOXCeMU2rpEZ4r3sNZMG_wIrBTWORJH7a0RCtGKtB6aQnqyUXyqXALZQkaV61KWh8oZkypCl1RXUa5VkGvVyTWB3X7ObZuw45-jN4I8-pGdKBLYXGyFqjvTd1UuSjGUiizsBL703XQag4vFNDid0xgZHLMEmXUCH9qd03-7EAGtSZpdLu2pfkDI9L3c01z_jBm_SxWCRPSn51f7GV7mgWkTH4Y2YY1Ej1tkKs3sdjwjD8NLEso
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qRfTFr1pdrRrBN811P5Ls5dFqj6v2itAr9G3Jx6wWr3vF3oH41zvJ7m29UsS3QJIly0wyX7-ZAXgrsrJWtbHcZdJygVpx7WvHSVQrr0NOmo1oiyM1PhGfT-XpBrzvc2EQMYLPcBCGMZbv524ZXGW7mp5ZEu-34DbJfZm32VpXHhUSdjp2Jc7J5uNlkWWrLJlU707JjD8mezAnM7Xts7wmiWJrlZu0zOtgyb-kz-gBTFbnbkEnPwbLhR2439dKOv7vjz2E-50ayj60fPMINrB5DHciHNRdbsEstEib8T0ScZ59QrxgXR3Wb-zr_pQdnNMrxILlelV_lkXwARvNf0Yc7l7wC9KAHZOWG7HVLFRVdm3kn0_Mr7PzLgX0CZyM9qcfx7zry8CdkOmCF94Mh66IIRtf5DV6tIYUDVSmTIX3hUFvEGWOVmVWOpVnLhPGKbR1ic4U27DZzBt8BqwU1jkiR-2tEQrRirQemkJ60lJ8qlwC2YpGleuKlofeGbMqGi-priJdq0DXqqNrAu_6PRdtyY5_rt4K9OhXdqRIYGfFClV3qy-rXJRiKBXp2Am86afpPoYgi2lwvqQ1MoRmyWjWCTxtOaf_diGCvSZpd7nGU_2CUOt7faY5-x5rfpcqpIno5zef9jXcHU8nh9XhwdGXF3AvD7ib6CbagU1iA3xJitPCvor35Q80RxYU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Based+Deep+Learning+PET+Image+Reconstruction+Using+Forward-Backward+Splitting+Expectation-Maximization&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Mehranian%2C+Abolfazl&rft.au=Reader%2C+Andrew+J.&rft.date=2021-01-01&rft.pub=IEEE&rft.issn=2469-7311&rft.volume=5&rft.issue=1&rft.spage=54&rft.epage=64&rft_id=info:doi/10.1109%2FTRPMS.2020.3004408&rft.externalDocID=9123435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon