Context-dependent EMT programs in cancer metastasis
Epithelial–mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addit...
Saved in:
Published in | The Journal of experimental medicine Vol. 216; no. 5; pp. 1016 - 1026 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
06.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epithelial–mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addition to motility, EMT is associated with enhanced stem cell properties and drug resistance; thus it can drive metastasis, tumor recurrence, and therapy resistance in the context of cancer. However, the precise requirements for EMT in metastasis have not been fully delineated, with different tumor types relying on discrete EMT effectors. Most tumor cells do not undergo a full EMT, but rather adopt some qualities of mesenchymal cells and maintain some epithelial characteristics. Emerging evidence suggests that partial EMT can drive distinct migratory properties and enhance the epithelial-mesenchymal plasticity of cancer cells as well as cell fate plasticity. This review discusses the diverse regulatory mechanisms and functional consequences of EMT, with an emphasis on the importance of partial EMT. |
---|---|
AbstractList | Epithelial–mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addition to motility, EMT is associated with enhanced stem cell properties and drug resistance; thus it can drive metastasis, tumor recurrence, and therapy resistance in the context of cancer. However, the precise requirements for EMT in metastasis have not been fully delineated, with different tumor types relying on discrete EMT effectors. Most tumor cells do not undergo a full EMT, but rather adopt some qualities of mesenchymal cells and maintain some epithelial characteristics. Emerging evidence suggests that partial EMT can drive distinct migratory properties and enhance the epithelial-mesenchymal plasticity of cancer cells as well as cell fate plasticity. This review discusses the diverse regulatory mechanisms and functional consequences of EMT, with an emphasis on the importance of partial EMT. In this review, Aiello and Kang discuss the molecular mechanisms, regulatory networks, and functional consequences of epithelial–mesenchymal transition (EMT) in the context of cancer metastasis, with a particular focus on partial EMT and cellular plasticity. Epithelial–mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addition to motility, EMT is associated with enhanced stem cell properties and drug resistance; thus it can drive metastasis, tumor recurrence, and therapy resistance in the context of cancer. However, the precise requirements for EMT in metastasis have not been fully delineated, with different tumor types relying on discrete EMT effectors. Most tumor cells do not undergo a full EMT, but rather adopt some qualities of mesenchymal cells and maintain some epithelial characteristics. Emerging evidence suggests that partial EMT can drive distinct migratory properties and enhance the epithelial-mesenchymal plasticity of cancer cells as well as cell fate plasticity. This review discusses the diverse regulatory mechanisms and functional consequences of EMT, with an emphasis on the importance of partial EMT. Epithelial-mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addition to motility, EMT is associated with enhanced stem cell properties and drug resistance; thus it can drive metastasis, tumor recurrence, and therapy resistance in the context of cancer. However, the precise requirements for EMT in metastasis have not been fully delineated, with different tumor types relying on discrete EMT effectors. Most tumor cells do not undergo a full EMT, but rather adopt some qualities of mesenchymal cells and maintain some epithelial characteristics. Emerging evidence suggests that partial EMT can drive distinct migratory properties and enhance the epithelial-mesenchymal plasticity of cancer cells as well as cell fate plasticity. This review discusses the diverse regulatory mechanisms and functional consequences of EMT, with an emphasis on the importance of partial EMT.Epithelial-mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addition to motility, EMT is associated with enhanced stem cell properties and drug resistance; thus it can drive metastasis, tumor recurrence, and therapy resistance in the context of cancer. However, the precise requirements for EMT in metastasis have not been fully delineated, with different tumor types relying on discrete EMT effectors. Most tumor cells do not undergo a full EMT, but rather adopt some qualities of mesenchymal cells and maintain some epithelial characteristics. Emerging evidence suggests that partial EMT can drive distinct migratory properties and enhance the epithelial-mesenchymal plasticity of cancer cells as well as cell fate plasticity. This review discusses the diverse regulatory mechanisms and functional consequences of EMT, with an emphasis on the importance of partial EMT. |
Author | Aiello, Nicole M. Kang, Yibin |
AuthorAffiliation | Department of Molecular Biology, Princeton University, Princeton, NJ |
AuthorAffiliation_xml | – name: Department of Molecular Biology, Princeton University, Princeton, NJ |
Author_xml | – sequence: 1 givenname: Nicole M. surname: Aiello fullname: Aiello, Nicole M. – sequence: 2 givenname: Yibin orcidid: 0000-0002-1626-6730 surname: Kang fullname: Kang, Yibin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30975895$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LAzEQxYMotn7cPMsePbh1kk12NxdBil9Q8aLnkE2yNWU3qclW9L83xVpUhIE5zG_ePOYdoF3nnUHoBMMEQ00vFqafEMA1rkm1g8aYUcg5K-pdNAYgJMcA1QgdxLgAwJSych-NCuAVqzkbo2Lq3WDeh1ybpXHauCG7fnjKlsHPg-xjZl2mpFMmZL0ZZExl4xHaa2UXzfGmH6Lnm-un6V0-e7y9n17NckUZDHmheFVSTbXSwCnQoqFY61LzomBlTWTZ8IYz1WoOVcMVaWtoJK9MmzZqTVRxiC6_dJerpjdaJXNBdmIZbC_Dh_DSit8TZ1_E3L-JkgElhCSBs41A8K8rEwfR26hM10ln_CoKQoCXkJ6IE3r689b2yPenEnD-BajgYwym3SIYxDoIkYIQ30EknPzBlR3kYP3aqe3-X_oEL0GMEA |
CitedBy_id | crossref_primary_10_1007_s00018_022_04199_0 crossref_primary_10_1007_s10555_020_09908_4 crossref_primary_10_1042_CS20220128 crossref_primary_10_3390_biom12101410 crossref_primary_10_1016_j_taap_2020_115179 crossref_primary_10_3390_cancers15041319 crossref_primary_10_1016_j_intimp_2023_110064 crossref_primary_10_1016_j_archoralbio_2022_105611 crossref_primary_10_1007_s10620_021_06894_7 crossref_primary_10_1038_s41389_020_00258_y crossref_primary_10_3390_jcm11082130 crossref_primary_10_3389_fmolb_2021_708779 crossref_primary_10_1038_s41568_021_00332_6 crossref_primary_10_3390_life11121427 crossref_primary_10_3892_ol_2021_13081 crossref_primary_10_3390_ijms23010430 crossref_primary_10_1155_2022_1289445 crossref_primary_10_1158_2767_9764_CRC_22_0013 crossref_primary_10_1016_j_devcel_2022_11_015 crossref_primary_10_1002_iub_2501 crossref_primary_10_1016_j_celrep_2022_110490 crossref_primary_10_3389_fphar_2022_944773 crossref_primary_10_3389_fimmu_2021_734188 crossref_primary_10_1186_s12935_020_1146_x crossref_primary_10_1002_cam4_4059 crossref_primary_10_1016_j_prp_2021_153682 crossref_primary_10_3389_fmolb_2021_731788 crossref_primary_10_18632_aging_204983 crossref_primary_10_1038_s41419_022_05501_5 crossref_primary_10_1111_dgd_12773 crossref_primary_10_1155_2022_5436988 crossref_primary_10_1371_journal_pone_0316432 crossref_primary_10_1038_s41580_021_00375_5 crossref_primary_10_1016_j_jep_2024_118128 crossref_primary_10_1186_s12885_023_11639_y crossref_primary_10_1016_j_cbi_2021_109446 crossref_primary_10_1080_03639045_2020_1763397 crossref_primary_10_1093_bbb_zbae132 crossref_primary_10_3390_cells8090960 crossref_primary_10_1186_s12935_019_1075_8 crossref_primary_10_3389_fgene_2022_927142 crossref_primary_10_1007_s00018_020_03449_3 crossref_primary_10_1016_j_intimp_2024_112855 crossref_primary_10_2174_1386207326666230818092532 crossref_primary_10_1155_2022_8767333 crossref_primary_10_1007_s00432_024_05923_y crossref_primary_10_1038_d41586_019_02570_z crossref_primary_10_1155_2022_7026174 crossref_primary_10_3389_fphar_2021_714365 crossref_primary_10_1016_j_colsurfb_2024_114187 crossref_primary_10_3389_fonc_2022_927249 crossref_primary_10_3389_fonc_2020_00850 crossref_primary_10_1016_j_ccell_2021_06_005 crossref_primary_10_15430_JCP_2021_26_2_137 crossref_primary_10_1038_s41419_022_04843_4 crossref_primary_10_3389_fonc_2021_692535 crossref_primary_10_2174_1574892818666230413082909 crossref_primary_10_1007_s11684_022_0975_5 crossref_primary_10_3390_cancers16193335 crossref_primary_10_1155_2022_2260625 crossref_primary_10_3390_cancers12113299 crossref_primary_10_1002_ctd2_260 crossref_primary_10_3390_cancers14092057 crossref_primary_10_1038_s41556_020_0556_2 crossref_primary_10_2139_ssrn_3999041 crossref_primary_10_1158_0008_5472_CAN_19_2288 crossref_primary_10_1016_j_heliyon_2023_e14001 crossref_primary_10_1016_j_cej_2024_151754 crossref_primary_10_1038_s41388_024_03169_z crossref_primary_10_3389_fgene_2021_678194 crossref_primary_10_1007_s00018_019_03435_4 crossref_primary_10_1186_s13046_024_03038_3 crossref_primary_10_3390_cancers14040962 crossref_primary_10_3390_microorganisms8101519 crossref_primary_10_1080_21655979_2021_1968250 crossref_primary_10_1111_1759_7714_13620 crossref_primary_10_3390_cells14070488 crossref_primary_10_3390_biomedicines9091213 crossref_primary_10_1038_s41598_022_04973_x crossref_primary_10_3389_fcell_2021_797102 crossref_primary_10_1002_cbin_11755 crossref_primary_10_1002_btm2_10375 crossref_primary_10_3390_cells9102256 crossref_primary_10_1007_s00018_023_04902_9 crossref_primary_10_1007_s11427_020_1895_2 crossref_primary_10_1016_j_trecan_2022_01_014 crossref_primary_10_3390_ijms242216391 crossref_primary_10_3724_abbs_2023251 crossref_primary_10_1016_j_semcancer_2019_07_020 crossref_primary_10_3390_cancers13215408 crossref_primary_10_1038_s41556_022_00877_0 crossref_primary_10_1111_jcmm_15822 crossref_primary_10_3390_ijms23126806 crossref_primary_10_1016_j_biopha_2024_117049 crossref_primary_10_4251_wjgo_v13_i2_92 crossref_primary_10_1186_s13578_023_01083_7 crossref_primary_10_3892_etm_2023_12013 crossref_primary_10_3390_ijms23169183 crossref_primary_10_1111_cas_15388 crossref_primary_10_1360_SSV_2022_0058 crossref_primary_10_18632_aging_202986 crossref_primary_10_31832_smj_1128434 crossref_primary_10_3389_fgene_2022_948254 crossref_primary_10_1186_s12935_021_01871_6 crossref_primary_10_1155_2021_9219961 crossref_primary_10_1016_j_bcp_2024_116141 crossref_primary_10_1007_s10555_024_10190_x crossref_primary_10_3389_fimmu_2022_831636 crossref_primary_10_1016_j_biopha_2021_112360 crossref_primary_10_1111_cpr_13188 crossref_primary_10_1155_2021_9026918 crossref_primary_10_18632_aging_103192 crossref_primary_10_1080_15384047_2021_1898728 crossref_primary_10_3390_ijms25168972 crossref_primary_10_1016_j_apsb_2020_11_018 crossref_primary_10_1002_ctm2_730 crossref_primary_10_1016_j_devcel_2021_11_006 crossref_primary_10_1159_000518249 crossref_primary_10_1038_s41420_023_01694_6 crossref_primary_10_1186_s12929_023_00909_3 crossref_primary_10_3389_fonc_2020_600322 crossref_primary_10_1016_j_urolonc_2021_12_021 crossref_primary_10_1002_ctm2_1432 crossref_primary_10_3390_pathogens12111288 crossref_primary_10_18632_aging_202371 crossref_primary_10_1038_s41598_022_25053_0 crossref_primary_10_1080_1354750X_2022_2163694 crossref_primary_10_1111_cas_14664 crossref_primary_10_2147_OTT_S256226 crossref_primary_10_1186_s12935_024_03618_5 crossref_primary_10_62347_HYNZ9211 crossref_primary_10_1186_s13045_024_01634_6 crossref_primary_10_1016_j_biopha_2023_116011 crossref_primary_10_1016_j_celrep_2020_108311 crossref_primary_10_1186_s13046_020_01641_8 crossref_primary_10_1016_j_bone_2020_115617 crossref_primary_10_3389_fonc_2021_602900 crossref_primary_10_3390_cancers12010148 crossref_primary_10_1016_j_gene_2023_147194 crossref_primary_10_1158_1541_7786_MCR_19_1244 crossref_primary_10_3389_fcell_2021_639779 crossref_primary_10_1084_jem_20190218 crossref_primary_10_3389_fcell_2021_641432 crossref_primary_10_1007_s12195_021_00694_9 crossref_primary_10_1042_BSR20194496 crossref_primary_10_3389_fgene_2021_794157 crossref_primary_10_1016_j_bbadis_2024_167019 crossref_primary_10_1039_D2EN00031H crossref_primary_10_1016_j_ejcb_2020_151098 crossref_primary_10_1155_2021_6661772 crossref_primary_10_2139_ssrn_3745779 crossref_primary_10_1111_cas_15532 crossref_primary_10_1002_jcb_29635 crossref_primary_10_1186_s12943_023_01744_8 crossref_primary_10_3389_fgene_2022_820532 crossref_primary_10_1186_s12964_024_01775_8 crossref_primary_10_3389_fonc_2020_00792 crossref_primary_10_1111_1759_7714_15400 crossref_primary_10_1038_s41467_019_14262_3 crossref_primary_10_1096_fj_202301095R crossref_primary_10_1016_j_jddst_2024_105384 crossref_primary_10_1016_j_bcp_2020_114177 crossref_primary_10_1007_s10719_020_09967_3 crossref_primary_10_1186_s12929_024_00997_9 crossref_primary_10_3390_cells13171506 crossref_primary_10_1016_j_drudis_2022_103438 crossref_primary_10_1186_s13059_022_02687_x crossref_primary_10_3892_mmr_2022_12640 crossref_primary_10_1248_bpb_b23_00156 crossref_primary_10_3389_fonc_2024_1409329 crossref_primary_10_3390_ijtm2030033 crossref_primary_10_3390_ijms241512245 crossref_primary_10_1007_s43152_024_00058_1 crossref_primary_10_1126_sciadv_adf9915 crossref_primary_10_3390_cancers13071633 crossref_primary_10_3390_cancers14153626 crossref_primary_10_3390_ijms241914815 crossref_primary_10_1111_jcmm_70342 crossref_primary_10_1152_ajpcell_00158_2022 crossref_primary_10_2217_pme_2023_0103 crossref_primary_10_1016_j_isci_2021_102113 crossref_primary_10_1007_s10565_021_09681_2 crossref_primary_10_1002_wsbm_1604 crossref_primary_10_1088_1478_3975_ab34df crossref_primary_10_1016_j_bbrc_2020_12_042 crossref_primary_10_1158_1541_7786_MCR_20_1025 crossref_primary_10_3390_ph17060752 crossref_primary_10_1038_s41401_021_00799_x crossref_primary_10_1038_s41598_020_70788_3 crossref_primary_10_2147_OTT_S240028 crossref_primary_10_1080_21655979_2022_2033013 crossref_primary_10_3892_mmr_2021_12457 crossref_primary_10_1038_s41598_021_03984_4 crossref_primary_10_1080_21655979_2022_2079253 crossref_primary_10_3892_or_2023_8630 crossref_primary_10_3892_mco_2023_2627 crossref_primary_10_2147_DDDT_S384151 crossref_primary_10_1016_j_pharmthera_2021_107881 crossref_primary_10_1002_mco2_100 crossref_primary_10_3389_fonc_2022_730530 crossref_primary_10_1002_iub_2176 crossref_primary_10_1186_s13048_021_00913_x crossref_primary_10_1007_s10120_023_01366_5 crossref_primary_10_18632_aging_103592 crossref_primary_10_1155_2021_3566749 crossref_primary_10_3389_fendo_2023_1247709 crossref_primary_10_1016_j_ijpharm_2024_124910 crossref_primary_10_1155_cplx_9007322 crossref_primary_10_32604_biocell_2023_029617 crossref_primary_10_1016_j_cellsig_2022_110462 crossref_primary_10_1186_s12943_022_01620_x crossref_primary_10_1002_1878_0261_13075 crossref_primary_10_3390_cancers14194625 crossref_primary_10_1083_jcb_202308069 crossref_primary_10_3389_fimmu_2021_654877 crossref_primary_10_18632_aging_103021 crossref_primary_10_3390_cancers13195028 crossref_primary_10_1038_s41467_020_14556_x crossref_primary_10_1177_15330338221081219 crossref_primary_10_1016_j_biopha_2023_114487 crossref_primary_10_1016_j_phymed_2022_154062 crossref_primary_10_1016_j_asjsur_2021_07_058 crossref_primary_10_1016_j_canlet_2023_216427 crossref_primary_10_1186_s13020_021_00489_0 crossref_primary_10_1002_tox_23822 crossref_primary_10_2147_IJGM_S437957 crossref_primary_10_3390_cancers17020228 crossref_primary_10_1038_s41467_021_26343_3 crossref_primary_10_1007_s12192_021_01196_3 crossref_primary_10_1038_s41388_021_01713_9 crossref_primary_10_1155_2022_2174758 crossref_primary_10_1097_CM9_0000000000002459 crossref_primary_10_1007_s40820_022_00894_6 crossref_primary_10_1002_art_42946 crossref_primary_10_1177_15347354231172732 crossref_primary_10_4103_jcrt_jcrt_749_23 crossref_primary_10_1038_s41388_022_02448_x crossref_primary_10_3389_fgene_2021_723802 crossref_primary_10_3389_fgene_2022_913659 crossref_primary_10_1016_j_yexcr_2023_113563 crossref_primary_10_1038_s41419_024_06694_7 crossref_primary_10_3390_cancers14246214 crossref_primary_10_1210_jendso_bvac143 crossref_primary_10_1016_j_isci_2022_103917 crossref_primary_10_1002_cnr2_2085 crossref_primary_10_1084_jem_20190297 crossref_primary_10_1016_j_trecan_2020_06_004 crossref_primary_10_1111_jcmm_15399 crossref_primary_10_3389_fpubh_2020_579705 crossref_primary_10_3389_fonc_2022_1039366 crossref_primary_10_1002_mco2_144 crossref_primary_10_1021_acsabm_4c00343 crossref_primary_10_1016_j_advnut_2023_05_013 crossref_primary_10_1016_j_phymed_2022_154192 crossref_primary_10_3892_ijo_2020_4972 crossref_primary_10_1093_carcin_bgaa072 crossref_primary_10_1042_BSR20211494 crossref_primary_10_1155_2021_5553425 crossref_primary_10_1186_s11658_023_00471_8 crossref_primary_10_1016_j_semcancer_2024_06_001 crossref_primary_10_1111_1759_7714_13280 crossref_primary_10_1186_s12885_023_10866_7 crossref_primary_10_1007_s10637_022_01298_4 crossref_primary_10_47248_chp2401020011 crossref_primary_10_1177_1934578X221102031 crossref_primary_10_1016_j_jhep_2023_10_018 crossref_primary_10_1089_cbr_2019_3546 crossref_primary_10_1007_s10147_023_02374_2 crossref_primary_10_1111_1759_7714_14366 crossref_primary_10_1007_s12020_023_03383_x crossref_primary_10_1038_s41388_022_02202_3 crossref_primary_10_1016_j_prp_2023_154558 crossref_primary_10_1016_j_yexcr_2024_113978 crossref_primary_10_3390_cancers16183180 crossref_primary_10_1007_s12672_024_01106_w crossref_primary_10_5847_wjem_j_1920_8642_2022_089 crossref_primary_10_1007_s12015_021_10209_8 crossref_primary_10_1002_cbin_12060 crossref_primary_10_1097_PAI_0000000000000910 crossref_primary_10_1016_j_intimp_2021_108176 crossref_primary_10_1158_1541_7786_MCR_19_0197 crossref_primary_10_1126_scitranslmed_aax8933 crossref_primary_10_1186_s12957_021_02164_y crossref_primary_10_18632_aging_102791 crossref_primary_10_1016_j_tcb_2020_07_003 crossref_primary_10_1093_carcin_bgad013 crossref_primary_10_1186_s13045_022_01347_8 crossref_primary_10_1186_s12943_023_01761_7 crossref_primary_10_1016_j_ejphar_2024_176931 crossref_primary_10_3389_fmolb_2020_00071 crossref_primary_10_3390_ijms22020536 crossref_primary_10_1080_14796694_2025_2461443 crossref_primary_10_1038_s41598_025_85531_z crossref_primary_10_1038_s41416_021_01350_9 crossref_primary_10_1038_s41419_022_04540_2 crossref_primary_10_4103_aja202226 crossref_primary_10_1016_j_prp_2024_155646 crossref_primary_10_3389_fonc_2022_1094612 crossref_primary_10_1002_jcp_31501 crossref_primary_10_1038_s41598_022_09702_y crossref_primary_10_3389_fphar_2020_00645 crossref_primary_10_1073_pnas_2115624119 crossref_primary_10_1186_s13046_022_02377_3 crossref_primary_10_1089_dna_2021_0416 crossref_primary_10_1186_s12964_023_01368_x crossref_primary_10_3390_cancers15030961 crossref_primary_10_3390_ijms22115697 crossref_primary_10_1038_s41388_023_02651_4 crossref_primary_10_1038_s41419_021_04179_5 crossref_primary_10_1016_j_critrevonc_2023_103964 crossref_primary_10_3390_ijms24054756 crossref_primary_10_1093_rb_rbad014 crossref_primary_10_1111_imcb_12451 crossref_primary_10_1016_j_mce_2023_111998 crossref_primary_10_2147_OTT_S272596 crossref_primary_10_1016_j_canlet_2024_217161 crossref_primary_10_1042_BSR20192727 crossref_primary_10_1186_s12967_022_03508_2 crossref_primary_10_1016_j_biopha_2019_109780 crossref_primary_10_1038_s41388_021_02030_x crossref_primary_10_3390_ijms23031896 crossref_primary_10_3390_cancers13061357 crossref_primary_10_3390_cancers16071354 crossref_primary_10_1016_j_anndiagpath_2022_151954 crossref_primary_10_1038_s41598_024_80579_9 crossref_primary_10_3389_fphar_2023_1163115 crossref_primary_10_3389_fonc_2022_834235 crossref_primary_10_1002_ijc_35137 crossref_primary_10_1515_biol_2021_0048 crossref_primary_10_1042_BSR20191507 crossref_primary_10_18632_aging_202941 crossref_primary_10_26508_lsa_202301984 crossref_primary_10_3892_ijo_2019_4938 crossref_primary_10_1016_j_ijbiomac_2020_06_281 crossref_primary_10_1080_21655979_2021_2005915 crossref_primary_10_1002_jcp_30862 crossref_primary_10_1016_j_lfs_2022_121359 crossref_primary_10_1093_bjd_ljad335 crossref_primary_10_3389_fcell_2022_954099 crossref_primary_10_1038_s12276_024_01377_x crossref_primary_10_3390_cells11213334 crossref_primary_10_2174_1871520621666210706113102 crossref_primary_10_1155_2023_8334881 crossref_primary_10_1177_1533033820980769 crossref_primary_10_1177_03000605231174974 crossref_primary_10_1016_j_cellsig_2022_110433 crossref_primary_10_1016_j_lfs_2022_121103 crossref_primary_10_1177_10732748241274978 crossref_primary_10_1016_j_jid_2022_12_015 crossref_primary_10_1055_a_2246_4778 crossref_primary_10_18632_aging_102464 crossref_primary_10_1186_s13046_019_1505_4 crossref_primary_10_1186_s12935_023_02993_9 crossref_primary_10_1016_j_yexcr_2021_112735 crossref_primary_10_1111_jcmm_16099 crossref_primary_10_3390_ijms22158334 crossref_primary_10_1515_med_2024_1089 crossref_primary_10_1038_s41420_023_01448_4 crossref_primary_10_3390_cancers12102785 crossref_primary_10_1016_j_phymed_2024_155833 crossref_primary_10_3390_biomedicines8100402 crossref_primary_10_3892_etm_2024_12746 crossref_primary_10_18632_aging_205049 crossref_primary_10_1155_2022_7841279 crossref_primary_10_1155_2022_9133658 crossref_primary_10_3390_cells14020080 crossref_primary_10_3390_cancers12030688 crossref_primary_10_3390_ijms24021786 crossref_primary_10_3389_fmolb_2020_00138 crossref_primary_10_3727_096504021X16203818567367 crossref_primary_10_3390_cancers12102896 crossref_primary_10_3389_fcell_2022_1038841 crossref_primary_10_1101_gad_343251_120 crossref_primary_10_3390_jcm8101542 crossref_primary_10_1007_s10528_023_10662_9 crossref_primary_10_1186_s12906_024_04363_y crossref_primary_10_1016_j_semcancer_2022_09_004 crossref_primary_10_1158_0008_5472_CAN_21_4087 crossref_primary_10_1111_jcmm_17288 crossref_primary_10_3389_fonc_2020_00094 crossref_primary_10_1002_path_6240 crossref_primary_10_1155_2021_5282894 crossref_primary_10_1089_cbr_2019_3259 crossref_primary_10_1038_s41416_021_01328_7 crossref_primary_10_1016_j_ebiom_2020_102662 crossref_primary_10_4251_wjgo_v14_i12_2340 crossref_primary_10_1038_s41388_023_02809_0 crossref_primary_10_1186_s12957_022_02821_w |
Cites_doi | 10.1002/path.2426 10.1083/jcb.95.1.333 10.18632/oncotarget.9403 10.1186/s13058-015-0546-7 10.1016/j.ccr.2009.01.023 10.1158/0008-5472.CAN-16-3292 10.1038/s41388-018-0378-x 10.1016/j.cell.2017.10.044 10.1016/j.ccr.2009.03.016 10.1006/cbir.2002.0901 10.1053/j.gastro.2009.04.004 10.1038/ncb1722 10.1186/bcr2333 10.1038/s41556-019-0309-2 10.1016/j.cell.2008.03.027 10.1038/ncb3595 10.1073/pnas.0605669103 10.1186/s12885-017-3385-3 10.1073/pnas.171610498 10.1038/ncb758 10.1038/sj.onc.1209077 10.4161/cc.10.24.18552 10.1111/j.1742-4658.2012.08674.x 10.1038/ncb3013 10.1016/j.ccell.2018.12.002 10.1074/jbc.M115.693853 10.1158/0008-5472.CAN-14-0923 10.1158/0008-5472.CAN-11-2905 10.1016/j.devcel.2004.12.010 10.1073/pnas.0905718106 10.1158/0008-5472.CAN-12-2432 10.1016/j.devcel.2006.02.011 10.1016/j.celrep.2015.11.025 10.1091/mbc.e07-03-0249 10.1016/j.semcdb.2017.08.008 10.1101/gad.263327.115 10.1016/j.cell.2011.11.025 10.1016/j.ccell.2018.11.016 10.1016/j.jss.2006.09.027 10.1016/j.ccr.2014.07.022 10.1158/1078-0432.CCR-10-2816 10.1186/s13059-018-1416-2 10.1038/ncomms12819 10.1038/nm.2401 10.1038/emboj.2013.188 10.1245/s10434-007-9583-5 10.1016/j.cell.2016.06.028 10.1128/MCB.21.23.8184-8188.2001 10.1002/cam4.347 10.1101/gad.276304 10.1016/S1097-2765(01)00260-X 10.1101/gad.230953.113 10.1002/jcb.21608 10.1038/onc.2010.234 10.1158/1078-0432.CCR-06-2926 10.1038/s41556-018-0196-y 10.1016/j.cell.2004.06.006 10.1038/onc.2015.350 10.1016/j.devcel.2018.05.027 10.1111/1759-7714.12408 10.1128/MCB.00019-16 10.1101/gad.1640608 10.1016/j.cell.2011.02.013 10.1016/j.ccr.2005.07.009 10.1242/jcs.00224 10.1016/j.ccr.2012.10.012 10.1016/j.devcel.2018.05.025 10.1128/MCB.01174-12 10.1002/ijc.30039 10.1002/jcb.24481 10.1172/JCI0215518 10.1016/j.tig.2017.08.004 10.1002/dvdy.24561 10.1128/MCB.00323-08 10.1158/0008-5472.CAN-11-4038 10.1158/0008-5472.CAN-11-0156 10.1038/onc.2009.180 10.1593/neo.121828 10.1038/nature22963 10.1016/j.humpath.2015.05.010 10.1016/j.ajpath.2018.01.016 10.1016/j.canlet.2011.02.008 10.1038/nature15748 10.1016/j.trecan.2016.01.001 10.1016/j.humpath.2011.07.003 10.1016/j.ccr.2014.03.010 10.1038/ncb3157 10.1038/s41467-018-07130-z 10.1083/jcb.127.6.2021 10.1038/ncb3513 10.1007/s12185-011-0799-6 10.1002/dvdy.24541 10.1021/acsbiomaterials.6b00751 10.1038/ncb2607 10.1038/s41586-018-0040-3 10.1371/journal.pone.0076773 10.1158/0008-5472.CAN-07-2148 10.1038/s41467-018-07538-7 10.1038/ncomms6241 10.1371/journal.pgen.1002218 10.1111/j.1349-7006.2010.01598.x 10.1016/j.ccr.2012.09.022 10.1038/ncb1905 10.1080/2162402X.2016.1263412 10.1158/0008-5472.CAN-08-1942 10.15252/emmm.201809085 10.1371/journal.pone.0012445 10.1136/gutjnl-2011-300060 10.1093/carcin/bgp175 10.1038/nature16064 10.1158/1078-0432.CCR-15-1434 10.1111/j.1440-169X.2008.01070.x 10.1074/jbc.C800074200 10.1038/ncomms10498 10.1007/BF02631401 10.1038/jid.2011.142 10.1038/35000025 10.18632/oncotarget.2696 10.1038/nature22816 10.1016/j.humpath.2012.07.004 10.1158/0008-5472.CAN-10-2914 10.18632/oncotarget.8250 |
ContentType | Journal Article |
Copyright | 2019 Aiello and Kang. 2019 Aiello and Kang 2019 |
Copyright_xml | – notice: 2019 Aiello and Kang. – notice: 2019 Aiello and Kang 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1084/jem.20181827 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Epithelial–mesenchymal transition in metastasis |
EISSN | 1540-9538 |
EndPage | 1026 |
ExternalDocumentID | PMC6504222 30975895 10_1084_jem_20181827 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: BC170055 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HYE IH2 KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c450t-3c9764d4dcd094043b41dd6d9335682a6b9b95cfd907b9c2f80ba97ef4dc8d2c3 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 14:02:34 EDT 2025 Fri Jul 11 04:45:52 EDT 2025 Thu Apr 03 07:05:56 EDT 2025 Tue Jul 01 00:41:12 EDT 2025 Thu Apr 24 22:51:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2019 Aiello and Kang. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-3c9764d4dcd094043b41dd6d9335682a6b9b95cfd907b9c2f80ba97ef4dc8d2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1626-6730 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6504222 |
PMID | 30975895 |
PQID | 2209600841 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6504222 proquest_miscellaneous_2209600841 pubmed_primary_30975895 crossref_primary_10_1084_jem_20181827 crossref_citationtrail_10_1084_jem_20181827 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-06 |
PublicationDateYYYYMMDD | 2019-05-06 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2019 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Haensel (2023072821441942000_bib42) 2018; 247 Wels (2023072821441942000_bib110) 2011; 131 Fernando (2023072821441942000_bib33) 2011; 71 Jolly (2023072821441942000_bib51) 2018; 247 Creighton (2023072821441942000_bib25) 2009; 106 Korpal (2023072821441942000_bib58) 2011; 17 Yin (2023072821441942000_bib117) 2007; 141 Pastushenko (2023072821441942000_bib80) 2018; 556 Chen (2023072821441942000_bib17) 2015; 6 Lin (2023072821441942000_bib67) 2010; 29 Kim (2023072821441942000_bib53) 2012; 279 Paterson (2023072821441942000_bib81) 2013; 15 Tran (2023072821441942000_bib102) 2014; 74 Mani (2023072821441942000_bib69) 2008; 133 Siemens (2023072821441942000_bib95) 2011; 10 Venables (2023072821441942000_bib106) 2013; 33 Zhang (2023072821441942000_bib119) 2014; 16 Reichert (2023072821441942000_bib83) 2018; 45 Esposito (2023072821441942000_bib32) 2019 Chang (2023072821441942000_bib16) 2017; 8 Kim (2023072821441942000_bib55) 2006; 103 Yuan (2023072821441942000_bib118) 2014; 25 Bolós (2023072821441942000_bib9) 2003; 116 Fischer (2023072821441942000_bib34) 2015; 527 Lou (2023072821441942000_bib68) 2016; 22 Aiello (2023072821441942000_bib2) 2016; 7 Krebs (2023072821441942000_bib59) 2017; 19 Aiello (2023072821441942000_bib4) 2018; 45 Chen (2023072821441942000_bib19) 2014; 5 Cano (2023072821441942000_bib12) 2000; 2 Kong (2023072821441942000_bib56) 2010; 5 Trimboli (2023072821441942000_bib103) 2008; 68 Ryu (2023072821441942000_bib89) 2012; 43 Herranz (2023072821441942000_bib44) 2008; 28 Wei (2023072821441942000_bib109) 2015; 17 Shah (2023072821441942000_bib90) 2007; 14 Bauer (2023072821441942000_bib8) 2009; 30 Title (2023072821441942000_bib101) 2018; 9 Barber (2023072821441942000_bib7) 2008; 216 Grelet (2023072821441942000_bib40) 2017; 19 Cheung (2023072821441942000_bib22) 2005; 8 Del Pozo Martin (2023072821441942000_bib27) 2015; 13 Roca (2023072821441942000_bib87) 2013; 8 Dossus (2023072821441942000_bib31) 2015; 17 Hong (2023072821441942000_bib45) 2011; 71 Ren (2023072821441942000_bib85) 2013; 114 Xue (2023072821441942000_bib112) 2003; 63 Lapin (2023072821441942000_bib62) 2017; 17 Aktas (2023072821441942000_bib6) 2009; 11 Rembold (2023072821441942000_bib84) 2014; 28 Shiota (2023072821441942000_bib93) 2010; 101 Kunita (2023072821441942000_bib61) 2018; 188 Li (2023072821441942000_bib65) 2006; 25 Ocaña (2023072821441942000_bib78) 2012; 22 Gao (2023072821441942000_bib37) 2012; 72 Chen (2023072821441942000_bib20) 2018; 10 Dong (2023072821441942000_bib29) 2018; 19 Yang (2023072821441942000_bib115) 2016; 36 Jang (2023072821441942000_bib50) 2015; 46 Akalay (2023072821441942000_bib5) 2013; 73 Gregory (2023072821441942000_bib39) 2008; 10 Comijn (2023072821441942000_bib24) 2001; 7 Nakaya (2023072821441942000_bib74) 2008; 50 von Burstin (2023072821441942000_bib108) 2009; 137 Dhamija (2023072821441942000_bib28) 2016; 139 Neumann (2023072821441942000_bib75) 2018; 75 Aiello (2023072821441942000_bib3) 2017; 547 Wu (2023072821441942000_bib111) 2009; 15 Skrypek (2023072821441942000_bib96) 2017; 33 Gumireddy (2023072821441942000_bib41) 2013; 32 Stemmler (2023072821441942000_bib97) 2019; 21 Rhim (2023072821441942000_bib86) 2012; 148 Sullivan (2023072821441942000_bib98) 2009; 28 Dongre (2023072821441942000_bib30) 2017; 77 Chakrabarti (2023072821441942000_bib15) 2012; 14 Fujita (2023072821441942000_bib35) 2002; 4 Kahlert (2023072821441942000_bib52) 2011; 17 Mihalko (2023072821441942000_bib71) 2018; 4 Noman (2023072821441942000_bib77) 2017; 6 Puram (2023072821441942000_bib82) 2017; 171 Carver (2023072821441942000_bib13) 2001; 21 van Staalduinen (2023072821441942000_bib105) 2018; 37 Yaguchi (2023072821441942000_bib113) 2011; 93 Greenburg (2023072821441942000_bib38) 1982; 95 Shirakihara (2023072821441942000_bib94) 2007; 18 Miettinen (2023072821441942000_bib70) 1994; 127 Lehmann (2023072821441942000_bib63) 2016; 7 Zhou (2023072821441942000_bib123) 2016; 291 Iwano (2023072821441942000_bib49) 2002; 110 Park (2023072821441942000_bib79) 2008; 22 Aghdassi (2023072821441942000_bib1) 2012; 61 Yang (2023072821441942000_bib114) 2004; 117 Fukagawa (2023072821441942000_bib36) 2015; 4 Takano (2023072821441942000_bib99) 2016; 30 Zheng (2023072821441942000_bib121) 2014; 26 Li (2023072821441942000_bib66) 1994; 30A Ye (2023072821441942000_bib116) 2017; 547 Hotz (2023072821441942000_bib46) 2007; 13 Vincent (2023072821441942000_bib107) 2009; 11 Tsai (2023072821441942000_bib104) 2012; 22 Celià-Terrassa (2023072821441942000_bib14) 2018; 9 Kudo-Saito (2023072821441942000_bib60) 2009; 15 Shen (2023072821441942000_bib92) 2019; 35 Shapiro (2023072821441942000_bib91) 2011; 7 Cheng (2023072821441942000_bib21) 2011; 304 Hyun (2023072821441942000_bib47) 2016; 7 Li (2023072821441942000_bib64) 2016; 2 Cieply (2023072821441942000_bib23) 2012; 72 Ryu (2023072821441942000_bib88) 2012; 43 Hanahan (2023072821441942000_bib43) 2011; 144 Dale (2023072821441942000_bib26) 2006; 10 Zheng (2023072821441942000_bib122) 2015; 527 Kim (2023072821441942000_bib54) 2002; 26 Bracken (2023072821441942000_bib11) 2008; 68 Chen (2023072821441942000_bib18) 2016; 7 Korpal (2023072821441942000_bib57) 2008; 283 Zhao (2023072821441942000_bib120) 2008; 104 Ishay-Ronen (2023072821441942000_bib48) 2019; 35 Nagaoka (2023072821441942000_bib73) 2016; 35 Nieto (2023072821441942000_bib76) 2016; 166 Moody (2023072821441942000_bib72) 2005; 8 Timmerman (2023072821441942000_bib100) 2004; 18 Brabletz (2023072821441942000_bib10) 2001; 98 |
References_xml | – volume: 216 start-page: 295 year: 2008 ident: 2023072821441942000_bib7 article-title: Mechanisms and sequelae of E-cadherin silencing in hereditary diffuse gastric cancer publication-title: J. Pathol. doi: 10.1002/path.2426 – volume: 95 start-page: 333 year: 1982 ident: 2023072821441942000_bib38 article-title: Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells publication-title: J. Cell Biol. doi: 10.1083/jcb.95.1.333 – volume: 7 start-page: 37260 year: 2016 ident: 2023072821441942000_bib18 article-title: Phosphorylation of E-cadherin at threonine 790 by protein kinase Cδ reduces β-catenin binding and suppresses the function of E-cadherin publication-title: Oncotarget. doi: 10.18632/oncotarget.9403 – volume: 17 start-page: 37 year: 2015 ident: 2023072821441942000_bib31 article-title: Lobular breast cancer: incidence and genetic and non-genetic risk factors publication-title: Breast Cancer Res. doi: 10.1186/s13058-015-0546-7 – volume: 15 start-page: 195 year: 2009 ident: 2023072821441942000_bib60 article-title: Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells publication-title: Cancer Cell. doi: 10.1016/j.ccr.2009.01.023 – volume: 77 start-page: 3982 year: 2017 ident: 2023072821441942000_bib30 article-title: Epithelial-to-Mesenchymal Transition Contributes to Immunosuppression in Breast Carcinomas publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-3292 – volume: 37 start-page: 6195 year: 2018 ident: 2023072821441942000_bib105 article-title: Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? publication-title: Oncogene. doi: 10.1038/s41388-018-0378-x – volume: 171 start-page: 1611 year: 2017 ident: 2023072821441942000_bib82 article-title: Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer publication-title: Cell. doi: 10.1016/j.cell.2017.10.044 – volume: 15 start-page: 416 year: 2009 ident: 2023072821441942000_bib111 article-title: Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion publication-title: Cancer Cell. doi: 10.1016/j.ccr.2009.03.016 – volume: 26 start-page: 463 year: 2002 ident: 2023072821441942000_bib54 article-title: Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT publication-title: Cell Biol. Int. doi: 10.1006/cbir.2002.0901 – volume: 137 start-page: 361 year: 2009 ident: 2023072821441942000_bib108 article-title: E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex publication-title: Gastroenterology. doi: 10.1053/j.gastro.2009.04.004 – volume: 10 start-page: 593 year: 2008 ident: 2023072821441942000_bib39 article-title: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1722 – volume: 11 start-page: R46 year: 2009 ident: 2023072821441942000_bib6 article-title: Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients publication-title: Breast Cancer Res. doi: 10.1186/bcr2333 – year: 2019 ident: 2023072821441942000_bib32 article-title: Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0309-2 – volume: 133 start-page: 704 year: 2008 ident: 2023072821441942000_bib69 article-title: The epithelial-mesenchymal transition generates cells with properties of stem cells publication-title: Cell. doi: 10.1016/j.cell.2008.03.027 – volume: 19 start-page: 1105 year: 2017 ident: 2023072821441942000_bib40 article-title: A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression publication-title: Nat. Cell Biol. doi: 10.1038/ncb3595 – volume: 103 start-page: 13180 year: 2006 ident: 2023072821441942000_bib55 article-title: Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0605669103 – volume: 17 start-page: 390 year: 2017 ident: 2023072821441942000_bib62 article-title: Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells publication-title: BMC Cancer. doi: 10.1186/s12885-017-3385-3 – volume: 98 start-page: 10356 year: 2001 ident: 2023072821441942000_bib10 article-title: Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.171610498 – volume: 4 start-page: 222 year: 2002 ident: 2023072821441942000_bib35 article-title: Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex publication-title: Nat. Cell Biol. doi: 10.1038/ncb758 – volume: 25 start-page: 609 year: 2006 ident: 2023072821441942000_bib65 article-title: Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation publication-title: Oncogene. doi: 10.1038/sj.onc.1209077 – volume: 10 start-page: 4256 year: 2011 ident: 2023072821441942000_bib95 article-title: miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions publication-title: Cell Cycle. doi: 10.4161/cc.10.24.18552 – volume: 279 start-page: 2929 year: 2012 ident: 2023072821441942000_bib53 article-title: Functional regulation of Slug/Snail2 is dependent on GSK-3β-mediated phosphorylation publication-title: FEBS J. doi: 10.1111/j.1742-4658.2012.08674.x – volume: 16 start-page: 864 year: 2014 ident: 2023072821441942000_bib119 article-title: ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3013 – volume: 35 start-page: 17 year: 2019 ident: 2023072821441942000_bib48 article-title: Gain Fat-Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis publication-title: Cancer Cell. doi: 10.1016/j.ccell.2018.12.002 – volume: 291 start-page: 291 year: 2016 ident: 2023072821441942000_bib123 article-title: Loss of Scribble Promotes Snail Translation through Translocation of HuR and Enhances Cancer Drug Resistance publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.693853 – volume: 74 start-page: 6330 year: 2014 ident: 2023072821441942000_bib102 article-title: Transient SNAIL1 expression is necessary for metastatic competence in breast cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0923 – volume: 72 start-page: 1384 year: 2012 ident: 2023072821441942000_bib37 article-title: Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-2905 – volume: 8 start-page: 179 year: 2005 ident: 2023072821441942000_bib22 article-title: The transcriptional control of trunk neural crest induction, survival, and delamination publication-title: Dev. Cell. doi: 10.1016/j.devcel.2004.12.010 – volume: 106 start-page: 13820 year: 2009 ident: 2023072821441942000_bib25 article-title: Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0905718106 – volume: 73 start-page: 2418 year: 2013 ident: 2023072821441942000_bib5 article-title: Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-2432 – volume: 10 start-page: 355 year: 2006 ident: 2023072821441942000_bib26 article-title: Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis publication-title: Dev. Cell. doi: 10.1016/j.devcel.2006.02.011 – volume: 13 start-page: 2456 year: 2015 ident: 2023072821441942000_bib27 article-title: Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization publication-title: Cell Reports. doi: 10.1016/j.celrep.2015.11.025 – volume: 18 start-page: 3533 year: 2007 ident: 2023072821441942000_bib94 article-title: Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e07-03-0249 – volume: 75 start-page: 50 year: 2018 ident: 2023072821441942000_bib75 article-title: Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.08.008 – volume: 30 start-page: 233 year: 2016 ident: 2023072821441942000_bib99 article-title: Prrx1 isoform switching regulates pancreatic cancer invasion and metastatic colonization publication-title: Genes Dev. doi: 10.1101/gad.263327.115 – volume: 148 start-page: 349 year: 2012 ident: 2023072821441942000_bib86 article-title: EMT and dissemination precede pancreatic tumor formation publication-title: Cell. doi: 10.1016/j.cell.2011.11.025 – volume: 35 start-page: 64 year: 2019 ident: 2023072821441942000_bib92 article-title: Tinagl1 suppresses triple-negative breast cancer progression and metastasis by simultaneously inhibiting integrin/FAK and EGFR signaling publication-title: Cancer Cell. doi: 10.1016/j.ccell.2018.11.016 – volume: 141 start-page: 196 year: 2007 ident: 2023072821441942000_bib117 article-title: Expression of snail in pancreatic cancer promotes metastasis and chemoresistance publication-title: J. Surg. Res. doi: 10.1016/j.jss.2006.09.027 – volume: 26 start-page: 358 year: 2014 ident: 2023072821441942000_bib121 article-title: PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis publication-title: Cancer Cell. doi: 10.1016/j.ccr.2014.07.022 – volume: 17 start-page: 7654 year: 2011 ident: 2023072821441942000_bib52 article-title: Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-2816 – volume: 19 start-page: 31 year: 2018 ident: 2023072821441942000_bib29 article-title: Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis publication-title: Genome Biol. doi: 10.1186/s13059-018-1416-2 – volume: 7 start-page: 12819 year: 2016 ident: 2023072821441942000_bib2 article-title: Metastatic progression is associated with dynamic changes in the local microenvironment publication-title: Nat. Commun. doi: 10.1038/ncomms12819 – volume: 17 start-page: 1101 year: 2011 ident: 2023072821441942000_bib58 article-title: Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization publication-title: Nat. Med. doi: 10.1038/nm.2401 – volume: 32 start-page: 2672 year: 2013 ident: 2023072821441942000_bib41 article-title: Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step publication-title: EMBO J. doi: 10.1038/emboj.2013.188 – volume: 14 start-page: 3629 year: 2007 ident: 2023072821441942000_bib90 article-title: Development and characterization of gemcitabine-resistant pancreatic tumor cells publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-007-9583-5 – volume: 166 start-page: 21 year: 2016 ident: 2023072821441942000_bib76 article-title: EMT: 2016 publication-title: Cell. doi: 10.1016/j.cell.2016.06.028 – volume: 21 start-page: 8184 year: 2001 ident: 2023072821441942000_bib13 article-title: The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.23.8184-8188.2001 – volume: 4 start-page: 125 year: 2015 ident: 2023072821441942000_bib36 article-title: δEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells publication-title: Cancer Med. doi: 10.1002/cam4.347 – volume: 18 start-page: 99 year: 2004 ident: 2023072821441942000_bib100 article-title: Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation publication-title: Genes Dev. doi: 10.1101/gad.276304 – volume: 7 start-page: 1267 year: 2001 ident: 2023072821441942000_bib24 article-title: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion publication-title: Mol. Cell. doi: 10.1016/S1097-2765(01)00260-X – volume: 28 start-page: 167 year: 2014 ident: 2023072821441942000_bib84 article-title: A conserved role for Snail as a potentiator of active transcription publication-title: Genes Dev. doi: 10.1101/gad.230953.113 – volume: 104 start-page: 162 year: 2008 ident: 2023072821441942000_bib120 article-title: N-glycosylation affects the adhesive function of E-Cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.21608 – volume: 29 start-page: 4896 year: 2010 ident: 2023072821441942000_bib67 article-title: Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition publication-title: Oncogene. doi: 10.1038/onc.2010.234 – volume: 13 start-page: 4769 year: 2007 ident: 2023072821441942000_bib46 article-title: Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-2926 – volume: 21 start-page: 102 year: 2019 ident: 2023072821441942000_bib97 article-title: Non-redundant functions of EMT transcription factors publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0196-y – volume: 117 start-page: 927 year: 2004 ident: 2023072821441942000_bib114 article-title: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis publication-title: Cell. doi: 10.1016/j.cell.2004.06.006 – volume: 35 start-page: 2893 year: 2016 ident: 2023072821441942000_bib73 article-title: CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis publication-title: Oncogene. doi: 10.1038/onc.2015.350 – volume: 45 start-page: 681 year: 2018 ident: 2023072821441942000_bib4 article-title: EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration publication-title: Dev. Cell. doi: 10.1016/j.devcel.2018.05.027 – volume: 8 start-page: 131 year: 2017 ident: 2023072821441942000_bib16 article-title: Snail acetylation by histone acetyltransferase p300 in lung cancer publication-title: Thorac. Cancer. doi: 10.1111/1759-7714.12408 – volume: 36 start-page: 1704 year: 2016 ident: 2023072821441942000_bib115 article-title: Determination of a Comprehensive Alternative Splicing Regulatory Network and Combinatorial Regulation by Key Factors during the Epithelial-to-Mesenchymal Transition publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00019-16 – volume: 22 start-page: 894 year: 2008 ident: 2023072821441942000_bib79 article-title: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2 publication-title: Genes Dev. doi: 10.1101/gad.1640608 – volume: 144 start-page: 646 year: 2011 ident: 2023072821441942000_bib43 article-title: Hallmarks of cancer: the next generation publication-title: Cell. doi: 10.1016/j.cell.2011.02.013 – volume: 8 start-page: 197 year: 2005 ident: 2023072821441942000_bib72 article-title: The transcriptional repressor Snail promotes mammary tumor recurrence publication-title: Cancer Cell. doi: 10.1016/j.ccr.2005.07.009 – volume: 116 start-page: 499 year: 2003 ident: 2023072821441942000_bib9 article-title: The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors publication-title: J. Cell Sci. doi: 10.1242/jcs.00224 – volume: 22 start-page: 709 year: 2012 ident: 2023072821441942000_bib78 article-title: Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1 publication-title: Cancer Cell. doi: 10.1016/j.ccr.2012.10.012 – volume: 45 start-page: 696 year: 2018 ident: 2023072821441942000_bib83 article-title: Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer publication-title: Dev. Cell. doi: 10.1016/j.devcel.2018.05.025 – volume: 33 start-page: 396 year: 2013 ident: 2023072821441942000_bib106 article-title: RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01174-12 – volume: 139 start-page: 269 year: 2016 ident: 2023072821441942000_bib28 article-title: From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis publication-title: Int. J. Cancer. doi: 10.1002/ijc.30039 – volume: 114 start-page: 1395 year: 2013 ident: 2023072821441942000_bib85 article-title: Inhibition of ZEB1 reverses EMT and chemoresistance in docetaxel-resistant human lung adenocarcinoma cell line publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24481 – volume: 110 start-page: 341 year: 2002 ident: 2023072821441942000_bib49 article-title: Evidence that fibroblasts derive from epithelium during tissue fibrosis publication-title: J. Clin. Invest. doi: 10.1172/JCI0215518 – volume: 33 start-page: 943 year: 2017 ident: 2023072821441942000_bib96 article-title: Epithelial-to-Mesenchymal Transition: Epigenetic Reprogramming Driving Cellular Plasticity publication-title: Trends Genet. doi: 10.1016/j.tig.2017.08.004 – volume: 247 start-page: 473 year: 2018 ident: 2023072821441942000_bib42 article-title: Epithelial-to-mesenchymal transition in cutaneous wound healing: Where we are and where we are heading publication-title: Dev. Dyn. doi: 10.1002/dvdy.24561 – volume: 28 start-page: 4772 year: 2008 ident: 2023072821441942000_bib44 article-title: Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00323-08 – volume: 72 start-page: 2440 year: 2012 ident: 2023072821441942000_bib23 article-title: Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-4038 – volume: 71 start-page: 5296 year: 2011 ident: 2023072821441942000_bib33 article-title: IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-0156 – volume: 28 start-page: 2940 year: 2009 ident: 2023072821441942000_bib98 article-title: Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells publication-title: Oncogene. doi: 10.1038/onc.2009.180 – volume: 15 start-page: 180 year: 2013 ident: 2023072821441942000_bib81 article-title: Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression publication-title: Neoplasia. doi: 10.1593/neo.121828 – volume: 547 start-page: E7 year: 2017 ident: 2023072821441942000_bib3 article-title: Upholding a role for EMT in pancreatic cancer metastasis publication-title: Nature. doi: 10.1038/nature22963 – volume: 46 start-page: 1267 year: 2015 ident: 2023072821441942000_bib50 article-title: Expression of epithelial-mesenchymal transition-related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2015.05.010 – volume: 188 start-page: 1276 year: 2018 ident: 2023072821441942000_bib61 article-title: Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2018.01.016 – volume: 304 start-page: 107 year: 2011 ident: 2023072821441942000_bib21 article-title: Type I collagen down-regulates E-cadherin expression by increasing PI3KCA in cancer cells publication-title: Cancer Lett. doi: 10.1016/j.canlet.2011.02.008 – volume: 527 start-page: 472 year: 2015 ident: 2023072821441942000_bib34 article-title: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance publication-title: Nature. doi: 10.1038/nature15748 – volume: 2 start-page: 65 year: 2016 ident: 2023072821441942000_bib64 article-title: Probing the Fifty Shades of EMT in Metastasis publication-title: Trends Cancer. doi: 10.1016/j.trecan.2016.01.001 – volume: 43 start-page: 520 year: 2012 ident: 2023072821441942000_bib89 article-title: Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2011.07.003 – volume: 25 start-page: 666 year: 2014 ident: 2023072821441942000_bib118 article-title: A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma publication-title: Cancer Cell. doi: 10.1016/j.ccr.2014.03.010 – volume: 17 start-page: 678 year: 2015 ident: 2023072821441942000_bib109 article-title: Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway publication-title: Nat. Cell Biol. doi: 10.1038/ncb3157 – volume: 9 start-page: 4671 year: 2018 ident: 2023072821441942000_bib101 article-title: Genetic dissection of the miR-200-Zeb1 axis reveals its importance in tumor differentiation and invasion publication-title: Nat. Commun. doi: 10.1038/s41467-018-07130-z – volume: 127 start-page: 2021 year: 1994 ident: 2023072821441942000_bib70 article-title: TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors publication-title: J. Cell Biol. doi: 10.1083/jcb.127.6.2021 – volume: 19 start-page: 518 year: 2017 ident: 2023072821441942000_bib59 article-title: The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer publication-title: Nat. Cell Biol. doi: 10.1038/ncb3513 – volume: 93 start-page: 294 year: 2011 ident: 2023072821441942000_bib113 article-title: The mechanisms of cancer immunoescape and development of overcoming strategies publication-title: Int. J. Hematol. doi: 10.1007/s12185-011-0799-6 – volume: 247 start-page: 346 year: 2018 ident: 2023072821441942000_bib51 article-title: Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease publication-title: Dev. Dyn. doi: 10.1002/dvdy.24541 – volume: 4 start-page: 1149 year: 2018 ident: 2023072821441942000_bib71 article-title: Material Strategies for Modulating Epithelial to Mesenchymal Transitions publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00751 – volume: 14 start-page: 1212 year: 2012 ident: 2023072821441942000_bib15 article-title: Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2607 – volume: 556 start-page: 463 year: 2018 ident: 2023072821441942000_bib80 article-title: Identification of the tumour transition states occurring during EMT publication-title: Nature. doi: 10.1038/s41586-018-0040-3 – volume: 8 year: 2013 ident: 2023072821441942000_bib87 article-title: Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer publication-title: PLoS One. doi: 10.1371/journal.pone.0076773 – volume: 68 start-page: 937 year: 2008 ident: 2023072821441942000_bib103 article-title: Direct evidence for epithelial-mesenchymal transitions in breast cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-2148 – volume: 9 start-page: 5005 year: 2018 ident: 2023072821441942000_bib14 article-title: Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability publication-title: Nat. Commun. doi: 10.1038/s41467-018-07538-7 – volume: 5 start-page: 5241 year: 2014 ident: 2023072821441942000_bib19 article-title: Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression publication-title: Nat. Commun. doi: 10.1038/ncomms6241 – volume: 7 year: 2011 ident: 2023072821441942000_bib91 article-title: An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002218 – volume: 101 start-page: 1797 year: 2010 ident: 2023072821441942000_bib93 article-title: P300/CBP-associated factor regulates Y-box binding protein-1 expression and promotes cancer cell growth, cancer invasion and drug resistance publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2010.01598.x – volume: 22 start-page: 725 year: 2012 ident: 2023072821441942000_bib104 article-title: Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis publication-title: Cancer Cell. doi: 10.1016/j.ccr.2012.09.022 – volume: 11 start-page: 943 year: 2009 ident: 2023072821441942000_bib107 article-title: A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition publication-title: Nat. Cell Biol. doi: 10.1038/ncb1905 – volume: 6 year: 2017 ident: 2023072821441942000_bib77 article-title: The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200 publication-title: OncoImmunology. doi: 10.1080/2162402X.2016.1263412 – volume: 68 start-page: 7846 year: 2008 ident: 2023072821441942000_bib11 article-title: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-1942 – volume: 10 year: 2018 ident: 2023072821441942000_bib20 article-title: Dual reporter genetic mouse models of pancreatic cancer identify an epithelial-to-mesenchymal transition-independent metastasis program publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201809085 – volume: 5 year: 2010 ident: 2023072821441942000_bib56 article-title: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells publication-title: PLoS One. doi: 10.1371/journal.pone.0012445 – volume: 61 start-page: 439 year: 2012 ident: 2023072821441942000_bib1 article-title: Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer publication-title: Gut. doi: 10.1136/gutjnl-2011-300060 – volume: 30 start-page: 1781 year: 2009 ident: 2023072821441942000_bib8 article-title: P-cadherin induces an epithelial-like phenotype in oral squamous cell carcinoma by GSK-3beta-mediated Snail phosphorylation publication-title: Carcinogenesis. doi: 10.1093/carcin/bgp175 – volume: 63 start-page: 3386 year: 2003 ident: 2023072821441942000_bib112 article-title: The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis publication-title: Cancer Res. – volume: 527 start-page: 525 year: 2015 ident: 2023072821441942000_bib122 article-title: Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer publication-title: Nature. doi: 10.1038/nature16064 – volume: 22 start-page: 3630 year: 2016 ident: 2023072821441942000_bib68 article-title: Epithelial-Mesenchymal Transition Is Associated with a Distinct Tumor Microenvironment Including Elevation of Inflammatory Signals and Multiple Immune Checkpoints in Lung Adenocarcinoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-1434 – volume: 50 start-page: 755 year: 2008 ident: 2023072821441942000_bib74 article-title: Epithelial to mesenchymal transition during gastrulation: an embryological view publication-title: Dev. Growth Differ. doi: 10.1111/j.1440-169X.2008.01070.x – volume: 283 start-page: 14910 year: 2008 ident: 2023072821441942000_bib57 article-title: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C800074200 – volume: 7 start-page: 10498 year: 2016 ident: 2023072821441942000_bib63 article-title: ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types publication-title: Nat. Commun. doi: 10.1038/ncomms10498 – volume: 30A start-page: 105 year: 1994 ident: 2023072821441942000_bib66 article-title: Effect of hepatocyte growth factor/scatter factor and other growth factors on motility and morphology of non-tumorigenic and tumor cells publication-title: In Vitro Cell. Dev. Biol. Anim. doi: 10.1007/BF02631401 – volume: 131 start-page: 1877 year: 2011 ident: 2023072821441942000_bib110 article-title: Transcriptional activation of ZEB1 by Slug leads to cooperative regulation of the epithelial-mesenchymal transition-like phenotype in melanoma publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2011.142 – volume: 2 start-page: 76 year: 2000 ident: 2023072821441942000_bib12 article-title: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression publication-title: Nat. Cell Biol. doi: 10.1038/35000025 – volume: 6 start-page: 862 year: 2015 ident: 2023072821441942000_bib17 article-title: The ubiquitin ligase Siah is a novel regulator of Zeb1 in breast cancer publication-title: Oncotarget. doi: 10.18632/oncotarget.2696 – volume: 547 start-page: E1 year: 2017 ident: 2023072821441942000_bib116 article-title: Upholding a role for EMT in breast cancer metastasis publication-title: Nature. doi: 10.1038/nature22816 – volume: 43 start-page: 2360 year: 2012 ident: 2023072821441942000_bib88 article-title: Overexpression of epithelial-mesenchymal transition-related markers according to cell dedifferentiation: clinical implications as an independent predictor of poor prognosis in cholangiocarcinoma publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2012.07.004 – volume: 71 start-page: 3980 year: 2011 ident: 2023072821441942000_bib45 article-title: Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2914 – volume: 7 start-page: 24677 year: 2016 ident: 2023072821441942000_bib47 article-title: Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer publication-title: Oncotarget. doi: 10.18632/oncotarget.8250 |
SSID | ssj0014456 |
Score | 2.6875272 |
SecondaryResourceType | review_article |
Snippet | Epithelial–mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for... Epithelial-mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for... In this review, Aiello and Kang discuss the molecular mechanisms, regulatory networks, and functional consequences of epithelial–mesenchymal transition (EMT)... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1016 |
SubjectTerms | Animals Biomarkers, Tumor Cell Movement Cell Plasticity Epithelial Cells - metabolism Epithelial-Mesenchymal Transition Gene Expression Regulation, Neoplastic Humans Mesenchymal Stem Cells - metabolism Mice Neoplasm Metastasis Neoplasms - pathology Reviews |
Title | Context-dependent EMT programs in cancer metastasis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30975895 https://www.proquest.com/docview/2209600841 https://pubmed.ncbi.nlm.nih.gov/PMC6504222 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eQHwR784bFfRJqlmatsnjEGUI82nCfCpN0mBBqrj64q_3JE0vmxPUlzKyJN3ynZyck3ND6DyVuM90in2tQubTiAWw55T2MRXQGkZM2rwFo4do-EjvJ-GkLXNno0tKcSU_F8aV_AdVaANcTZTsH5BtJoUG-Az4whMQhuevMLappUBzrSvZlpe3o3HtcmUdXaUB9d3UiU5BDJzm064w2oaFWYF0Jtn_vM19kNdWGks7wAyuGl7trpyfcuHSeLtbBBO4FPo46nJGUEqNx0R1LjhmSLEx77IutyT9qEMWYYf3mXuAzjkKkku0kEdjRg2PzkweAJAvGInbs6i2v88dUY3joDWZM5rA6KQevYxWCegINtJ70vj3gKJoS_c2f8xFPcDo6-67Z-WRb0rGvK9sR_gYb6INB5I3qEhgCy1lxTZaGzmMdlDwjRI8oASvpgQvL7yKEryWEnbR493t-Gbou3IYvqQhLv1AguhIFVVSmaSHNBC0b-qB8SCAPUXSSHDBQ6kVx7HgkmiGRcrjTMMIpogM9tBK8VpkB8hLsdJcpJTpDNNMaxGzSMVEaYxhEtrvoct6URLpcsWbkiUvySIAeuii6f1W5Uj5od9Zvb4JMDFjmUqL7PVjmhBiNGnoD2_er9a7mSnAHHRaHvZQPINE08EkSJ_9psifbaJ00D7MDefhL3_fEVpvt8YxWinfP7ITEDlLcWpJ6wsY9oDl |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-dependent+EMT+programs+in+cancer+metastasis&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Aiello%2C+Nicole+M.&rft.au=Kang%2C+Yibin&rft.date=2019-05-06&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=216&rft.issue=5&rft.spage=1016&rft.epage=1026&rft_id=info:doi/10.1084%2Fjem.20181827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1084_jem_20181827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |