Context-dependent EMT programs in cancer metastasis

Epithelial–mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addit...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 216; no. 5; pp. 1016 - 1026
Main Authors Aiello, Nicole M., Kang, Yibin
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 06.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epithelial–mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addition to motility, EMT is associated with enhanced stem cell properties and drug resistance; thus it can drive metastasis, tumor recurrence, and therapy resistance in the context of cancer. However, the precise requirements for EMT in metastasis have not been fully delineated, with different tumor types relying on discrete EMT effectors. Most tumor cells do not undergo a full EMT, but rather adopt some qualities of mesenchymal cells and maintain some epithelial characteristics. Emerging evidence suggests that partial EMT can drive distinct migratory properties and enhance the epithelial-mesenchymal plasticity of cancer cells as well as cell fate plasticity. This review discusses the diverse regulatory mechanisms and functional consequences of EMT, with an emphasis on the importance of partial EMT.
AbstractList Epithelial–mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addition to motility, EMT is associated with enhanced stem cell properties and drug resistance; thus it can drive metastasis, tumor recurrence, and therapy resistance in the context of cancer. However, the precise requirements for EMT in metastasis have not been fully delineated, with different tumor types relying on discrete EMT effectors. Most tumor cells do not undergo a full EMT, but rather adopt some qualities of mesenchymal cells and maintain some epithelial characteristics. Emerging evidence suggests that partial EMT can drive distinct migratory properties and enhance the epithelial-mesenchymal plasticity of cancer cells as well as cell fate plasticity. This review discusses the diverse regulatory mechanisms and functional consequences of EMT, with an emphasis on the importance of partial EMT.
In this review, Aiello and Kang discuss the molecular mechanisms, regulatory networks, and functional consequences of epithelial–mesenchymal transition (EMT) in the context of cancer metastasis, with a particular focus on partial EMT and cellular plasticity. Epithelial–mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addition to motility, EMT is associated with enhanced stem cell properties and drug resistance; thus it can drive metastasis, tumor recurrence, and therapy resistance in the context of cancer. However, the precise requirements for EMT in metastasis have not been fully delineated, with different tumor types relying on discrete EMT effectors. Most tumor cells do not undergo a full EMT, but rather adopt some qualities of mesenchymal cells and maintain some epithelial characteristics. Emerging evidence suggests that partial EMT can drive distinct migratory properties and enhance the epithelial-mesenchymal plasticity of cancer cells as well as cell fate plasticity. This review discusses the diverse regulatory mechanisms and functional consequences of EMT, with an emphasis on the importance of partial EMT.
Epithelial-mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addition to motility, EMT is associated with enhanced stem cell properties and drug resistance; thus it can drive metastasis, tumor recurrence, and therapy resistance in the context of cancer. However, the precise requirements for EMT in metastasis have not been fully delineated, with different tumor types relying on discrete EMT effectors. Most tumor cells do not undergo a full EMT, but rather adopt some qualities of mesenchymal cells and maintain some epithelial characteristics. Emerging evidence suggests that partial EMT can drive distinct migratory properties and enhance the epithelial-mesenchymal plasticity of cancer cells as well as cell fate plasticity. This review discusses the diverse regulatory mechanisms and functional consequences of EMT, with an emphasis on the importance of partial EMT.Epithelial-mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for dramatic cellular movements during embryogenesis; however, tumor cells can reactivate EMT programs, which increases their aggressiveness. In addition to motility, EMT is associated with enhanced stem cell properties and drug resistance; thus it can drive metastasis, tumor recurrence, and therapy resistance in the context of cancer. However, the precise requirements for EMT in metastasis have not been fully delineated, with different tumor types relying on discrete EMT effectors. Most tumor cells do not undergo a full EMT, but rather adopt some qualities of mesenchymal cells and maintain some epithelial characteristics. Emerging evidence suggests that partial EMT can drive distinct migratory properties and enhance the epithelial-mesenchymal plasticity of cancer cells as well as cell fate plasticity. This review discusses the diverse regulatory mechanisms and functional consequences of EMT, with an emphasis on the importance of partial EMT.
Author Aiello, Nicole M.
Kang, Yibin
AuthorAffiliation Department of Molecular Biology, Princeton University, Princeton, NJ
AuthorAffiliation_xml – name: Department of Molecular Biology, Princeton University, Princeton, NJ
Author_xml – sequence: 1
  givenname: Nicole M.
  surname: Aiello
  fullname: Aiello, Nicole M.
– sequence: 2
  givenname: Yibin
  orcidid: 0000-0002-1626-6730
  surname: Kang
  fullname: Kang, Yibin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30975895$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LAzEQxYMotn7cPMsePbh1kk12NxdBil9Q8aLnkE2yNWU3qclW9L83xVpUhIE5zG_ePOYdoF3nnUHoBMMEQ00vFqafEMA1rkm1g8aYUcg5K-pdNAYgJMcA1QgdxLgAwJSych-NCuAVqzkbo2Lq3WDeh1ybpXHauCG7fnjKlsHPg-xjZl2mpFMmZL0ZZExl4xHaa2UXzfGmH6Lnm-un6V0-e7y9n17NckUZDHmheFVSTbXSwCnQoqFY61LzomBlTWTZ8IYz1WoOVcMVaWtoJK9MmzZqTVRxiC6_dJerpjdaJXNBdmIZbC_Dh_DSit8TZ1_E3L-JkgElhCSBs41A8K8rEwfR26hM10ln_CoKQoCXkJ6IE3r689b2yPenEnD-BajgYwym3SIYxDoIkYIQ30EknPzBlR3kYP3aqe3-X_oEL0GMEA
CitedBy_id crossref_primary_10_1007_s00018_022_04199_0
crossref_primary_10_1007_s10555_020_09908_4
crossref_primary_10_1042_CS20220128
crossref_primary_10_3390_biom12101410
crossref_primary_10_1016_j_taap_2020_115179
crossref_primary_10_3390_cancers15041319
crossref_primary_10_1016_j_intimp_2023_110064
crossref_primary_10_1016_j_archoralbio_2022_105611
crossref_primary_10_1007_s10620_021_06894_7
crossref_primary_10_1038_s41389_020_00258_y
crossref_primary_10_3390_jcm11082130
crossref_primary_10_3389_fmolb_2021_708779
crossref_primary_10_1038_s41568_021_00332_6
crossref_primary_10_3390_life11121427
crossref_primary_10_3892_ol_2021_13081
crossref_primary_10_3390_ijms23010430
crossref_primary_10_1155_2022_1289445
crossref_primary_10_1158_2767_9764_CRC_22_0013
crossref_primary_10_1016_j_devcel_2022_11_015
crossref_primary_10_1002_iub_2501
crossref_primary_10_1016_j_celrep_2022_110490
crossref_primary_10_3389_fphar_2022_944773
crossref_primary_10_3389_fimmu_2021_734188
crossref_primary_10_1186_s12935_020_1146_x
crossref_primary_10_1002_cam4_4059
crossref_primary_10_1016_j_prp_2021_153682
crossref_primary_10_3389_fmolb_2021_731788
crossref_primary_10_18632_aging_204983
crossref_primary_10_1038_s41419_022_05501_5
crossref_primary_10_1111_dgd_12773
crossref_primary_10_1155_2022_5436988
crossref_primary_10_1371_journal_pone_0316432
crossref_primary_10_1038_s41580_021_00375_5
crossref_primary_10_1016_j_jep_2024_118128
crossref_primary_10_1186_s12885_023_11639_y
crossref_primary_10_1016_j_cbi_2021_109446
crossref_primary_10_1080_03639045_2020_1763397
crossref_primary_10_1093_bbb_zbae132
crossref_primary_10_3390_cells8090960
crossref_primary_10_1186_s12935_019_1075_8
crossref_primary_10_3389_fgene_2022_927142
crossref_primary_10_1007_s00018_020_03449_3
crossref_primary_10_1016_j_intimp_2024_112855
crossref_primary_10_2174_1386207326666230818092532
crossref_primary_10_1155_2022_8767333
crossref_primary_10_1007_s00432_024_05923_y
crossref_primary_10_1038_d41586_019_02570_z
crossref_primary_10_1155_2022_7026174
crossref_primary_10_3389_fphar_2021_714365
crossref_primary_10_1016_j_colsurfb_2024_114187
crossref_primary_10_3389_fonc_2022_927249
crossref_primary_10_3389_fonc_2020_00850
crossref_primary_10_1016_j_ccell_2021_06_005
crossref_primary_10_15430_JCP_2021_26_2_137
crossref_primary_10_1038_s41419_022_04843_4
crossref_primary_10_3389_fonc_2021_692535
crossref_primary_10_2174_1574892818666230413082909
crossref_primary_10_1007_s11684_022_0975_5
crossref_primary_10_3390_cancers16193335
crossref_primary_10_1155_2022_2260625
crossref_primary_10_3390_cancers12113299
crossref_primary_10_1002_ctd2_260
crossref_primary_10_3390_cancers14092057
crossref_primary_10_1038_s41556_020_0556_2
crossref_primary_10_2139_ssrn_3999041
crossref_primary_10_1158_0008_5472_CAN_19_2288
crossref_primary_10_1016_j_heliyon_2023_e14001
crossref_primary_10_1016_j_cej_2024_151754
crossref_primary_10_1038_s41388_024_03169_z
crossref_primary_10_3389_fgene_2021_678194
crossref_primary_10_1007_s00018_019_03435_4
crossref_primary_10_1186_s13046_024_03038_3
crossref_primary_10_3390_cancers14040962
crossref_primary_10_3390_microorganisms8101519
crossref_primary_10_1080_21655979_2021_1968250
crossref_primary_10_1111_1759_7714_13620
crossref_primary_10_3390_cells14070488
crossref_primary_10_3390_biomedicines9091213
crossref_primary_10_1038_s41598_022_04973_x
crossref_primary_10_3389_fcell_2021_797102
crossref_primary_10_1002_cbin_11755
crossref_primary_10_1002_btm2_10375
crossref_primary_10_3390_cells9102256
crossref_primary_10_1007_s00018_023_04902_9
crossref_primary_10_1007_s11427_020_1895_2
crossref_primary_10_1016_j_trecan_2022_01_014
crossref_primary_10_3390_ijms242216391
crossref_primary_10_3724_abbs_2023251
crossref_primary_10_1016_j_semcancer_2019_07_020
crossref_primary_10_3390_cancers13215408
crossref_primary_10_1038_s41556_022_00877_0
crossref_primary_10_1111_jcmm_15822
crossref_primary_10_3390_ijms23126806
crossref_primary_10_1016_j_biopha_2024_117049
crossref_primary_10_4251_wjgo_v13_i2_92
crossref_primary_10_1186_s13578_023_01083_7
crossref_primary_10_3892_etm_2023_12013
crossref_primary_10_3390_ijms23169183
crossref_primary_10_1111_cas_15388
crossref_primary_10_1360_SSV_2022_0058
crossref_primary_10_18632_aging_202986
crossref_primary_10_31832_smj_1128434
crossref_primary_10_3389_fgene_2022_948254
crossref_primary_10_1186_s12935_021_01871_6
crossref_primary_10_1155_2021_9219961
crossref_primary_10_1016_j_bcp_2024_116141
crossref_primary_10_1007_s10555_024_10190_x
crossref_primary_10_3389_fimmu_2022_831636
crossref_primary_10_1016_j_biopha_2021_112360
crossref_primary_10_1111_cpr_13188
crossref_primary_10_1155_2021_9026918
crossref_primary_10_18632_aging_103192
crossref_primary_10_1080_15384047_2021_1898728
crossref_primary_10_3390_ijms25168972
crossref_primary_10_1016_j_apsb_2020_11_018
crossref_primary_10_1002_ctm2_730
crossref_primary_10_1016_j_devcel_2021_11_006
crossref_primary_10_1159_000518249
crossref_primary_10_1038_s41420_023_01694_6
crossref_primary_10_1186_s12929_023_00909_3
crossref_primary_10_3389_fonc_2020_600322
crossref_primary_10_1016_j_urolonc_2021_12_021
crossref_primary_10_1002_ctm2_1432
crossref_primary_10_3390_pathogens12111288
crossref_primary_10_18632_aging_202371
crossref_primary_10_1038_s41598_022_25053_0
crossref_primary_10_1080_1354750X_2022_2163694
crossref_primary_10_1111_cas_14664
crossref_primary_10_2147_OTT_S256226
crossref_primary_10_1186_s12935_024_03618_5
crossref_primary_10_62347_HYNZ9211
crossref_primary_10_1186_s13045_024_01634_6
crossref_primary_10_1016_j_biopha_2023_116011
crossref_primary_10_1016_j_celrep_2020_108311
crossref_primary_10_1186_s13046_020_01641_8
crossref_primary_10_1016_j_bone_2020_115617
crossref_primary_10_3389_fonc_2021_602900
crossref_primary_10_3390_cancers12010148
crossref_primary_10_1016_j_gene_2023_147194
crossref_primary_10_1158_1541_7786_MCR_19_1244
crossref_primary_10_3389_fcell_2021_639779
crossref_primary_10_1084_jem_20190218
crossref_primary_10_3389_fcell_2021_641432
crossref_primary_10_1007_s12195_021_00694_9
crossref_primary_10_1042_BSR20194496
crossref_primary_10_3389_fgene_2021_794157
crossref_primary_10_1016_j_bbadis_2024_167019
crossref_primary_10_1039_D2EN00031H
crossref_primary_10_1016_j_ejcb_2020_151098
crossref_primary_10_1155_2021_6661772
crossref_primary_10_2139_ssrn_3745779
crossref_primary_10_1111_cas_15532
crossref_primary_10_1002_jcb_29635
crossref_primary_10_1186_s12943_023_01744_8
crossref_primary_10_3389_fgene_2022_820532
crossref_primary_10_1186_s12964_024_01775_8
crossref_primary_10_3389_fonc_2020_00792
crossref_primary_10_1111_1759_7714_15400
crossref_primary_10_1038_s41467_019_14262_3
crossref_primary_10_1096_fj_202301095R
crossref_primary_10_1016_j_jddst_2024_105384
crossref_primary_10_1016_j_bcp_2020_114177
crossref_primary_10_1007_s10719_020_09967_3
crossref_primary_10_1186_s12929_024_00997_9
crossref_primary_10_3390_cells13171506
crossref_primary_10_1016_j_drudis_2022_103438
crossref_primary_10_1186_s13059_022_02687_x
crossref_primary_10_3892_mmr_2022_12640
crossref_primary_10_1248_bpb_b23_00156
crossref_primary_10_3389_fonc_2024_1409329
crossref_primary_10_3390_ijtm2030033
crossref_primary_10_3390_ijms241512245
crossref_primary_10_1007_s43152_024_00058_1
crossref_primary_10_1126_sciadv_adf9915
crossref_primary_10_3390_cancers13071633
crossref_primary_10_3390_cancers14153626
crossref_primary_10_3390_ijms241914815
crossref_primary_10_1111_jcmm_70342
crossref_primary_10_1152_ajpcell_00158_2022
crossref_primary_10_2217_pme_2023_0103
crossref_primary_10_1016_j_isci_2021_102113
crossref_primary_10_1007_s10565_021_09681_2
crossref_primary_10_1002_wsbm_1604
crossref_primary_10_1088_1478_3975_ab34df
crossref_primary_10_1016_j_bbrc_2020_12_042
crossref_primary_10_1158_1541_7786_MCR_20_1025
crossref_primary_10_3390_ph17060752
crossref_primary_10_1038_s41401_021_00799_x
crossref_primary_10_1038_s41598_020_70788_3
crossref_primary_10_2147_OTT_S240028
crossref_primary_10_1080_21655979_2022_2033013
crossref_primary_10_3892_mmr_2021_12457
crossref_primary_10_1038_s41598_021_03984_4
crossref_primary_10_1080_21655979_2022_2079253
crossref_primary_10_3892_or_2023_8630
crossref_primary_10_3892_mco_2023_2627
crossref_primary_10_2147_DDDT_S384151
crossref_primary_10_1016_j_pharmthera_2021_107881
crossref_primary_10_1002_mco2_100
crossref_primary_10_3389_fonc_2022_730530
crossref_primary_10_1002_iub_2176
crossref_primary_10_1186_s13048_021_00913_x
crossref_primary_10_1007_s10120_023_01366_5
crossref_primary_10_18632_aging_103592
crossref_primary_10_1155_2021_3566749
crossref_primary_10_3389_fendo_2023_1247709
crossref_primary_10_1016_j_ijpharm_2024_124910
crossref_primary_10_1155_cplx_9007322
crossref_primary_10_32604_biocell_2023_029617
crossref_primary_10_1016_j_cellsig_2022_110462
crossref_primary_10_1186_s12943_022_01620_x
crossref_primary_10_1002_1878_0261_13075
crossref_primary_10_3390_cancers14194625
crossref_primary_10_1083_jcb_202308069
crossref_primary_10_3389_fimmu_2021_654877
crossref_primary_10_18632_aging_103021
crossref_primary_10_3390_cancers13195028
crossref_primary_10_1038_s41467_020_14556_x
crossref_primary_10_1177_15330338221081219
crossref_primary_10_1016_j_biopha_2023_114487
crossref_primary_10_1016_j_phymed_2022_154062
crossref_primary_10_1016_j_asjsur_2021_07_058
crossref_primary_10_1016_j_canlet_2023_216427
crossref_primary_10_1186_s13020_021_00489_0
crossref_primary_10_1002_tox_23822
crossref_primary_10_2147_IJGM_S437957
crossref_primary_10_3390_cancers17020228
crossref_primary_10_1038_s41467_021_26343_3
crossref_primary_10_1007_s12192_021_01196_3
crossref_primary_10_1038_s41388_021_01713_9
crossref_primary_10_1155_2022_2174758
crossref_primary_10_1097_CM9_0000000000002459
crossref_primary_10_1007_s40820_022_00894_6
crossref_primary_10_1002_art_42946
crossref_primary_10_1177_15347354231172732
crossref_primary_10_4103_jcrt_jcrt_749_23
crossref_primary_10_1038_s41388_022_02448_x
crossref_primary_10_3389_fgene_2021_723802
crossref_primary_10_3389_fgene_2022_913659
crossref_primary_10_1016_j_yexcr_2023_113563
crossref_primary_10_1038_s41419_024_06694_7
crossref_primary_10_3390_cancers14246214
crossref_primary_10_1210_jendso_bvac143
crossref_primary_10_1016_j_isci_2022_103917
crossref_primary_10_1002_cnr2_2085
crossref_primary_10_1084_jem_20190297
crossref_primary_10_1016_j_trecan_2020_06_004
crossref_primary_10_1111_jcmm_15399
crossref_primary_10_3389_fpubh_2020_579705
crossref_primary_10_3389_fonc_2022_1039366
crossref_primary_10_1002_mco2_144
crossref_primary_10_1021_acsabm_4c00343
crossref_primary_10_1016_j_advnut_2023_05_013
crossref_primary_10_1016_j_phymed_2022_154192
crossref_primary_10_3892_ijo_2020_4972
crossref_primary_10_1093_carcin_bgaa072
crossref_primary_10_1042_BSR20211494
crossref_primary_10_1155_2021_5553425
crossref_primary_10_1186_s11658_023_00471_8
crossref_primary_10_1016_j_semcancer_2024_06_001
crossref_primary_10_1111_1759_7714_13280
crossref_primary_10_1186_s12885_023_10866_7
crossref_primary_10_1007_s10637_022_01298_4
crossref_primary_10_47248_chp2401020011
crossref_primary_10_1177_1934578X221102031
crossref_primary_10_1016_j_jhep_2023_10_018
crossref_primary_10_1089_cbr_2019_3546
crossref_primary_10_1007_s10147_023_02374_2
crossref_primary_10_1111_1759_7714_14366
crossref_primary_10_1007_s12020_023_03383_x
crossref_primary_10_1038_s41388_022_02202_3
crossref_primary_10_1016_j_prp_2023_154558
crossref_primary_10_1016_j_yexcr_2024_113978
crossref_primary_10_3390_cancers16183180
crossref_primary_10_1007_s12672_024_01106_w
crossref_primary_10_5847_wjem_j_1920_8642_2022_089
crossref_primary_10_1007_s12015_021_10209_8
crossref_primary_10_1002_cbin_12060
crossref_primary_10_1097_PAI_0000000000000910
crossref_primary_10_1016_j_intimp_2021_108176
crossref_primary_10_1158_1541_7786_MCR_19_0197
crossref_primary_10_1126_scitranslmed_aax8933
crossref_primary_10_1186_s12957_021_02164_y
crossref_primary_10_18632_aging_102791
crossref_primary_10_1016_j_tcb_2020_07_003
crossref_primary_10_1093_carcin_bgad013
crossref_primary_10_1186_s13045_022_01347_8
crossref_primary_10_1186_s12943_023_01761_7
crossref_primary_10_1016_j_ejphar_2024_176931
crossref_primary_10_3389_fmolb_2020_00071
crossref_primary_10_3390_ijms22020536
crossref_primary_10_1080_14796694_2025_2461443
crossref_primary_10_1038_s41598_025_85531_z
crossref_primary_10_1038_s41416_021_01350_9
crossref_primary_10_1038_s41419_022_04540_2
crossref_primary_10_4103_aja202226
crossref_primary_10_1016_j_prp_2024_155646
crossref_primary_10_3389_fonc_2022_1094612
crossref_primary_10_1002_jcp_31501
crossref_primary_10_1038_s41598_022_09702_y
crossref_primary_10_3389_fphar_2020_00645
crossref_primary_10_1073_pnas_2115624119
crossref_primary_10_1186_s13046_022_02377_3
crossref_primary_10_1089_dna_2021_0416
crossref_primary_10_1186_s12964_023_01368_x
crossref_primary_10_3390_cancers15030961
crossref_primary_10_3390_ijms22115697
crossref_primary_10_1038_s41388_023_02651_4
crossref_primary_10_1038_s41419_021_04179_5
crossref_primary_10_1016_j_critrevonc_2023_103964
crossref_primary_10_3390_ijms24054756
crossref_primary_10_1093_rb_rbad014
crossref_primary_10_1111_imcb_12451
crossref_primary_10_1016_j_mce_2023_111998
crossref_primary_10_2147_OTT_S272596
crossref_primary_10_1016_j_canlet_2024_217161
crossref_primary_10_1042_BSR20192727
crossref_primary_10_1186_s12967_022_03508_2
crossref_primary_10_1016_j_biopha_2019_109780
crossref_primary_10_1038_s41388_021_02030_x
crossref_primary_10_3390_ijms23031896
crossref_primary_10_3390_cancers13061357
crossref_primary_10_3390_cancers16071354
crossref_primary_10_1016_j_anndiagpath_2022_151954
crossref_primary_10_1038_s41598_024_80579_9
crossref_primary_10_3389_fphar_2023_1163115
crossref_primary_10_3389_fonc_2022_834235
crossref_primary_10_1002_ijc_35137
crossref_primary_10_1515_biol_2021_0048
crossref_primary_10_1042_BSR20191507
crossref_primary_10_18632_aging_202941
crossref_primary_10_26508_lsa_202301984
crossref_primary_10_3892_ijo_2019_4938
crossref_primary_10_1016_j_ijbiomac_2020_06_281
crossref_primary_10_1080_21655979_2021_2005915
crossref_primary_10_1002_jcp_30862
crossref_primary_10_1016_j_lfs_2022_121359
crossref_primary_10_1093_bjd_ljad335
crossref_primary_10_3389_fcell_2022_954099
crossref_primary_10_1038_s12276_024_01377_x
crossref_primary_10_3390_cells11213334
crossref_primary_10_2174_1871520621666210706113102
crossref_primary_10_1155_2023_8334881
crossref_primary_10_1177_1533033820980769
crossref_primary_10_1177_03000605231174974
crossref_primary_10_1016_j_cellsig_2022_110433
crossref_primary_10_1016_j_lfs_2022_121103
crossref_primary_10_1177_10732748241274978
crossref_primary_10_1016_j_jid_2022_12_015
crossref_primary_10_1055_a_2246_4778
crossref_primary_10_18632_aging_102464
crossref_primary_10_1186_s13046_019_1505_4
crossref_primary_10_1186_s12935_023_02993_9
crossref_primary_10_1016_j_yexcr_2021_112735
crossref_primary_10_1111_jcmm_16099
crossref_primary_10_3390_ijms22158334
crossref_primary_10_1515_med_2024_1089
crossref_primary_10_1038_s41420_023_01448_4
crossref_primary_10_3390_cancers12102785
crossref_primary_10_1016_j_phymed_2024_155833
crossref_primary_10_3390_biomedicines8100402
crossref_primary_10_3892_etm_2024_12746
crossref_primary_10_18632_aging_205049
crossref_primary_10_1155_2022_7841279
crossref_primary_10_1155_2022_9133658
crossref_primary_10_3390_cells14020080
crossref_primary_10_3390_cancers12030688
crossref_primary_10_3390_ijms24021786
crossref_primary_10_3389_fmolb_2020_00138
crossref_primary_10_3727_096504021X16203818567367
crossref_primary_10_3390_cancers12102896
crossref_primary_10_3389_fcell_2022_1038841
crossref_primary_10_1101_gad_343251_120
crossref_primary_10_3390_jcm8101542
crossref_primary_10_1007_s10528_023_10662_9
crossref_primary_10_1186_s12906_024_04363_y
crossref_primary_10_1016_j_semcancer_2022_09_004
crossref_primary_10_1158_0008_5472_CAN_21_4087
crossref_primary_10_1111_jcmm_17288
crossref_primary_10_3389_fonc_2020_00094
crossref_primary_10_1002_path_6240
crossref_primary_10_1155_2021_5282894
crossref_primary_10_1089_cbr_2019_3259
crossref_primary_10_1038_s41416_021_01328_7
crossref_primary_10_1016_j_ebiom_2020_102662
crossref_primary_10_4251_wjgo_v14_i12_2340
crossref_primary_10_1038_s41388_023_02809_0
crossref_primary_10_1186_s12957_022_02821_w
Cites_doi 10.1002/path.2426
10.1083/jcb.95.1.333
10.18632/oncotarget.9403
10.1186/s13058-015-0546-7
10.1016/j.ccr.2009.01.023
10.1158/0008-5472.CAN-16-3292
10.1038/s41388-018-0378-x
10.1016/j.cell.2017.10.044
10.1016/j.ccr.2009.03.016
10.1006/cbir.2002.0901
10.1053/j.gastro.2009.04.004
10.1038/ncb1722
10.1186/bcr2333
10.1038/s41556-019-0309-2
10.1016/j.cell.2008.03.027
10.1038/ncb3595
10.1073/pnas.0605669103
10.1186/s12885-017-3385-3
10.1073/pnas.171610498
10.1038/ncb758
10.1038/sj.onc.1209077
10.4161/cc.10.24.18552
10.1111/j.1742-4658.2012.08674.x
10.1038/ncb3013
10.1016/j.ccell.2018.12.002
10.1074/jbc.M115.693853
10.1158/0008-5472.CAN-14-0923
10.1158/0008-5472.CAN-11-2905
10.1016/j.devcel.2004.12.010
10.1073/pnas.0905718106
10.1158/0008-5472.CAN-12-2432
10.1016/j.devcel.2006.02.011
10.1016/j.celrep.2015.11.025
10.1091/mbc.e07-03-0249
10.1016/j.semcdb.2017.08.008
10.1101/gad.263327.115
10.1016/j.cell.2011.11.025
10.1016/j.ccell.2018.11.016
10.1016/j.jss.2006.09.027
10.1016/j.ccr.2014.07.022
10.1158/1078-0432.CCR-10-2816
10.1186/s13059-018-1416-2
10.1038/ncomms12819
10.1038/nm.2401
10.1038/emboj.2013.188
10.1245/s10434-007-9583-5
10.1016/j.cell.2016.06.028
10.1128/MCB.21.23.8184-8188.2001
10.1002/cam4.347
10.1101/gad.276304
10.1016/S1097-2765(01)00260-X
10.1101/gad.230953.113
10.1002/jcb.21608
10.1038/onc.2010.234
10.1158/1078-0432.CCR-06-2926
10.1038/s41556-018-0196-y
10.1016/j.cell.2004.06.006
10.1038/onc.2015.350
10.1016/j.devcel.2018.05.027
10.1111/1759-7714.12408
10.1128/MCB.00019-16
10.1101/gad.1640608
10.1016/j.cell.2011.02.013
10.1016/j.ccr.2005.07.009
10.1242/jcs.00224
10.1016/j.ccr.2012.10.012
10.1016/j.devcel.2018.05.025
10.1128/MCB.01174-12
10.1002/ijc.30039
10.1002/jcb.24481
10.1172/JCI0215518
10.1016/j.tig.2017.08.004
10.1002/dvdy.24561
10.1128/MCB.00323-08
10.1158/0008-5472.CAN-11-4038
10.1158/0008-5472.CAN-11-0156
10.1038/onc.2009.180
10.1593/neo.121828
10.1038/nature22963
10.1016/j.humpath.2015.05.010
10.1016/j.ajpath.2018.01.016
10.1016/j.canlet.2011.02.008
10.1038/nature15748
10.1016/j.trecan.2016.01.001
10.1016/j.humpath.2011.07.003
10.1016/j.ccr.2014.03.010
10.1038/ncb3157
10.1038/s41467-018-07130-z
10.1083/jcb.127.6.2021
10.1038/ncb3513
10.1007/s12185-011-0799-6
10.1002/dvdy.24541
10.1021/acsbiomaterials.6b00751
10.1038/ncb2607
10.1038/s41586-018-0040-3
10.1371/journal.pone.0076773
10.1158/0008-5472.CAN-07-2148
10.1038/s41467-018-07538-7
10.1038/ncomms6241
10.1371/journal.pgen.1002218
10.1111/j.1349-7006.2010.01598.x
10.1016/j.ccr.2012.09.022
10.1038/ncb1905
10.1080/2162402X.2016.1263412
10.1158/0008-5472.CAN-08-1942
10.15252/emmm.201809085
10.1371/journal.pone.0012445
10.1136/gutjnl-2011-300060
10.1093/carcin/bgp175
10.1038/nature16064
10.1158/1078-0432.CCR-15-1434
10.1111/j.1440-169X.2008.01070.x
10.1074/jbc.C800074200
10.1038/ncomms10498
10.1007/BF02631401
10.1038/jid.2011.142
10.1038/35000025
10.18632/oncotarget.2696
10.1038/nature22816
10.1016/j.humpath.2012.07.004
10.1158/0008-5472.CAN-10-2914
10.18632/oncotarget.8250
ContentType Journal Article
Copyright 2019 Aiello and Kang.
2019 Aiello and Kang 2019
Copyright_xml – notice: 2019 Aiello and Kang.
– notice: 2019 Aiello and Kang 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1084/jem.20181827
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Epithelial–mesenchymal transition in metastasis
EISSN 1540-9538
EndPage 1026
ExternalDocumentID PMC6504222
30975895
10_1084_jem_20181827
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: BC170055
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
GX1
H13
HYE
IH2
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c450t-3c9764d4dcd094043b41dd6d9335682a6b9b95cfd907b9c2f80ba97ef4dc8d2c3
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 14:02:34 EDT 2025
Fri Jul 11 04:45:52 EDT 2025
Thu Apr 03 07:05:56 EDT 2025
Tue Jul 01 00:41:12 EDT 2025
Thu Apr 24 22:51:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2019 Aiello and Kang.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-3c9764d4dcd094043b41dd6d9335682a6b9b95cfd907b9c2f80ba97ef4dc8d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1626-6730
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6504222
PMID 30975895
PQID 2209600841
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6504222
proquest_miscellaneous_2209600841
pubmed_primary_30975895
crossref_primary_10_1084_jem_20181827
crossref_citationtrail_10_1084_jem_20181827
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-06
PublicationDateYYYYMMDD 2019-05-06
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2019
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Haensel (2023072821441942000_bib42) 2018; 247
Wels (2023072821441942000_bib110) 2011; 131
Fernando (2023072821441942000_bib33) 2011; 71
Jolly (2023072821441942000_bib51) 2018; 247
Creighton (2023072821441942000_bib25) 2009; 106
Korpal (2023072821441942000_bib58) 2011; 17
Yin (2023072821441942000_bib117) 2007; 141
Pastushenko (2023072821441942000_bib80) 2018; 556
Chen (2023072821441942000_bib17) 2015; 6
Lin (2023072821441942000_bib67) 2010; 29
Kim (2023072821441942000_bib53) 2012; 279
Paterson (2023072821441942000_bib81) 2013; 15
Tran (2023072821441942000_bib102) 2014; 74
Mani (2023072821441942000_bib69) 2008; 133
Siemens (2023072821441942000_bib95) 2011; 10
Venables (2023072821441942000_bib106) 2013; 33
Zhang (2023072821441942000_bib119) 2014; 16
Reichert (2023072821441942000_bib83) 2018; 45
Esposito (2023072821441942000_bib32) 2019
Chang (2023072821441942000_bib16) 2017; 8
Kim (2023072821441942000_bib55) 2006; 103
Yuan (2023072821441942000_bib118) 2014; 25
Bolós (2023072821441942000_bib9) 2003; 116
Fischer (2023072821441942000_bib34) 2015; 527
Lou (2023072821441942000_bib68) 2016; 22
Aiello (2023072821441942000_bib2) 2016; 7
Krebs (2023072821441942000_bib59) 2017; 19
Aiello (2023072821441942000_bib4) 2018; 45
Chen (2023072821441942000_bib19) 2014; 5
Cano (2023072821441942000_bib12) 2000; 2
Kong (2023072821441942000_bib56) 2010; 5
Trimboli (2023072821441942000_bib103) 2008; 68
Ryu (2023072821441942000_bib89) 2012; 43
Herranz (2023072821441942000_bib44) 2008; 28
Wei (2023072821441942000_bib109) 2015; 17
Shah (2023072821441942000_bib90) 2007; 14
Bauer (2023072821441942000_bib8) 2009; 30
Title (2023072821441942000_bib101) 2018; 9
Barber (2023072821441942000_bib7) 2008; 216
Grelet (2023072821441942000_bib40) 2017; 19
Cheung (2023072821441942000_bib22) 2005; 8
Del Pozo Martin (2023072821441942000_bib27) 2015; 13
Roca (2023072821441942000_bib87) 2013; 8
Dossus (2023072821441942000_bib31) 2015; 17
Hong (2023072821441942000_bib45) 2011; 71
Ren (2023072821441942000_bib85) 2013; 114
Xue (2023072821441942000_bib112) 2003; 63
Lapin (2023072821441942000_bib62) 2017; 17
Aktas (2023072821441942000_bib6) 2009; 11
Rembold (2023072821441942000_bib84) 2014; 28
Shiota (2023072821441942000_bib93) 2010; 101
Kunita (2023072821441942000_bib61) 2018; 188
Li (2023072821441942000_bib65) 2006; 25
Ocaña (2023072821441942000_bib78) 2012; 22
Gao (2023072821441942000_bib37) 2012; 72
Chen (2023072821441942000_bib20) 2018; 10
Dong (2023072821441942000_bib29) 2018; 19
Yang (2023072821441942000_bib115) 2016; 36
Jang (2023072821441942000_bib50) 2015; 46
Akalay (2023072821441942000_bib5) 2013; 73
Gregory (2023072821441942000_bib39) 2008; 10
Comijn (2023072821441942000_bib24) 2001; 7
Nakaya (2023072821441942000_bib74) 2008; 50
von Burstin (2023072821441942000_bib108) 2009; 137
Dhamija (2023072821441942000_bib28) 2016; 139
Neumann (2023072821441942000_bib75) 2018; 75
Aiello (2023072821441942000_bib3) 2017; 547
Wu (2023072821441942000_bib111) 2009; 15
Skrypek (2023072821441942000_bib96) 2017; 33
Gumireddy (2023072821441942000_bib41) 2013; 32
Stemmler (2023072821441942000_bib97) 2019; 21
Rhim (2023072821441942000_bib86) 2012; 148
Sullivan (2023072821441942000_bib98) 2009; 28
Dongre (2023072821441942000_bib30) 2017; 77
Chakrabarti (2023072821441942000_bib15) 2012; 14
Fujita (2023072821441942000_bib35) 2002; 4
Kahlert (2023072821441942000_bib52) 2011; 17
Mihalko (2023072821441942000_bib71) 2018; 4
Noman (2023072821441942000_bib77) 2017; 6
Puram (2023072821441942000_bib82) 2017; 171
Carver (2023072821441942000_bib13) 2001; 21
van Staalduinen (2023072821441942000_bib105) 2018; 37
Yaguchi (2023072821441942000_bib113) 2011; 93
Greenburg (2023072821441942000_bib38) 1982; 95
Shirakihara (2023072821441942000_bib94) 2007; 18
Miettinen (2023072821441942000_bib70) 1994; 127
Lehmann (2023072821441942000_bib63) 2016; 7
Zhou (2023072821441942000_bib123) 2016; 291
Iwano (2023072821441942000_bib49) 2002; 110
Park (2023072821441942000_bib79) 2008; 22
Aghdassi (2023072821441942000_bib1) 2012; 61
Yang (2023072821441942000_bib114) 2004; 117
Fukagawa (2023072821441942000_bib36) 2015; 4
Takano (2023072821441942000_bib99) 2016; 30
Zheng (2023072821441942000_bib121) 2014; 26
Li (2023072821441942000_bib66) 1994; 30A
Ye (2023072821441942000_bib116) 2017; 547
Hotz (2023072821441942000_bib46) 2007; 13
Vincent (2023072821441942000_bib107) 2009; 11
Tsai (2023072821441942000_bib104) 2012; 22
Celià-Terrassa (2023072821441942000_bib14) 2018; 9
Kudo-Saito (2023072821441942000_bib60) 2009; 15
Shen (2023072821441942000_bib92) 2019; 35
Shapiro (2023072821441942000_bib91) 2011; 7
Cheng (2023072821441942000_bib21) 2011; 304
Hyun (2023072821441942000_bib47) 2016; 7
Li (2023072821441942000_bib64) 2016; 2
Cieply (2023072821441942000_bib23) 2012; 72
Ryu (2023072821441942000_bib88) 2012; 43
Hanahan (2023072821441942000_bib43) 2011; 144
Dale (2023072821441942000_bib26) 2006; 10
Zheng (2023072821441942000_bib122) 2015; 527
Kim (2023072821441942000_bib54) 2002; 26
Bracken (2023072821441942000_bib11) 2008; 68
Chen (2023072821441942000_bib18) 2016; 7
Korpal (2023072821441942000_bib57) 2008; 283
Zhao (2023072821441942000_bib120) 2008; 104
Ishay-Ronen (2023072821441942000_bib48) 2019; 35
Nagaoka (2023072821441942000_bib73) 2016; 35
Nieto (2023072821441942000_bib76) 2016; 166
Moody (2023072821441942000_bib72) 2005; 8
Timmerman (2023072821441942000_bib100) 2004; 18
Brabletz (2023072821441942000_bib10) 2001; 98
References_xml – volume: 216
  start-page: 295
  year: 2008
  ident: 2023072821441942000_bib7
  article-title: Mechanisms and sequelae of E-cadherin silencing in hereditary diffuse gastric cancer
  publication-title: J. Pathol.
  doi: 10.1002/path.2426
– volume: 95
  start-page: 333
  year: 1982
  ident: 2023072821441942000_bib38
  article-title: Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.95.1.333
– volume: 7
  start-page: 37260
  year: 2016
  ident: 2023072821441942000_bib18
  article-title: Phosphorylation of E-cadherin at threonine 790 by protein kinase Cδ reduces β-catenin binding and suppresses the function of E-cadherin
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.9403
– volume: 17
  start-page: 37
  year: 2015
  ident: 2023072821441942000_bib31
  article-title: Lobular breast cancer: incidence and genetic and non-genetic risk factors
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-015-0546-7
– volume: 15
  start-page: 195
  year: 2009
  ident: 2023072821441942000_bib60
  article-title: Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2009.01.023
– volume: 77
  start-page: 3982
  year: 2017
  ident: 2023072821441942000_bib30
  article-title: Epithelial-to-Mesenchymal Transition Contributes to Immunosuppression in Breast Carcinomas
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-3292
– volume: 37
  start-page: 6195
  year: 2018
  ident: 2023072821441942000_bib105
  article-title: Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer?
  publication-title: Oncogene.
  doi: 10.1038/s41388-018-0378-x
– volume: 171
  start-page: 1611
  year: 2017
  ident: 2023072821441942000_bib82
  article-title: Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer
  publication-title: Cell.
  doi: 10.1016/j.cell.2017.10.044
– volume: 15
  start-page: 416
  year: 2009
  ident: 2023072821441942000_bib111
  article-title: Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2009.03.016
– volume: 26
  start-page: 463
  year: 2002
  ident: 2023072821441942000_bib54
  article-title: Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT
  publication-title: Cell Biol. Int.
  doi: 10.1006/cbir.2002.0901
– volume: 137
  start-page: 361
  year: 2009
  ident: 2023072821441942000_bib108
  article-title: E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2009.04.004
– volume: 10
  start-page: 593
  year: 2008
  ident: 2023072821441942000_bib39
  article-title: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1722
– volume: 11
  start-page: R46
  year: 2009
  ident: 2023072821441942000_bib6
  article-title: Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr2333
– year: 2019
  ident: 2023072821441942000_bib32
  article-title: Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0309-2
– volume: 133
  start-page: 704
  year: 2008
  ident: 2023072821441942000_bib69
  article-title: The epithelial-mesenchymal transition generates cells with properties of stem cells
  publication-title: Cell.
  doi: 10.1016/j.cell.2008.03.027
– volume: 19
  start-page: 1105
  year: 2017
  ident: 2023072821441942000_bib40
  article-title: A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3595
– volume: 103
  start-page: 13180
  year: 2006
  ident: 2023072821441942000_bib55
  article-title: Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0605669103
– volume: 17
  start-page: 390
  year: 2017
  ident: 2023072821441942000_bib62
  article-title: Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells
  publication-title: BMC Cancer.
  doi: 10.1186/s12885-017-3385-3
– volume: 98
  start-page: 10356
  year: 2001
  ident: 2023072821441942000_bib10
  article-title: Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.171610498
– volume: 4
  start-page: 222
  year: 2002
  ident: 2023072821441942000_bib35
  article-title: Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb758
– volume: 25
  start-page: 609
  year: 2006
  ident: 2023072821441942000_bib65
  article-title: Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation
  publication-title: Oncogene.
  doi: 10.1038/sj.onc.1209077
– volume: 10
  start-page: 4256
  year: 2011
  ident: 2023072821441942000_bib95
  article-title: miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions
  publication-title: Cell Cycle.
  doi: 10.4161/cc.10.24.18552
– volume: 279
  start-page: 2929
  year: 2012
  ident: 2023072821441942000_bib53
  article-title: Functional regulation of Slug/Snail2 is dependent on GSK-3β-mediated phosphorylation
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2012.08674.x
– volume: 16
  start-page: 864
  year: 2014
  ident: 2023072821441942000_bib119
  article-title: ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3013
– volume: 35
  start-page: 17
  year: 2019
  ident: 2023072821441942000_bib48
  article-title: Gain Fat-Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccell.2018.12.002
– volume: 291
  start-page: 291
  year: 2016
  ident: 2023072821441942000_bib123
  article-title: Loss of Scribble Promotes Snail Translation through Translocation of HuR and Enhances Cancer Drug Resistance
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.693853
– volume: 74
  start-page: 6330
  year: 2014
  ident: 2023072821441942000_bib102
  article-title: Transient SNAIL1 expression is necessary for metastatic competence in breast cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-0923
– volume: 72
  start-page: 1384
  year: 2012
  ident: 2023072821441942000_bib37
  article-title: Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-2905
– volume: 8
  start-page: 179
  year: 2005
  ident: 2023072821441942000_bib22
  article-title: The transcriptional control of trunk neural crest induction, survival, and delamination
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2004.12.010
– volume: 106
  start-page: 13820
  year: 2009
  ident: 2023072821441942000_bib25
  article-title: Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0905718106
– volume: 73
  start-page: 2418
  year: 2013
  ident: 2023072821441942000_bib5
  article-title: Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-2432
– volume: 10
  start-page: 355
  year: 2006
  ident: 2023072821441942000_bib26
  article-title: Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2006.02.011
– volume: 13
  start-page: 2456
  year: 2015
  ident: 2023072821441942000_bib27
  article-title: Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization
  publication-title: Cell Reports.
  doi: 10.1016/j.celrep.2015.11.025
– volume: 18
  start-page: 3533
  year: 2007
  ident: 2023072821441942000_bib94
  article-title: Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e07-03-0249
– volume: 75
  start-page: 50
  year: 2018
  ident: 2023072821441942000_bib75
  article-title: Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.08.008
– volume: 30
  start-page: 233
  year: 2016
  ident: 2023072821441942000_bib99
  article-title: Prrx1 isoform switching regulates pancreatic cancer invasion and metastatic colonization
  publication-title: Genes Dev.
  doi: 10.1101/gad.263327.115
– volume: 148
  start-page: 349
  year: 2012
  ident: 2023072821441942000_bib86
  article-title: EMT and dissemination precede pancreatic tumor formation
  publication-title: Cell.
  doi: 10.1016/j.cell.2011.11.025
– volume: 35
  start-page: 64
  year: 2019
  ident: 2023072821441942000_bib92
  article-title: Tinagl1 suppresses triple-negative breast cancer progression and metastasis by simultaneously inhibiting integrin/FAK and EGFR signaling
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccell.2018.11.016
– volume: 141
  start-page: 196
  year: 2007
  ident: 2023072821441942000_bib117
  article-title: Expression of snail in pancreatic cancer promotes metastasis and chemoresistance
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2006.09.027
– volume: 26
  start-page: 358
  year: 2014
  ident: 2023072821441942000_bib121
  article-title: PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2014.07.022
– volume: 17
  start-page: 7654
  year: 2011
  ident: 2023072821441942000_bib52
  article-title: Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-2816
– volume: 19
  start-page: 31
  year: 2018
  ident: 2023072821441942000_bib29
  article-title: Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1416-2
– volume: 7
  start-page: 12819
  year: 2016
  ident: 2023072821441942000_bib2
  article-title: Metastatic progression is associated with dynamic changes in the local microenvironment
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12819
– volume: 17
  start-page: 1101
  year: 2011
  ident: 2023072821441942000_bib58
  article-title: Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization
  publication-title: Nat. Med.
  doi: 10.1038/nm.2401
– volume: 32
  start-page: 2672
  year: 2013
  ident: 2023072821441942000_bib41
  article-title: Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.188
– volume: 14
  start-page: 3629
  year: 2007
  ident: 2023072821441942000_bib90
  article-title: Development and characterization of gemcitabine-resistant pancreatic tumor cells
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-007-9583-5
– volume: 166
  start-page: 21
  year: 2016
  ident: 2023072821441942000_bib76
  article-title: EMT: 2016
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.06.028
– volume: 21
  start-page: 8184
  year: 2001
  ident: 2023072821441942000_bib13
  article-title: The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.23.8184-8188.2001
– volume: 4
  start-page: 125
  year: 2015
  ident: 2023072821441942000_bib36
  article-title: δEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells
  publication-title: Cancer Med.
  doi: 10.1002/cam4.347
– volume: 18
  start-page: 99
  year: 2004
  ident: 2023072821441942000_bib100
  article-title: Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation
  publication-title: Genes Dev.
  doi: 10.1101/gad.276304
– volume: 7
  start-page: 1267
  year: 2001
  ident: 2023072821441942000_bib24
  article-title: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion
  publication-title: Mol. Cell.
  doi: 10.1016/S1097-2765(01)00260-X
– volume: 28
  start-page: 167
  year: 2014
  ident: 2023072821441942000_bib84
  article-title: A conserved role for Snail as a potentiator of active transcription
  publication-title: Genes Dev.
  doi: 10.1101/gad.230953.113
– volume: 104
  start-page: 162
  year: 2008
  ident: 2023072821441942000_bib120
  article-title: N-glycosylation affects the adhesive function of E-Cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.21608
– volume: 29
  start-page: 4896
  year: 2010
  ident: 2023072821441942000_bib67
  article-title: Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition
  publication-title: Oncogene.
  doi: 10.1038/onc.2010.234
– volume: 13
  start-page: 4769
  year: 2007
  ident: 2023072821441942000_bib46
  article-title: Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-2926
– volume: 21
  start-page: 102
  year: 2019
  ident: 2023072821441942000_bib97
  article-title: Non-redundant functions of EMT transcription factors
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0196-y
– volume: 117
  start-page: 927
  year: 2004
  ident: 2023072821441942000_bib114
  article-title: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis
  publication-title: Cell.
  doi: 10.1016/j.cell.2004.06.006
– volume: 35
  start-page: 2893
  year: 2016
  ident: 2023072821441942000_bib73
  article-title: CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis
  publication-title: Oncogene.
  doi: 10.1038/onc.2015.350
– volume: 45
  start-page: 681
  year: 2018
  ident: 2023072821441942000_bib4
  article-title: EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2018.05.027
– volume: 8
  start-page: 131
  year: 2017
  ident: 2023072821441942000_bib16
  article-title: Snail acetylation by histone acetyltransferase p300 in lung cancer
  publication-title: Thorac. Cancer.
  doi: 10.1111/1759-7714.12408
– volume: 36
  start-page: 1704
  year: 2016
  ident: 2023072821441942000_bib115
  article-title: Determination of a Comprehensive Alternative Splicing Regulatory Network and Combinatorial Regulation by Key Factors during the Epithelial-to-Mesenchymal Transition
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00019-16
– volume: 22
  start-page: 894
  year: 2008
  ident: 2023072821441942000_bib79
  article-title: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2
  publication-title: Genes Dev.
  doi: 10.1101/gad.1640608
– volume: 144
  start-page: 646
  year: 2011
  ident: 2023072821441942000_bib43
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell.
  doi: 10.1016/j.cell.2011.02.013
– volume: 8
  start-page: 197
  year: 2005
  ident: 2023072821441942000_bib72
  article-title: The transcriptional repressor Snail promotes mammary tumor recurrence
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2005.07.009
– volume: 116
  start-page: 499
  year: 2003
  ident: 2023072821441942000_bib9
  article-title: The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00224
– volume: 22
  start-page: 709
  year: 2012
  ident: 2023072821441942000_bib78
  article-title: Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2012.10.012
– volume: 45
  start-page: 696
  year: 2018
  ident: 2023072821441942000_bib83
  article-title: Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2018.05.025
– volume: 33
  start-page: 396
  year: 2013
  ident: 2023072821441942000_bib106
  article-title: RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01174-12
– volume: 139
  start-page: 269
  year: 2016
  ident: 2023072821441942000_bib28
  article-title: From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis
  publication-title: Int. J. Cancer.
  doi: 10.1002/ijc.30039
– volume: 114
  start-page: 1395
  year: 2013
  ident: 2023072821441942000_bib85
  article-title: Inhibition of ZEB1 reverses EMT and chemoresistance in docetaxel-resistant human lung adenocarcinoma cell line
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.24481
– volume: 110
  start-page: 341
  year: 2002
  ident: 2023072821441942000_bib49
  article-title: Evidence that fibroblasts derive from epithelium during tissue fibrosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215518
– volume: 33
  start-page: 943
  year: 2017
  ident: 2023072821441942000_bib96
  article-title: Epithelial-to-Mesenchymal Transition: Epigenetic Reprogramming Driving Cellular Plasticity
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2017.08.004
– volume: 247
  start-page: 473
  year: 2018
  ident: 2023072821441942000_bib42
  article-title: Epithelial-to-mesenchymal transition in cutaneous wound healing: Where we are and where we are heading
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24561
– volume: 28
  start-page: 4772
  year: 2008
  ident: 2023072821441942000_bib44
  article-title: Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00323-08
– volume: 72
  start-page: 2440
  year: 2012
  ident: 2023072821441942000_bib23
  article-title: Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-4038
– volume: 71
  start-page: 5296
  year: 2011
  ident: 2023072821441942000_bib33
  article-title: IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-0156
– volume: 28
  start-page: 2940
  year: 2009
  ident: 2023072821441942000_bib98
  article-title: Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells
  publication-title: Oncogene.
  doi: 10.1038/onc.2009.180
– volume: 15
  start-page: 180
  year: 2013
  ident: 2023072821441942000_bib81
  article-title: Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression
  publication-title: Neoplasia.
  doi: 10.1593/neo.121828
– volume: 547
  start-page: E7
  year: 2017
  ident: 2023072821441942000_bib3
  article-title: Upholding a role for EMT in pancreatic cancer metastasis
  publication-title: Nature.
  doi: 10.1038/nature22963
– volume: 46
  start-page: 1267
  year: 2015
  ident: 2023072821441942000_bib50
  article-title: Expression of epithelial-mesenchymal transition-related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2015.05.010
– volume: 188
  start-page: 1276
  year: 2018
  ident: 2023072821441942000_bib61
  article-title: Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2018.01.016
– volume: 304
  start-page: 107
  year: 2011
  ident: 2023072821441942000_bib21
  article-title: Type I collagen down-regulates E-cadherin expression by increasing PI3KCA in cancer cells
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2011.02.008
– volume: 527
  start-page: 472
  year: 2015
  ident: 2023072821441942000_bib34
  article-title: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance
  publication-title: Nature.
  doi: 10.1038/nature15748
– volume: 2
  start-page: 65
  year: 2016
  ident: 2023072821441942000_bib64
  article-title: Probing the Fifty Shades of EMT in Metastasis
  publication-title: Trends Cancer.
  doi: 10.1016/j.trecan.2016.01.001
– volume: 43
  start-page: 520
  year: 2012
  ident: 2023072821441942000_bib89
  article-title: Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2011.07.003
– volume: 25
  start-page: 666
  year: 2014
  ident: 2023072821441942000_bib118
  article-title: A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2014.03.010
– volume: 17
  start-page: 678
  year: 2015
  ident: 2023072821441942000_bib109
  article-title: Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3157
– volume: 9
  start-page: 4671
  year: 2018
  ident: 2023072821441942000_bib101
  article-title: Genetic dissection of the miR-200-Zeb1 axis reveals its importance in tumor differentiation and invasion
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07130-z
– volume: 127
  start-page: 2021
  year: 1994
  ident: 2023072821441942000_bib70
  article-title: TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.127.6.2021
– volume: 19
  start-page: 518
  year: 2017
  ident: 2023072821441942000_bib59
  article-title: The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3513
– volume: 93
  start-page: 294
  year: 2011
  ident: 2023072821441942000_bib113
  article-title: The mechanisms of cancer immunoescape and development of overcoming strategies
  publication-title: Int. J. Hematol.
  doi: 10.1007/s12185-011-0799-6
– volume: 247
  start-page: 346
  year: 2018
  ident: 2023072821441942000_bib51
  article-title: Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24541
– volume: 4
  start-page: 1149
  year: 2018
  ident: 2023072821441942000_bib71
  article-title: Material Strategies for Modulating Epithelial to Mesenchymal Transitions
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00751
– volume: 14
  start-page: 1212
  year: 2012
  ident: 2023072821441942000_bib15
  article-title: Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2607
– volume: 556
  start-page: 463
  year: 2018
  ident: 2023072821441942000_bib80
  article-title: Identification of the tumour transition states occurring during EMT
  publication-title: Nature.
  doi: 10.1038/s41586-018-0040-3
– volume: 8
  year: 2013
  ident: 2023072821441942000_bib87
  article-title: Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0076773
– volume: 68
  start-page: 937
  year: 2008
  ident: 2023072821441942000_bib103
  article-title: Direct evidence for epithelial-mesenchymal transitions in breast cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-2148
– volume: 9
  start-page: 5005
  year: 2018
  ident: 2023072821441942000_bib14
  article-title: Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07538-7
– volume: 5
  start-page: 5241
  year: 2014
  ident: 2023072821441942000_bib19
  article-title: Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6241
– volume: 7
  year: 2011
  ident: 2023072821441942000_bib91
  article-title: An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002218
– volume: 101
  start-page: 1797
  year: 2010
  ident: 2023072821441942000_bib93
  article-title: P300/CBP-associated factor regulates Y-box binding protein-1 expression and promotes cancer cell growth, cancer invasion and drug resistance
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2010.01598.x
– volume: 22
  start-page: 725
  year: 2012
  ident: 2023072821441942000_bib104
  article-title: Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2012.09.022
– volume: 11
  start-page: 943
  year: 2009
  ident: 2023072821441942000_bib107
  article-title: A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1905
– volume: 6
  year: 2017
  ident: 2023072821441942000_bib77
  article-title: The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200
  publication-title: OncoImmunology.
  doi: 10.1080/2162402X.2016.1263412
– volume: 68
  start-page: 7846
  year: 2008
  ident: 2023072821441942000_bib11
  article-title: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-1942
– volume: 10
  year: 2018
  ident: 2023072821441942000_bib20
  article-title: Dual reporter genetic mouse models of pancreatic cancer identify an epithelial-to-mesenchymal transition-independent metastasis program
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201809085
– volume: 5
  year: 2010
  ident: 2023072821441942000_bib56
  article-title: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0012445
– volume: 61
  start-page: 439
  year: 2012
  ident: 2023072821441942000_bib1
  article-title: Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer
  publication-title: Gut.
  doi: 10.1136/gutjnl-2011-300060
– volume: 30
  start-page: 1781
  year: 2009
  ident: 2023072821441942000_bib8
  article-title: P-cadherin induces an epithelial-like phenotype in oral squamous cell carcinoma by GSK-3beta-mediated Snail phosphorylation
  publication-title: Carcinogenesis.
  doi: 10.1093/carcin/bgp175
– volume: 63
  start-page: 3386
  year: 2003
  ident: 2023072821441942000_bib112
  article-title: The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis
  publication-title: Cancer Res.
– volume: 527
  start-page: 525
  year: 2015
  ident: 2023072821441942000_bib122
  article-title: Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer
  publication-title: Nature.
  doi: 10.1038/nature16064
– volume: 22
  start-page: 3630
  year: 2016
  ident: 2023072821441942000_bib68
  article-title: Epithelial-Mesenchymal Transition Is Associated with a Distinct Tumor Microenvironment Including Elevation of Inflammatory Signals and Multiple Immune Checkpoints in Lung Adenocarcinoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-1434
– volume: 50
  start-page: 755
  year: 2008
  ident: 2023072821441942000_bib74
  article-title: Epithelial to mesenchymal transition during gastrulation: an embryological view
  publication-title: Dev. Growth Differ.
  doi: 10.1111/j.1440-169X.2008.01070.x
– volume: 283
  start-page: 14910
  year: 2008
  ident: 2023072821441942000_bib57
  article-title: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C800074200
– volume: 7
  start-page: 10498
  year: 2016
  ident: 2023072821441942000_bib63
  article-title: ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10498
– volume: 30A
  start-page: 105
  year: 1994
  ident: 2023072821441942000_bib66
  article-title: Effect of hepatocyte growth factor/scatter factor and other growth factors on motility and morphology of non-tumorigenic and tumor cells
  publication-title: In Vitro Cell. Dev. Biol. Anim.
  doi: 10.1007/BF02631401
– volume: 131
  start-page: 1877
  year: 2011
  ident: 2023072821441942000_bib110
  article-title: Transcriptional activation of ZEB1 by Slug leads to cooperative regulation of the epithelial-mesenchymal transition-like phenotype in melanoma
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2011.142
– volume: 2
  start-page: 76
  year: 2000
  ident: 2023072821441942000_bib12
  article-title: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35000025
– volume: 6
  start-page: 862
  year: 2015
  ident: 2023072821441942000_bib17
  article-title: The ubiquitin ligase Siah is a novel regulator of Zeb1 in breast cancer
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.2696
– volume: 547
  start-page: E1
  year: 2017
  ident: 2023072821441942000_bib116
  article-title: Upholding a role for EMT in breast cancer metastasis
  publication-title: Nature.
  doi: 10.1038/nature22816
– volume: 43
  start-page: 2360
  year: 2012
  ident: 2023072821441942000_bib88
  article-title: Overexpression of epithelial-mesenchymal transition-related markers according to cell dedifferentiation: clinical implications as an independent predictor of poor prognosis in cholangiocarcinoma
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2012.07.004
– volume: 71
  start-page: 3980
  year: 2011
  ident: 2023072821441942000_bib45
  article-title: Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2914
– volume: 7
  start-page: 24677
  year: 2016
  ident: 2023072821441942000_bib47
  article-title: Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.8250
SSID ssj0014456
Score 2.6875272
SecondaryResourceType review_article
Snippet Epithelial–mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for...
Epithelial-mesenchymal transition (EMT) is a developmental process whereby stationary, adherent cells acquire the ability to migrate. EMT is critical for...
In this review, Aiello and Kang discuss the molecular mechanisms, regulatory networks, and functional consequences of epithelial–mesenchymal transition (EMT)...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1016
SubjectTerms Animals
Biomarkers, Tumor
Cell Movement
Cell Plasticity
Epithelial Cells - metabolism
Epithelial-Mesenchymal Transition
Gene Expression Regulation, Neoplastic
Humans
Mesenchymal Stem Cells - metabolism
Mice
Neoplasm Metastasis
Neoplasms - pathology
Reviews
Title Context-dependent EMT programs in cancer metastasis
URI https://www.ncbi.nlm.nih.gov/pubmed/30975895
https://www.proquest.com/docview/2209600841
https://pubmed.ncbi.nlm.nih.gov/PMC6504222
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eQHwR784bFfRJqlmatsnjEGUI82nCfCpN0mBBqrj64q_3JE0vmxPUlzKyJN3ynZyck3ND6DyVuM90in2tQubTiAWw55T2MRXQGkZM2rwFo4do-EjvJ-GkLXNno0tKcSU_F8aV_AdVaANcTZTsH5BtJoUG-Az4whMQhuevMLappUBzrSvZlpe3o3HtcmUdXaUB9d3UiU5BDJzm064w2oaFWYF0Jtn_vM19kNdWGks7wAyuGl7trpyfcuHSeLtbBBO4FPo46nJGUEqNx0R1LjhmSLEx77IutyT9qEMWYYf3mXuAzjkKkku0kEdjRg2PzkweAJAvGInbs6i2v88dUY3joDWZM5rA6KQevYxWCegINtJ70vj3gKJoS_c2f8xFPcDo6-67Z-WRb0rGvK9sR_gYb6INB5I3qEhgCy1lxTZaGzmMdlDwjRI8oASvpgQvL7yKEryWEnbR493t-Gbou3IYvqQhLv1AguhIFVVSmaSHNBC0b-qB8SCAPUXSSHDBQ6kVx7HgkmiGRcrjTMMIpogM9tBK8VpkB8hLsdJcpJTpDNNMaxGzSMVEaYxhEtrvoct6URLpcsWbkiUvySIAeuii6f1W5Uj5od9Zvb4JMDFjmUqL7PVjmhBiNGnoD2_er9a7mSnAHHRaHvZQPINE08EkSJ_9psifbaJ00D7MDefhL3_fEVpvt8YxWinfP7ITEDlLcWpJ6wsY9oDl
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-dependent+EMT+programs+in+cancer+metastasis&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Aiello%2C+Nicole+M.&rft.au=Kang%2C+Yibin&rft.date=2019-05-06&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=216&rft.issue=5&rft.spage=1016&rft.epage=1026&rft_id=info:doi/10.1084%2Fjem.20181827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1084_jem_20181827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon