Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model

TREM2 is a receptor for lipids expressed in microglia. The R47H variant of human TREM2 impairs ligand binding and increases Alzheimer’s disease (AD) risk. In mouse models of amyloid β (Aβ) accumulation, defective TREM2 function affects microglial response to Aβ plaques, exacerbating tissue damage, w...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 217; no. 9
Main Authors Wang, Shoutang, Mustafa, Meer, Yuede, Carla M., Salazar, Santiago Viveros, Kong, Philip, Long, Hua, Ward, Michael, Siddiqui, Omer, Paul, Robert, Gilfillan, Susan, Ibrahim, Adiljan, Rhinn, Hervé, Tassi, Ilaria, Rosenthal, Arnon, Schwabe, Tina, Colonna, Marco
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 07.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TREM2 is a receptor for lipids expressed in microglia. The R47H variant of human TREM2 impairs ligand binding and increases Alzheimer’s disease (AD) risk. In mouse models of amyloid β (Aβ) accumulation, defective TREM2 function affects microglial response to Aβ plaques, exacerbating tissue damage, whereas TREM2 overexpression attenuates pathology. Thus, AD may benefit from TREM2 activation. Here, we examined the impact of an anti-human TREM2 agonistic mAb, AL002c, in a mouse AD model expressing either the common variant (CV) or the R47H variant of TREM2. Single-cell RNA-seq of microglia after acute systemic administration of AL002c showed induction of proliferation in both CV- and R47H-transgenic mice. Prolonged administration of AL002c reduced filamentous plaques and neurite dystrophy, impacted behavior, and tempered microglial inflammatory response. We further showed that a variant of AL002c is safe and well tolerated in a first-in-human phase I clinical trial and engages TREM2 based on cerebrospinal fluid biomarkers. We conclude that AL002 is a promising candidate for AD therapy.
AbstractList TREM2 is a receptor for lipids expressed in microglia. The R47H variant of human TREM2 impairs ligand binding and increases Alzheimer's disease (AD) risk. In mouse models of amyloid β (Aβ) accumulation, defective TREM2 function affects microglial response to Aβ plaques, exacerbating tissue damage, whereas TREM2 overexpression attenuates pathology. Thus, AD may benefit from TREM2 activation. Here, we examined the impact of an anti-human TREM2 agonistic mAb, AL002c, in a mouse AD model expressing either the common variant (CV) or the R47H variant of TREM2. Single-cell RNA-seq of microglia after acute systemic administration of AL002c showed induction of proliferation in both CV- and R47H-transgenic mice. Prolonged administration of AL002c reduced filamentous plaques and neurite dystrophy, impacted behavior, and tempered microglial inflammatory response. We further showed that a variant of AL002c is safe and well tolerated in a first-in-human phase I clinical trial and engages TREM2 based on cerebrospinal fluid biomarkers. We conclude that AL002 is a promising candidate for AD therapy.
Wang et al. demonstrate that a mAb specific for the human microglial receptor TREM2 induces microglia proliferation, ameliorates Aβ-induced pathology in a mouse model of Alzheimer’s disease, and can be given safely in a first-in-human phase I clinical trial. TREM2 is a receptor for lipids expressed in microglia. The R47H variant of human TREM2 impairs ligand binding and increases Alzheimer’s disease (AD) risk. In mouse models of amyloid β (Aβ) accumulation, defective TREM2 function affects microglial response to Aβ plaques, exacerbating tissue damage, whereas TREM2 overexpression attenuates pathology. Thus, AD may benefit from TREM2 activation. Here, we examined the impact of an anti-human TREM2 agonistic mAb, AL002c, in a mouse AD model expressing either the common variant (CV) or the R47H variant of TREM2. Single-cell RNA-seq of microglia after acute systemic administration of AL002c showed induction of proliferation in both CV- and R47H-transgenic mice. Prolonged administration of AL002c reduced filamentous plaques and neurite dystrophy, impacted behavior, and tempered microglial inflammatory response. We further showed that a variant of AL002c is safe and well tolerated in a first-in-human phase I clinical trial and engages TREM2 based on cerebrospinal fluid biomarkers. We conclude that AL002 is a promising candidate for AD therapy.
TREM2 is a receptor for lipids expressed in microglia. The R47H variant of human TREM2 impairs ligand binding and increases Alzheimer's disease (AD) risk. In mouse models of amyloid β (Aβ) accumulation, defective TREM2 function affects microglial response to Aβ plaques, exacerbating tissue damage, whereas TREM2 overexpression attenuates pathology. Thus, AD may benefit from TREM2 activation. Here, we examined the impact of an anti-human TREM2 agonistic mAb, AL002c, in a mouse AD model expressing either the common variant (CV) or the R47H variant of TREM2. Single-cell RNA-seq of microglia after acute systemic administration of AL002c showed induction of proliferation in both CV- and R47H-transgenic mice. Prolonged administration of AL002c reduced filamentous plaques and neurite dystrophy, impacted behavior, and tempered microglial inflammatory response. We further showed that a variant of AL002c is safe and well tolerated in a first-in-human phase I clinical trial and engages TREM2 based on cerebrospinal fluid biomarkers. We conclude that AL002 is a promising candidate for AD therapy.TREM2 is a receptor for lipids expressed in microglia. The R47H variant of human TREM2 impairs ligand binding and increases Alzheimer's disease (AD) risk. In mouse models of amyloid β (Aβ) accumulation, defective TREM2 function affects microglial response to Aβ plaques, exacerbating tissue damage, whereas TREM2 overexpression attenuates pathology. Thus, AD may benefit from TREM2 activation. Here, we examined the impact of an anti-human TREM2 agonistic mAb, AL002c, in a mouse AD model expressing either the common variant (CV) or the R47H variant of TREM2. Single-cell RNA-seq of microglia after acute systemic administration of AL002c showed induction of proliferation in both CV- and R47H-transgenic mice. Prolonged administration of AL002c reduced filamentous plaques and neurite dystrophy, impacted behavior, and tempered microglial inflammatory response. We further showed that a variant of AL002c is safe and well tolerated in a first-in-human phase I clinical trial and engages TREM2 based on cerebrospinal fluid biomarkers. We conclude that AL002 is a promising candidate for AD therapy.
Author Ward, Michael
Gilfillan, Susan
Yuede, Carla M.
Ibrahim, Adiljan
Kong, Philip
Salazar, Santiago Viveros
Rhinn, Hervé
Mustafa, Meer
Schwabe, Tina
Paul, Robert
Colonna, Marco
Rosenthal, Arnon
Tassi, Ilaria
Long, Hua
Siddiqui, Omer
Wang, Shoutang
AuthorAffiliation 1 Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
2 Alector LLC, South San Francisco, CA
3 Department of Psychiatry and Neurology, Washington University School of Medicine, St Louis, MO
AuthorAffiliation_xml – name: 3 Department of Psychiatry and Neurology, Washington University School of Medicine, St Louis, MO
– name: 1 Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
– name: 2 Alector LLC, South San Francisco, CA
Author_xml – sequence: 1
  givenname: Shoutang
  orcidid: 0000-0003-1049-9127
  surname: Wang
  fullname: Wang, Shoutang
– sequence: 2
  givenname: Meer
  orcidid: 0000-0002-2638-9523
  surname: Mustafa
  fullname: Mustafa, Meer
– sequence: 3
  givenname: Carla M.
  surname: Yuede
  fullname: Yuede, Carla M.
– sequence: 4
  givenname: Santiago Viveros
  surname: Salazar
  fullname: Salazar, Santiago Viveros
– sequence: 5
  givenname: Philip
  surname: Kong
  fullname: Kong, Philip
– sequence: 6
  givenname: Hua
  surname: Long
  fullname: Long, Hua
– sequence: 7
  givenname: Michael
  surname: Ward
  fullname: Ward, Michael
– sequence: 8
  givenname: Omer
  surname: Siddiqui
  fullname: Siddiqui, Omer
– sequence: 9
  givenname: Robert
  surname: Paul
  fullname: Paul, Robert
– sequence: 10
  givenname: Susan
  orcidid: 0000-0003-1672-0996
  surname: Gilfillan
  fullname: Gilfillan, Susan
– sequence: 11
  givenname: Adiljan
  surname: Ibrahim
  fullname: Ibrahim, Adiljan
– sequence: 12
  givenname: Hervé
  surname: Rhinn
  fullname: Rhinn, Hervé
– sequence: 13
  givenname: Ilaria
  surname: Tassi
  fullname: Tassi, Ilaria
– sequence: 14
  givenname: Arnon
  surname: Rosenthal
  fullname: Rosenthal, Arnon
– sequence: 15
  givenname: Tina
  surname: Schwabe
  fullname: Schwabe, Tina
– sequence: 16
  givenname: Marco
  orcidid: 0000-0001-5222-4987
  surname: Colonna
  fullname: Colonna, Marco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32579671$$D View this record in MEDLINE/PubMed
BookMark eNptkc1uFDEQhC0URDYLN87IRw5M8O_Ye0FaReFHCkJC4Wx5xj07jjz2Ys9ECideg9fjSXDYJALEqQ_1dXWr6gQdxRQBoeeUnFKixesrmE4ZYYQoLR-hFZWCNBvJ9RFaEcJYQ6tyjE5KuSKECiHbJ-iYM6k2raIrNG7j7JtxmWzEl5_PPzLso1t6KHjyfU674C3e5xT8ANnOPkVso8MZDszezmMKaXdTt6qAt-HbCH6C_PP7j4KdL2AL4Ck5CE_R48GGAs_u5hp9eXt-efa-ufj07sPZ9qLphSRzw9uB2NY56vpW6ZZ2HeW9boGBlJp33UYyDkoO3cBlBS2xgm06zYlTgxsY52v05uC7X7oJXA9xzjaYffaTzTcmWW_-VqIfzS5dGyWUVpxUg5d3Bjl9XaDMZvKlhxBshLQUwwRVXIvbd9boxZ-3Ho7cx1uBVwegRllKhuEBocTctmdqe-a-vYqzf_Dez79Tr5_68P-lX452oDY
CitedBy_id crossref_primary_10_3892_etm_2023_11904
crossref_primary_10_1186_s40478_021_01204_8
crossref_primary_10_1186_s12974_025_03420_8
crossref_primary_10_1016_j_str_2021_06_010
crossref_primary_10_1177_17590914211051908
crossref_primary_10_1177_03946320231184988
crossref_primary_10_1093_procel_pwae026
crossref_primary_10_1038_s41380_023_02017_y
crossref_primary_10_3389_fncel_2021_749587
crossref_primary_10_1002_alz_14477
crossref_primary_10_3389_fimmu_2025_1462508
crossref_primary_10_1016_j_tins_2020_08_002
crossref_primary_10_1177_10738584211040786
crossref_primary_10_1186_s13024_024_00712_0
crossref_primary_10_1038_s41582_025_01062_1
crossref_primary_10_1016_j_neuroscience_2024_11_078
crossref_primary_10_1016_j_stem_2023_07_006
crossref_primary_10_1186_s12974_024_03163_y
crossref_primary_10_1186_s13024_020_00415_2
crossref_primary_10_1111_jnc_15538
crossref_primary_10_1002_alz_13020
crossref_primary_10_1016_j_it_2025_02_011
crossref_primary_10_1038_s41392_023_01588_0
crossref_primary_10_1093_brain_awad321
crossref_primary_10_1084_jem_20202717
crossref_primary_10_1186_s13195_024_01470_3
crossref_primary_10_3389_fnagi_2023_1264448
crossref_primary_10_1016_j_expneurol_2024_115071
crossref_primary_10_1016_j_ccell_2023_09_001
crossref_primary_10_1016_S1474_4422_23_00247_8
crossref_primary_10_1038_s42255_021_00341_7
crossref_primary_10_1016_j_conb_2021_09_003
crossref_primary_10_1016_j_intimp_2024_113286
crossref_primary_10_1038_s41573_023_00823_1
crossref_primary_10_1126_scitranslmed_abq0095
crossref_primary_10_1177_11795735221123896
crossref_primary_10_1038_s41392_024_01911_3
crossref_primary_10_1007_s12031_022_01965_4
crossref_primary_10_1016_j_drudis_2024_104093
crossref_primary_10_1016_j_biopha_2024_117235
crossref_primary_10_4254_wjh_v17_i2_102328
crossref_primary_10_1038_s41467_023_42814_1
crossref_primary_10_3389_fnagi_2021_834697
crossref_primary_10_3390_ijms252211941
crossref_primary_10_1126_scitranslmed_adj9052
crossref_primary_10_1016_j_biopha_2023_115218
crossref_primary_10_1038_s41590_023_01475_4
crossref_primary_10_2174_1567205020666230203112351
crossref_primary_10_3389_fcell_2022_999024
crossref_primary_10_1038_s41467_020_19227_5
crossref_primary_10_1186_s13024_024_00734_8
crossref_primary_10_1002_alz_13921
crossref_primary_10_1146_annurev_immunol_093019_111748
crossref_primary_10_1016_j_taap_2024_117107
crossref_primary_10_31083_j_jin2203072
crossref_primary_10_1038_s41593_022_01240_0
crossref_primary_10_3390_ph13110394
crossref_primary_10_4103_1673_5374_371360
crossref_primary_10_1186_s13195_024_01599_1
crossref_primary_10_1073_pnas_2017742118
crossref_primary_10_1007_s00018_024_05298_w
crossref_primary_10_3389_fphar_2023_1196413
crossref_primary_10_1039_D3CP01083J
crossref_primary_10_1084_jem_20222105
crossref_primary_10_1007_s00018_022_04536_3
crossref_primary_10_3233_JAD_221064
crossref_primary_10_1212_NXG_0000000000000574
crossref_primary_10_1186_s40364_024_00675_w
crossref_primary_10_1126_sciadv_adf5808
crossref_primary_10_1161_ATVBAHA_124_320797
crossref_primary_10_3390_vaccines10060943
crossref_primary_10_1186_s12974_025_03346_1
crossref_primary_10_4103_1673_5374_373670
crossref_primary_10_1016_j_stem_2022_01_007
crossref_primary_10_1007_s44194_024_00035_8
crossref_primary_10_1002_glia_24602
crossref_primary_10_3389_fnins_2021_742065
crossref_primary_10_1080_13543776_2021_1883587
crossref_primary_10_1186_s12974_022_02580_1
crossref_primary_10_7554_eLife_73021
crossref_primary_10_1007_s00415_021_10790_5
crossref_primary_10_1177_10738584211024531
crossref_primary_10_26508_lsa_202403080
crossref_primary_10_3390_diagnostics12040796
crossref_primary_10_1038_s41421_024_00666_z
crossref_primary_10_1016_j_celrep_2023_112629
crossref_primary_10_1186_s13195_024_01646_x
crossref_primary_10_1007_s12035_022_03100_1
crossref_primary_10_1016_j_biopha_2022_113412
crossref_primary_10_1002_glia_24047
crossref_primary_10_1016_j_nbd_2021_105398
crossref_primary_10_31083_j_jin2203058
crossref_primary_10_1038_s41591_023_02505_2
crossref_primary_10_1039_D4SC06762B
crossref_primary_10_1016_j_drudis_2024_103974
crossref_primary_10_26508_lsa_202402796
crossref_primary_10_3389_fimmu_2020_617860
crossref_primary_10_1016_j_neurobiolaging_2022_06_013
crossref_primary_10_1016_j_it_2024_08_001
crossref_primary_10_1186_s12974_022_02671_z
crossref_primary_10_1073_pnas_2218915120
crossref_primary_10_1093_hmg_ddae115
crossref_primary_10_1155_2021_4793517
crossref_primary_10_3390_cells11121925
crossref_primary_10_1016_j_neuron_2021_02_010
crossref_primary_10_1002_brb3_70455
crossref_primary_10_3389_fnsyn_2021_773590
crossref_primary_10_3389_fneur_2024_1515252
crossref_primary_10_1111_cns_14856
crossref_primary_10_3390_ijms22062805
crossref_primary_10_2147_ITT_S455881
crossref_primary_10_3390_ijms25010016
crossref_primary_10_1002_trc2_12350
crossref_primary_10_1007_s00018_022_04614_6
crossref_primary_10_1177_10738584241254118
crossref_primary_10_1007_s00415_024_12779_2
crossref_primary_10_1186_s13024_023_00599_3
crossref_primary_10_3390_pharmaceutics17010013
crossref_primary_10_3390_biomedicines11123232
crossref_primary_10_1016_j_pnpbp_2024_111069
crossref_primary_10_3233_JAD_231159
crossref_primary_10_1016_j_semcdb_2022_03_032
crossref_primary_10_1084_jem_20220654
crossref_primary_10_1186_s13024_021_00443_6
crossref_primary_10_1016_j_chemphyslip_2024_105449
crossref_primary_10_1186_s41983_021_00420_2
crossref_primary_10_1002_cbic_202400224
crossref_primary_10_1084_jem_20212479
crossref_primary_10_3389_fimmu_2021_795036
crossref_primary_10_3390_cells12111549
crossref_primary_10_3389_fnagi_2022_1056067
crossref_primary_10_3390_biom14080918
crossref_primary_10_4103_NRR_NRR_D_23_01401
crossref_primary_10_1523_ENEURO_0260_24_2024
crossref_primary_10_1016_j_lfs_2024_123089
crossref_primary_10_1016_j_envres_2024_118602
crossref_primary_10_1016_j_arr_2024_102192
crossref_primary_10_3389_fimmu_2022_969127
crossref_primary_10_1084_jem_20221850
crossref_primary_10_1615_CritRevImmunol_2024054889
crossref_primary_10_7554_eLife_79830
crossref_primary_10_3389_fnins_2024_1420601
crossref_primary_10_3390_biology13020087
crossref_primary_10_3143_geriatrics_57_374
crossref_primary_10_1002_glia_24252
crossref_primary_10_1007_s12035_022_03133_6
crossref_primary_10_3389_fddev_2023_1227816
crossref_primary_10_1111_ejn_16541
crossref_primary_10_1038_s41577_024_01104_7
crossref_primary_10_1186_s13024_022_00550_y
crossref_primary_10_1007_s12975_024_01236_x
crossref_primary_10_3390_cells14030168
crossref_primary_10_1073_pnas_2426786122
crossref_primary_10_3390_ijms24010013
crossref_primary_10_1016_j_neuron_2020_09_029
crossref_primary_10_3390_ijms231810572
crossref_primary_10_1002_advs_202307245
crossref_primary_10_1007_s40265_023_01938_w
crossref_primary_10_1111_imm_13300
crossref_primary_10_1016_j_cellimm_2023_104743
crossref_primary_10_1038_s44161_023_00354_3
crossref_primary_10_1021_acsnano_3c13150
crossref_primary_10_1002_glia_23953
crossref_primary_10_1002_glia_24007
crossref_primary_10_1016_j_hlife_2024_11_006
crossref_primary_10_1111_ejn_15914
crossref_primary_10_3389_fimmu_2022_856376
crossref_primary_10_3390_biomedicines9101449
crossref_primary_10_3389_fphar_2023_1125982
crossref_primary_10_1186_s40035_022_00292_3
crossref_primary_10_1016_j_nbd_2022_105630
crossref_primary_10_1111_cns_14129
crossref_primary_10_1080_19420862_2022_2107971
crossref_primary_10_1002_alz_12577
crossref_primary_10_1016_j_drudis_2023_103652
crossref_primary_10_1016_j_arr_2024_102411
crossref_primary_10_1126_sciadv_ade3559
crossref_primary_10_1186_s13024_022_00588_y
crossref_primary_10_1016_j_celrep_2022_110883
crossref_primary_10_3233_JAD_230179
crossref_primary_10_1002_dneu_22864
crossref_primary_10_1016_j_jneuroim_2024_578342
crossref_primary_10_1016_j_intimp_2024_113446
crossref_primary_10_1186_s13024_021_00436_5
crossref_primary_10_1126_scitranslmed_abl7634
crossref_primary_10_1038_s41577_023_00837_1
crossref_primary_10_1002_ctm2_1200
crossref_primary_10_3390_jcm13113098
crossref_primary_10_1002_alz_12342
crossref_primary_10_1186_s12974_023_02750_9
crossref_primary_10_1002_alz_14402
crossref_primary_10_1097_MD_0000000000038898
crossref_primary_10_3389_fimmu_2021_676255
crossref_primary_10_1016_j_neuropharm_2024_110020
crossref_primary_10_3389_fnins_2024_1440334
crossref_primary_10_1002_ptr_7848
crossref_primary_10_1016_j_isci_2023_106375
crossref_primary_10_3390_ijms251810041
crossref_primary_10_1016_j_nbd_2020_105172
crossref_primary_10_1002_glia_24461
crossref_primary_10_3390_cells13171426
crossref_primary_10_7554_eLife_90695_3
crossref_primary_10_3389_fnagi_2023_1201982
crossref_primary_10_1111_febs_16638
crossref_primary_10_1073_pnas_2100356118
crossref_primary_10_1038_s41591_025_03574_1
crossref_primary_10_1002_2211_5463_13300
crossref_primary_10_3389_fnagi_2023_1259012
crossref_primary_10_1002_glia_24456
crossref_primary_10_1038_s41392_023_01486_5
crossref_primary_10_1016_j_biopha_2023_115962
crossref_primary_10_1128_mbio_01456_22
crossref_primary_10_3390_ijms241511922
crossref_primary_10_1016_j_neuint_2020_104878
crossref_primary_10_1038_s41593_023_01265_z
crossref_primary_10_2147_CIA_S357558
crossref_primary_10_3389_fnins_2023_1308345
crossref_primary_10_1016_j_pneurobio_2022_102298
crossref_primary_10_1016_j_mcn_2024_103917
crossref_primary_10_1007_s00401_023_02564_2
crossref_primary_10_3389_fnagi_2022_998049
crossref_primary_10_7554_eLife_83451
crossref_primary_10_14283_jpad_2023_111
crossref_primary_10_1038_s41598_024_52311_0
crossref_primary_10_1177_10738584211070273
crossref_primary_10_3390_biom10101439
crossref_primary_10_1016_j_ejphar_2024_176859
crossref_primary_10_1523_JNEUROSCI_2347_23_2024
crossref_primary_10_3390_molecules27134124
crossref_primary_10_3389_fnmol_2023_1183315
crossref_primary_10_1016_j_cmet_2023_03_006
crossref_primary_10_54097_hset_v54i_9763
crossref_primary_10_1016_j_drudis_2022_01_004
crossref_primary_10_1016_j_neubiorev_2025_106044
crossref_primary_10_1093_abt_tbac028
crossref_primary_10_1097_HC9_0000000000000203
crossref_primary_10_1016_j_neuroscience_2025_03_033
crossref_primary_10_1111_ejn_15609
crossref_primary_10_1007_s12035_022_03094_w
crossref_primary_10_1515_revneuro_2022_0087
crossref_primary_10_3390_ijms22189734
crossref_primary_10_3390_medicina59061084
crossref_primary_10_3389_fneur_2024_1330874
crossref_primary_10_3390_cells11121885
crossref_primary_10_3389_fnins_2021_806260
crossref_primary_10_1111_cns_70269
crossref_primary_10_1016_j_celrep_2024_114250
crossref_primary_10_1111_jnc_15987
crossref_primary_10_1186_s13024_022_00517_z
crossref_primary_10_1186_s13024_020_00402_7
crossref_primary_10_1007_s13311_023_01441_w
crossref_primary_10_1016_j_nbd_2024_106505
crossref_primary_10_1016_j_cell_2022_10_007
crossref_primary_10_1007_s10787_024_01550_8
crossref_primary_10_31083_j_jin2201002
crossref_primary_10_1248_cpb_c23_00464
crossref_primary_10_1016_j_intimp_2025_114284
crossref_primary_10_3389_frdem_2024_1458038
crossref_primary_10_1016_j_drudis_2022_06_005
crossref_primary_10_1016_j_arr_2024_102595
crossref_primary_10_1016_j_arr_2024_102596
crossref_primary_10_1186_s12974_021_02309_6
crossref_primary_10_3390_antiox13060651
crossref_primary_10_1186_s13024_021_00473_0
crossref_primary_10_3390_cells10040957
crossref_primary_10_3390_ijms231810722
crossref_primary_10_3390_neurolint15030053
crossref_primary_10_1097_WCO_0000000000000911
crossref_primary_10_1186_s12974_020_02024_8
crossref_primary_10_1177_17590914231197523
crossref_primary_10_3390_molecules26195946
crossref_primary_10_1038_s42003_023_04998_6
crossref_primary_10_3390_ijms21239036
crossref_primary_10_1016_j_cell_2022_09_033
crossref_primary_10_1016_j_brainres_2024_149245
crossref_primary_10_1084_jem_20231363
crossref_primary_10_4103_1673_5374_353484
crossref_primary_10_1165_rcmb_2020_0521OC
crossref_primary_10_7554_eLife_90695
crossref_primary_10_3389_fnagi_2024_1420731
crossref_primary_10_4103_1673_5374_385847
crossref_primary_10_1253_jjcsc_31_0_11
crossref_primary_10_3390_biom14070833
Cites_doi 10.1126/science.1110647
10.15252/emmm.201911227
10.1016/j.cell.2017.05.018
10.1172/JCI90606
10.1084/jem.20151948
10.1038/s41593-019-0393-4
10.1016/j.biopsych.2014.05.006
10.1101/719930
10.1111/imr.12350
10.1038/ng.2802
10.1038/nn1472
10.1093/brain/awq056
10.1038/s41586-019-1195-2
10.1038/ni.1744
10.1371/journal.pone.0066024
10.1016/j.cell.2019.09.001
10.15252/emmm.201707672
10.1016/j.jalz.2016.07.004
10.1093/brain/awn217
10.1016/j.cell.2017.07.023
10.1016/j.neuron.2016.05.003
10.1038/s41591-019-0695-9
10.1038/nn2015
10.1101/cshperspect.a006338
10.1016/j.neulet.2017.09.034
10.1007/s12035-016-0167-x
10.1126/science.aad0501
10.1016/j.nbd.2009.06.002
10.1056/NEJMoa1211851
10.1074/jbc.RA118.001848
10.1074/jbc.M113.517540
10.1084/jem.20171529
10.1016/j.celrep.2017.09.039
10.1056/NEJMoa1211103
10.1523/JNEUROSCI.1202-06.2006
10.1016/j.celrep.2019.03.099
10.1523/JNEUROSCI.23-34-10879.2003
10.1016/j.cell.2015.01.049
10.1016/j.neuron.2018.02.002
10.1016/j.brainres.2017.12.028
10.1038/nbt.4096
ContentType Journal Article
Copyright 2020 Wang et al.
2020 Wang et al. 2020
Copyright_xml – notice: 2020 Wang et al.
– notice: 2020 Wang et al. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1084/jem.20200785
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate A mAb targeting human TREM2 in Alzheimer’s disease
EISSN 1540-9538
ExternalDocumentID PMC7478730
32579671
10_1084_jem_20200785
Genre Clinical Trial, Phase I
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R21 AG059176
– fundername: NIA NIH HHS
  grantid: RF1 AG059082
– fundername: ;
– fundername: ;
  grantid: RF1AG05148501; R21 AG059176; RF1 AG059082
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EMB
F5P
F9R
GX1
H13
HYE
IH2
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c450t-36f0a6dd1dc67861bb13c86e2e5583bb9523e75fbf350a6a0a429b830d7fdf233
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 14:09:44 EDT 2025
Fri Jul 11 11:21:09 EDT 2025
Thu Apr 03 06:57:31 EDT 2025
Tue Jul 01 00:41:14 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2020 Wang et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-36f0a6dd1dc67861bb13c86e2e5583bb9523e75fbf350a6a0a429b830d7fdf233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
S. Wang and M. Mustafa contributed equally to this paper.
Disclosures: M. Mustafa, S.V. Salazar, P. Kong, H. Long, M. Ward, O. Siddiqui, R. Paul, A. Ibrahim, H. Rhinn, I. Tassi, A. Rosenthal, and T. Schwabe reported "other" from Alector, Inc. during the conduct of the study. The authors are employees of Alector LLC and may have an equity interest in Alector, Inc. Alector and AbbVie are parties to an agreement relating to the development and commercialization of AL002. M. Colonna reported "other" from Alector and grants from Alector, Amgen, and Ono during the conduct of the study. In addition, Alector LLC has pending patent applications and M. Colonna has a patent to TREM2 pending. No other disclosures were reported.
ORCID 0000-0003-1672-0996
0000-0001-5222-4987
0000-0002-2638-9523
0000-0003-1049-9127
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7478730
PMID 32579671
PQID 2417384558
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7478730
proquest_miscellaneous_2417384558
pubmed_primary_32579671
crossref_primary_10_1084_jem_20200785
crossref_citationtrail_10_1084_jem_20200785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-07
PublicationDateYYYYMMDD 2020-09-07
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2020
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Van Hove (2023072812444460100_bib34) 2019; 22
Zhou (2023072812444460100_bib41) 2020; 26
Mucke (2023072812444460100_bib20) 2012; 2
Braun (2023072812444460100_bib1) 2019; 1702
Cheng (2023072812444460100_bib5) 2018; 293
Schlepckow (2023072812444460100_bib27) 2017; 9
Lombardo (2023072812444460100_bib15) 2003; 23
Yuede (2023072812444460100_bib40) 2009; 35
Song (2023072812444460100_bib30) 2017; 13
Oakley (2023072812444460100_bib22) 2006; 26
Guerreiro (2023072812444460100_bib8) 2013; 368
Mathys (2023072812444460100_bib18) 2019; 570
Sala Frigerio (2023072812444460100_bib25) 2019; 27
Piccio (2023072812444460100_bib24) 2008; 131
Wang (2023072812444460100_bib36) 2016; 213
Wang (2023072812444460100_bib35) 2015; 160
Mildner (2023072812444460100_bib19) 2007; 10
Keren-Shaul (2023072812444460100_bib12) 2017; 169
Ulland (2023072812444460100_bib33) 2017; 170
Song (2023072812444460100_bib31) 2018; 215
2023072812444460100_bib4
Davalos (2023072812444460100_bib6) 2005; 8
Sarlus (2023072812444460100_bib26) 2017; 127
Wozniak (2023072812444460100_bib37) 2013; 8
Wunderlich (2023072812444460100_bib38) 2013; 288
Mathys (2023072812444460100_bib17) 2017; 21
Tirosh (2023072812444460100_bib32) 2016; 352
Nimmerjahn (2023072812444460100_bib21) 2005; 308
Karch (2023072812444460100_bib11) 2015; 77
Bruhns (2023072812444460100_bib2) 2015; 268
Otero (2023072812444460100_bib23) 2009; 10
Schlepckow (2023072812444460100_bib28) 2020; 12
Feuerbach (2023072812444460100_bib7) 2017; 660
Jonsson (2023072812444460100_bib10) 2013; 368
Lambert (2023072812444460100_bib13) 2013; 45
Hüttenrauch (2023072812444460100_bib9) 2017; 54
Yuan (2023072812444460100_bib39) 2016; 90
Lee (2023072812444460100_bib14) 2018; 97
Long (2023072812444460100_bib16) 2019; 179
Serrano-Pozo (2023072812444460100_bib29) 2010; 133
Butler (2023072812444460100_bib3) 2018; 36
References_xml – volume: 308
  start-page: 1314
  year: 2005
  ident: 2023072812444460100_bib21
  article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo
  publication-title: Science
  doi: 10.1126/science.1110647
– volume: 12
  year: 2020
  ident: 2023072812444460100_bib28
  article-title: Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region
  publication-title: EMBO Mol. Med
  doi: 10.15252/emmm.201911227
– volume: 169
  start-page: 1276
  year: 2017
  ident: 2023072812444460100_bib12
  article-title: A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.018
– volume: 127
  start-page: 3240
  year: 2017
  ident: 2023072812444460100_bib26
  article-title: Microglia in Alzheimer’s disease
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI90606
– volume: 213
  start-page: 667
  year: 2016
  ident: 2023072812444460100_bib36
  article-title: TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20151948
– volume: 22
  start-page: 1021
  year: 2019
  ident: 2023072812444460100_bib34
  article-title: A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment
  publication-title: Nat. Neurosci
  doi: 10.1038/s41593-019-0393-4
– volume: 77
  start-page: 43
  year: 2015
  ident: 2023072812444460100_bib11
  article-title: Alzheimer’s disease risk genes and mechanisms of disease pathogenesis
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2014.05.006
– ident: 2023072812444460100_bib4
  doi: 10.1101/719930
– volume: 268
  start-page: 25
  year: 2015
  ident: 2023072812444460100_bib2
  article-title: Mouse and human FcR effector functions
  publication-title: Immunol. Rev
  doi: 10.1111/imr.12350
– volume: 45
  start-page: 1452
  year: 2013
  ident: 2023072812444460100_bib13
  article-title: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease
  publication-title: Nat. Genet
  doi: 10.1038/ng.2802
– volume: 8
  start-page: 752
  year: 2005
  ident: 2023072812444460100_bib6
  article-title: ATP mediates rapid microglial response to local brain injury in vivo
  publication-title: Nat. Neurosci
  doi: 10.1038/nn1472
– volume: 133
  start-page: 1312
  year: 2010
  ident: 2023072812444460100_bib29
  article-title: Beneficial effect of human anti-amyloid-β active immunization on neurite morphology and tau pathology
  publication-title: Brain
  doi: 10.1093/brain/awq056
– volume: 570
  start-page: 332
  year: 2019
  ident: 2023072812444460100_bib18
  article-title: Single-cell transcriptomic analysis of Alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/s41586-019-1195-2
– volume: 10
  start-page: 734
  year: 2009
  ident: 2023072812444460100_bib23
  article-title: Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin
  publication-title: Nat. Immunol
  doi: 10.1038/ni.1744
– volume: 8
  year: 2013
  ident: 2023072812444460100_bib37
  article-title: Motivational disturbances and effects of L-dopa administration in neurofibromatosis-1 model mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0066024
– volume: 179
  start-page: 312
  year: 2019
  ident: 2023072812444460100_bib16
  article-title: Alzheimer Disease: An Update on Pathobiology and Treatment Strategies
  publication-title: Cell
  doi: 10.1016/j.cell.2019.09.001
– volume: 9
  start-page: 1356
  year: 2017
  ident: 2023072812444460100_bib27
  article-title: An Alzheimer-associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function
  publication-title: EMBO Mol. Med
  doi: 10.15252/emmm.201707672
– volume: 13
  start-page: 381
  year: 2017
  ident: 2023072812444460100_bib30
  article-title: Alzheimer’s disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2016.07.004
– volume: 131
  start-page: 3081
  year: 2008
  ident: 2023072812444460100_bib24
  article-title: Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation
  publication-title: Brain
  doi: 10.1093/brain/awn217
– volume: 170
  start-page: 649
  year: 2017
  ident: 2023072812444460100_bib33
  article-title: TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.023
– volume: 90
  start-page: 724
  year: 2016
  ident: 2023072812444460100_bib39
  article-title: TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.05.003
– volume: 26
  start-page: 131
  year: 2020
  ident: 2023072812444460100_bib41
  article-title: Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease
  publication-title: Nat. Med
  doi: 10.1038/s41591-019-0695-9
– volume: 10
  start-page: 1544
  year: 2007
  ident: 2023072812444460100_bib19
  article-title: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions
  publication-title: Nat. Neurosci
  doi: 10.1038/nn2015
– volume: 2
  year: 2012
  ident: 2023072812444460100_bib20
  article-title: Neurotoxicity of amyloid β-protein: synaptic and network dysfunction
  publication-title: Cold Spring Harb. Perspect. Med
  doi: 10.1101/cshperspect.a006338
– volume: 660
  start-page: 109
  year: 2017
  ident: 2023072812444460100_bib7
  article-title: ADAM17 is the main sheddase for the generation of human triggering receptor expressed in myeloid cells (hTREM2) ectodomain and cleaves TREM2 after Histidine 157
  publication-title: Neurosci. Lett
  doi: 10.1016/j.neulet.2017.09.034
– volume: 54
  start-page: 6542
  year: 2017
  ident: 2023072812444460100_bib9
  article-title: Limited Effects of Prolonged Environmental Enrichment on the Pathology of 5XFAD Mice
  publication-title: Mol. Neurobiol
  doi: 10.1007/s12035-016-0167-x
– volume: 352
  start-page: 189
  year: 2016
  ident: 2023072812444460100_bib32
  article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aad0501
– volume: 35
  start-page: 426
  year: 2009
  ident: 2023072812444460100_bib40
  article-title: Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease
  publication-title: Neurobiol. Dis
  doi: 10.1016/j.nbd.2009.06.002
– volume: 368
  start-page: 117
  year: 2013
  ident: 2023072812444460100_bib8
  article-title: TREM2 variants in Alzheimer’s disease
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMoa1211851
– volume: 293
  start-page: 12620
  year: 2018
  ident: 2023072812444460100_bib5
  article-title: TREM2-activating antibodies abrogate the negative pleiotropic effects of the Alzheimer’s disease variant Trem2R47H on murine myeloid cell function
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.RA118.001848
– volume: 288
  start-page: 33027
  year: 2013
  ident: 2023072812444460100_bib38
  article-title: Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and γ-secretase-dependent intramembranous cleavage
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M113.517540
– volume: 215
  start-page: 745
  year: 2018
  ident: 2023072812444460100_bib31
  article-title: Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20171529
– volume: 21
  start-page: 366
  year: 2017
  ident: 2023072812444460100_bib17
  article-title: Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.09.039
– volume: 368
  start-page: 107
  year: 2013
  ident: 2023072812444460100_bib10
  article-title: Variant of TREM2 associated with the risk of Alzheimer’s disease
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMoa1211103
– volume: 26
  start-page: 10129
  year: 2006
  ident: 2023072812444460100_bib22
  article-title: Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.1202-06.2006
– volume: 27
  start-page: 1293
  year: 2019
  ident: 2023072812444460100_bib25
  article-title: The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.03.099
– volume: 23
  start-page: 10879
  year: 2003
  ident: 2023072812444460100_bib15
  article-title: Amyloid-β antibody treatment leads to rapid normalization of plaque-induced neuritic alterations
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.23-34-10879.2003
– volume: 160
  start-page: 1061
  year: 2015
  ident: 2023072812444460100_bib35
  article-title: TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.049
– volume: 97
  start-page: 1032
  year: 2018
  ident: 2023072812444460100_bib14
  article-title: Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer’s Disease Models
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.02.002
– volume: 1702
  start-page: 29
  year: 2019
  ident: 2023072812444460100_bib1
  article-title: The locus coeruleus neuroprotective drug vindeburnol normalizes behavior in the 5xFAD transgenic mouse model of Alzheimer’s disease
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2017.12.028
– volume: 36
  start-page: 411
  year: 2018
  ident: 2023072812444460100_bib3
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.4096
SSID ssj0014456
Score 2.6960196
Snippet TREM2 is a receptor for lipids expressed in microglia. The R47H variant of human TREM2 impairs ligand binding and increases Alzheimer’s disease (AD) risk. In...
TREM2 is a receptor for lipids expressed in microglia. The R47H variant of human TREM2 impairs ligand binding and increases Alzheimer's disease (AD) risk. In...
Wang et al. demonstrate that a mAb specific for the human microglial receptor TREM2 induces microglia proliferation, ameliorates Aβ-induced pathology in a...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Alzheimer Disease - cerebrospinal fluid
Alzheimer Disease - pathology
Alzheimer Disease - therapy
Amyloid beta-Peptides - chemistry
Amyloid beta-Peptides - metabolism
Animals
Antibodies, Monoclonal - administration & dosage
Antibodies, Monoclonal - pharmacokinetics
Antibodies, Monoclonal - pharmacology
Antibodies, Monoclonal - therapeutic use
Anxiety - pathology
Biomarkers - cerebrospinal fluid
Blood-Brain Barrier - drug effects
Blood-Brain Barrier - pathology
Cell Proliferation - drug effects
Disease Models, Animal
Humans
Membrane Glycoproteins - immunology
Membrane Glycoproteins - metabolism
Mice, Inbred C57BL
Mice, Transgenic
Microglia - drug effects
Microglia - metabolism
Microglia - pathology
Neurites - drug effects
Neurites - pathology
Neuroinflammation
Osteopontin - metabolism
Protein Conformation
Receptors, Immunologic - immunology
Receptors, Immunologic - metabolism
Signal Transduction
Solubility
Title Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model
URI https://www.ncbi.nlm.nih.gov/pubmed/32579671
https://www.proquest.com/docview/2417384558
https://pubmed.ncbi.nlm.nih.gov/PMC7478730
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6FIlW9IP4JBbRIcIpcbK_XP8coKqqQjFBJIZystb3bWEqdqokvOfEafRBeiCdhxrt27LRI0IsV2euf5Puyntn5ZoaQd44nWC6dzOJMBRZGlqzUdaWllOdzobgIPUxOjj_7J2fepxmfDQa_Oqqlap0eZZtb80rugirsA1wxS_Y_kG0vCjvgM-ALW0AYtv-E8bhcF5busjc9PY7dETjYFUqsLlBmd74oBOqvFqhe0TjXYnKpx2AvYl2AqcADo_FiM5cFNlMx-odo1YRvdL-crh27zSirbdlen4DdcP33Zkl6vqzAFD3fYgyWqaqN11huRcI_KqlLAU9QiTuKj9pFILEQG60H_wp8KFBB8g1lJcve2gU4qhiJCVq2ncKULxUGKK5uJEZ2J23wl1HMoV9ZZp72bIw8h92J3NVZoIax0a0vCDv08AUhsQgBLtPqfkEdrlxe1GRhLibp6u4wOwW5v8QTbDoAU-M9ct8F76TOMZ-1yiJwUeumwe1zm3wLuPWH7o0PyH5zl75RdMPT2RXsdiyg6UPywMBNx5qHj8hAlo_JfmzQfkLmWzrSmo7U0JG2dKQ9OlKgIzV0pC0d4Sw4QFs6_v55vaKGiLQm4lNy9vF4OjmxTCMPK_O4vbaYr2zh57mTZ2Ab-U6aOiwLfelKzkOWphF3mQy4ShXjMFDYAqykNGR2HqhcuYw9I3vlspQvCBVgc4ELkjMeRV4qAqFSj_mB4kwKJ8qCIRk1v2SSmSr32GxlkdRqi9BLAIKkgWBI3rejL3V1l7-Me9uAksD0izE1UcpltUrAAA5Y6MH3GJLnGqT2Sg26QxL04GsHYGn3_pGymNcl3g3BXt75zENysP3DvSJ766tKvgbzeZ2-qcn6B571zBw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-human+TREM2+induces+microglia+proliferation+and+reduces+pathology+in+an+Alzheimer%E2%80%99s+disease+model&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Wang%2C+Shoutang&rft.au=Mustafa%2C+Meer&rft.au=Yuede%2C+Carla+M.&rft.au=Salazar%2C+Santiago+Viveros&rft.date=2020-09-07&rft.pub=Rockefeller+University+Press&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=217&rft.issue=9&rft_id=info:doi/10.1084%2Fjem.20200785&rft_id=info%3Apmid%2F32579671&rft.externalDocID=PMC7478730
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon