Optimization of Structure and Electrical Characteristics for Four-Layer Vertically-Stacked Horizontal Gate-All-Around Si Nanosheets Devices

In this paper, the optimizations of vertically-stacked horizontal gate-all-around (GAA) Si nanosheet (NS) transistors on bulk Si substrate are systemically investigated. The release process of NS channels was firstly optimized to achieve uniform device structures. An over 100:1 selective wet-etch ra...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 11; no. 3; p. 646
Main Authors Zhang, Qingzhu, Gu, Jie, Xu, Renren, Cao, Lei, Li, Junjie, Wu, Zhenhua, Wang, Guilei, Yao, Jiaxin, Zhang, Zhaohao, Xiang, Jinjuan, He, Xiaobin, Kong, Zhenzhen, Yang, Hong, Tian, Jiajia, Xu, Gaobo, Mao, Shujuan, Radamson, Henry H., Yin, Huaxiang, Luo, Jun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 05.03.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the optimizations of vertically-stacked horizontal gate-all-around (GAA) Si nanosheet (NS) transistors on bulk Si substrate are systemically investigated. The release process of NS channels was firstly optimized to achieve uniform device structures. An over 100:1 selective wet-etch ratio of GeSi to Si layer was achieved for GeSi/Si stacks samples with different GeSi thickness (5 nm, 10 nm, and 20 nm) or annealing temperatures (≤900 °C). Furthermore, the influence of ground-plane (GP) doping in Si sub-fin region to improve electrical characteristics of devices was carefully investigated by experiment and simulations. The subthreshold characteristics of n-type devices were greatly improved with the increase of GP doping doses. However, the p-type devices initially were improved and then deteriorated with the increase of GP doping doses, and they demonstrated the best electrical characteristics with the GP doping concentrations of about 1 × 1018 cm−3, which was also confirmed by technical computer aided design (TCAD) simulation results. Finally, 4 stacked GAA Si NS channels with 6 nm in thickness and 30 nm in width were firstly fabricated on bulk substrate, and the performance of the stacked GAA Si NS devices achieved a larger ION/IOFF ratio (3.15 × 105) and smaller values of Subthreshold swings (SSs) (71.2 (N)/78.7 (P) mV/dec) and drain-induced barrier lowering (DIBLs) (9 (N)/22 (P) mV/V) by the optimization of suppression of parasitic channels and device’s structure.
AbstractList In this paper, the optimizations of vertically-stacked horizontal gate-all-around (GAA) Si nanosheet (NS) transistors on bulk Si substrate are systemically investigated. The release process of NS channels was firstly optimized to achieve uniform device structures. An over 100:1 selective wet-etch ratio of GeSi to Si layer was achieved for GeSi/Si stacks samples with different GeSi thickness (5 nm, 10 nm, and 20 nm) or annealing temperatures (≤900 °C). Furthermore, the influence of ground-plane (GP) doping in Si sub-fin region to improve electrical characteristics of devices was carefully investigated by experiment and simulations. The subthreshold characteristics of n-type devices were greatly improved with the increase of GP doping doses. However, the p-type devices initially were improved and then deteriorated with the increase of GP doping doses, and they demonstrated the best electrical characteristics with the GP doping concentrations of about 1 × 1018 cm−3, which was also confirmed by technical computer aided design (TCAD) simulation results. Finally, 4 stacked GAA Si NS channels with 6 nm in thickness and 30 nm in width were firstly fabricated on bulk substrate, and the performance of the stacked GAA Si NS devices achieved a larger ION/IOFF ratio (3.15 × 105) and smaller values of Subthreshold swings (SSs) (71.2 (N)/78.7 (P) mV/dec) and drain-induced barrier lowering (DIBLs) (9 (N)/22 (P) mV/V) by the optimization of suppression of parasitic channels and device’s structure.
In this paper, the optimizations of vertically-stacked horizontal gate-all-around (GAA) Si nanosheet (NS) transistors on bulk Si substrate are systemically investigated. The release process of NS channels was firstly optimized to achieve uniform device structures. An over 100:1 selective wet-etch ratio of GeSi to Si layer was achieved for GeSi/Si stacks samples with different GeSi thickness (5 nm, 10 nm, and 20 nm) or annealing temperatures (≤900 °C). Furthermore, the influence of ground-plane (GP) doping in Si sub-fin region to improve electrical characteristics of devices was carefully investigated by experiment and simulations. The subthreshold characteristics of n-type devices were greatly improved with the increase of GP doping doses. However, the p-type devices initially were improved and then deteriorated with the increase of GP doping doses, and they demonstrated the best electrical characteristics with the GP doping concentrations of about 1 × 1018 cm-3, which was also confirmed by technical computer aided design (TCAD) simulation results. Finally, 4 stacked GAA Si NS channels with 6 nm in thickness and 30 nm in width were firstly fabricated on bulk substrate, and the performance of the stacked GAA Si NS devices achieved a larger ION/IOFF ratio (3.15 × 105) and smaller values of Subthreshold swings (SSs) (71.2 (N)/78.7 (P) mV/dec) and drain-induced barrier lowering (DIBLs) (9 (N)/22 (P) mV/V) by the optimization of suppression of parasitic channels and device's structure.In this paper, the optimizations of vertically-stacked horizontal gate-all-around (GAA) Si nanosheet (NS) transistors on bulk Si substrate are systemically investigated. The release process of NS channels was firstly optimized to achieve uniform device structures. An over 100:1 selective wet-etch ratio of GeSi to Si layer was achieved for GeSi/Si stacks samples with different GeSi thickness (5 nm, 10 nm, and 20 nm) or annealing temperatures (≤900 °C). Furthermore, the influence of ground-plane (GP) doping in Si sub-fin region to improve electrical characteristics of devices was carefully investigated by experiment and simulations. The subthreshold characteristics of n-type devices were greatly improved with the increase of GP doping doses. However, the p-type devices initially were improved and then deteriorated with the increase of GP doping doses, and they demonstrated the best electrical characteristics with the GP doping concentrations of about 1 × 1018 cm-3, which was also confirmed by technical computer aided design (TCAD) simulation results. Finally, 4 stacked GAA Si NS channels with 6 nm in thickness and 30 nm in width were firstly fabricated on bulk substrate, and the performance of the stacked GAA Si NS devices achieved a larger ION/IOFF ratio (3.15 × 105) and smaller values of Subthreshold swings (SSs) (71.2 (N)/78.7 (P) mV/dec) and drain-induced barrier lowering (DIBLs) (9 (N)/22 (P) mV/V) by the optimization of suppression of parasitic channels and device's structure.
In this paper, the optimizations of vertically-stacked horizontal gate-all-around (GAA) Si nanosheet (NS) transistors on bulk Si substrate are systemically investigated. The release process of NS channels was firstly optimized to achieve uniform device structures. An over 100:1 selective wet-etch ratio of GeSi to Si layer was achieved for GeSi/Si stacks samples with different GeSi thickness (5 nm, 10 nm, and 20 nm) or annealing temperatures (≤900 °C). Furthermore, the influence of ground-plane (GP) doping in Si sub-fin region to improve electrical characteristics of devices was carefully investigated by experiment and simulations. The subthreshold characteristics of n -type devices were greatly improved with the increase of GP doping doses. However, the p -type devices initially were improved and then deteriorated with the increase of GP doping doses, and they demonstrated the best electrical characteristics with the GP doping concentrations of about 1 × 10 18 cm −3 , which was also confirmed by technical computer aided design (TCAD) simulation results. Finally, 4 stacked GAA Si NS channels with 6 nm in thickness and 30 nm in width were firstly fabricated on bulk substrate, and the performance of the stacked GAA Si NS devices achieved a larger I ON / I OFF ratio (3.15 × 10 5 ) and smaller values of Subthreshold swings ( SS s) (71.2 (N)/78.7 (P) mV/dec) and drain-induced barrier lowering ( DIBL s) (9 (N)/22 (P) mV/V) by the optimization of suppression of parasitic channels and device’s structure.
In this paper, the optimizations of vertically-stacked horizontal gate-all-around (GAA) Si nanosheet (NS) transistors on bulk Si substrate are systemically investigated. The release process of NS channels was firstly optimized to achieve uniform device structures. An over 100:1 selective wet-etch ratio of GeSi to Si layer was achieved for GeSi/Si stacks samples with different GeSi thickness (5 nm, 10 nm, and 20 nm) or annealing temperatures (≤900 °C). Furthermore, the influence of ground-plane (GP) doping in Si sub-fin region to improve electrical characteristics of devices was carefully investigated by experiment and simulations. The subthreshold characteristics of -type devices were greatly improved with the increase of GP doping doses. However, the -type devices initially were improved and then deteriorated with the increase of GP doping doses, and they demonstrated the best electrical characteristics with the GP doping concentrations of about 1 × 10 cm , which was also confirmed by technical computer aided design (TCAD) simulation results. Finally, 4 stacked GAA Si NS channels with 6 nm in thickness and 30 nm in width were firstly fabricated on bulk substrate, and the performance of the stacked GAA Si NS devices achieved a larger / ratio (3.15 × 10 ) and smaller values of Subthreshold swings ( s) (71.2 (N)/78.7 (P) mV/dec) and drain-induced barrier lowering ( s) (9 (N)/22 (P) mV/V) by the optimization of suppression of parasitic channels and device's structure.
Author Xu, Renren
Yang, Hong
Xu, Gaobo
Radamson, Henry H.
He, Xiaobin
Zhang, Zhaohao
Wang, Guilei
Yao, Jiaxin
Li, Junjie
Luo, Jun
Xiang, Jinjuan
Wu, Zhenhua
Zhang, Qingzhu
Gu, Jie
Cao, Lei
Yin, Huaxiang
Tian, Jiajia
Kong, Zhenzhen
Mao, Shujuan
AuthorAffiliation 3 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
2 Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, CAS, Beijing 100029, China
1 Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China; zhangqingzhu@ime.ac.cn (Q.Z.); gujie@ime.ac.cn (J.G.); xurenren@ime.ac.cn (R.X.); caolei@ime.ac.cn (L.C.); lijunjie@ime.ac.cn (J.L.); wuzhenhua@ime.ac.cn (Z.W.); wangguilei@ime.ac.cn (G.W.); yaojiaxin@ime.ac.cn (J.Y.); xiangjinjuan@ime.ac.cn (J.X.); hexiaobin@ime.ac.cn (X.H.); kongzhenzhen@ime.ac.cn (Z.K.); yanghong@ime.ac.cn (H.Y.); tianjiajia@ime.ac.cn (J.T.); xugaobo@ime.ac.cn (G.X.); maoshujuan@ime.ac.cn (S.M.); rad@ime.ac.cn (H.H.R.); luojun@ime.ac.cn (J.L.)
AuthorAffiliation_xml – name: 3 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
– name: 1 Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China; zhangqingzhu@ime.ac.cn (Q.Z.); gujie@ime.ac.cn (J.G.); xurenren@ime.ac.cn (R.X.); caolei@ime.ac.cn (L.C.); lijunjie@ime.ac.cn (J.L.); wuzhenhua@ime.ac.cn (Z.W.); wangguilei@ime.ac.cn (G.W.); yaojiaxin@ime.ac.cn (J.Y.); xiangjinjuan@ime.ac.cn (J.X.); hexiaobin@ime.ac.cn (X.H.); kongzhenzhen@ime.ac.cn (Z.K.); yanghong@ime.ac.cn (H.Y.); tianjiajia@ime.ac.cn (J.T.); xugaobo@ime.ac.cn (G.X.); maoshujuan@ime.ac.cn (S.M.); rad@ime.ac.cn (H.H.R.); luojun@ime.ac.cn (J.L.)
– name: 2 Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, CAS, Beijing 100029, China
Author_xml – sequence: 1
  givenname: Qingzhu
  orcidid: 0000-0003-0035-0652
  surname: Zhang
  fullname: Zhang, Qingzhu
– sequence: 2
  givenname: Jie
  orcidid: 0000-0002-2043-1479
  surname: Gu
  fullname: Gu, Jie
– sequence: 3
  givenname: Renren
  surname: Xu
  fullname: Xu, Renren
– sequence: 4
  givenname: Lei
  surname: Cao
  fullname: Cao, Lei
– sequence: 5
  givenname: Junjie
  orcidid: 0000-0001-5191-7992
  surname: Li
  fullname: Li, Junjie
– sequence: 6
  givenname: Zhenhua
  orcidid: 0000-0003-4552-883X
  surname: Wu
  fullname: Wu, Zhenhua
– sequence: 7
  givenname: Guilei
  orcidid: 0000-0002-1311-8863
  surname: Wang
  fullname: Wang, Guilei
– sequence: 8
  givenname: Jiaxin
  surname: Yao
  fullname: Yao, Jiaxin
– sequence: 9
  givenname: Zhaohao
  surname: Zhang
  fullname: Zhang, Zhaohao
– sequence: 10
  givenname: Jinjuan
  surname: Xiang
  fullname: Xiang, Jinjuan
– sequence: 11
  givenname: Xiaobin
  surname: He
  fullname: He, Xiaobin
– sequence: 12
  givenname: Zhenzhen
  orcidid: 0000-0001-8563-5424
  surname: Kong
  fullname: Kong, Zhenzhen
– sequence: 13
  givenname: Hong
  orcidid: 0000-0003-2860-5901
  surname: Yang
  fullname: Yang, Hong
– sequence: 14
  givenname: Jiajia
  surname: Tian
  fullname: Tian, Jiajia
– sequence: 15
  givenname: Gaobo
  orcidid: 0000-0002-4278-251X
  surname: Xu
  fullname: Xu, Gaobo
– sequence: 16
  givenname: Shujuan
  surname: Mao
  fullname: Mao, Shujuan
– sequence: 17
  givenname: Henry H.
  surname: Radamson
  fullname: Radamson, Henry H.
– sequence: 18
  givenname: Huaxiang
  orcidid: 0000-0001-8066-6002
  surname: Yin
  fullname: Yin, Huaxiang
– sequence: 19
  givenname: Jun
  orcidid: 0000-0002-5122-6806
  surname: Luo
  fullname: Luo, Jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33808024$$D View this record in MEDLINE/PubMed
BookMark eNptkk9v1DAQxS1UREvpjTPykQMBx3YS-4JULf0nrehhgas1cSZdF2-82E6l7VfgS5PttmiL8MXW-L3fszXzmhwMYUBC3pbsoxCafRpgCGXJBKtl_YIccdboQmpdHuydD8lJSrdsWroUqhKvyKEQiinG5RH5fb3ObuXuIbsw0NDTRY6jzWNECkNHzzzaHJ0FT2dLiGAzRpeys4n2IdLzMMZiDhuM9AfGvNX5TbHIYH9iRy9DdPdhyJP5AjIWp94XpzGME3fh6Nfp6WmJmBP9gnfOYnpDXvbgE5487sfk-_nZt9llMb--uJqdzgsrK5YL3lbQNFxLZlnLZSVaJpoeRCc1qr4uWdcIxrCBCktrSwZC8F5hX6u2kbIV4phc7bhdgFuzjm4FcWMCOPNQCPHGwPYzHo3EtlbQ1U3VCsmVBJy4pWq4aJH3op5Yn3es9diusLM45Aj-GfT5zeCW5ibcmUZrJTWfAO8fATH8GjFls3LJovcwYBiT4RVTlWZcbbPe7Wf9DXnq5iTgO4GNIaWIvbEuP3R2inbelMxsp8bsT81k-vCP6Yn7X_kf1YvF4w
CitedBy_id crossref_primary_10_1016_j_mejo_2025_106562
crossref_primary_10_1109_TED_2024_3469908
crossref_primary_10_1016_j_cej_2023_146257
crossref_primary_10_1149_2162_8777_ad8187
crossref_primary_10_3390_nano14100837
crossref_primary_10_1080_03772063_2024_2316322
crossref_primary_10_3390_nano13142127
crossref_primary_10_1186_s11671_024_04036_2
crossref_primary_10_2478_jee_2023_0058
crossref_primary_10_1109_LED_2024_3362986
crossref_primary_10_1109_TED_2023_3238376
crossref_primary_10_1149_2162_8777_adbebc
crossref_primary_10_1149_2162_8777_ad670c
crossref_primary_10_1109_LED_2024_3524259
crossref_primary_10_1007_s12633_022_01793_6
crossref_primary_10_1109_TVLSI_2025_3529504
crossref_primary_10_1186_s11671_022_03767_4
crossref_primary_10_1016_j_mejo_2024_106347
crossref_primary_10_1109_ACCESS_2024_3435691
crossref_primary_10_1109_JEDS_2025_3531432
crossref_primary_10_1109_LED_2023_3294545
crossref_primary_10_1007_s12598_024_02863_x
crossref_primary_10_1109_TED_2022_3207972
crossref_primary_10_1093_nsr_nwae008
crossref_primary_10_1109_TED_2024_3358251
crossref_primary_10_1109_TNANO_2025_3546872
crossref_primary_10_3390_ma15196918
crossref_primary_10_1007_s12633_022_01989_w
crossref_primary_10_1149_2162_8777_ac5d64
crossref_primary_10_1007_s12598_024_02674_0
crossref_primary_10_1007_s12633_022_01770_z
crossref_primary_10_3390_nano13222971
crossref_primary_10_1116_6_0002222
crossref_primary_10_1149_2162_8777_ac0f12
crossref_primary_10_1109_LED_2024_3505926
crossref_primary_10_1109_TED_2022_3176843
crossref_primary_10_1109_TED_2023_3323449
crossref_primary_10_3390_nano13030504
crossref_primary_10_1109_TED_2023_3327968
crossref_primary_10_1016_j_mejo_2024_106535
crossref_primary_10_1109_TED_2022_3206179
crossref_primary_10_1049_ell2_70026
crossref_primary_10_1016_j_mejo_2023_105985
crossref_primary_10_1109_TNANO_2024_3447020
Cites_doi 10.1109/VLSIT.2014.6894390
10.1109/TED.2020.3017452
10.1109/TED.2020.2989416
10.1109/TED.2020.3007134
10.1109/LED.2017.2768484
10.1109/IEDM.2014.7046976
10.1109/IEDM.2018.8614629
10.1109/VLSITechnology18217.2020.9265025
10.3390/mi10050293
10.1109/VLSIT.2016.7573359
10.3390/nano10040793
10.23919/VLSIT.2017.7998183
10.1109/LED.2019.2891364
10.1109/IEDM19573.2019.8993490
10.1109/JEDS.2018.2858225
10.3390/nano10091715
10.1109/LED.2019.2954537
10.1109/LED.2018.2850366
10.1016/j.mssp.2020.105397
10.1016/j.sse.2016.12.016
10.1021/acs.nanolett.0c02950
10.1109/TED.2019.2912950
10.1149/2.0241811jss
10.1109/LED.2010.2080256
10.1109/IEDM.2016.7838456
10.1016/j.mssp.2020.105434
10.1021/acsami.0c14018
10.1016/j.mejo.2019.104679
10.1109/IEDM.2016.7838438
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/nano11030646
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_4eb68ad675b34284aee7a18723be2f36
PMC7998492
33808024
10_3390_nano11030646
Genre Journal Article
GrantInformation_xml – fundername: the Science and technology program of Beijing Municipal Science and Technology Commission
  grantid: Z201100006820084 and Z201100004220001
– fundername: the National Key Project of Science and Technology of China
  grantid: 2017ZX02301007-001 and 2017ZX02315001-001
– fundername: the Youth Innovation Promotion Association, Chinese Academy of Sciences
  grantid: Y9YQ01R004 and Y2020037
– fundername: the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences
  grantid: E0YS01X001 and E0290X03
– fundername: the National Natural Science Foundation of China
  grantid: 61904194 and 6187032253
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c450t-2b5a772940c0b2453b037fa3d49e8f610d7300e7a5e1cc10a332f8ef68b744b33
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:32:08 EDT 2025
Thu Aug 21 13:38:45 EDT 2025
Thu Jul 10 19:29:12 EDT 2025
Wed Feb 19 02:28:00 EST 2025
Tue Jul 01 01:17:10 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords channel release
suppression
nanosheet (NS)
gate-all-around (GAA)
parasitic channel
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-2b5a772940c0b2453b037fa3d49e8f610d7300e7a5e1cc10a332f8ef68b744b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0035-0652
0000-0003-2860-5901
0000-0002-2043-1479
0000-0003-4552-883X
0000-0001-8563-5424
0000-0002-1311-8863
0000-0002-4278-251X
0000-0002-5122-6806
0000-0001-5191-7992
0000-0001-8066-6002
OpenAccessLink https://doaj.org/article/4eb68ad675b34284aee7a18723be2f36
PMID 33808024
PQID 2508590286
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_4eb68ad675b34284aee7a18723be2f36
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7998492
proquest_miscellaneous_2508590286
pubmed_primary_33808024
crossref_citationtrail_10_3390_nano11030646
crossref_primary_10_3390_nano11030646
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210305
PublicationDateYYYYMMDD 2021-03-05
PublicationDate_xml – month: 3
  year: 2021
  text: 20210305
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Li (ref_9) 2017; 38
ref_14
ref_13
ref_11
Zhang (ref_25) 2021; 121
ref_30
Zhang (ref_18) 2018; 7
Sung (ref_26) 2020; 67
ref_17
Li (ref_19) 2020; 12
Yin (ref_7) 2019; 41
Huang (ref_10) 2019; 95
Song (ref_8) 2010; 31
Zhang (ref_15) 2019; 40
Hu (ref_24) 2020; 20
Kim (ref_27) 2020; 67
ref_22
Chu (ref_12) 2018; 39
ref_20
Su (ref_21) 2020; 67
Yao (ref_29) 2018; 6
ref_1
ref_3
Liu (ref_23) 2020; 121
ref_2
Shirazi (ref_6) 2019; 66
ref_28
Xu (ref_16) 2017; 129
ref_5
ref_4
References_xml – ident: ref_3
  doi: 10.1109/VLSIT.2014.6894390
– volume: 67
  start-page: 4085
  year: 2020
  ident: ref_21
  article-title: Investigation of self-heating effects in vacuum gate dielectric gate-all-around vertically stacked silicon nanowire field effect transistors
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2020.3017452
– volume: 67
  start-page: 6
  year: 2020
  ident: ref_27
  article-title: Investigation of electrical characteristic behavior induced by channel-release process in stacked nanosheet gate-all-around mosfets
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2020.2989416
– ident: ref_28
– volume: 67
  start-page: 9
  year: 2020
  ident: ref_26
  article-title: Fabrication of vertically stacked nanosheet junctionless field-effect transistors and applications for the cmos and cfet inverters
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2020.3007134
– volume: 38
  start-page: 1653
  year: 2017
  ident: ref_9
  article-title: Investigation on electrostatic discharge robustness of gate-all-around silicon nanowire transistors combined with thermal analysis
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2768484
– ident: ref_1
  doi: 10.1109/IEDM.2014.7046976
– ident: ref_11
  doi: 10.1109/IEDM.2018.8614629
– ident: ref_14
  doi: 10.1109/VLSITechnology18217.2020.9265025
– ident: ref_5
  doi: 10.3390/mi10050293
– ident: ref_2
  doi: 10.1109/VLSIT.2016.7573359
– ident: ref_20
  doi: 10.3390/nano10040793
– ident: ref_30
  doi: 10.23919/VLSIT.2017.7998183
– volume: 40
  start-page: 367
  year: 2019
  ident: ref_15
  article-title: Finfet with improved subthreshold swing and drain current using 3 nm ferroelectric hf0.5zr0.5o2
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2019.2891364
– ident: ref_13
  doi: 10.1109/IEDM19573.2019.8993490
– volume: 6
  start-page: 841
  year: 2018
  ident: ref_29
  article-title: Physical insights on quantum confinement and carrier mobility in si, sige, ge gate-all-around nsfet for 5nm technology node
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2018.2858225
– ident: ref_22
  doi: 10.3390/nano10091715
– volume: 41
  start-page: 8
  year: 2019
  ident: ref_7
  article-title: Vertical sandwich gate-all-around field-effect transistors with self-aligned high-k metal gates and small effective-gate-length variation
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2019.2954537
– volume: 39
  start-page: 1133
  year: 2018
  ident: ref_12
  article-title: Stacked ge-nanosheet gaa fets fabricated by ge/si multilayer epitaxy
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2018.2850366
– volume: 121
  start-page: 105397
  year: 2020
  ident: ref_23
  article-title: Fabrication and selective wet etching of si0.2ge0.8/ge multilayer for si0.2ge0.8 channel gate-all-around mosfets
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2020.105397
– volume: 129
  start-page: 52
  year: 2017
  ident: ref_16
  article-title: Two methods of tuning threshold voltage of bulk finfets with replacement high-k metal-gate stacks
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2016.12.016
– volume: 20
  start-page: 10
  year: 2020
  ident: ref_24
  article-title: Unprecedented uniform 3d growth integration of 10-layer stacked si nanowires on tightly confined sidewall grooves
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02950
– volume: 66
  start-page: 2822
  year: 2019
  ident: ref_6
  article-title: GAA CNT TFETs Structural Engineering: A Higher ON Current, Lower Ambipolarity
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2912950
– volume: 7
  start-page: 671
  year: 2018
  ident: ref_18
  article-title: Influence of rapid thermal annealing on ge-si interdiffusion in epitaxial multilayer ge 0.3 si 0.7 /si superlattices with various gesi thicknesses
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0241811jss
– volume: 31
  start-page: 1377
  year: 2010
  ident: ref_8
  article-title: High-Performance Silicon Nanowire Gate-All-Around nMOSFETs Fabricated on BulkSubstrate Using CMOS-Compatible Process
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2010.2080256
– ident: ref_17
  doi: 10.1109/IEDM.2016.7838456
– volume: 121
  start-page: 105434
  year: 2021
  ident: ref_25
  article-title: Optimization of zero-level interlayer dielectric materials for gate-all-around silicon nanowire channel fabrication in a replacement metal gate process
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2020.105434
– volume: 12
  start-page: 48170
  year: 2020
  ident: ref_19
  article-title: Selective Digital Etching of Silicon−Germanium Using Nitric and Hydrofluoric Acids
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c14018
– volume: 95
  start-page: 104679
  year: 2019
  ident: ref_10
  article-title: Investigation and optimization of electrical and thermal performance for 5-nm gaa vertically stacked nanowire fets
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2019.104679
– ident: ref_4
  doi: 10.1109/IEDM.2016.7838438
SSID ssj0000913853
Score 2.3715515
Snippet In this paper, the optimizations of vertically-stacked horizontal gate-all-around (GAA) Si nanosheet (NS) transistors on bulk Si substrate are systemically...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 646
SubjectTerms channel release
gate-all-around (GAA)
nanosheet (NS)
parasitic channel
suppression
Title Optimization of Structure and Electrical Characteristics for Four-Layer Vertically-Stacked Horizontal Gate-All-Around Si Nanosheets Devices
URI https://www.ncbi.nlm.nih.gov/pubmed/33808024
https://www.proquest.com/docview/2508590286
https://pubmed.ncbi.nlm.nih.gov/PMC7998492
https://doaj.org/article/4eb68ad675b34284aee7a18723be2f36
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucAB8aY8KiPBCVmb-JE4x-7SUiG0IJZFe4tsZ6KtFBLUdg_wF_jTzDjZKkUgLlyTUWJ5Xt8k428Ye6lyaX0RCmGhUEJnPhOutjUxI_osuFxlIbJ9nmTLM_3u3JyPRn1RT1hPD9xv3KEGn1lXIa71CqGydgC5S20ulQdZq0i2jTlvVEzFGFykChNR3-musK4_bF3bpTRTKyOsO8pBkar_T_jy9zbJUd5Z3GG3B8DIZ_1C77Jr0N5jt0Y0gvfZzw_o91-HA5W8q_lpJIW9XAN3bcXncdINKYMf79Mzc0SsfIFvEO8dQm_-JTZZu6b5LhCEon9XfNmtVz86OjLJ6UObmDWNmK1pFhM_XXGMzd3mAmC74W8gxpwH7Gwx_3y8FMOQBRG0SbZCeuMIYeskJF5qo3yi8tqpShdgawRXFTHa454bSENIE6eUrC3UmfW51l6ph-yg7Vp4zDg-JxifBIMRVivpCwiuKqRBvYXUQjZhr6-2vQwDAzkNwmhKrERISeVYSRP2aif9rWfe-IvcEWlwJ0N82fECWlE5WFH5LyuasBdX-i_Rv-iniWuhu9yUCBFtpLhBmUe9PexeheU9HVXWE5bvWcreWvbvtKuLyOGdY5mrC_nkfyz-KbspqdOGOuPMM3aANgbPESpt_ZRdt4u3U3bjaH7y8dM0-sgv3icXnA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Structure+and+Electrical+Characteristics+for+Four-Layer+Vertically-Stacked+Horizontal+Gate-All-Around+Si+Nanosheets+Devices&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Qingzhu&rft.au=Gu%2C+Jie&rft.au=Xu%2C+Renren&rft.au=Cao%2C+Lei&rft.date=2021-03-05&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=11&rft.issue=3&rft_id=info:doi/10.3390%2Fnano11030646&rft_id=info%3Apmid%2F33808024&rft.externalDocID=33808024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon