Drosophila as a Model for Infectious Diseases
The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be...
Saved in:
Published in | International journal of molecular sciences Vol. 22; no. 5; p. 2724 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
08.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2. |
---|---|
AbstractList | The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2. The fruit fly, Drosophila melanogaster , has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2. The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2. The fruit fly, , has been used to understand fundamental principles of genetics and biology for over a century. is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2. |
Author | Yamamoto, Shinya Harnish, J. Michael Link, Nichole |
AuthorAffiliation | 4 Department of Neuroscience, BCM, Houston, TX 77030, USA 3 Howard Hughes Medical Institute, Houston, TX 77030, USA 2 Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA 1 Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jacob.Harnish@bcm.edu (J.M.H.); nichole.link@neuro.utah.edu (N.L.) 5 Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA |
AuthorAffiliation_xml | – name: 4 Department of Neuroscience, BCM, Houston, TX 77030, USA – name: 3 Howard Hughes Medical Institute, Houston, TX 77030, USA – name: 1 Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jacob.Harnish@bcm.edu (J.M.H.); nichole.link@neuro.utah.edu (N.L.) – name: 5 Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA – name: 2 Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA |
Author_xml | – sequence: 1 givenname: J. Michael orcidid: 0000-0002-9410-6951 surname: Harnish fullname: Harnish, J. Michael – sequence: 2 givenname: Nichole surname: Link fullname: Link, Nichole – sequence: 3 givenname: Shinya orcidid: 0000-0003-2172-8036 surname: Yamamoto fullname: Yamamoto, Shinya |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33800390$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1PwzAMhiM0xD7gxhn1yIFC6qZNc0FCGx-ThrjsHqWpwzJ1zWg6JP49mTamgTjZkh-_tl8PSa9xDRJymdDbNBX0zi5XHoBmwIGdkEHCAGJKc947yvtk6P2SUkghE2ekn6YFpaF5QOJJ67xbL2ytIuUjFb26CuvIuDaaNgZ1Z93GRxPrUXn05-TUqNrjxT6OyPzpcT5-iWdvz9PxwyzWLKNdDCrJKjBIFdKSKV1gDpUQZcVYykAbXrKc84IFIDHAdIJGlBS0CEEUPB2R-53selOusNLYdK2q5bq1K9V-Saes_F1p7EK-u0_JRQ5FvhW43gu07mODvpMr6zXWtWow3CMho0XGgxsQ0KvjWYchPxYF4GYH6OCUb9EckITK7Qfk8QcCDn9wbTsVbNxuauv_m74Bv0mJdw |
CitedBy_id | crossref_primary_10_1016_j_celrep_2023_112842 crossref_primary_10_1371_journal_ppat_1010784 crossref_primary_10_1002_jbt_23356 crossref_primary_10_1073_pnas_2202322119 crossref_primary_10_3390_insects16030261 crossref_primary_10_1002_cpz1_675 crossref_primary_10_1007_s11596_025_00004_8 crossref_primary_10_3390_cells11172685 crossref_primary_10_3390_ijms232012285 crossref_primary_10_3389_fimmu_2022_905370 crossref_primary_10_3390_ijms23052613 crossref_primary_10_3390_ijms232314801 crossref_primary_10_1016_j_anaerobe_2023_102694 crossref_primary_10_1242_dmm_050297 crossref_primary_10_3390_genes14091675 crossref_primary_10_3390_ijms252312742 crossref_primary_10_3390_microorganisms10101983 crossref_primary_10_1007_s00251_021_01239_0 crossref_primary_10_3390_vetsci10070420 crossref_primary_10_1002_fpf2_12035 crossref_primary_10_1111_imb_12900 crossref_primary_10_3389_fcimb_2024_1343834 crossref_primary_10_1016_j_heliyon_2024_e41605 crossref_primary_10_3390_ijms231911244 crossref_primary_10_1002_eji_202350632 crossref_primary_10_3390_ijms23084203 crossref_primary_10_1016_j_tvr_2025_200316 crossref_primary_10_1080_00032719_2024_2359079 crossref_primary_10_7554_eLife_88981_3 crossref_primary_10_7554_eLife_88981 crossref_primary_10_3389_fimmu_2024_1349027 crossref_primary_10_3390_ijms23126499 crossref_primary_10_1038_s42003_022_03986_6 crossref_primary_10_3389_fimmu_2021_760475 crossref_primary_10_1016_j_actaastro_2022_04_029 crossref_primary_10_1038_s41598_022_18722_7 crossref_primary_10_3389_fcimb_2022_939813 |
Cites_doi | 10.1016/j.bbadis.2005.04.004 10.1093/hmg/ddz135 10.1074/jbc.M116.757393 10.1093/emboj/cdf683 10.1016/S0966-842X(00)01913-2 10.1128/JVI.76.24.12543-12552.2002 10.1111/j.1462-5822.2011.01717.x 10.1242/jcs.02584 10.1128/jvi.66.9.5542-5552.1992 10.1042/BJ20131461 10.1038/sj.cdd.4400823 10.1016/S0163-7258(03)00034-2 10.1371/journal.ppat.1000064 10.1097/COH.0000000000000103 10.4049/jimmunol.169.6.2846 10.1007/978-3-319-89512-3_8 10.1186/1471-2121-9-32 10.1017/CBO9780511545313.018 10.2174/1381612823666170704130635 10.3389/fcimb.2017.00039 10.1016/S1473-3099(07)70081-6 10.1128/iai.8.2.208-214.1973 10.1098/rsob.180256 10.1002/14651858.CD001169.pub3 10.7554/eLife.53865 10.1007/978-1-4419-5638-5_4 10.7554/eLife.41930 10.1093/genetics/152.1.281 10.1146/annurev.genet.35.102401.091415 10.1074/jbc.M010533200 10.1016/0035-9203(64)90201-9 10.1128/JVI.01016-06 10.1001/jama.287.17.2236 10.1016/0092-8674(86)90346-6 10.4161/viru.27524 10.1002/ajmg.1320240303 10.1038/sj.onc.1203374 10.4049/jimmunol.1800597 10.1371/journal.ppat.1000085 10.1016/j.coph.2013.08.003 10.1016/j.biocel.2009.04.019 10.3390/cancers9020016 10.1111/j.0105-2896.2004.0133.x 10.1242/dev.126.23.5453 10.1126/science.176.4031.173 10.1006/dbio.1996.0194 10.1242/jcs.01228 10.1126/science.1085953 10.1038/nrneurol.2016.78 10.1093/ilar.47.1.65 10.1016/j.bbrc.2004.05.107 10.1128/JVI.00918-15 10.1111/imr.12502 10.1056/NEJMoa1600651 10.1038/s41467-017-02816-2 10.1074/jbc.M900687200 10.1128/AAC.01646-08 10.1016/S1473-3099(17)30303-1 10.1155/2017/9042851 10.1016/j.cell.2014.09.002 10.3389/fcimb.2013.00113 10.1128/jvi.67.4.2402-2407.1993 10.1146/annurev-micro-091014-104523 10.1083/jcb.201106088 10.1038/nrg1503 10.1038/24884 10.1016/j.cell.2018.11.028 10.1002/wdev.344 10.1126/science.aam7120 10.1038/s41586-020-2286-9 10.1002/j.1460-2075.1989.tb03356.x 10.1128/CMR.00066-18 10.1084/jem.194.9.1299 10.1538/expanim.59.125 10.1016/S0955-0674(99)80004-0 10.1111/j.1365-2443.2007.01121.x 10.1016/j.devcel.2006.06.006 10.4161/fly.4.1.11230 10.1242/jcs.114.15.2787 10.1016/j.ajhg.2009.07.006 10.1074/jbc.M211262200 10.1016/j.febslet.2004.10.005 10.1007/s00251-006-0142-1 10.1200/JCO.2005.03.7101 10.1128/JVI.78.23.12788-12799.2004 10.1128/JVI.77.9.5039-5045.2003 10.1038/sj.embor.embor936 10.1101/611384 10.1056/NEJM199501263320405 10.1093/emboj/cdg050 10.1371/journal.pone.0034310 10.4161/cc.8.1.7411 10.1016/j.dci.2013.06.001 10.1002/dvdy.20283 10.2807/1560-7917.ES2014.19.9.20720 10.1242/jcs.02312 10.4103/meajo.MEAJO_238_17 10.1016/j.devcel.2007.09.002 10.1242/dmm.040816 10.1111/febs.13235 10.1016/j.nmni.2017.07.006 10.1038/nature08702 10.1073/pnas.0510748103 10.1038/cdd.2008.50 10.1016/j.febslet.2004.03.086 10.1073/pnas.1009473107 10.1073/pnas.1035902100 10.1146/annurev.immunol.25.022106.141615 10.1016/j.gde.2017.03.013 10.1007/s11262-015-1277-7 10.1016/j.smim.2014.05.003 10.1111/j.1462-5822.2011.01694.x 10.1371/journal.ppat.1005789 10.1358/dnp.2006.19.3.977442 10.1111/j.1349-7006.2007.00546.x 10.1006/viro.1999.9791 10.1126/science.1098020 10.1083/jcb.200706167 10.1002/(SICI)1521-1878(199812)20:12<1009::AID-BIES7>3.0.CO;2-D 10.1242/dev.096925 10.2183/pjab.93.013 10.1371/journal.pone.0048702 10.1038/s41436-018-0140-3 10.1007/978-1-4939-6371-3_6 10.1128/JB.188.4.1211-1217.2006 10.1146/annurev-pathmechdis-012418-013023 10.1016/S0092-8674(00)80172-5 10.1128/CMR.00023-07 10.1016/j.devcel.2005.06.010 10.1099/mic.0.28889-0 10.1016/j.abb.2007.01.012 10.1083/jcb.200208039 10.3389/fcimb.2012.00024 10.3389/fmicb.2013.00231 10.1242/jeb.200.2.237 10.1101/cshperspect.a000232 10.1007/s00018-013-1451-9 10.1016/j.chom.2018.05.022 10.1016/j.tim.2018.05.007 10.1016/j.semcdb.2008.01.004 10.1128/JVI.01756-10 10.1038/sj.onc.1203988 10.1007/s11248-007-9136-5 10.1128/JVI.75.15.6737-6747.2001 10.1128/JVI.77.6.3602-3614.2003 10.1038/sj.onc.1209046 10.1038/sj.onc.1207977 10.1242/dev.126.10.2261 10.1016/j.imlet.2020.06.017 10.1371/journal.ppat.1006603 10.1016/j.exger.2010.11.003 10.1128/JVI.75.13.6228-6234.2001 10.1074/jbc.274.51.36369 10.1016/S1672-0229(03)01016-7 10.1016/S2214-109X(19)30482-6 10.1038/s41580-018-0080-4 10.1534/genetics.117.203067 10.1016/S0140-6736(03)13077-2 10.1016/S0167-4889(00)00020-3 10.1016/j.dib.2020.106082 10.1016/S0092-8674(00)81430-0 10.1007/s12325-018-0658-4 10.1093/jnci/91.2.119 10.1038/srep15749 10.4161/21597073.2014.964081 10.3389/fimmu.2017.00751 10.2147/JIR.S140188 10.1016/j.bbrc.2005.09.098 10.1016/j.cmet.2011.09.013 10.1371/journal.ppat.0010008 10.1158/0008-5472.CAN-16-1680 10.3791/59658 10.1371/journal.pone.0205815 10.1038/cr.2011.13 10.1534/genetics.111.132290 10.1046/j.1440-1843.2003.00517.x 10.1016/j.immuni.2010.01.004 10.1016/0092-8674(91)90446-6 10.1128/JVI.73.1.738-745.1999 10.1128/IAI.01702-06 10.14202/vetworld.2019.504-521 10.1186/s12977-018-0415-4 10.1016/S0092-8674(00)81748-1 10.1371/journal.pntd.0001845 10.3390/cells9020358 10.1128/JVI.72.10.8043-8051.1998 10.1016/j.chom.2013.08.001 10.1371/journal.ppat.1002939 10.1002/dvdy.20770 10.1016/bs.ctdb.2016.07.008 10.1128/iai.59.10.3472-3477.1991 10.1080/09687680410001663267 10.1099/jmm.0.05229-0 10.1016/j.ymeth.2014.02.023 10.1111/j.1349-7006.2005.00130.x 10.3354/dao03006 10.1186/1750-9378-9-38 10.1074/jbc.M709055200 10.1016/j.jaad.2015.05.040 10.1146/annurev-cellbio-111315-125416 10.3389/fonc.2019.00670 10.1038/nri3495 10.1038/ni.3691 10.1002/cm.20070 10.1016/j.coi.2010.01.007 10.1038/nature08237 10.1016/j.cub.2006.04.042 10.3390/cells2010163 10.1128/JVI.00650-11 10.1371/journal.ppat.1005163 10.1038/nri3763 10.1016/j.ymeth.2014.02.002 10.1242/dev.113.1.55 10.1016/j.virol.2004.12.017 10.1016/j.devcel.2019.10.009 10.1016/j.ydbio.2019.06.007 10.1534/genetics.114.171785 10.1146/annurev.cellbio.23.090506.123606 10.1056/NEJMoa1909666 10.1073/pnas.79.10.3162 10.1038/onc.2008.254 10.1371/journal.pone.0229434 10.1534/genetics.105.042572 10.1007/BF01309460 10.1128/JVI.01792-12 10.1128/JVI.73.8.6551-6558.1999 10.1186/1471-213X-8-33 10.3390/biom10070985 10.1128/AAC.00504-12 10.1038/embor.2008.209 10.1038/nrneurol.2016.27 10.1128/CMR.00034-08 10.1016/j.virol.2011.11.016 10.1016/0092-8674(93)90533-V 10.1007/978-3-319-29785-9_6 10.1242/dev.118.2.401 10.1146/annurev.cellbio.13.1.147 10.1242/dev.117.4.1223 10.1126/science.1072682 10.1002/wdev.214 10.1371/journal.pone.0017856 10.1093/emboj/19.12.3080 10.1016/j.chom.2008.02.016 10.1126/science.1085952 10.1534/genetics.115.179457 10.1038/340150a0 10.1136/gutjnl-2018-316723 10.1016/S0140-6736(17)30129-0 10.1534/genetics.119.302964 10.1097/CCM.0b013e318258e5bb 10.1056/NEJMe2002387 10.1126/science.287.5451.324 10.1016/j.cell.2015.09.009 10.1186/1742-4690-6-117 10.1111/febs.14492 10.1146/annurev-neuro-071013-014100 10.1038/nature09446 10.1016/0092-8674(91)90065-7 10.1084/jem.20051027 10.1371/journal.ppat.1006631 10.1099/vir.0.016303-0 10.1155/2012/736837 10.3390/v7082824 10.1146/annurev.micro.55.1.647 |
ContentType | Journal Article |
Copyright | 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.3390/ijms22052724 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7962867 33800390 10_3390_ijms22052724 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIH HHS grantid: U54 OD030165 – fundername: NIH HHS grantid: R01DC014932 – fundername: NIH HHS grantid: U54OD030165 – fundername: NIH HHS grantid: R24OD022005 – fundername: NIH HHS grantid: U54NS093793 – fundername: NIH HHS grantid: U01HG007530 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM 7X8 PJZUB PPXIY 5PM |
ID | FETCH-LOGICAL-c450t-2a15d2fe0ae0b4ac8e62d99bd44342cf7b467784e0a1f24c1ef9b02c9f9b9873 |
IEDL.DBID | M48 |
ISSN | 1422-0067 |
IngestDate | Thu Aug 21 13:55:42 EDT 2025 Mon Jul 21 10:21:43 EDT 2025 Thu Apr 03 06:50:48 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Tue Jul 01 03:07:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | pathogens and virulence factors infection immunity Drosophila melanogaster disease models |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-2a15d2fe0ae0b4ac8e62d99bd44342cf7b467784e0a1f24c1ef9b02c9f9b9873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Current Affiliation: Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA. |
ORCID | 0000-0002-9410-6951 0000-0003-2172-8036 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22052724 |
PMID | 33800390 |
PQID | 2508572322 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7962867 proquest_miscellaneous_2508572322 pubmed_primary_33800390 crossref_primary_10_3390_ijms22052724 crossref_citationtrail_10_3390_ijms22052724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210308 |
PublicationDateYYYYMMDD | 2021-03-08 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210308 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2021 |
Publisher | MDPI |
Publisher_xml | – name: MDPI |
References | ref_137 ref_258 Motai (ref_63) 2016; 52 ref_257 ref_92 ref_138 ref_259 Mizutani (ref_94) 2005; 1741 ref_250 ref_131 ref_130 ref_133 ref_135 ref_134 Wu (ref_45) 2012; 14 Jones (ref_44) 2008; 3 Sotillo (ref_253) 2008; 283 Andrews (ref_157) 2005; 9 Farrell (ref_109) 1989; 8 ref_126 ref_125 ref_246 Salazar (ref_136) 2018; 1066 ref_120 ref_241 Massimi (ref_219) 2004; 23 ref_240 ref_122 ref_121 ref_242 ref_245 Suzanne (ref_146) 1999; 126 Arbyn (ref_212) 2020; 8 Rera (ref_167) 2011; 14 Kotadia (ref_252) 2008; 27 Pezard (ref_144) 1991; 59 Sontag (ref_251) 1993; 75 Zeng (ref_43) 2002; 169 Bex (ref_57) 1999; 73 ref_72 ref_71 ref_158 ref_70 Sawamoto (ref_149) 1996; 178 Silverman (ref_32) 2003; 100 Weil (ref_161) 2014; Volume 2–3 Churin (ref_184) 2003; 161 Mizutani (ref_93) 2004; 577 Fehr (ref_50) 2006; 152 ref_272 ref_79 ref_271 ref_78 ref_153 ref_274 Sen (ref_26) 1986; 46 ref_77 ref_273 ref_75 Simon (ref_191) 1991; 67 Wong (ref_200) 2007; 179 Lin (ref_46) 2016; 291 Helt (ref_214) 2001; 75 Hu (ref_96) 2003; 1 ref_148 ref_82 ref_80 Guichard (ref_145) 2006; 103 Boyer (ref_22) 2012; 710 Marasco (ref_237) 1994; 139 ref_140 Chen (ref_114) 2009; 8 ref_260 ref_142 ref_88 ref_141 ref_87 ref_143 ref_264 ref_85 ref_267 ref_266 Chan (ref_101) 2009; 41 Uramoto (ref_249) 2004; 117 Biteau (ref_40) 2011; 46 Chen (ref_225) 2002; 21 Feederle (ref_108) 2000; 19 ref_213 Battaglia (ref_235) 2005; 61 Schnorrer (ref_13) 2016; 1478 Kanca (ref_255) 2017; 207 Heo (ref_270) 2009; 53 Guichard (ref_164) 2013; 14 Kavaler (ref_113) 1999; 126 ref_210 ref_211 Steinhauer (ref_230) 2006; 235 Sonoshita (ref_7) 2017; 121 Giagtzoglou (ref_156) 2012; 196 Diamandopoulos (ref_244) 1972; 176 Zwartkruis (ref_159) 1998; 396 Perrin (ref_86) 2007; 12 ref_203 Wu (ref_205) 2010; 463 Tsoi (ref_99) 2014; 464 Cook (ref_17) 2010; 4 ref_207 Choi (ref_181) 2020; 382 ref_209 ref_208 ref_201 Huber (ref_84) 2014; 71 Xu (ref_193) 1993; 117 Brand (ref_12) 1993; 118 Cheng (ref_163) 1991; 66 ref_236 ref_238 Shirinian (ref_60) 2015; 89 ref_118 ref_239 Zacny (ref_116) 1998; 72 Shaheen (ref_124) 2019; 21 Lushchak (ref_265) 2012; 2012 Yuan (ref_139) 2017; 358 Fisher (ref_243) 1999; 19 Yamamoto (ref_123) 2014; 159 ref_231 Panayidou (ref_21) 2014; 5 ref_234 Zirin (ref_15) 2020; 214 Selbach (ref_195) 2003; 22 Peiris (ref_91) 2003; 361 ref_104 ref_106 Adamson (ref_110) 1999; 73 Lotze (ref_128) 2013; 70 ref_227 Lindberg (ref_269) 2014; 4 ref_105 ref_226 ref_229 ref_107 ref_221 Lee (ref_76) 2005; 118 ref_102 ref_223 ref_222 Tateno (ref_202) 2000; 287 Lemaitre (ref_9) 1996; 86 Goehring (ref_83) 1999; 274 Baker (ref_190) 1989; 340 Garcea (ref_247) 2003; 77 ref_14 ref_11 ref_10 Weil (ref_233) 2006; 11 Leulier (ref_69) 2003; 4 ref_19 ref_18 McGurk (ref_6) 2015; 201 ref_16 Pim (ref_216) 2000; 19 Keebaugh (ref_34) 2014; 42 Bentz (ref_179) 2006; 80 Suzuki (ref_183) 2005; 202 Chan (ref_98) 2007; 459 Wong (ref_100) 2005; 337 ref_25 Isomura (ref_175) 2004; 78 ref_24 Tewari (ref_49) 2014; 8 ref_20 ref_29 ref_28 ref_27 Rota (ref_89) 2003; 300 Journo (ref_56) 2013; 87 Huibregtse (ref_220) 1993; 13 Reid (ref_206) 2012; 2 Skoczylas (ref_248) 2005; 332 Holmgren (ref_165) 1973; 8 Renbaum (ref_127) 2009; 85 Guichard (ref_155) 2010; 467 Mavromatakis (ref_186) 2013; 140 Su (ref_197) 2003; 52 Yu (ref_97) 2004; 565 Dow (ref_263) 1997; 200 Varshney (ref_48) 2017; 24 Igaki (ref_204) 2006; 16 Guichard (ref_147) 2006; 103 Balzac (ref_160) 2005; 118 Pokrywka (ref_232) 1991; 113 Chen (ref_178) 1999; 260 Hughey (ref_262) 1992; 66 Venken (ref_256) 2016; 5 Bour (ref_68) 2001; 276 Adamson (ref_111) 2005; 171 Tanji (ref_30) 2010; 107 Kirchhoff (ref_73) 1995; 332 Mlakar (ref_119) 2016; 374 Chung (ref_268) 2012; 56 Mizutani (ref_95) 2004; 319 ref_58 Hartl (ref_151) 2014; 68 ref_173 Leppla (ref_152) 1982; 79 ref_172 ref_55 Neyen (ref_23) 2014; 68 ref_54 ref_53 ref_52 Swenson (ref_115) 2001; 75 ref_180 ref_182 Escudero (ref_198) 2007; 13 ref_59 Isomura (ref_174) 2003; 77 ref_61 Tomlinson (ref_188) 2019; 454 ref_169 Bresnick (ref_199) 1999; 11 ref_162 Bourzac (ref_196) 2007; 75 Harsh (ref_132) 2018; 201 ref_66 ref_166 ref_64 ref_168 Kranjec (ref_218) 2011; 85 ref_62 ref_171 ref_170 Lemaitre (ref_33) 2007; 25 Wu (ref_215) 1993; 67 Hanna (ref_74) 1998; 95 Adamson (ref_261) 2011; 189 ref_36 ref_35 ref_194 Smith (ref_129) 1986; 24 ref_31 Berthelet (ref_81) 2013; 2 Das (ref_224) 2011; 85 Watts (ref_65) 2009; 460 ref_39 ref_38 ref_37 Simpson (ref_117) 1964; 58 Chopra (ref_150) 2003; 278 Marra (ref_90) 2003; 300 Steinberg (ref_176) 2008; 17 ref_47 Tepass (ref_177) 2001; 35 Gordon (ref_103) 2020; 583 ref_185 ref_42 Kiger (ref_154) 1999; 152 ref_187 ref_41 Wangler (ref_5) 2015; 199 ref_189 ref_1 ref_3 Jones (ref_51) 2012; 14 Sotillo (ref_254) 2009; 284 ref_2 ref_192 ref_8 Akari (ref_67) 2001; 194 ref_4 Mauser (ref_112) 2002; 76 Gardiol (ref_217) 2000; 19 Battaglia (ref_228) 2001; 114 |
References_xml | – volume: 1741 start-page: 4 year: 2005 ident: ref_94 article-title: JNK and PI3k/Akt Signaling Pathways Are Required for Establishing Persistent SARS-CoV Infection in Vero E6 Cells publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2005.04.004 – ident: ref_10 doi: 10.1093/hmg/ddz135 – volume: 291 start-page: 26837 year: 2016 ident: ref_46 article-title: Salmonella Enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.757393 – volume: 21 start-page: 6801 year: 2002 ident: ref_225 article-title: HIV-1 Tat Targets Microtubules to Induce Apoptosis, a Process Promoted by the pro-Apoptotic Bcl-2 Relative Bim publication-title: Embo J. doi: 10.1093/emboj/cdf683 – ident: ref_266 doi: 10.1016/S0966-842X(00)01913-2 – volume: 76 start-page: 12543 year: 2002 ident: ref_112 article-title: The Epstein-Barr Virus Immediate-Early Protein BZLF1 Induces Expression of E2F-1 and Other Proteins Involved in Cell Cycle Progression in Primary Keratinocytes and Gastric Carcinoma Cells publication-title: J. Virol. doi: 10.1128/JVI.76.24.12543-12552.2002 – volume: 14 start-page: 274 year: 2012 ident: ref_51 article-title: Aeromonas Salmonicida-Secreted Protein AopP Is a Potent Inducer of Apoptosis in a Mammalian and a Drosophila Model publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2011.01717.x – volume: 118 start-page: 4765 year: 2005 ident: ref_160 article-title: E-Cadherin Endocytosis Regulates the Activity of Rap1: A Traffic Light GTPase at the Crossroads between Cadherin and Integrin Function publication-title: J. Cell Sci. doi: 10.1242/jcs.02584 – volume: 66 start-page: 5542 year: 1992 ident: ref_262 article-title: Expression of the Influenza A Virus M2 Protein Is Restricted to Apical Surfaces of Polarized Epithelial Cells publication-title: J. Virol. doi: 10.1128/jvi.66.9.5542-5552.1992 – volume: 464 start-page: 439 year: 2014 ident: ref_99 article-title: The SARS-Coronavirus Membrane Protein Induces Apoptosis via Interfering with PDK1PKB/Akt Signalling publication-title: Biochem. J. doi: 10.1042/BJ20131461 – volume: 19 start-page: 2173 year: 1999 ident: ref_243 article-title: Cancer Risk Associated with Simian Virus 40 Contaminated Polio Vaccine publication-title: Anticancer Res. – ident: ref_79 doi: 10.1038/sj.cdd.4400823 – ident: ref_170 doi: 10.1016/S0163-7258(03)00034-2 – ident: ref_192 doi: 10.1371/journal.ppat.1000064 – ident: ref_223 doi: 10.1097/COH.0000000000000103 – volume: 169 start-page: 2846 year: 2002 ident: ref_43 article-title: Cutting Edge: Salmonella AvrA Effector Inhibits the Key Proinflammatory, Anti-Apoptotic NF-ΚB Pathway publication-title: J. Immunol. doi: 10.4049/jimmunol.169.6.2846 – volume: 1066 start-page: 141 year: 2018 ident: ref_136 article-title: Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-89512-3_8 – ident: ref_238 doi: 10.1186/1471-2121-9-32 – ident: ref_173 doi: 10.1017/CBO9780511545313.018 – ident: ref_227 doi: 10.2174/1381612823666170704130635 – ident: ref_82 doi: 10.3389/fcimb.2017.00039 – ident: ref_53 doi: 10.1016/S1473-3099(07)70081-6 – volume: 8 start-page: 208 year: 1973 ident: ref_165 article-title: Tissue Receptor for Cholera Exotoxin: Postulated Structure from Studies with G(M1) Ganglioside and Related Glycolipids publication-title: Infect. Immun. doi: 10.1128/iai.8.2.208-214.1973 – ident: ref_41 doi: 10.1098/rsob.180256 – ident: ref_257 doi: 10.1002/14651858.CD001169.pub3 – ident: ref_14 doi: 10.7554/eLife.53865 – volume: 710 start-page: 29 year: 2012 ident: ref_22 article-title: Bacterial Effectors: Learning on the Fly publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4419-5638-5_4 – ident: ref_71 doi: 10.7554/eLife.41930 – volume: 152 start-page: 281 year: 1999 ident: ref_154 article-title: Transgenic Inhibitors Identify Two Roles for Protein Kinase A in Drosophila Development publication-title: Genetics doi: 10.1093/genetics/152.1.281 – volume: 35 start-page: 747 year: 2001 ident: ref_177 article-title: Epithelial Cell Polarity and Cell Junctions in Drosophila publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.35.102401.091415 – volume: 276 start-page: 15920 year: 2001 ident: ref_68 article-title: The Human Immunodeficiency Virus Type 1 Vpu Protein Inhibits NF-ΚB Activation by Interfering with ΒTrCP-Mediated Degradation of IκB publication-title: J. Biol. Chem. doi: 10.1074/jbc.M010533200 – volume: 58 start-page: 335 year: 1964 ident: ref_117 article-title: Zika Virus Infection in Man publication-title: Trans. R. Soc. Trop. Med. Hyg. doi: 10.1016/0035-9203(64)90201-9 – volume: 80 start-page: 11539 year: 2006 ident: ref_179 article-title: Human Cytomegalovirus (HCMV) Infection of Endothelial Cells Promotes Naïve Monocyte Extravasation and Transfer of Productive Virus To Enhance Hematogenous Dissemination of HCMV publication-title: J. Virol. doi: 10.1128/JVI.01016-06 – ident: ref_142 doi: 10.1001/jama.287.17.2236 – volume: 46 start-page: 705 year: 1986 ident: ref_26 article-title: Multiple Nuclear Factors Interact with the Immunoglobulin Enhancer Sequences publication-title: Cell doi: 10.1016/0092-8674(86)90346-6 – volume: 5 start-page: 253 year: 2014 ident: ref_21 article-title: Human Pathogenic Bacteria, Fungi, and Viruses in Drosophila publication-title: Virulence doi: 10.4161/viru.27524 – volume: 24 start-page: 393 year: 1986 ident: ref_129 article-title: Interstitial Deletion of (17)(P11.2p11.2) in Nine Patients publication-title: Am. J. Med. Genet. doi: 10.1002/ajmg.1320240303 – volume: 19 start-page: 719 year: 2000 ident: ref_216 article-title: HPV E6 Targeted Degradation of the Discs Large Protein: Evidence for the Involvement of a Novel Ubiquitin Ligase publication-title: Oncogene doi: 10.1038/sj.onc.1203374 – volume: 201 start-page: 3058 year: 2018 ident: ref_132 article-title: Dicer-2 Regulates Resistance and Maintains Homeostasis against Zika Virus Infection in Drosophila publication-title: J. Immunol. doi: 10.4049/jimmunol.1800597 – ident: ref_260 doi: 10.1371/journal.ppat.1000085 – ident: ref_25 doi: 10.1016/j.coph.2013.08.003 – volume: 41 start-page: 2232 year: 2009 ident: ref_101 article-title: The Ion Channel Activity of the SARS-Coronavirus 3a Protein Is Linked to Its pro-Apoptotic Function publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2009.04.019 – ident: ref_187 doi: 10.3390/cancers9020016 – ident: ref_135 doi: 10.1111/j.0105-2896.2004.0133.x – volume: 126 start-page: 5453 year: 1999 ident: ref_146 article-title: The Drosophila JNK Pathway Controls the Morphogenesis of Imaginal Discs during Metamorphosis publication-title: Development doi: 10.1242/dev.126.23.5453 – volume: 176 start-page: 173 year: 1972 ident: ref_244 article-title: Leukemia, Lymphoma, and Osteosarcoma Induced in the Syrian Golden Hamster by Simian Virus 40 publication-title: Science doi: 10.1126/science.176.4031.173 – volume: 178 start-page: 13 year: 1996 ident: ref_149 article-title: The Drosophila Secreted Protein Argos Regulates Signal Transduction in the Ras/MAPK Pathway publication-title: Dev. Biol. doi: 10.1006/dbio.1996.0194 – volume: 117 start-page: 3855 year: 2004 ident: ref_249 article-title: PRb, Myc and P53 Are Critically Involved in SV40 Large T Antigen Repression of PDGF β-Receptor Transcription publication-title: J. Cell Sci. doi: 10.1242/jcs.01228 – volume: 300 start-page: 1399 year: 2003 ident: ref_90 article-title: The Genome Sequence of the SARS-Associated Coronavirus publication-title: Science doi: 10.1126/science.1085953 – ident: ref_120 doi: 10.1038/nrneurol.2016.78 – ident: ref_172 doi: 10.1093/ilar.47.1.65 – volume: 319 start-page: 1228 year: 2004 ident: ref_95 article-title: Phosphorylation of P38 MAPK and Its Downstream Targets in SARS Coronavirus-Infected Cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.05.107 – volume: 89 start-page: 8092 year: 2015 ident: ref_60 article-title: A Transgenic Drosophila Melanogaster Model To Study Human T-Lymphotropic Virus Oncoprotein Tax-1-Driven Transformation In Vivo publication-title: J. Virol. doi: 10.1128/JVI.00918-15 – ident: ref_64 doi: 10.1111/imr.12502 – volume: 374 start-page: 951 year: 2016 ident: ref_119 article-title: Zika Virus Associated with Microcephaly publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1600651 – ident: ref_140 doi: 10.1038/s41467-017-02816-2 – volume: 284 start-page: 14126 year: 2009 ident: ref_254 article-title: Coordinated Activation of the Origin Licensing Factor CDC6 and CDK2 in Resting Human Fibroblasts Expressing SV40 Small T Antigen and Cyclin, E.J publication-title: Biol. Chem. doi: 10.1074/jbc.M900687200 – volume: 53 start-page: 2469 year: 2009 ident: ref_270 article-title: Antibacterial Efficacy of Phages against Pseudomonas aeruginosa Infections in Mice and Drosophila Melanogaster publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01646-08 – ident: ref_70 doi: 10.1016/S1473-3099(17)30303-1 – ident: ref_77 doi: 10.1155/2017/9042851 – volume: 159 start-page: 200 year: 2014 ident: ref_123 article-title: A Drosophila Genetic Resource of Mutants to Study Mechanisms Underlying Human Genetic Diseases publication-title: Cell doi: 10.1016/j.cell.2014.09.002 – ident: ref_78 doi: 10.3389/fcimb.2013.00113 – volume: 67 start-page: 2402 year: 1993 ident: ref_215 article-title: The Human Papillomavirus E7 Oncoprotein and the Cellular Transcription Factor E2F Bind to Separate Sites on the Retinoblastoma Tumor Suppressor Protein publication-title: J. Virol. doi: 10.1128/jvi.67.4.2402-2407.1993 – ident: ref_143 doi: 10.1146/annurev-micro-091014-104523 – volume: 196 start-page: 65 year: 2012 ident: ref_156 article-title: DEHBP1 Controls Exocytosis and Recycling of Delta during Asymmetric Divisions publication-title: J. Cell Biol. doi: 10.1083/jcb.201106088 – ident: ref_16 doi: 10.1038/nrg1503 – volume: 396 start-page: 474 year: 1998 ident: ref_159 article-title: Epac Is a Rap1 Guanine-Nucleotide-Exchange Factor Directly Activated by Cyclic AMP publication-title: Nature doi: 10.1038/24884 – ident: ref_122 doi: 10.1016/j.cell.2018.11.028 – ident: ref_19 doi: 10.1002/wdev.344 – volume: 358 start-page: 933 year: 2017 ident: ref_139 article-title: A Single Mutation in the PrM Protein of Zika Virus Contributes to Fetal Microcephaly publication-title: Science doi: 10.1126/science.aam7120 – volume: 583 start-page: 459 year: 2020 ident: ref_103 article-title: A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing publication-title: Nature doi: 10.1038/s41586-020-2286-9 – volume: 8 start-page: 127 year: 1989 ident: ref_109 article-title: Epstein-Barr Virus BZLF1 Trans-Activator Specifically Binds to a Consensus AP-1 Site and Is Related to c-Fos publication-title: Embo J. doi: 10.1002/j.1460-2075.1989.tb03356.x – ident: ref_271 doi: 10.1128/CMR.00066-18 – volume: 194 start-page: 1299 year: 2001 ident: ref_67 article-title: The Human Immunodeficiency Virus Type 1 Accessory Protein Vpu Induces Apoptosis by Suppressing the Nuclear Factor ΚB-Dependent Expression of Antiapoptotic Factors publication-title: J. Exp. Med. doi: 10.1084/jem.194.9.1299 – ident: ref_18 doi: 10.1538/expanim.59.125 – volume: 11 start-page: 26 year: 1999 ident: ref_199 article-title: Molecular Mechanisms of Nonmuscle Myosin-II Regulation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(99)80004-0 – volume: 12 start-page: 1193 year: 2007 ident: ref_86 article-title: Rac2 Is a Major Actor of Drosophila Resistance to Pseudomonas aeruginosa Acting in Phagocytic Cells publication-title: Genes Cells doi: 10.1111/j.1365-2443.2007.01121.x – volume: 11 start-page: 251 year: 2006 ident: ref_233 article-title: Localization of Bicoid MRNA in Late Oocytes Is Maintained by Continual Active Transport publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.06.006 – volume: 4 start-page: 88 year: 2010 ident: ref_17 article-title: New Research Resources at the Bloomington Drosophila Stock Center publication-title: Fly doi: 10.4161/fly.4.1.11230 – volume: 114 start-page: 2787 year: 2001 ident: ref_228 article-title: A Drosophila Model of HIV-Tat-Related Pathogenicity publication-title: J. Cell Sci. doi: 10.1242/jcs.114.15.2787 – volume: 85 start-page: 281 year: 2009 ident: ref_127 article-title: Spinal Muscular Atrophy with Pontocerebellar Hypoplasia Is Caused by a Mutation in the VRK1 Gene publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2009.07.006 – volume: 278 start-page: 9402 year: 2003 ident: ref_150 article-title: Anthrax Lethal Factor Proteolysis and Inactivation of MAPK Kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M211262200 – volume: 577 start-page: 187 year: 2004 ident: ref_93 article-title: Tyrosine Dephosphorylation of STAT3 in SARS Coronavirus-Infected Vero E6 Cells publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.10.005 – volume: 207 start-page: 389 year: 2017 ident: ref_255 article-title: Gene Tagging Strategies to Assess Protein Expression, Localization, and Function in Drosophila publication-title: Genetics – ident: ref_273 doi: 10.1007/s00251-006-0142-1 – ident: ref_245 doi: 10.1200/JCO.2005.03.7101 – volume: 78 start-page: 12788 year: 2004 ident: ref_175 article-title: Role of the Proximal Enhancer of the Major Immediate-Early Promoter in Human Cytomegalovirus Replication publication-title: J. Virol. doi: 10.1128/JVI.78.23.12788-12799.2004 – volume: 77 start-page: 5039 year: 2003 ident: ref_247 article-title: Simian Virus 40 Infection of Humans publication-title: J. Virol. doi: 10.1128/JVI.77.9.5039-5045.2003 – volume: 4 start-page: 976 year: 2003 ident: ref_69 article-title: Directed Expression of the HIV-1 Accessory Protein Vpu in Drosophila Fat-Body Cells Inhibits Toll-Dependent Immune Responses publication-title: Embo Rep. doi: 10.1038/sj.embor.embor936 – ident: ref_126 doi: 10.1101/611384 – volume: 332 start-page: 228 year: 1995 ident: ref_73 article-title: Absence of Intact Nef Sequences in a Long-Term Survivor with Nonprogressive HIV-1 Infection publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199501263320405 – volume: 22 start-page: 515 year: 2003 ident: ref_195 article-title: The Helicobacter Pylori CagA Protein Induces Cortactin Dephosphorylation and Actin Rearrangement by C-Src Inactivation publication-title: Embo J. doi: 10.1093/emboj/cdg050 – ident: ref_105 doi: 10.1371/journal.pone.0034310 – volume: 8 start-page: 58 year: 2009 ident: ref_114 article-title: The Epstein-Barr Virus Replication and Transcription Activator, Rta/BRLF1, Induces Cellular Senescence in Epithelial Cells publication-title: Cell Cycle doi: 10.4161/cc.8.1.7411 – volume: 42 start-page: 111 year: 2014 ident: ref_34 article-title: Insights from Natural Host-Parasite Interactions: The Drosophila Model publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2013.06.001 – ident: ref_39 doi: 10.1002/dvdy.20283 – ident: ref_118 doi: 10.2807/1560-7917.ES2014.19.9.20720 – volume: 118 start-page: 1851 year: 2005 ident: ref_76 article-title: Nef Induces Apoptosis by Activating JNK Signaling Pathway and Inhibits NF-ΚB-Dependent Immune Responses in Drosophila publication-title: J. Cell Sci. doi: 10.1242/jcs.02312 – volume: 24 start-page: 213 year: 2017 ident: ref_48 article-title: Aeromonas Salmonicida as a Causative Agent for Postoperative Endophthalmitis publication-title: Middle East Afr. J. Ophthalmol. doi: 10.4103/meajo.MEAJO_238_17 – volume: 13 start-page: 717 year: 2007 ident: ref_198 article-title: Myosin II Regulates Complex Cellular Arrangement and Epithelial Architecture in Drosophila publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.09.002 – ident: ref_133 doi: 10.1242/dmm.040816 – ident: ref_274 doi: 10.1111/febs.13235 – ident: ref_52 doi: 10.1016/j.nmni.2017.07.006 – volume: 463 start-page: 545 year: 2010 ident: ref_205 article-title: Interaction between RasV12 and Scribbled Clones Induces Tumour Growth and Invasion publication-title: Nature doi: 10.1038/nature08702 – volume: 103 start-page: 3244 year: 2006 ident: ref_145 article-title: Common Target Anthrax Lethal Factor & Edema Factor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0510748103 – ident: ref_80 doi: 10.1038/cdd.2008.50 – volume: 565 start-page: 111 year: 2004 ident: ref_97 article-title: Identification of a Novel Protein 3a from Severe Acute Respiratory Syndrome Coronavirus publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.03.086 – volume: 107 start-page: 14715 year: 2010 ident: ref_30 article-title: Heterodimers of NF-ΚB Transcription Factors DIF and Relish Regulate Antimicrobial Peptide Genes in Drosophila publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1009473107 – volume: 100 start-page: 5991 year: 2003 ident: ref_32 article-title: Caspase-Mediated Processing of the Drosophila NF-ΚB Factor Relish publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1035902100 – volume: 25 start-page: 697 year: 2007 ident: ref_33 article-title: The Host Defense of Drosophila Melanogaster publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.25.022106.141615 – ident: ref_24 doi: 10.1016/j.gde.2017.03.013 – volume: 52 start-page: 4 year: 2016 ident: ref_63 article-title: Human T-Cell Leukemia Virus Type 1 (HTLV-1) Tax1 Oncoprotein but Not HTLV-2 Tax2 Induces the Expression of OX40 Ligand by Interacting with P52/P100 and RelB publication-title: Virus Genes doi: 10.1007/s11262-015-1277-7 – ident: ref_203 doi: 10.1016/j.smim.2014.05.003 – volume: 14 start-page: 28 year: 2012 ident: ref_45 article-title: The Salmonella Effector AvrA Mediates Bacterial Intracellular Survival during Infection in Vivo publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2011.01694.x – ident: ref_221 doi: 10.1371/journal.ppat.1005789 – ident: ref_264 doi: 10.1358/dnp.2006.19.3.977442 – ident: ref_213 doi: 10.1111/j.1349-7006.2007.00546.x – volume: 260 start-page: 10 year: 1999 ident: ref_178 article-title: Three-Dimensional Visualization of Tegument/Capsid Interactions in the Intact Human Cytomegalovirus publication-title: Virology doi: 10.1006/viro.1999.9791 – ident: ref_153 doi: 10.1126/science.1098020 – volume: 179 start-page: 1141 year: 2007 ident: ref_200 article-title: PDZRhoGEF and Myosin II Localize RhoA Activity to the Back of Polarizing Neutrophil-like Cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200706167 – ident: ref_37 doi: 10.1002/(SICI)1521-1878(199812)20:12<1009::AID-BIES7>3.0.CO;2-D – volume: 140 start-page: 4353 year: 2013 ident: ref_186 article-title: Switching Cell Fates in the Developing Drosophila Eye publication-title: Development doi: 10.1242/dev.096925 – ident: ref_185 doi: 10.2183/pjab.93.013 – ident: ref_236 doi: 10.1371/journal.pone.0048702 – volume: 21 start-page: 545 year: 2019 ident: ref_124 article-title: Genomic and Phenotypic Delineation of Congenital Microcephaly publication-title: Genet. Med. doi: 10.1038/s41436-018-0140-3 – volume: 1478 start-page: 117 year: 2016 ident: ref_13 article-title: A Guide to Genome-Wide in Vivo RNAI Applications in Drosophila publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6371-3_6 – ident: ref_210 – ident: ref_267 doi: 10.1128/JB.188.4.1211-1217.2006 – ident: ref_106 doi: 10.1146/annurev-pathmechdis-012418-013023 – volume: 86 start-page: 973 year: 1996 ident: ref_9 article-title: The Dorsoventral Regulatory Gene Cassette Spatzle/Toll/Cactus Controls the Potent Antifungal Response in Drosophila Adults publication-title: Cell doi: 10.1016/S0092-8674(00)80172-5 – ident: ref_88 doi: 10.1128/CMR.00023-07 – volume: 9 start-page: 351 year: 2005 ident: ref_157 article-title: Sec15, a Component of the Exocyst, Promotes Notch Signaling during the Asymmetric Division of Drosophila Sensory Organ Precursors publication-title: Dev. Cell doi: 10.1016/j.devcel.2005.06.010 – volume: 152 start-page: 2809 year: 2006 ident: ref_50 article-title: AopP, a Type III Effector Protein of Aeromonas Salmonicida, Inhibits the NF-ΚB Signalling Pathway publication-title: Microbiology doi: 10.1099/mic.0.28889-0 – volume: 459 start-page: 197 year: 2007 ident: ref_98 article-title: The SARS-Coronavirus Membrane Protein Induces Apoptosis through Modulating the Akt Survival Pathway publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2007.01.012 – volume: 161 start-page: 249 year: 2003 ident: ref_184 article-title: Helicobacter Pylori CagA Protein Targets the C-Met Receptor and Enhances the Motogenic Response publication-title: J. Cell Biol. doi: 10.1083/jcb.200208039 – volume: 2 start-page: 24 year: 2012 ident: ref_206 article-title: Identification of Genetic Modifiers of CagA-Induced Epithelial Disruption in Drosophila publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2012.00024 – ident: ref_61 doi: 10.3389/fmicb.2013.00231 – volume: 200 start-page: 237 year: 1997 ident: ref_263 article-title: Molecular Genetic Analysis of V-ATPase Function in Drosophila Melanogaster publication-title: J. Exp. Biol. doi: 10.1242/jeb.200.2.237 – ident: ref_28 doi: 10.1101/cshperspect.a000232 – volume: 71 start-page: 1927 year: 2014 ident: ref_84 article-title: Sequential Inactivation of Rho GTPases and Lim Kinase by Pseudomonas aeruginosa Toxins ExoS and ExoT Leads to Endothelial Monolayer Breakdown publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-013-1451-9 – ident: ref_131 doi: 10.1016/j.chom.2018.05.022 – ident: ref_130 doi: 10.1016/j.tim.2018.05.007 – ident: ref_231 doi: 10.1016/j.semcdb.2008.01.004 – volume: 85 start-page: 1757 year: 2011 ident: ref_218 article-title: A Systematic Analysis of Human Papillomavirus (HPV) E6 PDZ Substrates Identifies MAGI-1 as a Major Target of HPV Type 16 (HPV-16) and HPV-18 Whose Loss Accompanies Disruption of Tight Junctions publication-title: J. Virol. doi: 10.1128/JVI.01756-10 – volume: 19 start-page: 5884 year: 2000 ident: ref_217 article-title: Differential Regulation of Human Papillomavirus E6 by Protein Kinase A: Conditional Degradation of Human Discs Large Protein by Oncogenic E6 publication-title: Oncogene doi: 10.1038/sj.onc.1203988 – volume: 17 start-page: 105 year: 2008 ident: ref_176 article-title: Human Cytomegalovirus Immediate-Early-Gene Expression Disrupts Embryogenesis in Transgenic Drosophila publication-title: Transgenic Res. doi: 10.1007/s11248-007-9136-5 – volume: 75 start-page: 6737 year: 2001 ident: ref_214 article-title: Destabilization of the Retinoblastoma Tumor Suppressor by Human Papillomavirus Type 16 E7 Is Not Sufficient To Overcome Cell Cycle Arrest in Human Keratinocytes publication-title: J. Virol. doi: 10.1128/JVI.75.15.6737-6747.2001 – volume: 77 start-page: 3602 year: 2003 ident: ref_174 article-title: The Human Cytomegalovirus Major Immediate-Early Enhancer Determines the Efficiency of Immediate-Early Gene Transcription and Viral Replication in Permissive Cells at Low Multiplicity of Infection publication-title: J. Virol. doi: 10.1128/JVI.77.6.3602-3614.2003 – ident: ref_250 doi: 10.1038/sj.onc.1209046 – ident: ref_1 – volume: 23 start-page: 8033 year: 2004 ident: ref_219 article-title: HPV E6 Specifically Targets Different Cellular Pools of Its PDZ Domain-Containing Tumour Suppressor Substrates for Proteasome-Mediated Degradation publication-title: Oncogene doi: 10.1038/sj.onc.1207977 – volume: 126 start-page: 2261 year: 1999 ident: ref_113 article-title: An Essential Role for the Drosophila Pax2 Homolog in the Differentiation of Adult Sensory Organs publication-title: Development doi: 10.1242/dev.126.10.2261 – ident: ref_35 doi: 10.1016/j.imlet.2020.06.017 – ident: ref_158 doi: 10.1371/journal.ppat.1006603 – volume: 46 start-page: 349 year: 2011 ident: ref_40 article-title: Regulation of Drosophila Lifespan by JNK Signaling publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2010.11.003 – volume: 75 start-page: 6228 year: 2001 ident: ref_115 article-title: Epstein-Barr Virus Immediate-Early Protein BRLF1 Interacts with CBP, Promoting Enhanced BRLF1 Transactivation publication-title: J. Virol. doi: 10.1128/JVI.75.13.6228-6234.2001 – volume: 274 start-page: 36369 year: 1999 ident: ref_83 article-title: The N-Terminal Domain of Pseudomonas aeruginosa Exoenzyme S Is a GTPase- Activating Protein for Rho GTPases publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.51.36369 – volume: 1 start-page: 118 year: 2003 ident: ref_96 article-title: The M Protein of SARS-CoV: Basic Structural and Immunological Properties publication-title: Genom. Proteom. Bioinforma. Beijing Genom. Inst. doi: 10.1016/S1672-0229(03)01016-7 – volume: Volume 2–3 start-page: 1079 year: 2014 ident: ref_161 article-title: Vibrio Cholerae publication-title: Molecular Medical Microbiology – volume: 8 start-page: e191 year: 2020 ident: ref_212 article-title: Estimates of Incidence and Mortality of Cervical Cancer in 2018: A Worldwide Analysis publication-title: Lancet Glob. Heal. doi: 10.1016/S2214-109X(19)30482-6 – ident: ref_222 doi: 10.1038/s41580-018-0080-4 – ident: ref_3 doi: 10.1534/genetics.117.203067 – volume: 361 start-page: 1319 year: 2003 ident: ref_91 article-title: Coronavirus as a Possible Cause of Severe Acute Respiratory Syndrome publication-title: Lancet doi: 10.1016/S0140-6736(03)13077-2 – ident: ref_189 doi: 10.1016/S0167-4889(00)00020-3 – ident: ref_104 doi: 10.1016/j.dib.2020.106082 – ident: ref_72 doi: 10.1016/S0092-8674(00)81430-0 – ident: ref_54 doi: 10.1007/s12325-018-0658-4 – ident: ref_242 doi: 10.1093/jnci/91.2.119 – ident: ref_209 doi: 10.1038/srep15749 – volume: 4 start-page: e964081 year: 2014 ident: ref_269 article-title: Phage Fitness May Help Predict Phage Therapy Efficacy publication-title: Bacteriophage doi: 10.4161/21597073.2014.964081 – ident: ref_75 doi: 10.3389/fimmu.2017.00751 – ident: ref_31 doi: 10.2147/JIR.S140188 – volume: 337 start-page: 720 year: 2005 ident: ref_100 article-title: In Vivo Functional Characterization of the SARS-Coronavirus 3a Protein in Drosophila publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.09.098 – volume: 14 start-page: 623 year: 2011 ident: ref_167 article-title: Modulation of Longevity and Tissue Homeostasis by the Drosophila PGC-1 Homolog publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.09.013 – ident: ref_168 doi: 10.1371/journal.ppat.0010008 – ident: ref_180 doi: 10.1158/0008-5472.CAN-16-1680 – ident: ref_11 doi: 10.3791/59658 – ident: ref_258 doi: 10.1371/journal.pone.0205815 – ident: ref_27 doi: 10.1038/cr.2011.13 – volume: 8 start-page: 139 year: 2014 ident: ref_49 article-title: Isolation of Aeromonas Salmonicida from Human Blood Sample: A Case Report publication-title: J. Clin. Diagn. Res. – volume: 189 start-page: 495 year: 2011 ident: ref_261 article-title: A Drosophila Model for Genetic Analysis of Influenza Viral/Host Interactions publication-title: Genetics doi: 10.1534/genetics.111.132290 – ident: ref_92 doi: 10.1046/j.1440-1843.2003.00517.x – ident: ref_137 doi: 10.1016/j.immuni.2010.01.004 – volume: 66 start-page: 1027 year: 1991 ident: ref_163 article-title: Phosphorylation of the R Domain by CAMP-Dependent Protein Kinase Regulates the CFTR Chloride Channel publication-title: Cell doi: 10.1016/0092-8674(91)90446-6 – volume: 73 start-page: 738 year: 1999 ident: ref_57 article-title: Phosphorylation of the Human T-Cell Leukemia Virus Type 1 Transactivator Tax on Adjacent Serine Residues Is Critical for Tax Activation publication-title: J. Virol. doi: 10.1128/JVI.73.1.738-745.1999 – volume: 75 start-page: 1203 year: 2007 ident: ref_196 article-title: Helicobacter Pylori CagA Induces AGS Cell Elongation through a Cell Retraction Defect That Is Independent of Cdc42, Rac1, and Arp2/3 publication-title: Infect. Immun. doi: 10.1128/IAI.01702-06 – ident: ref_42 doi: 10.14202/vetworld.2019.504-521 – ident: ref_58 doi: 10.1186/s12977-018-0415-4 – volume: 95 start-page: 163 year: 1998 ident: ref_74 article-title: Nef Harbors a Major Determinant of Pathogenicity for an AIDS-like Disease Induced by HIV-1 in Transgenic Mice publication-title: Cell doi: 10.1016/S0092-8674(00)81748-1 – ident: ref_162 doi: 10.1371/journal.pntd.0001845 – ident: ref_240 doi: 10.3390/cells9020358 – volume: 72 start-page: 8043 year: 1998 ident: ref_116 article-title: The Epstein-Barr Virus Immediate-Early Gene Product, BRLF1, Interacts with the Retinoblastoma Protein during the Viral Lytic Cycle publication-title: J. Virol. doi: 10.1128/JVI.72.10.8043-8051.1998 – volume: 14 start-page: 294 year: 2013 ident: ref_164 article-title: Cholera Toxin Disrupts Barrier Function by Inhibiting Exocyst-Mediated Trafficking of Host Proteins to Intestinal Cell Junctions publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.08.001 – ident: ref_201 doi: 10.1371/journal.ppat.1002939 – volume: 235 start-page: 1455 year: 2006 ident: ref_230 article-title: Microtubule Polarity and Axis Formation in the Drosophila Oocyte publication-title: Dev. Dyn. doi: 10.1002/dvdy.20770 – volume: 121 start-page: 287 year: 2017 ident: ref_7 article-title: Modeling Human Cancers in Drosophila publication-title: Curr. Top. Dev. Biol. doi: 10.1016/bs.ctdb.2016.07.008 – volume: 59 start-page: 3472 year: 1991 ident: ref_144 article-title: Contribution of Individual Toxin Components to Virulence of Bacillus Anthracis publication-title: Infect. Immun. doi: 10.1128/iai.59.10.3472-3477.1991 – ident: ref_166 doi: 10.1080/09687680410001663267 – volume: 52 start-page: 861 year: 2003 ident: ref_197 article-title: Cytoskeletal Rearrangements in Gastric Epithelial Cells in Response to Helicobacter Pylori Infection publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.05229-0 – volume: 68 start-page: 116 year: 2014 ident: ref_23 article-title: Methods to Study Drosophila Immunity publication-title: Methods doi: 10.1016/j.ymeth.2014.02.023 – ident: ref_182 doi: 10.1111/j.1349-7006.2005.00130.x – ident: ref_47 doi: 10.3354/dao03006 – ident: ref_107 doi: 10.1186/1750-9378-9-38 – volume: 283 start-page: 11280 year: 2008 ident: ref_253 article-title: Cyclin E and SV40 Small t Antigen Cooperate to Bypass Quiescence and Contribute to Transformation by Activating CDK2 in Human Fibroblasts publication-title: J. Biol. Chem. doi: 10.1074/jbc.M709055200 – ident: ref_211 doi: 10.1016/j.jaad.2015.05.040 – ident: ref_234 doi: 10.1146/annurev-cellbio-111315-125416 – ident: ref_246 doi: 10.3389/fonc.2019.00670 – ident: ref_36 doi: 10.1038/nri3495 – ident: ref_134 doi: 10.1038/ni.3691 – volume: 61 start-page: 129 year: 2005 ident: ref_235 article-title: The HIV-Tat Protein Induces Chromosome Number Aberrations by Affecting Mitosis publication-title: Cell Motil. Cytoskelet. doi: 10.1002/cm.20070 – ident: ref_272 doi: 10.1016/j.coi.2010.01.007 – volume: 460 start-page: 711 year: 2009 ident: ref_65 article-title: Architecture and Secondary Structure of an Entire HIV-1 RNA Genome publication-title: Nature doi: 10.1038/nature08237 – volume: 16 start-page: 1139 year: 2006 ident: ref_204 article-title: Loss of Cell Polarity Drives Tumor Growth and Invasion through JNK Activation in Drosophila publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.04.042 – volume: 2 start-page: 163 year: 2013 ident: ref_81 article-title: Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs) publication-title: Cells doi: 10.3390/cells2010163 – volume: 85 start-page: 9506 year: 2011 ident: ref_224 article-title: The HIV-1 Tat Protein Has a Versatile Role in Activating Viral Transcription publication-title: J. Virol. doi: 10.1128/JVI.00650-11 – ident: ref_87 doi: 10.1371/journal.ppat.1005163 – ident: ref_8 doi: 10.1038/nri3763 – volume: 68 start-page: 199 year: 2014 ident: ref_151 article-title: Wing Tips: The Wing Disc as a Platform for Studying Hedgehog Signaling publication-title: Methods doi: 10.1016/j.ymeth.2014.02.002 – volume: 113 start-page: 55 year: 1991 ident: ref_232 article-title: Microtubules Mediate the Localization of Bicoid RNA during Drosophila Oogenesis publication-title: Development doi: 10.1242/dev.113.1.55 – volume: 332 start-page: 596 year: 2005 ident: ref_248 article-title: PP2A-Dependent Transactivation of the Cyclin A Promoter by SV40 ST Is Mediated by a Cell Cycle-Regulated E2F Site publication-title: Virology doi: 10.1016/j.virol.2004.12.017 – ident: ref_125 doi: 10.1016/j.devcel.2019.10.009 – volume: 454 start-page: 181 year: 2019 ident: ref_188 article-title: The Role of Sevenless in Drosophila R7 Photoreceptor Specification publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2019.06.007 – volume: 199 start-page: 639 year: 2015 ident: ref_5 article-title: Fruit Flies in Biomedical Research publication-title: Genetics doi: 10.1534/genetics.114.171785 – ident: ref_148 doi: 10.1146/annurev.cellbio.23.090506.123606 – volume: 382 start-page: 427 year: 2020 ident: ref_181 article-title: Family History of Gastric Cancer and Helicobacter Pylori Treatment publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1909666 – volume: 79 start-page: 3162 year: 1982 ident: ref_152 article-title: Anthrax Toxin Edema Factor: A Bacterial Adenylate Cyclase That Increases Cyclic AMP Concentrations in Eukaryotic Cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.79.10.3162 – volume: 27 start-page: 6334 year: 2008 ident: ref_252 article-title: PP2A-Dependent Disruption of Centrosome Replication and Cytoskeleton Organization in Drosophila by SV40 Small Tumor Antigen publication-title: Oncogene doi: 10.1038/onc.2008.254 – ident: ref_121 doi: 10.1371/journal.pone.0229434 – volume: 171 start-page: 1125 year: 2005 ident: ref_111 article-title: Modeling Early Epstein-Barr Virus Infection in Drosophila Melanogaster: The BZLF1 Protein publication-title: Genetics doi: 10.1534/genetics.105.042572 – volume: 139 start-page: 133 year: 1994 ident: ref_237 article-title: Spatial Association of HIV-1 Tat Protein and the Nucleolar Transport Protein B23 in Stably Transfected Jurkat T-Cells publication-title: Arch. Virol. doi: 10.1007/BF01309460 – volume: 87 start-page: 1123 year: 2013 ident: ref_56 article-title: Human T Cell Leukemia Virus Type 2 Tax-Mediated NF-κB Activation Involves a Mechanism Independent of Tax Conjugation to Ubiquitin and SUMO publication-title: J. Virol. doi: 10.1128/JVI.01792-12 – volume: 73 start-page: 6551 year: 1999 ident: ref_110 article-title: The Epstein-Barr Virus BZLF1 Protein Interacts Physically and Functionally with the Histone Acetylase CREB-Binding Protein publication-title: J. Virol. doi: 10.1128/JVI.73.8.6551-6558.1999 – ident: ref_171 doi: 10.1186/1471-213X-8-33 – ident: ref_138 doi: 10.3390/biom10070985 – volume: 56 start-page: 5612 year: 2012 ident: ref_268 article-title: Antibacterial Efficacy of Temperate Phage-Mediated Inhibition of Bacterial Group Motilities publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00504-12 – ident: ref_59 doi: 10.1038/embor.2008.209 – ident: ref_239 doi: 10.1038/nrneurol.2016.27 – volume: 70 start-page: 1491 year: 2013 ident: ref_128 article-title: Mutations in VRK1 Associated with Complex Motor and Sensory Axonal Neuropathy plus Microcephaly publication-title: JAMA Neurol. – ident: ref_169 doi: 10.1128/CMR.00034-08 – ident: ref_20 doi: 10.1016/j.virol.2011.11.016 – volume: 13 start-page: 4918 year: 1993 ident: ref_220 article-title: Localization of the E6-AP Regions That Direct Human Papillomavirus E6 Binding, Association with P53, and Ubiquitination of Associated Proteins publication-title: Mol. Cell. Biol. – volume: 75 start-page: 887 year: 1993 ident: ref_251 article-title: The Interaction of SV40 Small Tumor Antigen with Protein Phosphatase 2A Stimulates the Map Kinase Pathway and Induces Cell Proliferation publication-title: Cell doi: 10.1016/0092-8674(93)90533-V – ident: ref_29 doi: 10.1007/978-3-319-29785-9_6 – volume: 118 start-page: 401 year: 1993 ident: ref_12 article-title: Targeted Gene Expression as a Means of Altering Cell Fates and Generating Dominant Phenotypes publication-title: Development doi: 10.1242/dev.118.2.401 – ident: ref_229 doi: 10.1146/annurev.cellbio.13.1.147 – volume: 117 start-page: 1223 year: 1993 ident: ref_193 article-title: Analysis of Genetic Mosaics in Developing and Adult Drosophila Tissues publication-title: Development doi: 10.1242/dev.117.4.1223 – ident: ref_38 doi: 10.1126/science.1072682 – volume: 5 start-page: 233 year: 2016 ident: ref_256 article-title: Genome Engineering: Drosophila Melanogaster and Beyond publication-title: Wiley Interdiscip. Rev. Dev. Biol. doi: 10.1002/wdev.214 – ident: ref_194 doi: 10.1371/journal.pone.0017856 – volume: 19 start-page: 3080 year: 2000 ident: ref_108 article-title: The Epstein-Barr Virus Lytic Program Is Controlled by the Co-Operative Functions of Two Transactivators publication-title: Embo J. doi: 10.1093/emboj/19.12.3080 – volume: 103 start-page: 3244 year: 2006 ident: ref_147 article-title: Anthrax Lethal Factor and Edema Factor Act on Conserved Targets in Drosophila publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0510748103 – volume: 3 start-page: 233 year: 2008 ident: ref_44 article-title: Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.02.016 – volume: 300 start-page: 1394 year: 2003 ident: ref_89 article-title: Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome publication-title: Science doi: 10.1126/science.1085952 – ident: ref_102 – volume: 201 start-page: 377 year: 2015 ident: ref_6 article-title: Drosophila as an in Vivo Model for Human Neurodegenerative Disease publication-title: Genetics doi: 10.1534/genetics.115.179457 – volume: 340 start-page: 150 year: 1989 ident: ref_190 article-title: Effect on Eye Development of Dominant Mutations in Drosophila Homologue of the EGF Receptor publication-title: Nature doi: 10.1038/340150a0 – ident: ref_207 doi: 10.1136/gutjnl-2018-316723 – ident: ref_259 doi: 10.1016/S0140-6736(17)30129-0 – volume: 214 start-page: 755 year: 2020 ident: ref_15 article-title: Large-Scale Transgenic Drosophila Resource Collections for Loss- and Gain-of-Function Studies publication-title: Genetics doi: 10.1534/genetics.119.302964 – ident: ref_85 doi: 10.1097/CCM.0b013e318258e5bb – ident: ref_2 doi: 10.1056/NEJMe2002387 – volume: 287 start-page: 324 year: 2000 ident: ref_202 article-title: Regulation of JNK by Src during Drosophila Development publication-title: Science doi: 10.1126/science.287.5451.324 – ident: ref_4 doi: 10.1016/j.cell.2015.09.009 – ident: ref_62 doi: 10.1186/1742-4690-6-117 – ident: ref_55 doi: 10.1111/febs.14492 – ident: ref_241 doi: 10.1146/annurev-neuro-071013-014100 – volume: 467 start-page: 854 year: 2010 ident: ref_155 article-title: Anthrax Toxins Cooperatively Inhibit Endocytic Recycling by the Rab11/Sec15 Exocyst publication-title: Nature doi: 10.1038/nature09446 – volume: 67 start-page: 701 year: 1991 ident: ref_191 article-title: Ras1 and a Putative Guanine Nucleotide Exchange Factor Perform Crucial Steps in Signaling by the Sevenless Protein Tyrosine Kinase publication-title: Cell doi: 10.1016/0092-8674(91)90065-7 – volume: 202 start-page: 1235 year: 2005 ident: ref_183 article-title: Interaction of CagA with Crk Plays an Important Role in Helicobacter Pylori-Induced Loss of Gastric Epithelial Cell Adhesion publication-title: J. Exp. Med. doi: 10.1084/jem.20051027 – ident: ref_208 doi: 10.1371/journal.ppat.1006631 – ident: ref_226 doi: 10.1099/vir.0.016303-0 – volume: 2012 start-page: 736837 year: 2012 ident: ref_265 article-title: Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions publication-title: J. Amino Acids doi: 10.1155/2012/736837 – ident: ref_66 doi: 10.3390/v7082824 – ident: ref_141 doi: 10.1146/annurev.micro.55.1.647 |
SSID | ssj0023259 |
Score | 2.5011604 |
SecondaryResourceType | review_article |
Snippet | The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also... The fruit fly, , has been used to understand fundamental principles of genetics and biology for over a century. is now also considered an essential tool to... The fruit fly, Drosophila melanogaster , has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2724 |
SubjectTerms | Animals Communicable Diseases - immunology Communicable Diseases - metabolism Communicable Diseases - microbiology Communicable Diseases - virology Drosophila melanogaster - immunology Drosophila melanogaster - metabolism Drosophila melanogaster - microbiology Drosophila melanogaster - virology Host-Pathogen Interactions Immunity, Innate Review Signal Transduction Virulence Factors - metabolism |
Title | Drosophila as a Model for Infectious Diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33800390 https://www.proquest.com/docview/2508572322 https://pubmed.ncbi.nlm.nih.gov/PMC7962867 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED_xISReEIyPFUaVSfCEPFzXqeOHCbG1HUMCoamV-hbZjiM6lQBNkeh_z12SVu3YpL3ED7kkytnJ78738QM4sUliW02lmecty6QMHbOI4swbhOtUpJoLKnC-uW1d9eX1IByswIxttFJg_lfXjvik-uPRl9fn6QV-8F_J40SX_Xz4-yGnelGhhFyFdcQkRVwGN3IeT0CzoaBNow0PRj_oMgX-3dXL4PTO4vwzcXIBibrbsFWZkMFlOec7sOKzD7BRkkpOd4G1xwU3wXBkApMHJiC6s1GAxmnws8q8esmDdhmYyfeg1-30vl-xihSBORnyCROmESYi9dx4bqVxkW-JRGubSNmUwqXKSuoJJ1GgkQrpGj7VlguncdCRau7DWvaY-Y8Q-JALkyapCyNObQO14s4XBFU4CO9rcDZTRuyqhuHEWzGK0XEg1cWLqqvB6Vz6qWyU8Q-5zzO9xriSKTxhMo8vHqMxFoUKp0rU4KDU8_xO6EhTFTGvgVqagbkAdclePpMN74tu2UpT9a06_I_nHsGmoJQVSjGLPsHaZPzij9HmmNg6rKqBwmPU_VGH9W-d27tfdUKBsF4stDf4U9nt |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drosophila+as+a+Model+for+Infectious+Diseases&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Harnish%2C+J+Michael&rft.au=Link%2C+Nichole&rft.au=Yamamoto%2C+Shinya&rft.date=2021-03-08&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=5&rft_id=info:doi/10.3390%2Fijms22052724&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |