Drosophila as a Model for Infectious Diseases

The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 5; p. 2724
Main Authors Harnish, J. Michael, Link, Nichole, Yamamoto, Shinya
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 08.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
AbstractList The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
The fruit fly, Drosophila melanogaster , has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
The fruit fly, , has been used to understand fundamental principles of genetics and biology for over a century. is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
Author Yamamoto, Shinya
Harnish, J. Michael
Link, Nichole
AuthorAffiliation 4 Department of Neuroscience, BCM, Houston, TX 77030, USA
3 Howard Hughes Medical Institute, Houston, TX 77030, USA
2 Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
1 Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jacob.Harnish@bcm.edu (J.M.H.); nichole.link@neuro.utah.edu (N.L.)
5 Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
AuthorAffiliation_xml – name: 4 Department of Neuroscience, BCM, Houston, TX 77030, USA
– name: 3 Howard Hughes Medical Institute, Houston, TX 77030, USA
– name: 1 Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jacob.Harnish@bcm.edu (J.M.H.); nichole.link@neuro.utah.edu (N.L.)
– name: 5 Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
– name: 2 Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
Author_xml – sequence: 1
  givenname: J. Michael
  orcidid: 0000-0002-9410-6951
  surname: Harnish
  fullname: Harnish, J. Michael
– sequence: 2
  givenname: Nichole
  surname: Link
  fullname: Link, Nichole
– sequence: 3
  givenname: Shinya
  orcidid: 0000-0003-2172-8036
  surname: Yamamoto
  fullname: Yamamoto, Shinya
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33800390$$D View this record in MEDLINE/PubMed
BookMark eNptkU1PwzAMhiM0xD7gxhn1yIFC6qZNc0FCGx-ThrjsHqWpwzJ1zWg6JP49mTamgTjZkh-_tl8PSa9xDRJymdDbNBX0zi5XHoBmwIGdkEHCAGJKc947yvtk6P2SUkghE2ekn6YFpaF5QOJJ67xbL2ytIuUjFb26CuvIuDaaNgZ1Z93GRxPrUXn05-TUqNrjxT6OyPzpcT5-iWdvz9PxwyzWLKNdDCrJKjBIFdKSKV1gDpUQZcVYykAbXrKc84IFIDHAdIJGlBS0CEEUPB2R-53selOusNLYdK2q5bq1K9V-Saes_F1p7EK-u0_JRQ5FvhW43gu07mODvpMr6zXWtWow3CMho0XGgxsQ0KvjWYchPxYF4GYH6OCUb9EckITK7Qfk8QcCDn9wbTsVbNxuauv_m74Bv0mJdw
CitedBy_id crossref_primary_10_1016_j_celrep_2023_112842
crossref_primary_10_1371_journal_ppat_1010784
crossref_primary_10_1002_jbt_23356
crossref_primary_10_1073_pnas_2202322119
crossref_primary_10_3390_insects16030261
crossref_primary_10_1002_cpz1_675
crossref_primary_10_1007_s11596_025_00004_8
crossref_primary_10_3390_cells11172685
crossref_primary_10_3390_ijms232012285
crossref_primary_10_3389_fimmu_2022_905370
crossref_primary_10_3390_ijms23052613
crossref_primary_10_3390_ijms232314801
crossref_primary_10_1016_j_anaerobe_2023_102694
crossref_primary_10_1242_dmm_050297
crossref_primary_10_3390_genes14091675
crossref_primary_10_3390_ijms252312742
crossref_primary_10_3390_microorganisms10101983
crossref_primary_10_1007_s00251_021_01239_0
crossref_primary_10_3390_vetsci10070420
crossref_primary_10_1002_fpf2_12035
crossref_primary_10_1111_imb_12900
crossref_primary_10_3389_fcimb_2024_1343834
crossref_primary_10_1016_j_heliyon_2024_e41605
crossref_primary_10_3390_ijms231911244
crossref_primary_10_1002_eji_202350632
crossref_primary_10_3390_ijms23084203
crossref_primary_10_1016_j_tvr_2025_200316
crossref_primary_10_1080_00032719_2024_2359079
crossref_primary_10_7554_eLife_88981_3
crossref_primary_10_7554_eLife_88981
crossref_primary_10_3389_fimmu_2024_1349027
crossref_primary_10_3390_ijms23126499
crossref_primary_10_1038_s42003_022_03986_6
crossref_primary_10_3389_fimmu_2021_760475
crossref_primary_10_1016_j_actaastro_2022_04_029
crossref_primary_10_1038_s41598_022_18722_7
crossref_primary_10_3389_fcimb_2022_939813
Cites_doi 10.1016/j.bbadis.2005.04.004
10.1093/hmg/ddz135
10.1074/jbc.M116.757393
10.1093/emboj/cdf683
10.1016/S0966-842X(00)01913-2
10.1128/JVI.76.24.12543-12552.2002
10.1111/j.1462-5822.2011.01717.x
10.1242/jcs.02584
10.1128/jvi.66.9.5542-5552.1992
10.1042/BJ20131461
10.1038/sj.cdd.4400823
10.1016/S0163-7258(03)00034-2
10.1371/journal.ppat.1000064
10.1097/COH.0000000000000103
10.4049/jimmunol.169.6.2846
10.1007/978-3-319-89512-3_8
10.1186/1471-2121-9-32
10.1017/CBO9780511545313.018
10.2174/1381612823666170704130635
10.3389/fcimb.2017.00039
10.1016/S1473-3099(07)70081-6
10.1128/iai.8.2.208-214.1973
10.1098/rsob.180256
10.1002/14651858.CD001169.pub3
10.7554/eLife.53865
10.1007/978-1-4419-5638-5_4
10.7554/eLife.41930
10.1093/genetics/152.1.281
10.1146/annurev.genet.35.102401.091415
10.1074/jbc.M010533200
10.1016/0035-9203(64)90201-9
10.1128/JVI.01016-06
10.1001/jama.287.17.2236
10.1016/0092-8674(86)90346-6
10.4161/viru.27524
10.1002/ajmg.1320240303
10.1038/sj.onc.1203374
10.4049/jimmunol.1800597
10.1371/journal.ppat.1000085
10.1016/j.coph.2013.08.003
10.1016/j.biocel.2009.04.019
10.3390/cancers9020016
10.1111/j.0105-2896.2004.0133.x
10.1242/dev.126.23.5453
10.1126/science.176.4031.173
10.1006/dbio.1996.0194
10.1242/jcs.01228
10.1126/science.1085953
10.1038/nrneurol.2016.78
10.1093/ilar.47.1.65
10.1016/j.bbrc.2004.05.107
10.1128/JVI.00918-15
10.1111/imr.12502
10.1056/NEJMoa1600651
10.1038/s41467-017-02816-2
10.1074/jbc.M900687200
10.1128/AAC.01646-08
10.1016/S1473-3099(17)30303-1
10.1155/2017/9042851
10.1016/j.cell.2014.09.002
10.3389/fcimb.2013.00113
10.1128/jvi.67.4.2402-2407.1993
10.1146/annurev-micro-091014-104523
10.1083/jcb.201106088
10.1038/nrg1503
10.1038/24884
10.1016/j.cell.2018.11.028
10.1002/wdev.344
10.1126/science.aam7120
10.1038/s41586-020-2286-9
10.1002/j.1460-2075.1989.tb03356.x
10.1128/CMR.00066-18
10.1084/jem.194.9.1299
10.1538/expanim.59.125
10.1016/S0955-0674(99)80004-0
10.1111/j.1365-2443.2007.01121.x
10.1016/j.devcel.2006.06.006
10.4161/fly.4.1.11230
10.1242/jcs.114.15.2787
10.1016/j.ajhg.2009.07.006
10.1074/jbc.M211262200
10.1016/j.febslet.2004.10.005
10.1007/s00251-006-0142-1
10.1200/JCO.2005.03.7101
10.1128/JVI.78.23.12788-12799.2004
10.1128/JVI.77.9.5039-5045.2003
10.1038/sj.embor.embor936
10.1101/611384
10.1056/NEJM199501263320405
10.1093/emboj/cdg050
10.1371/journal.pone.0034310
10.4161/cc.8.1.7411
10.1016/j.dci.2013.06.001
10.1002/dvdy.20283
10.2807/1560-7917.ES2014.19.9.20720
10.1242/jcs.02312
10.4103/meajo.MEAJO_238_17
10.1016/j.devcel.2007.09.002
10.1242/dmm.040816
10.1111/febs.13235
10.1016/j.nmni.2017.07.006
10.1038/nature08702
10.1073/pnas.0510748103
10.1038/cdd.2008.50
10.1016/j.febslet.2004.03.086
10.1073/pnas.1009473107
10.1073/pnas.1035902100
10.1146/annurev.immunol.25.022106.141615
10.1016/j.gde.2017.03.013
10.1007/s11262-015-1277-7
10.1016/j.smim.2014.05.003
10.1111/j.1462-5822.2011.01694.x
10.1371/journal.ppat.1005789
10.1358/dnp.2006.19.3.977442
10.1111/j.1349-7006.2007.00546.x
10.1006/viro.1999.9791
10.1126/science.1098020
10.1083/jcb.200706167
10.1002/(SICI)1521-1878(199812)20:12<1009::AID-BIES7>3.0.CO;2-D
10.1242/dev.096925
10.2183/pjab.93.013
10.1371/journal.pone.0048702
10.1038/s41436-018-0140-3
10.1007/978-1-4939-6371-3_6
10.1128/JB.188.4.1211-1217.2006
10.1146/annurev-pathmechdis-012418-013023
10.1016/S0092-8674(00)80172-5
10.1128/CMR.00023-07
10.1016/j.devcel.2005.06.010
10.1099/mic.0.28889-0
10.1016/j.abb.2007.01.012
10.1083/jcb.200208039
10.3389/fcimb.2012.00024
10.3389/fmicb.2013.00231
10.1242/jeb.200.2.237
10.1101/cshperspect.a000232
10.1007/s00018-013-1451-9
10.1016/j.chom.2018.05.022
10.1016/j.tim.2018.05.007
10.1016/j.semcdb.2008.01.004
10.1128/JVI.01756-10
10.1038/sj.onc.1203988
10.1007/s11248-007-9136-5
10.1128/JVI.75.15.6737-6747.2001
10.1128/JVI.77.6.3602-3614.2003
10.1038/sj.onc.1209046
10.1038/sj.onc.1207977
10.1242/dev.126.10.2261
10.1016/j.imlet.2020.06.017
10.1371/journal.ppat.1006603
10.1016/j.exger.2010.11.003
10.1128/JVI.75.13.6228-6234.2001
10.1074/jbc.274.51.36369
10.1016/S1672-0229(03)01016-7
10.1016/S2214-109X(19)30482-6
10.1038/s41580-018-0080-4
10.1534/genetics.117.203067
10.1016/S0140-6736(03)13077-2
10.1016/S0167-4889(00)00020-3
10.1016/j.dib.2020.106082
10.1016/S0092-8674(00)81430-0
10.1007/s12325-018-0658-4
10.1093/jnci/91.2.119
10.1038/srep15749
10.4161/21597073.2014.964081
10.3389/fimmu.2017.00751
10.2147/JIR.S140188
10.1016/j.bbrc.2005.09.098
10.1016/j.cmet.2011.09.013
10.1371/journal.ppat.0010008
10.1158/0008-5472.CAN-16-1680
10.3791/59658
10.1371/journal.pone.0205815
10.1038/cr.2011.13
10.1534/genetics.111.132290
10.1046/j.1440-1843.2003.00517.x
10.1016/j.immuni.2010.01.004
10.1016/0092-8674(91)90446-6
10.1128/JVI.73.1.738-745.1999
10.1128/IAI.01702-06
10.14202/vetworld.2019.504-521
10.1186/s12977-018-0415-4
10.1016/S0092-8674(00)81748-1
10.1371/journal.pntd.0001845
10.3390/cells9020358
10.1128/JVI.72.10.8043-8051.1998
10.1016/j.chom.2013.08.001
10.1371/journal.ppat.1002939
10.1002/dvdy.20770
10.1016/bs.ctdb.2016.07.008
10.1128/iai.59.10.3472-3477.1991
10.1080/09687680410001663267
10.1099/jmm.0.05229-0
10.1016/j.ymeth.2014.02.023
10.1111/j.1349-7006.2005.00130.x
10.3354/dao03006
10.1186/1750-9378-9-38
10.1074/jbc.M709055200
10.1016/j.jaad.2015.05.040
10.1146/annurev-cellbio-111315-125416
10.3389/fonc.2019.00670
10.1038/nri3495
10.1038/ni.3691
10.1002/cm.20070
10.1016/j.coi.2010.01.007
10.1038/nature08237
10.1016/j.cub.2006.04.042
10.3390/cells2010163
10.1128/JVI.00650-11
10.1371/journal.ppat.1005163
10.1038/nri3763
10.1016/j.ymeth.2014.02.002
10.1242/dev.113.1.55
10.1016/j.virol.2004.12.017
10.1016/j.devcel.2019.10.009
10.1016/j.ydbio.2019.06.007
10.1534/genetics.114.171785
10.1146/annurev.cellbio.23.090506.123606
10.1056/NEJMoa1909666
10.1073/pnas.79.10.3162
10.1038/onc.2008.254
10.1371/journal.pone.0229434
10.1534/genetics.105.042572
10.1007/BF01309460
10.1128/JVI.01792-12
10.1128/JVI.73.8.6551-6558.1999
10.1186/1471-213X-8-33
10.3390/biom10070985
10.1128/AAC.00504-12
10.1038/embor.2008.209
10.1038/nrneurol.2016.27
10.1128/CMR.00034-08
10.1016/j.virol.2011.11.016
10.1016/0092-8674(93)90533-V
10.1007/978-3-319-29785-9_6
10.1242/dev.118.2.401
10.1146/annurev.cellbio.13.1.147
10.1242/dev.117.4.1223
10.1126/science.1072682
10.1002/wdev.214
10.1371/journal.pone.0017856
10.1093/emboj/19.12.3080
10.1016/j.chom.2008.02.016
10.1126/science.1085952
10.1534/genetics.115.179457
10.1038/340150a0
10.1136/gutjnl-2018-316723
10.1016/S0140-6736(17)30129-0
10.1534/genetics.119.302964
10.1097/CCM.0b013e318258e5bb
10.1056/NEJMe2002387
10.1126/science.287.5451.324
10.1016/j.cell.2015.09.009
10.1186/1742-4690-6-117
10.1111/febs.14492
10.1146/annurev-neuro-071013-014100
10.1038/nature09446
10.1016/0092-8674(91)90065-7
10.1084/jem.20051027
10.1371/journal.ppat.1006631
10.1099/vir.0.016303-0
10.1155/2012/736837
10.3390/v7082824
10.1146/annurev.micro.55.1.647
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.3390/ijms22052724
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC7962867
33800390
10_3390_ijms22052724
Genre Journal Article
Review
GrantInformation_xml – fundername: NIH HHS
  grantid: U54 OD030165
– fundername: NIH HHS
  grantid: R01DC014932
– fundername: NIH HHS
  grantid: U54OD030165
– fundername: NIH HHS
  grantid: R24OD022005
– fundername: NIH HHS
  grantid: U54NS093793
– fundername: NIH HHS
  grantid: U01HG007530
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PJZUB
PPXIY
5PM
ID FETCH-LOGICAL-c450t-2a15d2fe0ae0b4ac8e62d99bd44342cf7b467784e0a1f24c1ef9b02c9f9b9873
IEDL.DBID M48
ISSN 1422-0067
IngestDate Thu Aug 21 13:55:42 EDT 2025
Mon Jul 21 10:21:43 EDT 2025
Thu Apr 03 06:50:48 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
Tue Jul 01 03:07:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords pathogens and virulence factors
infection
immunity
Drosophila melanogaster
disease models
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-2a15d2fe0ae0b4ac8e62d99bd44342cf7b467784e0a1f24c1ef9b02c9f9b9873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Current Affiliation: Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
ORCID 0000-0002-9410-6951
0000-0003-2172-8036
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22052724
PMID 33800390
PQID 2508572322
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7962867
proquest_miscellaneous_2508572322
pubmed_primary_33800390
crossref_primary_10_3390_ijms22052724
crossref_citationtrail_10_3390_ijms22052724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210308
PublicationDateYYYYMMDD 2021-03-08
PublicationDate_xml – month: 3
  year: 2021
  text: 20210308
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2021
Publisher MDPI
Publisher_xml – name: MDPI
References ref_137
ref_258
Motai (ref_63) 2016; 52
ref_257
ref_92
ref_138
ref_259
Mizutani (ref_94) 2005; 1741
ref_250
ref_131
ref_130
ref_133
ref_135
ref_134
Wu (ref_45) 2012; 14
Jones (ref_44) 2008; 3
Sotillo (ref_253) 2008; 283
Andrews (ref_157) 2005; 9
Farrell (ref_109) 1989; 8
ref_126
ref_125
ref_246
Salazar (ref_136) 2018; 1066
ref_120
ref_241
Massimi (ref_219) 2004; 23
ref_240
ref_122
ref_121
ref_242
ref_245
Suzanne (ref_146) 1999; 126
Arbyn (ref_212) 2020; 8
Rera (ref_167) 2011; 14
Kotadia (ref_252) 2008; 27
Pezard (ref_144) 1991; 59
Sontag (ref_251) 1993; 75
Zeng (ref_43) 2002; 169
Bex (ref_57) 1999; 73
ref_72
ref_71
ref_158
ref_70
Sawamoto (ref_149) 1996; 178
Silverman (ref_32) 2003; 100
Weil (ref_161) 2014; Volume 2–3
Churin (ref_184) 2003; 161
Mizutani (ref_93) 2004; 577
Fehr (ref_50) 2006; 152
ref_272
ref_79
ref_271
ref_78
ref_153
ref_274
Sen (ref_26) 1986; 46
ref_77
ref_273
ref_75
Simon (ref_191) 1991; 67
Wong (ref_200) 2007; 179
Lin (ref_46) 2016; 291
Helt (ref_214) 2001; 75
Hu (ref_96) 2003; 1
ref_148
ref_82
ref_80
Guichard (ref_145) 2006; 103
Boyer (ref_22) 2012; 710
Marasco (ref_237) 1994; 139
ref_140
Chen (ref_114) 2009; 8
ref_260
ref_142
ref_88
ref_141
ref_87
ref_143
ref_264
ref_85
ref_267
ref_266
Chan (ref_101) 2009; 41
Uramoto (ref_249) 2004; 117
Biteau (ref_40) 2011; 46
Chen (ref_225) 2002; 21
Feederle (ref_108) 2000; 19
ref_213
Battaglia (ref_235) 2005; 61
Schnorrer (ref_13) 2016; 1478
Kanca (ref_255) 2017; 207
Heo (ref_270) 2009; 53
Guichard (ref_164) 2013; 14
Kavaler (ref_113) 1999; 126
ref_210
ref_211
Steinhauer (ref_230) 2006; 235
Sonoshita (ref_7) 2017; 121
Giagtzoglou (ref_156) 2012; 196
Diamandopoulos (ref_244) 1972; 176
Zwartkruis (ref_159) 1998; 396
Perrin (ref_86) 2007; 12
ref_203
Wu (ref_205) 2010; 463
Tsoi (ref_99) 2014; 464
Cook (ref_17) 2010; 4
ref_207
Choi (ref_181) 2020; 382
ref_209
ref_208
ref_201
Huber (ref_84) 2014; 71
Xu (ref_193) 1993; 117
Brand (ref_12) 1993; 118
Cheng (ref_163) 1991; 66
ref_236
ref_238
Shirinian (ref_60) 2015; 89
ref_118
ref_239
Zacny (ref_116) 1998; 72
Shaheen (ref_124) 2019; 21
Lushchak (ref_265) 2012; 2012
Yuan (ref_139) 2017; 358
Fisher (ref_243) 1999; 19
Yamamoto (ref_123) 2014; 159
ref_231
Panayidou (ref_21) 2014; 5
ref_234
Zirin (ref_15) 2020; 214
Selbach (ref_195) 2003; 22
Peiris (ref_91) 2003; 361
ref_104
ref_106
Adamson (ref_110) 1999; 73
Lotze (ref_128) 2013; 70
ref_227
Lindberg (ref_269) 2014; 4
ref_105
ref_226
ref_229
ref_107
ref_221
Lee (ref_76) 2005; 118
ref_102
ref_223
ref_222
Tateno (ref_202) 2000; 287
Lemaitre (ref_9) 1996; 86
Goehring (ref_83) 1999; 274
Baker (ref_190) 1989; 340
Garcea (ref_247) 2003; 77
ref_14
ref_11
ref_10
Weil (ref_233) 2006; 11
Leulier (ref_69) 2003; 4
ref_19
ref_18
McGurk (ref_6) 2015; 201
ref_16
Pim (ref_216) 2000; 19
Keebaugh (ref_34) 2014; 42
Bentz (ref_179) 2006; 80
Suzuki (ref_183) 2005; 202
Chan (ref_98) 2007; 459
Wong (ref_100) 2005; 337
ref_25
Isomura (ref_175) 2004; 78
ref_24
Tewari (ref_49) 2014; 8
ref_20
ref_29
ref_28
ref_27
Rota (ref_89) 2003; 300
Journo (ref_56) 2013; 87
Huibregtse (ref_220) 1993; 13
Reid (ref_206) 2012; 2
Skoczylas (ref_248) 2005; 332
Holmgren (ref_165) 1973; 8
Renbaum (ref_127) 2009; 85
Guichard (ref_155) 2010; 467
Mavromatakis (ref_186) 2013; 140
Su (ref_197) 2003; 52
Yu (ref_97) 2004; 565
Dow (ref_263) 1997; 200
Varshney (ref_48) 2017; 24
Igaki (ref_204) 2006; 16
Guichard (ref_147) 2006; 103
Balzac (ref_160) 2005; 118
Pokrywka (ref_232) 1991; 113
Chen (ref_178) 1999; 260
Hughey (ref_262) 1992; 66
Venken (ref_256) 2016; 5
Bour (ref_68) 2001; 276
Adamson (ref_111) 2005; 171
Tanji (ref_30) 2010; 107
Kirchhoff (ref_73) 1995; 332
Mlakar (ref_119) 2016; 374
Chung (ref_268) 2012; 56
Mizutani (ref_95) 2004; 319
ref_58
Hartl (ref_151) 2014; 68
ref_173
Leppla (ref_152) 1982; 79
ref_172
ref_55
Neyen (ref_23) 2014; 68
ref_54
ref_53
ref_52
Swenson (ref_115) 2001; 75
ref_180
ref_182
Escudero (ref_198) 2007; 13
ref_59
Isomura (ref_174) 2003; 77
ref_61
Tomlinson (ref_188) 2019; 454
ref_169
Bresnick (ref_199) 1999; 11
ref_162
Bourzac (ref_196) 2007; 75
Harsh (ref_132) 2018; 201
ref_66
ref_166
ref_64
ref_168
Kranjec (ref_218) 2011; 85
ref_62
ref_171
ref_170
Lemaitre (ref_33) 2007; 25
Wu (ref_215) 1993; 67
Hanna (ref_74) 1998; 95
Adamson (ref_261) 2011; 189
ref_36
ref_35
ref_194
Smith (ref_129) 1986; 24
ref_31
Berthelet (ref_81) 2013; 2
Das (ref_224) 2011; 85
Watts (ref_65) 2009; 460
ref_39
ref_38
ref_37
Simpson (ref_117) 1964; 58
Chopra (ref_150) 2003; 278
Marra (ref_90) 2003; 300
Steinberg (ref_176) 2008; 17
ref_47
Tepass (ref_177) 2001; 35
Gordon (ref_103) 2020; 583
ref_185
ref_42
Kiger (ref_154) 1999; 152
ref_187
ref_41
Wangler (ref_5) 2015; 199
ref_189
ref_1
ref_3
Jones (ref_51) 2012; 14
Sotillo (ref_254) 2009; 284
ref_2
ref_192
ref_8
Akari (ref_67) 2001; 194
ref_4
Mauser (ref_112) 2002; 76
Gardiol (ref_217) 2000; 19
Battaglia (ref_228) 2001; 114
References_xml – volume: 1741
  start-page: 4
  year: 2005
  ident: ref_94
  article-title: JNK and PI3k/Akt Signaling Pathways Are Required for Establishing Persistent SARS-CoV Infection in Vero E6 Cells
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2005.04.004
– ident: ref_10
  doi: 10.1093/hmg/ddz135
– volume: 291
  start-page: 26837
  year: 2016
  ident: ref_46
  article-title: Salmonella Enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.757393
– volume: 21
  start-page: 6801
  year: 2002
  ident: ref_225
  article-title: HIV-1 Tat Targets Microtubules to Induce Apoptosis, a Process Promoted by the pro-Apoptotic Bcl-2 Relative Bim
  publication-title: Embo J.
  doi: 10.1093/emboj/cdf683
– ident: ref_266
  doi: 10.1016/S0966-842X(00)01913-2
– volume: 76
  start-page: 12543
  year: 2002
  ident: ref_112
  article-title: The Epstein-Barr Virus Immediate-Early Protein BZLF1 Induces Expression of E2F-1 and Other Proteins Involved in Cell Cycle Progression in Primary Keratinocytes and Gastric Carcinoma Cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.24.12543-12552.2002
– volume: 14
  start-page: 274
  year: 2012
  ident: ref_51
  article-title: Aeromonas Salmonicida-Secreted Protein AopP Is a Potent Inducer of Apoptosis in a Mammalian and a Drosophila Model
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2011.01717.x
– volume: 118
  start-page: 4765
  year: 2005
  ident: ref_160
  article-title: E-Cadherin Endocytosis Regulates the Activity of Rap1: A Traffic Light GTPase at the Crossroads between Cadherin and Integrin Function
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02584
– volume: 66
  start-page: 5542
  year: 1992
  ident: ref_262
  article-title: Expression of the Influenza A Virus M2 Protein Is Restricted to Apical Surfaces of Polarized Epithelial Cells
  publication-title: J. Virol.
  doi: 10.1128/jvi.66.9.5542-5552.1992
– volume: 464
  start-page: 439
  year: 2014
  ident: ref_99
  article-title: The SARS-Coronavirus Membrane Protein Induces Apoptosis via Interfering with PDK1PKB/Akt Signalling
  publication-title: Biochem. J.
  doi: 10.1042/BJ20131461
– volume: 19
  start-page: 2173
  year: 1999
  ident: ref_243
  article-title: Cancer Risk Associated with Simian Virus 40 Contaminated Polio Vaccine
  publication-title: Anticancer Res.
– ident: ref_79
  doi: 10.1038/sj.cdd.4400823
– ident: ref_170
  doi: 10.1016/S0163-7258(03)00034-2
– ident: ref_192
  doi: 10.1371/journal.ppat.1000064
– ident: ref_223
  doi: 10.1097/COH.0000000000000103
– volume: 169
  start-page: 2846
  year: 2002
  ident: ref_43
  article-title: Cutting Edge: Salmonella AvrA Effector Inhibits the Key Proinflammatory, Anti-Apoptotic NF-ΚB Pathway
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.169.6.2846
– volume: 1066
  start-page: 141
  year: 2018
  ident: ref_136
  article-title: Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-89512-3_8
– ident: ref_238
  doi: 10.1186/1471-2121-9-32
– ident: ref_173
  doi: 10.1017/CBO9780511545313.018
– ident: ref_227
  doi: 10.2174/1381612823666170704130635
– ident: ref_82
  doi: 10.3389/fcimb.2017.00039
– ident: ref_53
  doi: 10.1016/S1473-3099(07)70081-6
– volume: 8
  start-page: 208
  year: 1973
  ident: ref_165
  article-title: Tissue Receptor for Cholera Exotoxin: Postulated Structure from Studies with G(M1) Ganglioside and Related Glycolipids
  publication-title: Infect. Immun.
  doi: 10.1128/iai.8.2.208-214.1973
– ident: ref_41
  doi: 10.1098/rsob.180256
– ident: ref_257
  doi: 10.1002/14651858.CD001169.pub3
– ident: ref_14
  doi: 10.7554/eLife.53865
– volume: 710
  start-page: 29
  year: 2012
  ident: ref_22
  article-title: Bacterial Effectors: Learning on the Fly
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4419-5638-5_4
– ident: ref_71
  doi: 10.7554/eLife.41930
– volume: 152
  start-page: 281
  year: 1999
  ident: ref_154
  article-title: Transgenic Inhibitors Identify Two Roles for Protein Kinase A in Drosophila Development
  publication-title: Genetics
  doi: 10.1093/genetics/152.1.281
– volume: 35
  start-page: 747
  year: 2001
  ident: ref_177
  article-title: Epithelial Cell Polarity and Cell Junctions in Drosophila
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.35.102401.091415
– volume: 276
  start-page: 15920
  year: 2001
  ident: ref_68
  article-title: The Human Immunodeficiency Virus Type 1 Vpu Protein Inhibits NF-ΚB Activation by Interfering with ΒTrCP-Mediated Degradation of IκB
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M010533200
– volume: 58
  start-page: 335
  year: 1964
  ident: ref_117
  article-title: Zika Virus Infection in Man
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
  doi: 10.1016/0035-9203(64)90201-9
– volume: 80
  start-page: 11539
  year: 2006
  ident: ref_179
  article-title: Human Cytomegalovirus (HCMV) Infection of Endothelial Cells Promotes Naïve Monocyte Extravasation and Transfer of Productive Virus To Enhance Hematogenous Dissemination of HCMV
  publication-title: J. Virol.
  doi: 10.1128/JVI.01016-06
– ident: ref_142
  doi: 10.1001/jama.287.17.2236
– volume: 46
  start-page: 705
  year: 1986
  ident: ref_26
  article-title: Multiple Nuclear Factors Interact with the Immunoglobulin Enhancer Sequences
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90346-6
– volume: 5
  start-page: 253
  year: 2014
  ident: ref_21
  article-title: Human Pathogenic Bacteria, Fungi, and Viruses in Drosophila
  publication-title: Virulence
  doi: 10.4161/viru.27524
– volume: 24
  start-page: 393
  year: 1986
  ident: ref_129
  article-title: Interstitial Deletion of (17)(P11.2p11.2) in Nine Patients
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.1320240303
– volume: 19
  start-page: 719
  year: 2000
  ident: ref_216
  article-title: HPV E6 Targeted Degradation of the Discs Large Protein: Evidence for the Involvement of a Novel Ubiquitin Ligase
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203374
– volume: 201
  start-page: 3058
  year: 2018
  ident: ref_132
  article-title: Dicer-2 Regulates Resistance and Maintains Homeostasis against Zika Virus Infection in Drosophila
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1800597
– ident: ref_260
  doi: 10.1371/journal.ppat.1000085
– ident: ref_25
  doi: 10.1016/j.coph.2013.08.003
– volume: 41
  start-page: 2232
  year: 2009
  ident: ref_101
  article-title: The Ion Channel Activity of the SARS-Coronavirus 3a Protein Is Linked to Its pro-Apoptotic Function
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2009.04.019
– ident: ref_187
  doi: 10.3390/cancers9020016
– ident: ref_135
  doi: 10.1111/j.0105-2896.2004.0133.x
– volume: 126
  start-page: 5453
  year: 1999
  ident: ref_146
  article-title: The Drosophila JNK Pathway Controls the Morphogenesis of Imaginal Discs during Metamorphosis
  publication-title: Development
  doi: 10.1242/dev.126.23.5453
– volume: 176
  start-page: 173
  year: 1972
  ident: ref_244
  article-title: Leukemia, Lymphoma, and Osteosarcoma Induced in the Syrian Golden Hamster by Simian Virus 40
  publication-title: Science
  doi: 10.1126/science.176.4031.173
– volume: 178
  start-page: 13
  year: 1996
  ident: ref_149
  article-title: The Drosophila Secreted Protein Argos Regulates Signal Transduction in the Ras/MAPK Pathway
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1996.0194
– volume: 117
  start-page: 3855
  year: 2004
  ident: ref_249
  article-title: PRb, Myc and P53 Are Critically Involved in SV40 Large T Antigen Repression of PDGF β-Receptor Transcription
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01228
– volume: 300
  start-page: 1399
  year: 2003
  ident: ref_90
  article-title: The Genome Sequence of the SARS-Associated Coronavirus
  publication-title: Science
  doi: 10.1126/science.1085953
– ident: ref_120
  doi: 10.1038/nrneurol.2016.78
– ident: ref_172
  doi: 10.1093/ilar.47.1.65
– volume: 319
  start-page: 1228
  year: 2004
  ident: ref_95
  article-title: Phosphorylation of P38 MAPK and Its Downstream Targets in SARS Coronavirus-Infected Cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.05.107
– volume: 89
  start-page: 8092
  year: 2015
  ident: ref_60
  article-title: A Transgenic Drosophila Melanogaster Model To Study Human T-Lymphotropic Virus Oncoprotein Tax-1-Driven Transformation In Vivo
  publication-title: J. Virol.
  doi: 10.1128/JVI.00918-15
– ident: ref_64
  doi: 10.1111/imr.12502
– volume: 374
  start-page: 951
  year: 2016
  ident: ref_119
  article-title: Zika Virus Associated with Microcephaly
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1600651
– ident: ref_140
  doi: 10.1038/s41467-017-02816-2
– volume: 284
  start-page: 14126
  year: 2009
  ident: ref_254
  article-title: Coordinated Activation of the Origin Licensing Factor CDC6 and CDK2 in Resting Human Fibroblasts Expressing SV40 Small T Antigen and Cyclin, E.J
  publication-title: Biol. Chem.
  doi: 10.1074/jbc.M900687200
– volume: 53
  start-page: 2469
  year: 2009
  ident: ref_270
  article-title: Antibacterial Efficacy of Phages against Pseudomonas aeruginosa Infections in Mice and Drosophila Melanogaster
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01646-08
– ident: ref_70
  doi: 10.1016/S1473-3099(17)30303-1
– ident: ref_77
  doi: 10.1155/2017/9042851
– volume: 159
  start-page: 200
  year: 2014
  ident: ref_123
  article-title: A Drosophila Genetic Resource of Mutants to Study Mechanisms Underlying Human Genetic Diseases
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.002
– ident: ref_78
  doi: 10.3389/fcimb.2013.00113
– volume: 67
  start-page: 2402
  year: 1993
  ident: ref_215
  article-title: The Human Papillomavirus E7 Oncoprotein and the Cellular Transcription Factor E2F Bind to Separate Sites on the Retinoblastoma Tumor Suppressor Protein
  publication-title: J. Virol.
  doi: 10.1128/jvi.67.4.2402-2407.1993
– ident: ref_143
  doi: 10.1146/annurev-micro-091014-104523
– volume: 196
  start-page: 65
  year: 2012
  ident: ref_156
  article-title: DEHBP1 Controls Exocytosis and Recycling of Delta during Asymmetric Divisions
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201106088
– ident: ref_16
  doi: 10.1038/nrg1503
– volume: 396
  start-page: 474
  year: 1998
  ident: ref_159
  article-title: Epac Is a Rap1 Guanine-Nucleotide-Exchange Factor Directly Activated by Cyclic AMP
  publication-title: Nature
  doi: 10.1038/24884
– ident: ref_122
  doi: 10.1016/j.cell.2018.11.028
– ident: ref_19
  doi: 10.1002/wdev.344
– volume: 358
  start-page: 933
  year: 2017
  ident: ref_139
  article-title: A Single Mutation in the PrM Protein of Zika Virus Contributes to Fetal Microcephaly
  publication-title: Science
  doi: 10.1126/science.aam7120
– volume: 583
  start-page: 459
  year: 2020
  ident: ref_103
  article-title: A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing
  publication-title: Nature
  doi: 10.1038/s41586-020-2286-9
– volume: 8
  start-page: 127
  year: 1989
  ident: ref_109
  article-title: Epstein-Barr Virus BZLF1 Trans-Activator Specifically Binds to a Consensus AP-1 Site and Is Related to c-Fos
  publication-title: Embo J.
  doi: 10.1002/j.1460-2075.1989.tb03356.x
– ident: ref_271
  doi: 10.1128/CMR.00066-18
– volume: 194
  start-page: 1299
  year: 2001
  ident: ref_67
  article-title: The Human Immunodeficiency Virus Type 1 Accessory Protein Vpu Induces Apoptosis by Suppressing the Nuclear Factor ΚB-Dependent Expression of Antiapoptotic Factors
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.194.9.1299
– ident: ref_18
  doi: 10.1538/expanim.59.125
– volume: 11
  start-page: 26
  year: 1999
  ident: ref_199
  article-title: Molecular Mechanisms of Nonmuscle Myosin-II Regulation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(99)80004-0
– volume: 12
  start-page: 1193
  year: 2007
  ident: ref_86
  article-title: Rac2 Is a Major Actor of Drosophila Resistance to Pseudomonas aeruginosa Acting in Phagocytic Cells
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2007.01121.x
– volume: 11
  start-page: 251
  year: 2006
  ident: ref_233
  article-title: Localization of Bicoid MRNA in Late Oocytes Is Maintained by Continual Active Transport
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.06.006
– volume: 4
  start-page: 88
  year: 2010
  ident: ref_17
  article-title: New Research Resources at the Bloomington Drosophila Stock Center
  publication-title: Fly
  doi: 10.4161/fly.4.1.11230
– volume: 114
  start-page: 2787
  year: 2001
  ident: ref_228
  article-title: A Drosophila Model of HIV-Tat-Related Pathogenicity
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.114.15.2787
– volume: 85
  start-page: 281
  year: 2009
  ident: ref_127
  article-title: Spinal Muscular Atrophy with Pontocerebellar Hypoplasia Is Caused by a Mutation in the VRK1 Gene
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2009.07.006
– volume: 278
  start-page: 9402
  year: 2003
  ident: ref_150
  article-title: Anthrax Lethal Factor Proteolysis and Inactivation of MAPK Kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M211262200
– volume: 577
  start-page: 187
  year: 2004
  ident: ref_93
  article-title: Tyrosine Dephosphorylation of STAT3 in SARS Coronavirus-Infected Vero E6 Cells
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.10.005
– volume: 207
  start-page: 389
  year: 2017
  ident: ref_255
  article-title: Gene Tagging Strategies to Assess Protein Expression, Localization, and Function in Drosophila
  publication-title: Genetics
– ident: ref_273
  doi: 10.1007/s00251-006-0142-1
– ident: ref_245
  doi: 10.1200/JCO.2005.03.7101
– volume: 78
  start-page: 12788
  year: 2004
  ident: ref_175
  article-title: Role of the Proximal Enhancer of the Major Immediate-Early Promoter in Human Cytomegalovirus Replication
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.23.12788-12799.2004
– volume: 77
  start-page: 5039
  year: 2003
  ident: ref_247
  article-title: Simian Virus 40 Infection of Humans
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.9.5039-5045.2003
– volume: 4
  start-page: 976
  year: 2003
  ident: ref_69
  article-title: Directed Expression of the HIV-1 Accessory Protein Vpu in Drosophila Fat-Body Cells Inhibits Toll-Dependent Immune Responses
  publication-title: Embo Rep.
  doi: 10.1038/sj.embor.embor936
– ident: ref_126
  doi: 10.1101/611384
– volume: 332
  start-page: 228
  year: 1995
  ident: ref_73
  article-title: Absence of Intact Nef Sequences in a Long-Term Survivor with Nonprogressive HIV-1 Infection
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199501263320405
– volume: 22
  start-page: 515
  year: 2003
  ident: ref_195
  article-title: The Helicobacter Pylori CagA Protein Induces Cortactin Dephosphorylation and Actin Rearrangement by C-Src Inactivation
  publication-title: Embo J.
  doi: 10.1093/emboj/cdg050
– ident: ref_105
  doi: 10.1371/journal.pone.0034310
– volume: 8
  start-page: 58
  year: 2009
  ident: ref_114
  article-title: The Epstein-Barr Virus Replication and Transcription Activator, Rta/BRLF1, Induces Cellular Senescence in Epithelial Cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.1.7411
– volume: 42
  start-page: 111
  year: 2014
  ident: ref_34
  article-title: Insights from Natural Host-Parasite Interactions: The Drosophila Model
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2013.06.001
– ident: ref_39
  doi: 10.1002/dvdy.20283
– ident: ref_118
  doi: 10.2807/1560-7917.ES2014.19.9.20720
– volume: 118
  start-page: 1851
  year: 2005
  ident: ref_76
  article-title: Nef Induces Apoptosis by Activating JNK Signaling Pathway and Inhibits NF-ΚB-Dependent Immune Responses in Drosophila
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02312
– volume: 24
  start-page: 213
  year: 2017
  ident: ref_48
  article-title: Aeromonas Salmonicida as a Causative Agent for Postoperative Endophthalmitis
  publication-title: Middle East Afr. J. Ophthalmol.
  doi: 10.4103/meajo.MEAJO_238_17
– volume: 13
  start-page: 717
  year: 2007
  ident: ref_198
  article-title: Myosin II Regulates Complex Cellular Arrangement and Epithelial Architecture in Drosophila
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.09.002
– ident: ref_133
  doi: 10.1242/dmm.040816
– ident: ref_274
  doi: 10.1111/febs.13235
– ident: ref_52
  doi: 10.1016/j.nmni.2017.07.006
– volume: 463
  start-page: 545
  year: 2010
  ident: ref_205
  article-title: Interaction between RasV12 and Scribbled Clones Induces Tumour Growth and Invasion
  publication-title: Nature
  doi: 10.1038/nature08702
– volume: 103
  start-page: 3244
  year: 2006
  ident: ref_145
  article-title: Common Target Anthrax Lethal Factor & Edema Factor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0510748103
– ident: ref_80
  doi: 10.1038/cdd.2008.50
– volume: 565
  start-page: 111
  year: 2004
  ident: ref_97
  article-title: Identification of a Novel Protein 3a from Severe Acute Respiratory Syndrome Coronavirus
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.03.086
– volume: 107
  start-page: 14715
  year: 2010
  ident: ref_30
  article-title: Heterodimers of NF-ΚB Transcription Factors DIF and Relish Regulate Antimicrobial Peptide Genes in Drosophila
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1009473107
– volume: 100
  start-page: 5991
  year: 2003
  ident: ref_32
  article-title: Caspase-Mediated Processing of the Drosophila NF-ΚB Factor Relish
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1035902100
– volume: 25
  start-page: 697
  year: 2007
  ident: ref_33
  article-title: The Host Defense of Drosophila Melanogaster
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.25.022106.141615
– ident: ref_24
  doi: 10.1016/j.gde.2017.03.013
– volume: 52
  start-page: 4
  year: 2016
  ident: ref_63
  article-title: Human T-Cell Leukemia Virus Type 1 (HTLV-1) Tax1 Oncoprotein but Not HTLV-2 Tax2 Induces the Expression of OX40 Ligand by Interacting with P52/P100 and RelB
  publication-title: Virus Genes
  doi: 10.1007/s11262-015-1277-7
– ident: ref_203
  doi: 10.1016/j.smim.2014.05.003
– volume: 14
  start-page: 28
  year: 2012
  ident: ref_45
  article-title: The Salmonella Effector AvrA Mediates Bacterial Intracellular Survival during Infection in Vivo
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2011.01694.x
– ident: ref_221
  doi: 10.1371/journal.ppat.1005789
– ident: ref_264
  doi: 10.1358/dnp.2006.19.3.977442
– ident: ref_213
  doi: 10.1111/j.1349-7006.2007.00546.x
– volume: 260
  start-page: 10
  year: 1999
  ident: ref_178
  article-title: Three-Dimensional Visualization of Tegument/Capsid Interactions in the Intact Human Cytomegalovirus
  publication-title: Virology
  doi: 10.1006/viro.1999.9791
– ident: ref_153
  doi: 10.1126/science.1098020
– volume: 179
  start-page: 1141
  year: 2007
  ident: ref_200
  article-title: PDZRhoGEF and Myosin II Localize RhoA Activity to the Back of Polarizing Neutrophil-like Cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200706167
– ident: ref_37
  doi: 10.1002/(SICI)1521-1878(199812)20:12<1009::AID-BIES7>3.0.CO;2-D
– volume: 140
  start-page: 4353
  year: 2013
  ident: ref_186
  article-title: Switching Cell Fates in the Developing Drosophila Eye
  publication-title: Development
  doi: 10.1242/dev.096925
– ident: ref_185
  doi: 10.2183/pjab.93.013
– ident: ref_236
  doi: 10.1371/journal.pone.0048702
– volume: 21
  start-page: 545
  year: 2019
  ident: ref_124
  article-title: Genomic and Phenotypic Delineation of Congenital Microcephaly
  publication-title: Genet. Med.
  doi: 10.1038/s41436-018-0140-3
– volume: 1478
  start-page: 117
  year: 2016
  ident: ref_13
  article-title: A Guide to Genome-Wide in Vivo RNAI Applications in Drosophila
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6371-3_6
– ident: ref_210
– ident: ref_267
  doi: 10.1128/JB.188.4.1211-1217.2006
– ident: ref_106
  doi: 10.1146/annurev-pathmechdis-012418-013023
– volume: 86
  start-page: 973
  year: 1996
  ident: ref_9
  article-title: The Dorsoventral Regulatory Gene Cassette Spatzle/Toll/Cactus Controls the Potent Antifungal Response in Drosophila Adults
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80172-5
– ident: ref_88
  doi: 10.1128/CMR.00023-07
– volume: 9
  start-page: 351
  year: 2005
  ident: ref_157
  article-title: Sec15, a Component of the Exocyst, Promotes Notch Signaling during the Asymmetric Division of Drosophila Sensory Organ Precursors
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2005.06.010
– volume: 152
  start-page: 2809
  year: 2006
  ident: ref_50
  article-title: AopP, a Type III Effector Protein of Aeromonas Salmonicida, Inhibits the NF-ΚB Signalling Pathway
  publication-title: Microbiology
  doi: 10.1099/mic.0.28889-0
– volume: 459
  start-page: 197
  year: 2007
  ident: ref_98
  article-title: The SARS-Coronavirus Membrane Protein Induces Apoptosis through Modulating the Akt Survival Pathway
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2007.01.012
– volume: 161
  start-page: 249
  year: 2003
  ident: ref_184
  article-title: Helicobacter Pylori CagA Protein Targets the C-Met Receptor and Enhances the Motogenic Response
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200208039
– volume: 2
  start-page: 24
  year: 2012
  ident: ref_206
  article-title: Identification of Genetic Modifiers of CagA-Induced Epithelial Disruption in Drosophila
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2012.00024
– ident: ref_61
  doi: 10.3389/fmicb.2013.00231
– volume: 200
  start-page: 237
  year: 1997
  ident: ref_263
  article-title: Molecular Genetic Analysis of V-ATPase Function in Drosophila Melanogaster
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.200.2.237
– ident: ref_28
  doi: 10.1101/cshperspect.a000232
– volume: 71
  start-page: 1927
  year: 2014
  ident: ref_84
  article-title: Sequential Inactivation of Rho GTPases and Lim Kinase by Pseudomonas aeruginosa Toxins ExoS and ExoT Leads to Endothelial Monolayer Breakdown
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-013-1451-9
– ident: ref_131
  doi: 10.1016/j.chom.2018.05.022
– ident: ref_130
  doi: 10.1016/j.tim.2018.05.007
– ident: ref_231
  doi: 10.1016/j.semcdb.2008.01.004
– volume: 85
  start-page: 1757
  year: 2011
  ident: ref_218
  article-title: A Systematic Analysis of Human Papillomavirus (HPV) E6 PDZ Substrates Identifies MAGI-1 as a Major Target of HPV Type 16 (HPV-16) and HPV-18 Whose Loss Accompanies Disruption of Tight Junctions
  publication-title: J. Virol.
  doi: 10.1128/JVI.01756-10
– volume: 19
  start-page: 5884
  year: 2000
  ident: ref_217
  article-title: Differential Regulation of Human Papillomavirus E6 by Protein Kinase A: Conditional Degradation of Human Discs Large Protein by Oncogenic E6
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203988
– volume: 17
  start-page: 105
  year: 2008
  ident: ref_176
  article-title: Human Cytomegalovirus Immediate-Early-Gene Expression Disrupts Embryogenesis in Transgenic Drosophila
  publication-title: Transgenic Res.
  doi: 10.1007/s11248-007-9136-5
– volume: 75
  start-page: 6737
  year: 2001
  ident: ref_214
  article-title: Destabilization of the Retinoblastoma Tumor Suppressor by Human Papillomavirus Type 16 E7 Is Not Sufficient To Overcome Cell Cycle Arrest in Human Keratinocytes
  publication-title: J. Virol.
  doi: 10.1128/JVI.75.15.6737-6747.2001
– volume: 77
  start-page: 3602
  year: 2003
  ident: ref_174
  article-title: The Human Cytomegalovirus Major Immediate-Early Enhancer Determines the Efficiency of Immediate-Early Gene Transcription and Viral Replication in Permissive Cells at Low Multiplicity of Infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.6.3602-3614.2003
– ident: ref_250
  doi: 10.1038/sj.onc.1209046
– ident: ref_1
– volume: 23
  start-page: 8033
  year: 2004
  ident: ref_219
  article-title: HPV E6 Specifically Targets Different Cellular Pools of Its PDZ Domain-Containing Tumour Suppressor Substrates for Proteasome-Mediated Degradation
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207977
– volume: 126
  start-page: 2261
  year: 1999
  ident: ref_113
  article-title: An Essential Role for the Drosophila Pax2 Homolog in the Differentiation of Adult Sensory Organs
  publication-title: Development
  doi: 10.1242/dev.126.10.2261
– ident: ref_35
  doi: 10.1016/j.imlet.2020.06.017
– ident: ref_158
  doi: 10.1371/journal.ppat.1006603
– volume: 46
  start-page: 349
  year: 2011
  ident: ref_40
  article-title: Regulation of Drosophila Lifespan by JNK Signaling
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2010.11.003
– volume: 75
  start-page: 6228
  year: 2001
  ident: ref_115
  article-title: Epstein-Barr Virus Immediate-Early Protein BRLF1 Interacts with CBP, Promoting Enhanced BRLF1 Transactivation
  publication-title: J. Virol.
  doi: 10.1128/JVI.75.13.6228-6234.2001
– volume: 274
  start-page: 36369
  year: 1999
  ident: ref_83
  article-title: The N-Terminal Domain of Pseudomonas aeruginosa Exoenzyme S Is a GTPase- Activating Protein for Rho GTPases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.51.36369
– volume: 1
  start-page: 118
  year: 2003
  ident: ref_96
  article-title: The M Protein of SARS-CoV: Basic Structural and Immunological Properties
  publication-title: Genom. Proteom. Bioinforma. Beijing Genom. Inst.
  doi: 10.1016/S1672-0229(03)01016-7
– volume: Volume 2–3
  start-page: 1079
  year: 2014
  ident: ref_161
  article-title: Vibrio Cholerae
  publication-title: Molecular Medical Microbiology
– volume: 8
  start-page: e191
  year: 2020
  ident: ref_212
  article-title: Estimates of Incidence and Mortality of Cervical Cancer in 2018: A Worldwide Analysis
  publication-title: Lancet Glob. Heal.
  doi: 10.1016/S2214-109X(19)30482-6
– ident: ref_222
  doi: 10.1038/s41580-018-0080-4
– ident: ref_3
  doi: 10.1534/genetics.117.203067
– volume: 361
  start-page: 1319
  year: 2003
  ident: ref_91
  article-title: Coronavirus as a Possible Cause of Severe Acute Respiratory Syndrome
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13077-2
– ident: ref_189
  doi: 10.1016/S0167-4889(00)00020-3
– ident: ref_104
  doi: 10.1016/j.dib.2020.106082
– ident: ref_72
  doi: 10.1016/S0092-8674(00)81430-0
– ident: ref_54
  doi: 10.1007/s12325-018-0658-4
– ident: ref_242
  doi: 10.1093/jnci/91.2.119
– ident: ref_209
  doi: 10.1038/srep15749
– volume: 4
  start-page: e964081
  year: 2014
  ident: ref_269
  article-title: Phage Fitness May Help Predict Phage Therapy Efficacy
  publication-title: Bacteriophage
  doi: 10.4161/21597073.2014.964081
– ident: ref_75
  doi: 10.3389/fimmu.2017.00751
– ident: ref_31
  doi: 10.2147/JIR.S140188
– volume: 337
  start-page: 720
  year: 2005
  ident: ref_100
  article-title: In Vivo Functional Characterization of the SARS-Coronavirus 3a Protein in Drosophila
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.09.098
– volume: 14
  start-page: 623
  year: 2011
  ident: ref_167
  article-title: Modulation of Longevity and Tissue Homeostasis by the Drosophila PGC-1 Homolog
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.09.013
– ident: ref_168
  doi: 10.1371/journal.ppat.0010008
– ident: ref_180
  doi: 10.1158/0008-5472.CAN-16-1680
– ident: ref_11
  doi: 10.3791/59658
– ident: ref_258
  doi: 10.1371/journal.pone.0205815
– ident: ref_27
  doi: 10.1038/cr.2011.13
– volume: 8
  start-page: 139
  year: 2014
  ident: ref_49
  article-title: Isolation of Aeromonas Salmonicida from Human Blood Sample: A Case Report
  publication-title: J. Clin. Diagn. Res.
– volume: 189
  start-page: 495
  year: 2011
  ident: ref_261
  article-title: A Drosophila Model for Genetic Analysis of Influenza Viral/Host Interactions
  publication-title: Genetics
  doi: 10.1534/genetics.111.132290
– ident: ref_92
  doi: 10.1046/j.1440-1843.2003.00517.x
– ident: ref_137
  doi: 10.1016/j.immuni.2010.01.004
– volume: 66
  start-page: 1027
  year: 1991
  ident: ref_163
  article-title: Phosphorylation of the R Domain by CAMP-Dependent Protein Kinase Regulates the CFTR Chloride Channel
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90446-6
– volume: 73
  start-page: 738
  year: 1999
  ident: ref_57
  article-title: Phosphorylation of the Human T-Cell Leukemia Virus Type 1 Transactivator Tax on Adjacent Serine Residues Is Critical for Tax Activation
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.1.738-745.1999
– volume: 75
  start-page: 1203
  year: 2007
  ident: ref_196
  article-title: Helicobacter Pylori CagA Induces AGS Cell Elongation through a Cell Retraction Defect That Is Independent of Cdc42, Rac1, and Arp2/3
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01702-06
– ident: ref_42
  doi: 10.14202/vetworld.2019.504-521
– ident: ref_58
  doi: 10.1186/s12977-018-0415-4
– volume: 95
  start-page: 163
  year: 1998
  ident: ref_74
  article-title: Nef Harbors a Major Determinant of Pathogenicity for an AIDS-like Disease Induced by HIV-1 in Transgenic Mice
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81748-1
– ident: ref_162
  doi: 10.1371/journal.pntd.0001845
– ident: ref_240
  doi: 10.3390/cells9020358
– volume: 72
  start-page: 8043
  year: 1998
  ident: ref_116
  article-title: The Epstein-Barr Virus Immediate-Early Gene Product, BRLF1, Interacts with the Retinoblastoma Protein during the Viral Lytic Cycle
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.10.8043-8051.1998
– volume: 14
  start-page: 294
  year: 2013
  ident: ref_164
  article-title: Cholera Toxin Disrupts Barrier Function by Inhibiting Exocyst-Mediated Trafficking of Host Proteins to Intestinal Cell Junctions
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.08.001
– ident: ref_201
  doi: 10.1371/journal.ppat.1002939
– volume: 235
  start-page: 1455
  year: 2006
  ident: ref_230
  article-title: Microtubule Polarity and Axis Formation in the Drosophila Oocyte
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.20770
– volume: 121
  start-page: 287
  year: 2017
  ident: ref_7
  article-title: Modeling Human Cancers in Drosophila
  publication-title: Curr. Top. Dev. Biol.
  doi: 10.1016/bs.ctdb.2016.07.008
– volume: 59
  start-page: 3472
  year: 1991
  ident: ref_144
  article-title: Contribution of Individual Toxin Components to Virulence of Bacillus Anthracis
  publication-title: Infect. Immun.
  doi: 10.1128/iai.59.10.3472-3477.1991
– ident: ref_166
  doi: 10.1080/09687680410001663267
– volume: 52
  start-page: 861
  year: 2003
  ident: ref_197
  article-title: Cytoskeletal Rearrangements in Gastric Epithelial Cells in Response to Helicobacter Pylori Infection
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.05229-0
– volume: 68
  start-page: 116
  year: 2014
  ident: ref_23
  article-title: Methods to Study Drosophila Immunity
  publication-title: Methods
  doi: 10.1016/j.ymeth.2014.02.023
– ident: ref_182
  doi: 10.1111/j.1349-7006.2005.00130.x
– ident: ref_47
  doi: 10.3354/dao03006
– ident: ref_107
  doi: 10.1186/1750-9378-9-38
– volume: 283
  start-page: 11280
  year: 2008
  ident: ref_253
  article-title: Cyclin E and SV40 Small t Antigen Cooperate to Bypass Quiescence and Contribute to Transformation by Activating CDK2 in Human Fibroblasts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M709055200
– ident: ref_211
  doi: 10.1016/j.jaad.2015.05.040
– ident: ref_234
  doi: 10.1146/annurev-cellbio-111315-125416
– ident: ref_246
  doi: 10.3389/fonc.2019.00670
– ident: ref_36
  doi: 10.1038/nri3495
– ident: ref_134
  doi: 10.1038/ni.3691
– volume: 61
  start-page: 129
  year: 2005
  ident: ref_235
  article-title: The HIV-Tat Protein Induces Chromosome Number Aberrations by Affecting Mitosis
  publication-title: Cell Motil. Cytoskelet.
  doi: 10.1002/cm.20070
– ident: ref_272
  doi: 10.1016/j.coi.2010.01.007
– volume: 460
  start-page: 711
  year: 2009
  ident: ref_65
  article-title: Architecture and Secondary Structure of an Entire HIV-1 RNA Genome
  publication-title: Nature
  doi: 10.1038/nature08237
– volume: 16
  start-page: 1139
  year: 2006
  ident: ref_204
  article-title: Loss of Cell Polarity Drives Tumor Growth and Invasion through JNK Activation in Drosophila
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.04.042
– volume: 2
  start-page: 163
  year: 2013
  ident: ref_81
  article-title: Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs)
  publication-title: Cells
  doi: 10.3390/cells2010163
– volume: 85
  start-page: 9506
  year: 2011
  ident: ref_224
  article-title: The HIV-1 Tat Protein Has a Versatile Role in Activating Viral Transcription
  publication-title: J. Virol.
  doi: 10.1128/JVI.00650-11
– ident: ref_87
  doi: 10.1371/journal.ppat.1005163
– ident: ref_8
  doi: 10.1038/nri3763
– volume: 68
  start-page: 199
  year: 2014
  ident: ref_151
  article-title: Wing Tips: The Wing Disc as a Platform for Studying Hedgehog Signaling
  publication-title: Methods
  doi: 10.1016/j.ymeth.2014.02.002
– volume: 113
  start-page: 55
  year: 1991
  ident: ref_232
  article-title: Microtubules Mediate the Localization of Bicoid RNA during Drosophila Oogenesis
  publication-title: Development
  doi: 10.1242/dev.113.1.55
– volume: 332
  start-page: 596
  year: 2005
  ident: ref_248
  article-title: PP2A-Dependent Transactivation of the Cyclin A Promoter by SV40 ST Is Mediated by a Cell Cycle-Regulated E2F Site
  publication-title: Virology
  doi: 10.1016/j.virol.2004.12.017
– ident: ref_125
  doi: 10.1016/j.devcel.2019.10.009
– volume: 454
  start-page: 181
  year: 2019
  ident: ref_188
  article-title: The Role of Sevenless in Drosophila R7 Photoreceptor Specification
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2019.06.007
– volume: 199
  start-page: 639
  year: 2015
  ident: ref_5
  article-title: Fruit Flies in Biomedical Research
  publication-title: Genetics
  doi: 10.1534/genetics.114.171785
– ident: ref_148
  doi: 10.1146/annurev.cellbio.23.090506.123606
– volume: 382
  start-page: 427
  year: 2020
  ident: ref_181
  article-title: Family History of Gastric Cancer and Helicobacter Pylori Treatment
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1909666
– volume: 79
  start-page: 3162
  year: 1982
  ident: ref_152
  article-title: Anthrax Toxin Edema Factor: A Bacterial Adenylate Cyclase That Increases Cyclic AMP Concentrations in Eukaryotic Cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.79.10.3162
– volume: 27
  start-page: 6334
  year: 2008
  ident: ref_252
  article-title: PP2A-Dependent Disruption of Centrosome Replication and Cytoskeleton Organization in Drosophila by SV40 Small Tumor Antigen
  publication-title: Oncogene
  doi: 10.1038/onc.2008.254
– ident: ref_121
  doi: 10.1371/journal.pone.0229434
– volume: 171
  start-page: 1125
  year: 2005
  ident: ref_111
  article-title: Modeling Early Epstein-Barr Virus Infection in Drosophila Melanogaster: The BZLF1 Protein
  publication-title: Genetics
  doi: 10.1534/genetics.105.042572
– volume: 139
  start-page: 133
  year: 1994
  ident: ref_237
  article-title: Spatial Association of HIV-1 Tat Protein and the Nucleolar Transport Protein B23 in Stably Transfected Jurkat T-Cells
  publication-title: Arch. Virol.
  doi: 10.1007/BF01309460
– volume: 87
  start-page: 1123
  year: 2013
  ident: ref_56
  article-title: Human T Cell Leukemia Virus Type 2 Tax-Mediated NF-κB Activation Involves a Mechanism Independent of Tax Conjugation to Ubiquitin and SUMO
  publication-title: J. Virol.
  doi: 10.1128/JVI.01792-12
– volume: 73
  start-page: 6551
  year: 1999
  ident: ref_110
  article-title: The Epstein-Barr Virus BZLF1 Protein Interacts Physically and Functionally with the Histone Acetylase CREB-Binding Protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.8.6551-6558.1999
– ident: ref_171
  doi: 10.1186/1471-213X-8-33
– ident: ref_138
  doi: 10.3390/biom10070985
– volume: 56
  start-page: 5612
  year: 2012
  ident: ref_268
  article-title: Antibacterial Efficacy of Temperate Phage-Mediated Inhibition of Bacterial Group Motilities
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00504-12
– ident: ref_59
  doi: 10.1038/embor.2008.209
– ident: ref_239
  doi: 10.1038/nrneurol.2016.27
– volume: 70
  start-page: 1491
  year: 2013
  ident: ref_128
  article-title: Mutations in VRK1 Associated with Complex Motor and Sensory Axonal Neuropathy plus Microcephaly
  publication-title: JAMA Neurol.
– ident: ref_169
  doi: 10.1128/CMR.00034-08
– ident: ref_20
  doi: 10.1016/j.virol.2011.11.016
– volume: 13
  start-page: 4918
  year: 1993
  ident: ref_220
  article-title: Localization of the E6-AP Regions That Direct Human Papillomavirus E6 Binding, Association with P53, and Ubiquitination of Associated Proteins
  publication-title: Mol. Cell. Biol.
– volume: 75
  start-page: 887
  year: 1993
  ident: ref_251
  article-title: The Interaction of SV40 Small Tumor Antigen with Protein Phosphatase 2A Stimulates the Map Kinase Pathway and Induces Cell Proliferation
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90533-V
– ident: ref_29
  doi: 10.1007/978-3-319-29785-9_6
– volume: 118
  start-page: 401
  year: 1993
  ident: ref_12
  article-title: Targeted Gene Expression as a Means of Altering Cell Fates and Generating Dominant Phenotypes
  publication-title: Development
  doi: 10.1242/dev.118.2.401
– ident: ref_229
  doi: 10.1146/annurev.cellbio.13.1.147
– volume: 117
  start-page: 1223
  year: 1993
  ident: ref_193
  article-title: Analysis of Genetic Mosaics in Developing and Adult Drosophila Tissues
  publication-title: Development
  doi: 10.1242/dev.117.4.1223
– ident: ref_38
  doi: 10.1126/science.1072682
– volume: 5
  start-page: 233
  year: 2016
  ident: ref_256
  article-title: Genome Engineering: Drosophila Melanogaster and Beyond
  publication-title: Wiley Interdiscip. Rev. Dev. Biol.
  doi: 10.1002/wdev.214
– ident: ref_194
  doi: 10.1371/journal.pone.0017856
– volume: 19
  start-page: 3080
  year: 2000
  ident: ref_108
  article-title: The Epstein-Barr Virus Lytic Program Is Controlled by the Co-Operative Functions of Two Transactivators
  publication-title: Embo J.
  doi: 10.1093/emboj/19.12.3080
– volume: 103
  start-page: 3244
  year: 2006
  ident: ref_147
  article-title: Anthrax Lethal Factor and Edema Factor Act on Conserved Targets in Drosophila
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0510748103
– volume: 3
  start-page: 233
  year: 2008
  ident: ref_44
  article-title: Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.02.016
– volume: 300
  start-page: 1394
  year: 2003
  ident: ref_89
  article-title: Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome
  publication-title: Science
  doi: 10.1126/science.1085952
– ident: ref_102
– volume: 201
  start-page: 377
  year: 2015
  ident: ref_6
  article-title: Drosophila as an in Vivo Model for Human Neurodegenerative Disease
  publication-title: Genetics
  doi: 10.1534/genetics.115.179457
– volume: 340
  start-page: 150
  year: 1989
  ident: ref_190
  article-title: Effect on Eye Development of Dominant Mutations in Drosophila Homologue of the EGF Receptor
  publication-title: Nature
  doi: 10.1038/340150a0
– ident: ref_207
  doi: 10.1136/gutjnl-2018-316723
– ident: ref_259
  doi: 10.1016/S0140-6736(17)30129-0
– volume: 214
  start-page: 755
  year: 2020
  ident: ref_15
  article-title: Large-Scale Transgenic Drosophila Resource Collections for Loss- and Gain-of-Function Studies
  publication-title: Genetics
  doi: 10.1534/genetics.119.302964
– ident: ref_85
  doi: 10.1097/CCM.0b013e318258e5bb
– ident: ref_2
  doi: 10.1056/NEJMe2002387
– volume: 287
  start-page: 324
  year: 2000
  ident: ref_202
  article-title: Regulation of JNK by Src during Drosophila Development
  publication-title: Science
  doi: 10.1126/science.287.5451.324
– ident: ref_4
  doi: 10.1016/j.cell.2015.09.009
– ident: ref_62
  doi: 10.1186/1742-4690-6-117
– ident: ref_55
  doi: 10.1111/febs.14492
– ident: ref_241
  doi: 10.1146/annurev-neuro-071013-014100
– volume: 467
  start-page: 854
  year: 2010
  ident: ref_155
  article-title: Anthrax Toxins Cooperatively Inhibit Endocytic Recycling by the Rab11/Sec15 Exocyst
  publication-title: Nature
  doi: 10.1038/nature09446
– volume: 67
  start-page: 701
  year: 1991
  ident: ref_191
  article-title: Ras1 and a Putative Guanine Nucleotide Exchange Factor Perform Crucial Steps in Signaling by the Sevenless Protein Tyrosine Kinase
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90065-7
– volume: 202
  start-page: 1235
  year: 2005
  ident: ref_183
  article-title: Interaction of CagA with Crk Plays an Important Role in Helicobacter Pylori-Induced Loss of Gastric Epithelial Cell Adhesion
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20051027
– ident: ref_208
  doi: 10.1371/journal.ppat.1006631
– ident: ref_226
  doi: 10.1099/vir.0.016303-0
– volume: 2012
  start-page: 736837
  year: 2012
  ident: ref_265
  article-title: Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions
  publication-title: J. Amino Acids
  doi: 10.1155/2012/736837
– ident: ref_66
  doi: 10.3390/v7082824
– ident: ref_141
  doi: 10.1146/annurev.micro.55.1.647
SSID ssj0023259
Score 2.5011604
SecondaryResourceType review_article
Snippet The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also...
The fruit fly, , has been used to understand fundamental principles of genetics and biology for over a century. is now also considered an essential tool to...
The fruit fly, Drosophila melanogaster , has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2724
SubjectTerms Animals
Communicable Diseases - immunology
Communicable Diseases - metabolism
Communicable Diseases - microbiology
Communicable Diseases - virology
Drosophila melanogaster - immunology
Drosophila melanogaster - metabolism
Drosophila melanogaster - microbiology
Drosophila melanogaster - virology
Host-Pathogen Interactions
Immunity, Innate
Review
Signal Transduction
Virulence Factors - metabolism
Title Drosophila as a Model for Infectious Diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/33800390
https://www.proquest.com/docview/2508572322
https://pubmed.ncbi.nlm.nih.gov/PMC7962867
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED_xISReEIyPFUaVSfCEPFzXqeOHCbG1HUMCoamV-hbZjiM6lQBNkeh_z12SVu3YpL3ED7kkytnJ78738QM4sUliW02lmecty6QMHbOI4swbhOtUpJoLKnC-uW1d9eX1IByswIxttFJg_lfXjvik-uPRl9fn6QV-8F_J40SX_Xz4-yGnelGhhFyFdcQkRVwGN3IeT0CzoaBNow0PRj_oMgX-3dXL4PTO4vwzcXIBibrbsFWZkMFlOec7sOKzD7BRkkpOd4G1xwU3wXBkApMHJiC6s1GAxmnws8q8esmDdhmYyfeg1-30vl-xihSBORnyCROmESYi9dx4bqVxkW-JRGubSNmUwqXKSuoJJ1GgkQrpGj7VlguncdCRau7DWvaY-Y8Q-JALkyapCyNObQO14s4XBFU4CO9rcDZTRuyqhuHEWzGK0XEg1cWLqqvB6Vz6qWyU8Q-5zzO9xriSKTxhMo8vHqMxFoUKp0rU4KDU8_xO6EhTFTGvgVqagbkAdclePpMN74tu2UpT9a06_I_nHsGmoJQVSjGLPsHaZPzij9HmmNg6rKqBwmPU_VGH9W-d27tfdUKBsF4stDf4U9nt
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drosophila+as+a+Model+for+Infectious+Diseases&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Harnish%2C+J+Michael&rft.au=Link%2C+Nichole&rft.au=Yamamoto%2C+Shinya&rft.date=2021-03-08&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=5&rft_id=info:doi/10.3390%2Fijms22052724&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon